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Abstract

Generative adversarial network (GAN) continues to be a popular research direction due
to its high generation quality. It is observed that many state-of-the-art GANs generate
samples that are more similar to the training set than a holdout testing set from the same
distribution, hinting some training samples are implicitly memorized in these models. This
memorization behavior is unfavorable in many applications that demand the generated
samples to be sufficiently distinct from known samples. Nevertheless, it is unclear whether
it is possible to reduce memorization without compromising the generation quality. In this
paper, we propose memorization rejection, a training scheme that rejects generated samples
that are near-duplicates of training samples during training. Our scheme is simple, generic
and can be directly applied to any GAN architecture. Experiments on multiple datasets
and GAN models validate that memorization rejection effectively reduces training sample
memorization, and in many cases does not sacrifice the generation quality.

1 Introduction

There has been much progress made on improving the generation quality of Generative Adversarial Networks
(GANs) (Brock et al., 2019; Goodfellow et al., 2014; Karras et al., 2020; Wu et al., 2019; Zhao et al., 2020;
Zhang et al., 2019). Despite GANs being capable of generating high-fidelity samples, it has been recently
observed that they tend to memorize training samples due to the high model complexity coupled with a
finite amount of training samples (Meehan et al., 2020; Lopez-Paz & Oquab, 2018; Gulrajani et al., 2020;
Borji, 2021). This naturally leads to the following questions: Are GANs learning the underlying distribution
or merely memorizing training samples? More fundamentally, what is the relationship between learning
and memorizing for GANs? Studying these questions are important since generative models that output
near-duplicates of the training data are undesirable for many applications. For example, Repecka et al.
(2021) proposed to learn the diversity of natural protein sequencing with GANs and generate new protein
structures to aid medicine development. Frid-Adar et al. (2018) leveraged GANs to generate augmented
medical images and increase the size of training data for improving liver lesion classification.

Although measuring and preventing memorization in supervised learning is well-studied, handling memoriza-
tion in generative modeling is non-trivial. For supervised learning, training sample memorization typically
results in overfitting and can be diagnosed by benchmarking on a holdout testing dataset. In contrast, a gen-
erative model that completely memorizes the training data and only generates near-duplicates of the training
data can still perform well on common distribution-matching-based quality metrics, even when evaluated on
a holdout testing set.

Recently various metrics and detection methods have been proposed to analyze the severity of memorization
after GAN models are trained (Borji, 2021; Bounliphone et al., 2016; Esteban et al., 2017; Lopez-Paz &
Oquab, 2018; Liu et al., 2017; Gulrajani et al., 2020; Thanh-Tung & Tran, 2020; Nalisnick et al., 2019).
Some of these methods rely on training a new neural network for measuring sample distance while others
rely on traditional statistical tests. However, it is still unclear how to actively reduce memorization during
GAN training. We thus aim to answer the following questions in this paper: is it possible to efficiently
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reduce memorization during the training phase? If so, to what extent can memorization be reduced without
sacrificing the generation quality? Our contributions are as follows:

1. We confirmed that while the distance of a generated instance to the training data is generally
correlated with its quality, it is not the case for instances that are already sufficiently close. Therefore,
it is possible to reduce memorization without sacrificing generation quality.

2. We propose memorization rejection, a simple training scheme that can effectively reduce memoriza-
tion in GAN. The method is based on the key insight that a generated sample being sufficiently
similar to its nearest neighbor in the training data implies good enough quality and further opti-
mizing it causes the model to overfit and memorize. To the best of our knowledge, this is the first
method proposed for reducing training data memorization in GAN training.

3. Experimental results demonstrate that our proposed method is effective in reducing training sample
memorization. We provided a guideline for estimating the optimal hyperparameter that maximally
reduces memorization while minimally impacting the generation quality.

2 Preliminaries

Consider an input space X and an N -dimensional code space Z = RN . For instance, when considering
RGB images, X is simply R3×w×h, where w and h are respectively the width and height of the image (in
this paper, X = R3×w×h if not specified otherwise). Generative adversarial networks (GANs; Goodfellow
et al., 2014) typically consist of a generator function and a discriminator function. The generator function
Gθ : Z → X , parameterized by θ ∈ Θ, decodes from Z to X . The discriminator function Dϕ : X → R,
parameterized by ϕ ∈ Φ, maps any x ∈ X to a real value that reflects how likely x comes from an underlying
distribution p(X ). A typical objective of a GAN optimizes the minimax loss between Gθ and Dϕ

min
θ∈Θ

max
ϕ∈Φ

E
x∼p(X )

[log Dϕ(x)] + E
z∼q(Z)

[log(1−Dϕ(Gθ(z)))],

where q(Z) is a controllable distribution (e.g. Gaussian). GANs aim to approximate p(X ) by Gθ(q(Z)) with
the adversarial help of the discriminator Dϕ(x). In particular, the generator is optimized to increase the
likelihood of generated instances with the likelihood gauged by the discriminator, while the discriminator is
optimized to increase the likelihood of instances sampled from the real distribution p(X ) and decrease the
likelihood of instances generated from the fake distribution Gθ(q(Z)). Since it is infeasible to sample from
p(X ) directly, a training set XT ⊆ X of N instances is used to approximate the population instead.

2.1 Quantitative evaluation of sample similarity

The most commonly used method to detect training sample memorization is by visualizing nearest neighbors
of generated images in the training data (Brock et al., 2019; Borji, 2018). If the visualized samples look
similar to their nearest neighbors in the training data, it is reasonable to suspect that the model is trying to
memorize the training data. Given a generated sample x ∼ Gθ(q(Z)) and an embedding function f : X → Rk,
the nearest neighbor of x in the training set is defined as

NNf,XT
(x) = arg min

x′∈XT

1− ⟨f(x), f(x′)⟩
∥f(x)∥ · ∥f(x′)∥ .

The cosine similarity is conventionally used for evaluating the similarity of latent vectors (Salton & Buckley,
1988; Le-Khac et al., 2020; Borji, 2021) but other distance metrics could also be chosen. To avoid sensitivity
to noise in the input space, f is usually chosen to project to a latent space embedded with higher-level
semantics. It is widely believed that a pretrained image classification model can extract high-level semantics
and serves as a robust latent space for distance measurement. For example, calculation of FID involves first
passing the set of images through the Inception v3 (Szegedy et al., 2016) classification model pretrained on
ImageNet for feature extraction. A well-chosen f retrieves nearest neighbors that align well with human’s
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perception. Following this definition, the distance to the nearest neighbor can serve as a quantitative measure
for sample similarity

df,XT
(x) = min

x′∈XT

1− ⟨f(x), f(x′)⟩
∥f(x)∥ · ∥f(x′)∥ .

Thus, the problem of reducing memorization can be formulated as regulating the nearest neighbor distance
of generated samples, which motivates our proposed algorithm.

2.2 Quantitative evaluation of memorization

Meehan et al. (2020) proposed a non-parametric test score CT for measuring the degree of training sample
memorization of a generative model based on sample similarity. Their key insight is that a model should
generate samples that are on average, as similar to the training data as an independently drawn test sample
from the same distribution. The model is memorizing if the generated samples are on average, more similar
to the training data than an independently drawn test sample from the same distribution.

The memorization test is based on the Mann-Whitney U test, a non-parametric statistical test for testing
the ordinal relationship with the null hypothesis that the given two sets of samples are from the same
distribution. In this case, the two sets of samples are the nearest neighbor distances (with respect to the
training data) of a generated set and a reference testing set. The more severe the memorization, the more
negative the U statistics, and vice versa. Additionally, to better detect local memorization, the input domain
can be divided into subspaces and the test score is aggregated over memorization tests performed on each
of the subspaces. In this paper, we adopt the definition of memorization as characterized by the CT values.

2.3 Generation quality and memorization

Good generation quality and reduced memorization can coexist. In the ideal case, if the generator perfectly
fits the underlying data distribution, then the generated samples have perfect quality and are in no way more
similar to the training data than another independent sample from the distribution. However, GAN models
are imperfect. Figure 1 shows the nearest neighbor distance distribution (approximated by 2K samples) of a
generated set from BigGAN and a reference testing set (CIFAR10.1). If the model successfully learned the
data distribution, the expectations of the two nearest neighbor distributions should be identical. However,
samples generated from BigGAN (orange line) are in fact closer to the training data than samples from the
reference testing set (highlighted in orange) which indicates the memorization phenomenon.

0.0 0.1 0.2 0.3
d

0.00

0.05

0.10

0.15

0.20 CIFAR10.1
BigGAN

Figure 1: Nearest neighbor distance distribution of the
reference testing set (CIFAR10.1) versus BigGAN.

In general, it is true that generated samples with
smaller nearest neighbor distances are associated
with better quality. Smaller distances imply being
closer to the training distribution. Figure 2 visual-
izes a subset of 5k samples from a BigGAN trained
on CIFAR10. The images are sorted by their near-
est neighbor distance. From top to bottom, each
row shows 10 images from the 20%, 40%, 60%, 80%,
and 100% percentile, respectively. The upper rows
with lower nearest neighbor distance are associated
with better perceptual quality. This confirms near-
est neighbor distance in general is an indicator of
quality.

However, the nearest neighbor distance is not an in-
dicator of quality when the distance is sufficiently
small. If a generated sample is already close to the
data distribution, a smaller nearest neighbor dis-
tance only implies higher similarity with the training
sample. Figure 3 visualizes a subset of 5k samples
from a BigGAN trained on CIFAR10, sorted by their nearest neighbor distance. From top to bottom, each
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Figure 2: Visualize CIFAR10 "horse" samples from BigGAN, sorted with the nearest neighbor distance.
From top to bottom each row shows the 20%, 40%, 60%, 80%, and 100% percentile.

row shows 10 images from the 4%, 8%, 12%, 16%, and 20% percentile, respectively. There is no perceptible
quality difference between rows. Thus, for generated samples already sufficiently close to the training data,
their nearest neighbor distances are indicative of potential memorization, not quality.

Figure 3: Visualize CIFAR10 "horse" samples from BigGAN, sorted with the nearest neighbor distance.
From top to bottom each row shows the 4%, 8%, 12%, 16%, and 20% percentile.

The issue for learning the distribution with GANs is only having access to a finite number of training data.
The data distribution is approximated by a joint Dirac delta distribution of training samples. As training
progresses, the generated samples become more similar to the training data (see Figure 4).

Coupled with model over-parametrization, the learned implicit likelihood is overly high for neighborhoods
near training samples. Yang & E (2021) proved that the distribution learned with GANs either diverges
or converges weakly to the empirical training data distribution. The authors proved that early stopping
allows quality measured by Wasserstein metric to escape from the curse of dimensionality, despite inevitable
memorization in the long run.
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Figure 4: tSNE plot of CIFAR10 “car” training and generated samples from different stages of training
BigGAN

Typically the training of GANs is terminated when the quality metric starts to deteriorate (e.g. FID starts to
increase). However, Meehan et al. (2020) observed memorization in state-of-the-art GAN models, implying
deterioration of quality metrics is not a sufficient criteria to prevent memorization. It is also unreasonable
to expect the entire distribution to be learned at equal speed. Some easier parts of the distribution might
already be well-fitted and starting to memorize while other more difficult parts of the distribution require
more epochs to learn. For example, in conditional generation tasks such as CIFAR10 (Krizhevsky et al.,
2009) the difficulty of learning each class is different. It is much easier to learn manmade objects with more
clearly defined borders (e.g. cars, trucks, and ships) than animals with similar color as the background (e.g.
deer, birds, and frogs). Thus, early stopping a model potentially leads to both underfitting and overfitting
(memorization) for different parts of the distribution.

3 Methods

Recall that the difference in nearest neighbor distance distributions shown in Figure 1 reflects memorization
in GAN. To reduce memorization, the likelihood of the orange region should be reduced. We propose a
simple and effective method to achieve this goal.

3.1 Memorization rejection

We want to regularize the model to avoid generating samples overly similar to the training data. As shown
in Section 2.3, samples that are already close to the training data have good-enough quality. Pushing them
further towards the training data results in memorization instead of quality improvement. Based on the
premise, we proposed Memorization Rejection (MR) which rejects generated samples that resemble
near duplicates of the training data (see Algorithm 3.1). This is achieved by setting a predefined rejection
threshold τ on the nearest neighbor distance. The new objective is modified as follows

min
θ∈Θ

max
ϕ∈Φ

E
x∼XT

[log Dϕ(x)] + E
x̂∼Gθ(q′(Z))

[log(1−Dϕ(x̂))]

q′(z) :=
{

q(z)
Q , if df,XT

(Gθ(z)) ≥ τ

0, otherwise

where Q is the normalizing constant. To understand the effect of memorization rejection, we can rewrite the
the latter component of the objective

E
x̂∼Gθ(q′(Z))

[log(1−Dϕ(x̂))] = E
x̂∼Gθ(q(Z))

[ log(1−Dϕ(x̂))
Q

] + lr
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lr = −
∫

z

log(1−Dϕ(Gθ(z))) · q′′(z)dz

q′′(z) :=
{

q(z)
Q , if df,XT

(Gθ(z)) < τ

0, otherwise

The new objective becomes the original GAN minimax loss plus the regularization term lr which penalizes
Gθ for generating samples with nearest neighbor distance less than τ , i.e., overly similar to the training data.
Memorization rejection can be viewed as a form of adaptive early stopping. The training stops for generated
samples with sufficiently good quality (nearest neighbor distance less than τ) while other samples continue
to be updated and improved.

Memorization rejection is performed when updating the generator and discriminator according to the ob-
jective. However, in practice performing MR only when training the generator is sufficient. We suspect
the discriminator requires all the generated (fake) samples to accurately estimate the likelihood, which is
related to how discriminators are updated multiple times before updating the generator once (Arjovsky
et al., 2017). A partially converged discriminator can provide better feedback to the generator for generating
realistic samples. The method is effective as long as the generator is penalized for memorization.

Note that rejection is only performed during training. For testing, samples are drawn from the original
distribution x̂ ∼ Gθ(q(Z)) as MR is effectively a regularization term lr and should not be applied during
evaluation. The goal is still to learn the mapping from latent codes q(Z) to the real data distribution p(X).

Training GAN with Memorization Rejection [1] Rejection Samplingτ, Gθ, d(·), q d ← 0 d ≤ τ Sample z
from q(Z) x̂ ← Gθ(z) d ← d(x̂) return x̂ Training with MRXT , Gθ, Dϕ, N, τ, d(·), q i = 1, . . . , N Sample x
uniformly from XT Sample z from q(Z) x̂← Gθ(z) Update Dϕ with x and x̂

x̂← Rejection Sampling(τ, Gθ, d(·), q) Update Gθ with x̂ return Gθ and Dϕ

3.2 Computational complexity

Performing memorization rejection requires projecting samples to the latent space and calculating the nearest
neighbor distance in each generator update. For each generator update, the additional forward pass through
the embedding function f and the distance calculation result in twice the total amount of training time
in our experiments. We conducted exact nearest neighbor search in all our experiments as the overhead is
tolerable (less than 2x). To further speed up training on larger scale datasets, approximated nearest neighbor
search (Li et al., 2020; Malkov & Yashunin, 2018) can be applied instead. Open source libraries (Guo et al.,
2020; Jayaram Subramanya et al., 2019) allow efficient approximated nearest neighbor search on billion-scale
datasets.

4 Related work

4.1 GAN memorization metrics

Many works have studied different definitions of memorization in GANs and some of which proposed metrics
to quantify the severity of memorization (Meehan et al., 2020; Lopez-Paz & Oquab, 2018; Bounliphone et al.,
2016; Gulrajani et al., 2020; Borji, 2021; Webster et al., 2019; Adlam et al., 2019; Feng et al., 2021; Bai et al.,
2021). There is a line of studies that relies on sample-based statistical tests. Lopez-Paz & Oquab (2018)
applied the Two-Sample Nearest Neighbor non-parametric test to evaluate the leave one out accuracy of
the nearest neighbor classifier evaluated on a dataset consisting of generated samples and samples from the
original training set. Esteban et al. (2017) adopted the result of maximum mean discrepancy three sample
test (Bounliphone et al., 2016) as the null hypothesis and evaluated the averaged p-values. Meehan et al.
(2020) proposed a non-parametric test which estimates the likelihood of the nearest neighbor distance of a
generated sample being greater than a sample from a reference test set.

Another line of studies relies on the Neural Network Divergence for measuring the overall generalization of
generative models (Liu et al., 2017; Gulrajani et al., 2020). The method requires training a neural network
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to differentiate samples from two distributions and using the converged loss after training as a proxy for
the discriminability of the two distributions. On a tangential perspective, Webster et al. (2019) measures
memorization by retrieving latent code that maps to near duplicates of training samples.

4.2 Data augmentation in GAN training

Data augmentation have been applied to reduce overfitting in GANs (Zhao et al., 2020; Karras et al., 2020;
Tran et al., 2021; Liu et al., 2021; Tseng et al., 2021; Yang et al., 2021). However, the overfitting that can be
solved by data augmentation refers to overfitting of the discriminator when only a limited amount of training
data is available. The augmented training data improves generation quality by preventing the discriminator
from making high confidence predictions. However, studies on GAN data augmentation techniques are not
shown to reduce generator training sample memorization, as defined in this work. In fact, we later show in
section 5.4 that data augmentation (Zhao et al., 2020) is ineffective at reducing memorization.

4.3 Sampling with rejection in GANs

Sampling is essential to training GANs since the GAN objective is based on the two-sample test of real
and fake distributions. One common technique to efficiently sample from a complex distribution is rejection
sampling. Rejection sampling can be further generalized to “sampling with rejection”, where the criteria
for rejecting a sample depends on a custom function as opposed to the probability density. This allows
straightforward filtering of unfavorable samples.

The criteria for rejection can be customized for different needs. Lim & Ye (2017) proposed to adopt hinge
loss as the objective and rejects a sample (from being used to update the model) if it falls within the margin.
Azadi et al. (2018) proposed a post-processing scheme where generated samples are rejected based on the
likelihood estimated by the discriminator. Their key insight is it is easier for the discriminator to determine
when the distribution is not being modeled precisely. Sinha et al. (2020) rejects samples associated with
lower likelihood estimated by the discriminator during training and only update the generator with “good
quality samples” to improve generation quality.

5 Experimental Results

Our goal is to analyze how training GANs with memorization rejection affects the performance in terms of
generation quality and memorization severity. We demonstrate that it is possible to reduce memorization
with minimal (non-perceivable) impact on the generation quality. The code for all the experiments will be
open sourced.

5.1 Experimental setting

We trained GAN models with different rejection thresholds τ . Higher rejection thresholds imply generated
samples must be more distinct from the training data to be used for updating the model. The models are
benchmarked with FID for generation quality and CT score defined in Section 2.2 for memorization severity.
Each experiment is repeated 4 times for consistency and the average performance is reported. A latent
projection function f is required to calculate FID and CT . We chose the same projection f for both metrics,
allowing the evaluation of quality and memorization severity be in the same latent space. Following the
convention for FID (Heusel et al., 2018), we chose the penultimate layer of the Inception v3 model (Szegedy
et al., 2016) pretrained on ImageNet as the embedding function f .

5.1.1 Datasets and models

We conducted conditional generation experiments on the CIFAR10 dataset (Krizhevsky et al., 2009). The
dataset consists of 50k training samples of natural images in 10 classes. We experimented on models of
different complexity: SAGAN (Zhang et al., 2019), BigGAN (Brock et al., 2019), and BigGAN with dif-
ferential augmentation (Zhao et al., 2020). The three models are intentionally selected to be incrementally
more complex. BigGAN with differential augmentation is built upon BigGAN while BigGAN adopts the
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self-attention mechanism in SAGAN. We expect that higher complexity causes models to memorize the
training data more. The training hyperparameters are set as follows (no additional finetuning):

• Batch size: 64.

• Total number of steps for training: 100,000.

• Learning rate: 0.0002 (for the generator and discriminator).

• Optimized with ADAM (β1: 0.5, β2: 0.999).

• The discriminator is updated for 5 steps per one step update on the generator.

5.1.2 Reference testing set

It is important to obtain an unbiased memorization measurement by using an independent test set disjoint
from the training set. The more distinct and independent the reference testing set is, the more accurate
the evaluation of memorization severity. Although the CIFAR10 testing set is the most accessible choice,
Barz & Denzler (2020) identified the issue of high overlap between training and testing set of CIFAR10.
They mined duplicate images in the testing set using the projected cosine similarity as the nearest neighbor
distance (measured with respect to the training set) and manually replaced near duplicates to construct a new
dataset ciFAIR10. Unfortunately upon closer inspection, many near duplicates still exist in the ciFAIR10
dataset, possibly due to only considering the 1-nearest neighbor when mining.

Recht et al. (2018) constructed CIFAR10.1 to serve as a new benchmark dataset for CIFAR10 to verify
whether state-of-the-art classification models can generalize to new samples. They resampled from the
Tiny Images repository and went through the exact process of creating the CIFAR10 dataset with additional
rigorous data-cleaning procedures. This includes manually inspecting the 10 nearest neighbors and removing
instances of near duplicates. They observed that good model performance on the existing CIFAR10 testing
set don’t necessarily transfer to CIFAR10.1 and suggested important modes missing from the existing testing
set. Thus, we selected CIFAR10.1 (Recht et al., 2018) as the reference testing set for metric evaluation since
it is curated to have the least overlap with the training data.

5.2 Effectiveness of memorization rejection

Recall we showed in Figure 1 that samples generated from GANs are distributed closer to the training data
than a reference testing set. In figure 5, in addition to the BigGAN distribution and the reference testing
set (CIFAR10.1), we further plot the distribution generated by BigGAN with memorization rejection. We
observe that the distribution of BigGAN with MR is more similar to the reference testing set, indicating
training with memorization rejection reduces the similarity to the training data. This provides qualitative
evidence that memorization rejection is effective in reducing training sample memorization.

Next we analyze the generation quality and memorization severity quantitatively. Figure 6 shows the FID
and CT of BigGANs trained with different rejection thresholds. Recall CT value of 0 implies the generated
samples are as similar to the training data as the reference testing set, i.e., no memorization. Negative CT

values implies memorization. We observe for rejection thresholds up to 0.13, CT decreases with minimal
impact on the FID. The memorization is reduced without degrading generation quality within this region.
Figure 7 visualize generated samples from BigGAN trained with no rejection and with τ = 0.13. There is
no visually perceptible generation quality different between the two sets of samples.

For thresholds greater than 0.13, the reduction in memorization comes with tradeoff in quality. For τ =
0.16 the CT remains negative, indicating slight memorization. Although training sample memorization
is not completely removed (which may not even be possible), we demonstrated that training GANs with
memorization rejection reduces the severity. The rejection threshold serves as a control knob to regularize
the model and in this experiment a properly tuned threshold of τ = 0.13 improves CT while maintaining
(even improving) FID.
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Figure 5: Nearest neighbor distance distribution (CI-
FAR10 train) of the reference testing sets.
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Figure 6: Relation between quality (FID) and mem-
orization (CT ) with varying rejection threshold τ .

Figure 7: Visualize non-curated, generated samples. Left: BigGAN trained without MR. Right: BigGAN
trained with MR. The generation quality of the model with and without MR is similar.

5.3 Class-wise memorization severity

One incentive to adopt memorization rejection is to serve as a form of adaptive early stopping to allow
regions in the distribution to be learned with different speeds. For conditional generation, the difficulty of
learning each class is different. As mentioned in Section 2.3, manmade object classes (e.g. car, ship, plane)
are easier than natural object classes (e.g. bird, cat, frog) to learn. Figure 8 shows the classwise CT values
for models trained with different rejection thresholds. As a sanity check, CT values indeed reflect how easily
a class is learned. Coincidentally, classes that are easier to learn are also more easily memorized. MR reduces
the memorization severity of highly memorized classes.
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Besides reducing memorization of memorized classes, one thing to be aware of is whether memorization
rejection causes underfitting classes to be even more underfitting. It is not ideal if memorization rejection
shifts the entire generated distribution uniformly away from the training data. The target for memorization
rejection is the highly memorized regions only. According to our experiments, MR is effective for classes with
more severe memorization, i.e., more negative CT values. On the other hand, classes that are not memorized,
i.e., more positive CT values are barely affected.
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Figure 8: Effect of rejection threshold τ on memo-
rization (CT ) of each CIFAR10 class.
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Figure 9: Relation between quality (FID) and mem-
orization (CT ) with varying τ for different models.

5.4 Experiments on model architectures

Figure 9 shows that not only is memorization rejection generic and applicable to any GAN model, it is
also effective. The complexity of the models from lowest to highest is SAGAN, BigGAN, and BigGAN
with differential augmentation. The complexity is reflected on the performance of both metrics, where more
complex models is associated with lower FID scores (better quality) and more negative CT values (more
memorization). We observe that for all three models, there exists some rejection threshold that improves
the CT value without compromising the quality.

Differential augmentation (Zhao et al., 2020) is a technique for augmenting training data to avoid the
discriminator overfitting while preventing the generator from learning the augmented samples. Figure 9
shows that BigGAN with differential augmentation exhibits the most severe memorization when no MR
is applied. This indicates that augmentation techniques in GAN training, albeit useful for improving the
generation quality, is not effective against reducing training sample memorization. However, the CT values
can be significantly improved by increasing the rejection threshold without any degradation in quality as
measured with FID when coupled with MR. This showcases the compatibility of memorization rejection with
other tangential GAN training techniques.

5.5 Evaluation with various distance metrics

To perform memorization rejection, a distance metric df,XT
is required to evaluate the nearest neighbor

distance during training. Although the GAN model does not directly optimize for the distance, the rejection
can be viewed as a regularization term on the original GAN objective as derived in section 3.1. Thus, there
is a risk of the generator adversarially learning to generate samples that are dissimilar to the training data
gauged with the distance metric used during training, but does not lead to actual reduction in memorization.
If the memorization reduction is indeed legitimate, we should observe the same improvement in CT when
evaluation with other distance metrics.
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We constructed different distance metrics by changing the embedding function f . Specifically, we selected
the penultimate layer of different ImageNet pretrained models as the embedding space, which are expected
to be rich in high-level semantics but not equivalent. Figure 10 shows the CT values evaluated with different
distance metrics. The universal trend holds across all the metrics. Higher rejection thresholds yield less
negative CT values. This provides quantitative evidence that the observed improvement in CT is not merely
an artifact of MR, but represents actual reduction in memorization severity.
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Figure 10: Effect of rejection threshold τ on memo-
rization (CT ) evaluated with different distance func-
tion df,XT

. The result suggests applying memoriza-
tion rejection does not cause the model to adversari-
ally optimize for the distance function applied during
training. Rather it effectively reduces memorization.
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Figure 11: Effect of rejection threshold τ on memo-
rization (CT ) evaluated with respect to different test-
ing sets. The positive correlation between the rejec-
tion threshold and increased CT value is consistent
across the testing sets.

5.6 Evaluation with various reference testing sets

Recall that we emphasized the importance of selecting a proper reference testing set in section 5.1.2. The
distinctiveness of the reference testing set from the training data reflects the strictness of the criteria for
memorization. Our choice of CIFAR10.1 (Recht et al., 2018) for reference in our experiments indicates a
higher standard for the models. What happens if a testing set with more overlap with the training data is
chosen as reference instead?

Figure 11 shows the CT values when using other testing sets as reference. CIFAR10 test is the testing set
included in the original CIFAR10 dataset, which is found to be highly overlapping with the training set (Recht
et al., 2018). CIFAIR10 is the testing dataset curated by Barz & Denzler (2020) as an attempt to remove
some near duplicates of the training data but not all of them. The testing sets ranked from the degree of
overlap with the training data from high to low would be CIFAR10 testing, CIFAIR10, then CIFAR10.1. The
absolute CT values of the testing sets reflect their distinctiveness from the training data. The less distinctive
the higher the CT value, and the lower the criteria for training sample memorization. On the other hand, if
we compare the relative CT values within the same testing set, the positive correlation between the rejection
threshold and CT value holds. This suggests that even if a non-overlapping, independent reference isn’t
available, the effectiveness of MR can still be observed.

5.7 Guideline for threshold selection

We have shown in previous sections that a well-chosen rejection threshold allows reduced memorization
with minimal impact on generation quality. Due to the tradeoff nature between quality and memorization
illustrated in section 2.3, we showed through experiments that the optimal rejection thresholds can and
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should be tuned. It is only natural to ask: is it possible to estimate the neighborhood of where the optimal
threshold lies without brute-force trial and error?

The initial intention for performing memorization rejection is to avoid updating generated samples that are
too similar to their training data nearest neighbors. How the data is distributed in the latent space for
distance evaluate is key to determining the rejection threshold. We can estimate the average density of the
data distribution by measuring the average nearest neighbor distance of the training data

d̄XT
= 1
|XT |

∑
x∈XT

df,XT \{x}(x).

An generated sample with nearest neighbor distance less than d̄XT
is likely close to the data distribution

which implies “good enough” quality. This makes d̄XT
a natural initial choice for performing memorization

rejection.

The average nearest neighbor distance d̄XT
of the CIFAR10 training set with Inception v3 model pretrained

on ImageNet as the embedding function f is 0.15. Figure 12 shows the tSNE figures for CIFAR10 generated
samples partitioned according to their nearest neighbor distance df,XT

. Generated samples with d less
than 0.15 covers most of the data distribution while samples with d greater than 0.15 fall outside the data
distribution. This suggest the average nearest neighbor distance of the training samples can be used to
determine whether a generated sample is close enough to the data distribution and serve as the rejection
threshold.

d 0.15

BigGAN
CIFAR10_train

d > 0.15

BigGAN
CIFAR10_train

Figure 12: tSNE plot of CIFAR10 "car" 50k generated samples from BigGAN split with d = 0.15. The left
with generated samples of d ≤ 0.15 covers most of the data distribution while generated samples in the right
figure with d > 0.15 lies outside of the distribution.

6 Conclusion

Training sample memorization is a known issue for GANs but is often addressed as a caution only after
models are trained. To the best of our knowledge, we are the first to directly tackle the issue of memorization
reduction during GAN training. Specifically, we proposed a training strategy to reject memorized samples
when updating the generator. We showed through experiments that our method is effective at reducing
memorization and the rejection threshold serves as a control knob for tuning the magnitude of regularization.
Selecting a good rejection threshold allows the model to learn to generate from the training distribution but
not replicating near duplicates of training samples.

Currently our method discards update information provided by memorized samples to reduce memorization.
The information could potentially be better utilized in other ways to further improve generation quality.
We hope that the foundation we established inspires future works to explore active memorization reduction
techniques for GANs, improving the Pareto frontier of reduced memorization and better generation quality.
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