

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EGOBRAIN: SYNERGIZING MINDS AND EYES FOR HUMAN ACTION UNDERSTANDING

Anonymous authors

Paper under double-blind review

ABSTRACT

The integration of brain-computer interfaces (BCIs), in particular electroencephalography (EEG), with artificial intelligence (AI) has shown tremendous promise in decoding human cognition and behavior from neural signals. In particular, the rise of multimodal AI models have brought new possibilities that have never been imagined before. Here, we present EgoBrain—the world’s first large-scale, temporally aligned multimodal dataset that synchronizes egocentric vision and EEG of human brain over extended periods of time, establishing a new paradigm for human-centered behavior analysis. This dataset comprises 61 hours of synchronized 32-channel EEG recordings and first-person video from 40 participants engaged in 29 categories of daily activities. We then developed a multimodal learning framework to fuse EEG and vision for action understanding, validated across both cross-subject and cross-environment challenges, achieving an action recognition accuracy of 66.70%. EgoBrain paves the way for a unified framework for brain-computer interface with multiple modalities. [All data, tools, and acquisition protocols together with the source code are openly shared to foster open science in cognitive computing.](#)

1 INTRODUCTION

The explosive growth of artificial intelligence has greatly advanced the field of Brain-computer interfaces (BCI), with massive research efforts to understand brain functions from neural recordings. Among various neural signals, non-invasive systems such as scalp electroencephalograph (EEG) are more scalable, cost-effective, and safer for large-scale adoption (Willett et al., 2021; Anumanchipalli et al., 2019; Sivasakthivel et al., 2025; Metzger et al., 2023; Bai et al., 2023; Li et al., 2025; Lan et al., 2023), thus appealing increasing interest to connect EEG with human perceptions and intentions. Boosted by deep learning techniques, booming breakthroughs have been seen in recent years to decode visual and acoustic stimuli in controlled laboratory settings. For example, recent works achieved accuracies of 15.6% in a 200-way zero-shot task on the EEG-image dataset (Song et al., 2023) and 21.9% in a 9-way task on the EEG-video dataset (Liu et al., 2024b). However, the visual stimuli in existing studies were merely presented on screens and the informative environmental background was ignored. Moreover, the active interactions between the subjects and the environment are less explored due to the passive settings in the experiments.

To better capture real-world human perceptions and actions, we introduce egocentric (first-person-view) vision as a complementary modality to EEG. The egocentric vision has emerged as a powerful paradigm for modeling human-object interactions and perceptual processes in real-world settings, with representative large-scale datasets such as EPIC-KITCHENS(Damen et al., 2022), Ego4D(Grauman et al., 2022) and HoloAssist(Wang et al., 2023). These datasets primarily capture observable outcomes from a human-like perspective, yielding valuable analysis of human behavior such as action recognition, hand pose estimation and human-object interaction understanding.

However, despite the rapid progress in both EEG decoding and egocentric vision, these two research lines remain fundamentally disconnected. Existing egocentric datasets capture what people do but not what they internally perceive, while traditional EEG studies reveal these internal processes but lack the richness and ecological validity of real-world human–environment interaction. As a result, current benchmarks can only reflect either the external visual outcomes or the internal cognitive responses, but never the interplay between the two. This motivates us to introduce EEG into egocentric

054 vision research, with the goal of filling this critical scientific gap. By pairing real-world egocentric
 055 video with simultaneously recorded brain activity, we aim to enable a deeper understanding of how
 056 perception and cognition jointly shape human actions.

057 Interestingly, EEG and egocentric vision provide mutually reinforcing information. While the first-
 058 person-view video offers objective information about scenes and actions, the sensorimotor experi-
 059 ences, intentions, and other forms of implicit knowledge remain largely unobservable. The missing
 060 pieces can be seamlessly complemented by EEG signals which reveal the latent cognitive signals
 061 related to attention, motor planning, decision-making, and intention. Given the complementary na-
 062 ture of egocentric vision and EEG, three fundamental questions arise. First, can their combination
 063 lead to a deeper understanding of human behavior? Second, when does this integration outperform
 064 unimodal approaches? Third, what technical methodologies can effectively handle the fusion?

065 To seek the answer and advance human-centric multimodal research, we start from introducing
 066 EgoBrain, a **large** multimodal dataset that synchronously captures EEG and egocentric video from 40
 067 participants engaged in natural daily activities. With a sophisticated design of 29 actions and diverse
 068 environmental conditions in test sets, EgoBrain offers the first benchmark of multimodal action
 069 recognition from synchronized EEG and egocentric video, paving the way for a unified framework
 070 for brain-computer interface.

071 Similar to other multimodal tasks with synchronized timeline, it's crucial to handle the shared tem-
 072 poral structure carefully and fuse information from modalities for downstream prediction. Upon our
 073 EgoBrain dataset, we present an adaptive Brain-Time Interval Machine (Brain-TIM) model, inspired
 074 from (Chalk et al., 2024) to integrate synchronized visual and EEG signals and capture rich multi-
 075 modal information for action understanding. Each modality is processed through modality-specific
 076 embedding layers and merged to the aggregated global context, while the shared temporal structure
 077 is explicitly modeled using the Time Interval MLP (TIM) module. We then conducted experiments
 078 with our Brain-TIM to evaluate both the standalone effectiveness of individual modalities and their
 079 synergy, and the highlighted results confirmed that the fusion of EEG and vision consistently out-
 080 performs unimodal approaches across multiple experiments. Further visualization provide deeper
 081 insight into the complementary roles of egocentric vision and EEG signals.

082 In summary, the main contribution of this paper is threefold:

083 1) We introduce EgoBrain, the first **large** synchronized EEG dataset designed for egocentric vision
 084 research. Featuring data from 40 participants engaged in real-world activities such as tool use and
 085 daily tasks (in total 61 hours), this dataset sets a benchmark for cross-modal action understanding
 086 and advances the application of BCI technologies in real-life settings.

087 2) To lay the groundwork, we provide standardized preprocessing pipelines for vision-brain syn-
 088 chronization data, along with benchmark evaluations and our proposed Brain-TIM model. These
 089 resources ensure experimental reproducibility and offer a unified comparative benchmark for future
 090 research based on EgoBrain.

091 3) We conduct ablation studies to assess the individual and combined contributions of different
 092 modalities. Our findings offer valuable insights into designing cross-modal learning frameworks for
 093 egocentric vision and brain signal integration.

096 2 RELATED WORK

098 **EEG & Vision Integration:** In recent years, combining electroencephalography (EEG) with visual
 099 data has emerged as a central theme in brain-computer interface (BCI) research, elucidating cog-
 100 nitive processes and motor intentions(Mushtaq et al., 2024; Guttmann-Flury et al., 2025; Bertoni
 101 et al., 2025; Dreyer et al., 2023; Kaya et al., 2018). EEG's high temporal resolution and portabil-
 102 ity enable real-time monitoring of brain states, yet most work examines resting-state responses to
 103 static visual stimuli, neglecting neural dynamics during natural movement(Yang et al., 2025; Liu
 104 et al., 2025; Ma et al., 2022; 2020; Liu et al., 2024a). A few studies have recorded EEG during
 105 active locomotion—for example, assessing cognitive load while walking in a lower-limb exoskele-
 106 ton(Ortiz et al., 2023)—and virtual-reality tasks like supernumerary thumb control via motor im-
 107 agery(Alsuradi et al., 2024). However, these efforts target prosthetic control and lack a systematic
 exploration of real-world, first-person multimodal interactions in unconstrained movement.

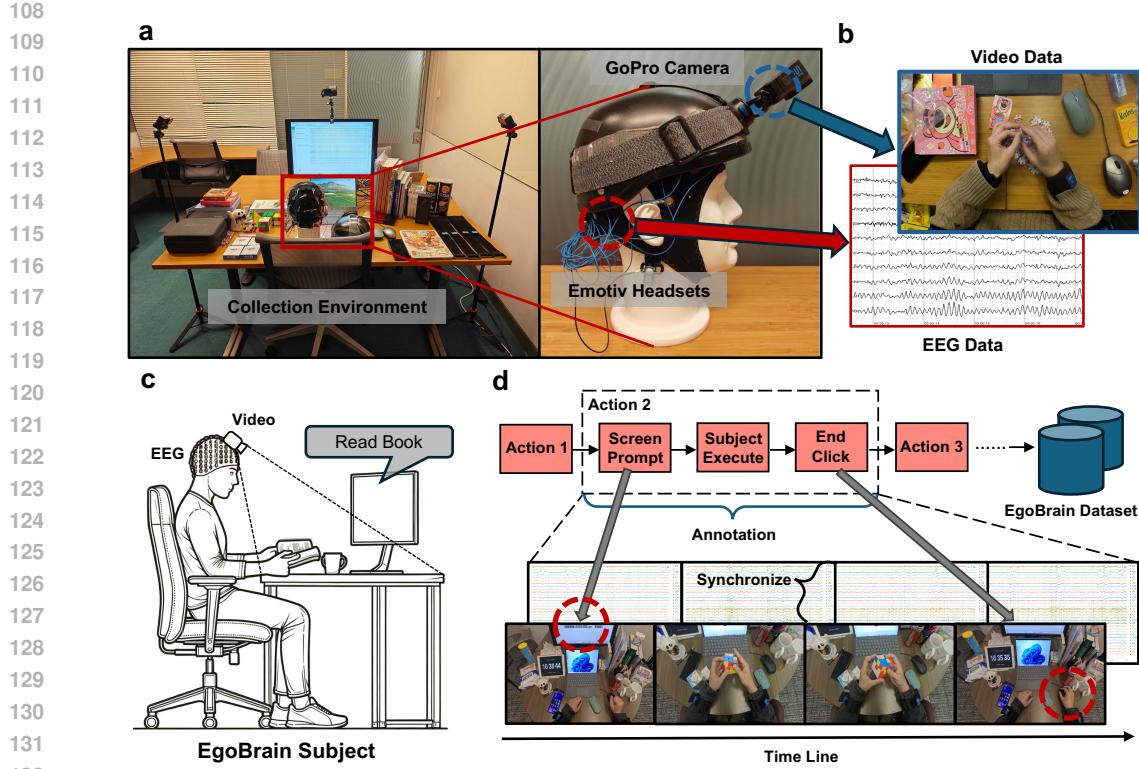


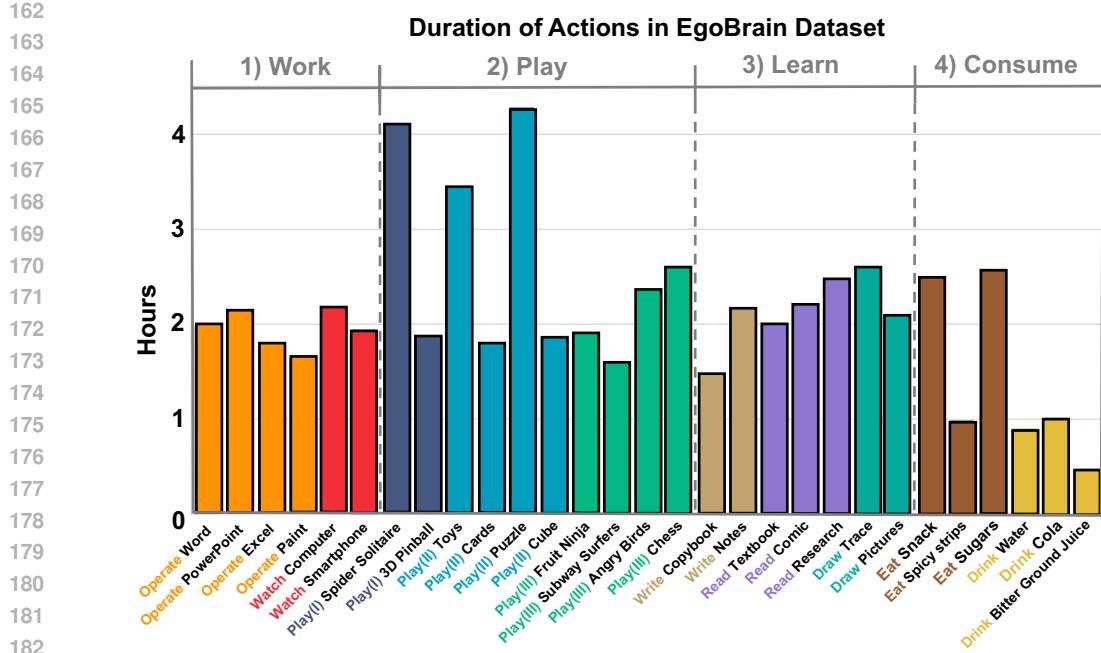
Figure 1: **The EgoBrain dataset and experimental setup.** **a** (Left) Acoustic isolation chamber with adjustable lighting and modular workstation containing standardized interaction objects. (Right) Portable apparatus configuration showing helmet-mounted GoPro camera and Emotive FLEX 2 Gel EEG headset. **b** High-fidelity egocentric video recording hand-object interactions and 32-channel EEG signals. **c** Subject performing (“*Read book*”) action following on-screen textual prompts. **d** From command display (“*Play Cube*”) to object interaction and completion confirmation.

Egocentric Vision Datasets: Recent egocentric video corpora have advanced human-object interaction modeling through varied contexts and annotations(Damen et al., 2022; Grauman et al., 2022; Wang et al., 2023; Darkhalil et al., 2022; Kwon et al., 2021; Liu et al., 2022; Ragusa et al., 2021; Sener et al., 2022; Ohkawa et al., 2023; Zhang et al., 2022; Grauman et al., 2024; Huang et al., 2024). EPIC-KITCHENS(Damen et al., 2022) offers detailed kitchen-activity labels, while Ego4D(Grauman et al., 2022) provides the largest in-the-wild egocentric set for 3D perception and social analysis. HoloAssist(Wang et al., 2023) enables multi-user task completion, and Assembly-series(Sener et al., 2022; Ohkawa et al., 2023) and H2O(Kwon et al., 2021) cover procedural and two-hand manipulations. More recent datasets like EgoExoLearn(Huang et al., 2024) and Ego-Exo4D(Grauman et al., 2024) deliver asynchronous and dual-perspective recordings of skilled activities. While several egocentric datasets provide multimodal annotations (e.g., audio, IMU, gaze, multi-view footage), none include human-centered internal neural signals such as EEG. As a result, existing resources cannot capture the coupling between brain activity and first-person visual experience, which is the central focus of our work.

Overall, existing research overlooks the synchronization of egocentric visual data and brain activity during dynamic interactions in daily life.

3 EGOBRAIN DATASET

Environment and Data Acquisition System: Fig.1a illustrates our data capture environment within an acoustic isolation chamber. The setup incorporates adjustable lighting and a modular workstation containing standardized objects (books, electronic devices, *etc.*) for controlled interactions. The right panel of Fig. 1a illustrates the configuration of our portable recording apparatus. The setup includes a helmet-mounted GoPro HERO12 camera (1080P/30Hz) for capturing high-quality



184 **Figure 2: The EgoBrain statistics.** The total duration per category is presented, highlighting the
185 longest duration (*Play puzzle*: 4.29 hours) and the shortest duration (*Drink Bitter Juice*: 0.49 hours)

187 egocentric video and a 32-channel wireless EEG headset (Emotiv FLEX 2 Gel System, 256Hz sam-
188 pling rate) compliant with the international 10-20 electrode placement standard. [Detailed EEG](#)
189 [preprocessing procedures, including filtering, normalization, channel selection, and file conversion,](#)
190 [are provided in Appendix A.](#)

191 Throughout the session, the subject remains seated to reduce excessive lower-limb movement that
192 may otherwise introduce artifacts into the EEG signals, and the GoPro camera is carefully aligned
193 to the participant’s visual horizon to ensure a natural first-person perspective. The subject is asked
194 to conduct some everyday interaction with the objects illustrated in Fig. 1c. Meanwhile, the data
195 acquisition system captures two key modalities: high-fidelity egocentric video recordings and 32-
196 channel EEG signals, with an example shown in Fig. 1b. Both modalities are time-locked to the
197 execution of these actions, achieved through synchronization with a reference display (<1s jitter).

198 **Data Acquisition Pipeline:** Fig. 1d presents a detailed visualization of our standardized action
199 execution pipeline. A session consists of a predefined yet randomly shuffled sequence of 29 actions,
200 with “*Consume*”-related actions repeated for three times (narrated in the next section). At the begin-
201 ning of each action, a large display screen presents a task prompt (e.g., “*Play Cube*”). The prompt
202 instructs the subject to identify the relevant object placed on the table, initiate the corresponding
203 hand-object interaction. The completion of a task is marked by the subject successfully performing
204 the interaction and manually confirming it via a mouse click. This human-initiated confirmation
205 ensures the intentional execution and completeness of each action, and naturally results in varying
206 action durations across different tasks. Upon task completion, the system automatically advances to
207 the next predefined action until the subject completes the full set of programmed tasks.

208 **Action Category Design:** The EgoBrain dataset covers a broad spectrum of daily activities, con-
209 sisting of 29 action classes organized under 10 verbs (and four high-level semantic categories). We
210 illustrate the design of these semantics in Fig. 2 and provide a concise summary in Tab. 1. These
211 four top-level categories offer a coarse yet meaningful structure over the action space, ensuring
212 clear distinctions in cognitive demand, motor behavior, and real-world context. Specifically, “*Work*”
213 includes productivity-oriented computer operations, “*Play*” contains both digital and physical enter-
214 tainment activities, “*Learn*” captures reading and writing behaviors commonly observed in academic
215 environments, and “*Consume*” reflects everyday eating and drinking actions.

216 Table 1: Overview of the four high-level activity classes in the EgoBrain dataset.
217

218 High-Level	219 Description / Examples
220 (1) Work	221 Operating office software such as Word, PowerPoint, Excel, and Paint, <i>etc.</i>
222 (2) Play	223 Engaging in screen-based games, object-based puzzles, and mobile games, <i>etc.</i>
224 (3) Learn	225 Performing writing tasks, reading various materials, and drawing activities, <i>etc.</i>
226 (4) Consume	227 Eating different types of snacks and drinking multiple beverages, <i>etc.</i>

228 To more faithfully capture the diverse cognitive demands and motor behaviors inherent in different
229 forms of “*Play*”, we further subdivide the “*Play*” category into three finer-grained subtypes:

- 230 • **Play I:** Screen-based games such as “*Spider Solitaire*” and “*3D Pinball*”, involving minimal
231 physical movement.
- 232 • **Play II:** Object-based activities such as “*Toys*”, “*Cards*”, “*Puzzles*”, and “*Cubes*”, requiring
233 moderate motor activity and hand–object interaction.
- 234 • **Play III:** Fast-reaction or strategy-oriented mobile games such as “*Fruit Ninja*”, “*Subway
235 Surfers*”, and “*Chess*”, requiring rapid responses or cognitive planning.

236 Although all three subtypes fall under the same high-level semantic verb “*Play*”, they differ substantially
237 in visual appearance, cognitive load, and behavioral patterns. Introducing this finer taxonomy
238 makes the dataset more rigorous. It also helps reduce long-tail effects during data collection and
239 annotation, particularly when modeling multimodal signals involving both vision and EEG.

240 These activities span a wide range of temporal scales, with individual task durations ranging from
241 1,753 seconds (approximately 0.49 hours) to 15,441 seconds (approximately 4.29 hours), reflecting
242 diversity in task complexity. We visualize the cumulative time per activity (in hours) in the Fig. 2.

243 From a temporal standpoint, the longest-duration activities predominantly fall within the “*Play*”
244 and “*Work*” categories. For instance, “*Play Puzzles*” demands sustained attention and intricate
245 hand movements, while “*Watch Computer videos*” or ‘*Play Games*’ can span extended periods.
246 In contrast, actions within the “*Consume*” category are typically brief and episodic. To mitigate
247 under-representation of such short-duration behaviors, we introduced randomized repetition and
248 each “*Consume*”-related action was performed three times during collection.

249 Additional dataset statistics are provided in Appendix B, including subject-level egocentric view-
250 point visualizations as well as complete visualizations for all action categories.

251 4 METHODS

252 After constructing the EgoBrain dataset, we detail how we build an effective framework, namely
253 Brain-TIM, to model these multimodal temporal inputs to address the action understanding task.

254 4.1 TASK DEFINITION

255 We consider a time-synchronized pair of raw data: the egocentric video stream and the EEG signal
256 sequence, both sharing a common timeline $\mathcal{T} = [0, T]$. The video stream is represented as $V^{\text{raw}} =$
257 $\{v_t \in \mathbb{R}^{H \times W \times 3}\}_{t=0}^{T \cdot f^v}$, sampled at a frame rate f^v , and the EEG signal as $B^{\text{raw}} = \{b_t \in \mathbb{R}^C\}_{t=0}^{T \cdot f^b}$,
258 recorded at f^b Hz, where C is the number of channels. The target of action recognition task can be
259 formulated as finding the best mapping from input to the action and verb categories $\hat{y} = f_{\theta}(V, B) \in$
260 $\{1, \dots, N_c\}^Q$, where N_c equals to 10 for verb classification or 29 for action categories, and Q is
261 the number of consecutive queries which evenly divides the whole time interval $[0, T]$, i.e, the i -th
262 query corresponds to the action within time $[(i-1)T/Q, iT/Q]$.

263 4.2 OVERVIEW OF BRAIN-TIM

264 An overview of Brain-TIM is presented in Fig. 3. We first extract feature representations for each
265 modality using pre-trained backbone networks (Tong et al., 2022; Jiang et al., 2024) into ϕ^v and ϕ^b .
266 These features are then projected into a shared embedding space via modality-specific embedding
267 layers: g^v and g^b . The embeddings from different modalities are concatenated to form a unified input

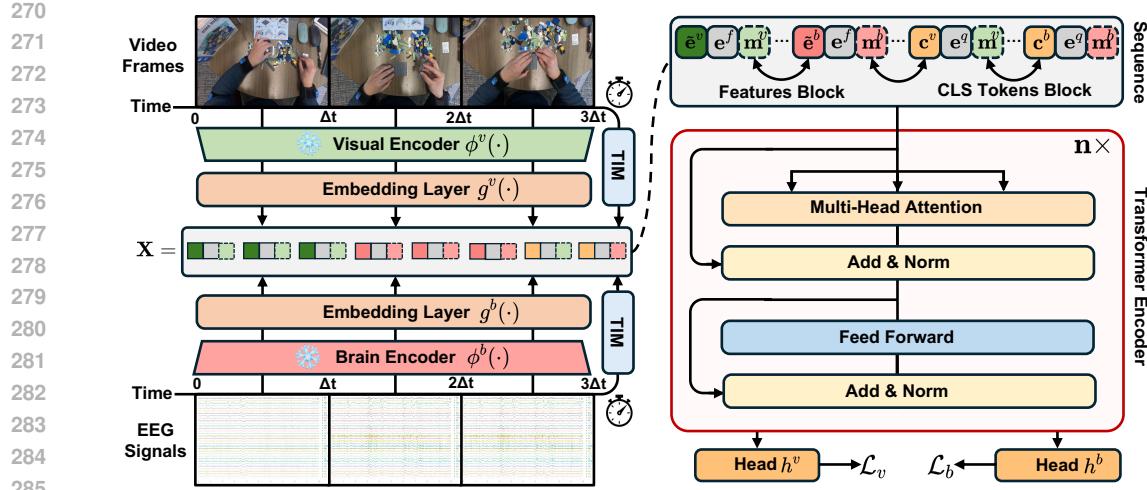


Figure 3: **The overall architecture of Brain-TIM.** The model processes synchronized visual and EEG signals using modality-specific encoders, followed by embedding layers to obtain token sequences. The shared temporal axis is concurrently encoded by the TIM module. A modality-aware CLS token is appended to the sequence to capture global semantics. The resulting tokens are fed into a Transformer encoder for downstream action classification.

sequence for the Transformer module on the right side of the Fig. 3. Eventually, the Transformer encoder models the temporal dependencies and cross-modal interactions within the sequence and a linear classifier maps the encoded features to the final action category predictions.

4.3 FEATURE EXTRACTION

Before performing action recognition, we first extract features from all modalities using pre-trained encoders. EEG signals are processed through LaBraM(Jiang et al., 2024), a model pre-trained on 2,500 hours of masked EEG data that generates 2000-dimensional features per channel. Video frames are encoded using VideoMAE(Tong et al., 2022), pre-trained on EPIC-KITCHENS-100(Damen et al., 2022), which outputs 1024-dimensional features per segment. During feature extraction, we adopt the parameter settings for EEG features as suggested in (Jiang et al., 2024), while the parameters for video features follow those introduced in (Chalk et al., 2024).

Sliding Window Mechanism: To extract aligned segments, Brain-TIM apply a sliding window mechanism with a duration of Δt and step size δt . Each window contains $N^v = f^v \cdot \Delta t$ video frames and $N^b = f^b \cdot \Delta t$ EEG samples. The raw data are divided into segments aligned with $N = \lfloor \frac{T-\Delta t}{\delta t} \rfloor + 1$, represented as $V = \{v_i \in \mathbb{R}^{N^v \times H \times W \times 3}\}_{i=1}^N$ and $B = \{b_i \in \mathbb{R}^{N^b \times C}\}_{i=1}^N$. Below, we detail how to extract feature representations from V and B .

The sliding-window mechanism further mitigates the impact of sub-second temporal jitter in a structural manner. In this design, the window stride δt is always smaller than the potential misalignment, and adjacent windows exhibit substantial temporal overlap. As a result, each moment in the sequence is covered by multiple windows, creating natural temporal redundancy. Moreover, both modalities are segmented using identical window indices, ensuring that their *relative* temporal structure remains consistent even under slight timestamp shifts.

Visual Features: Within each window in V , we uniformly down-sample K frames from their corresponding segment, denoted as $\{v_1^i, \dots, v_K^i\}$. The superscript i refers to the i -th window, and t_i is the starting timestamp of the i -th window, corresponding to the time interval $[t_i, t_i + \Delta t)$. The timestamps for each sampled frame are denoted as $\{\tau_1^i, \dots, \tau_K^i\}$, where $\tau_k^i = t_i + \frac{2k-1}{2K} \cdot \Delta t$, with $k \in \{1, \dots, K\}$. This formula ensures that the sampled frames are evenly distributed within the time window and are centered within the window. Each frame is resized to 224×224 and normalized using ImageNet(Deng et al., 2009) statistics. These K frames are then passed through a frozen, pre-trained visual encoder ϕ^v to produce a window-level feature vector $e^v \in \mathbb{R}^{d^v}$, where d^v represents the feature dimension. Combining the sliding stride δt , the full video is encoded into a sequence of window-level feature vectors $\mathcal{E}^v = \{e_1^v, \dots, e_N^v\}$, where each $e_i^v \in \mathbb{R}^{d^v}$.

324 **Brain Features:** We adopt the same mechanism to extract neural features from B . For the i -th time
 325 window, the EEG signal is denoted as \mathbf{b}_i . For the EEG signal within the window, we first apply a
 326 band-pass filter with a range of 0.5-50Hz, followed by downsampling to $f^{b'}$ Hz. The input \mathbf{b}_i is fed
 327 into a frozen pre-trained encoder ϕ^b to obtain its feature representation $\phi^b(\mathbf{b}_i) \in \mathbb{R}^{C \times \Delta t \times d^b}$, where
 328 d^b is the EEG feature dimension. The features are aggregated via channel-wise average pooling as
 329 $\mathbf{e}^b = \frac{1}{C} \sum_{c=1}^C \phi^b(\mathbf{b}_1, \dots, \mathbf{b}_L) \in \mathbb{R}^{\Delta t \times d^b}$, and temporal pooling is applied when necessary. This
 330 produces an aligned sequence of window-level features, denoted as $\mathcal{E}^b = \{\mathbf{e}_1^b, \dots, \mathbf{e}_N^b\}$, where each
 331 $\mathbf{e}_i^b \in \mathbb{R}^{d^b}$ and the number of windows N kept consistent with the visual modality.
 332

333 **Token Preparation:** After the features from both modalities are obtained, the learnable embedding
 334 layers $g^v(\cdot)$ and $g^b(\cdot)$ are applied to \mathcal{E}^v and \mathcal{E}^b , respectively, to map modality-specific features into
 335 a shared D -dimensional space. As a result, we obtain the visual feature tokens $\tilde{\mathcal{E}}^v = \{\tilde{\mathbf{e}}_i^v \in \mathbb{R}^D\}_{i=1}^N$
 336 and the EEG feature tokens $\tilde{\mathcal{E}}^b = \{\tilde{\mathbf{e}}_i^b \in \mathbb{R}^D\}_{i=1}^N$ without dimension misalignment for further fusion.
 337

338 To enable cross-modal interaction and support classification for the Q queries, $2Q$ learnable clas-
 339 sification tokens (CLS tokens) $\{\mathbf{c}_i^v \in \mathbb{R}^D\}_{i=1}^Q$ and $\{\mathbf{c}_i^b \in \mathbb{R}^D\}_{i=1}^Q$ of the same dimension with the
 340 feature tokens are introduced for vision and EEG modality, respectively.
 341

4.4 SEQUENCE CONCATENATION

343 **Temporal & Modality-Aware Token:** We enrich all feature tokens $\tilde{\mathbf{e}}_i^v$, $\tilde{\mathbf{e}}_i^b$ and CLS tokens \mathbf{c}_j^v ,
 344 \mathbf{c}_j^b with lightweight time-aware embeddings generated by the Time-Interval MLP (TIM), which
 345 computes interval-based embeddings such as \mathbf{e}_i^f and \mathbf{e}_j^q from their corresponding temporal ranges.
 346

347 To distinguish tokens of different modality, we further introduced the modality-specific embedding,
 348 represented by two learnable vectors, $\mathbf{m}^v \in \mathbb{R}^{2D}$ and $\mathbf{m}^b \in \mathbb{R}^{2D}$, to store shared vision-modality
 349 and EEG-modality information, respectively. The modality-specific embeddings are directly added
 350 to the tokens of corresponding modality.

351 **Sequence Concatenation:** The input sequence to the transformer encoder is obtained as follows:
 352

$$\mathbf{X} = \text{Concat}\left(\underbrace{\{\tilde{\mathbf{e}}_i^v \parallel \mathbf{e}_i^f + \mathbf{m}^v\}_{i=1}^N}_{\text{visual feature block}}, \underbrace{\{\tilde{\mathbf{e}}_i^b \parallel \mathbf{e}_i^f + \mathbf{m}^b\}_{i=1}^N}_{\text{brain feature block}}, \underbrace{\{\mathbf{c}_j^v \parallel \mathbf{e}_j^q + \mathbf{m}^v\}_{j=1}^Q}_{\text{visual CLS token block}}, \underbrace{\{\mathbf{c}_j^b \parallel \mathbf{e}_j^q + \mathbf{m}^b\}_{j=1}^Q}_{\text{brain CLS token block}}\right),$$

355 where each element is constructed by concatenating the original token with its temporal embedding,
 356 added to the modality-specific embedding. This final input sequence $\mathbf{X} \in \mathbb{R}^{(2N+2Q) \times 2D}$ is formed
 357 by orderly concatenating all processed feature representations and CLS tokens. After constructing
 358 the final input sequence \mathbf{X} , the tokens are processed by a standard Transformer encoder, followed
 359 by a linear classification head. The details of these components are provided in the Appendix C.
 360

361 This design offers three key advantages: 1) it ensures cross-modal time-aware alignment through
 362 shared temporal encodings; 2) preserves modality-specific characteristics by utilizing independent
 363 modality embeddings; and 3) facilitates cross-modal interaction and query-specific classification by
 364 implementing symmetric handling of CLS tokens.
 365

5 EXPERIMENTAL RESULTS

367 We rephrase the research questions proposed in the introduction here:
 368

369 **RQ1:** Does a combination of egocentric video and EEG enable a more comprehensive understand-
 370 ing of human behavior?
 371

372 **RQ2:** Is our proposed method effective for this multimodal action recognition task?
 373

374 **RQ3:** When does this integration outperform unimodal approaches?
 375

376 We designed comprehensive experiments to answer these research questions in this section.
 377

5.1 ACTION CLASSIFICATION RESULTS ON EGOBRAIN

378 We evaluate Brain-TIM on test sets of the EgoBrain dataset (Tab. 2) to answer **RQ1**. Note that all
 379 experimental results presented in the tables are Mean \pm STD across five different random seeds.
 380

378
 379 **Table 2: Action recognition results on the EgoBrain test set.** We systematically evaluate unimodal
 380 (Brain only, Visual only) and multimodal (Visual+Brain) models under two protocols: **cross-subject**
 381 **only** and **cross-subject & cross-scene**. The table reports the parameter scale (Params) of each
 382 model and the mean \pm standard deviation across five random seeds to ensure statistical reliability.
 383 The primary evaluation metric is Top-1 accuracy (%), with the best results highlighted in **bold**.

Protocol	Modality	Encoder	Params	Verb Acc. %	Action Acc. %
Cross-subject only	Brain only	LaBraM (Jiang et al., 2024)	5.8M	21.53 ± 0.99	8.44 ± 2.25
	Visual only	VideoMAE (Tong et al., 2022)	305.0M	88.95 ± 0.80	78.44 ± 0.71
	Visual + Brain	VideoMAE + LaBraM (Tong et al., 2022; Jiang et al., 2024)	310.8M	90.11 ± 1.10	80.16 ± 1.67
Cross-subject & Cross-scene	Brain only	LaBraM (Jiang et al., 2024)	5.8M	19.41 ± 1.57	9.36 ± 0.52
	Visual only	VideoMAE (Tong et al., 2022)	305.0M	81.67 ± 1.89	63.40 ± 0.95
	Visual + Brain	VideoMAE + LaBraM (Tong et al., 2022; Jiang et al., 2024)	310.8M	83.43 ± 0.41	66.70 ± 0.83

396
 397 **Unimodal Comparison:** As a well-studied computer vision problem, the visual modality demon-
 398 strates significantly strong performance, achieving 88.95% Top-1 accuracy for verb classifica-
 399 tion and 78.44 % for action classification in the cross-subject setting. Thanks to its superior spatial
 400 resolution and contextual richness, egocentric visual input provides fine-grained cues that are critical
 401 for distinguishing actions and achieved the performances of 81.67% and 63.40% for verb and action
 402 classification even under the challenging cross-subject and cross-scene settings.

403 As for the EEG modality, the model achieves relatively low yet significantly better performance
 404 than chance level for both settings. While EEG data contains certain cognitive information, its
 405 relatively low sampling rate and limited feature dimensionality restrict its effectiveness in complex
 406 real-world scenarios applied individually. [Due to space constraints, we provide the details of the
random-baseline results in the Appendix D for further reference.](#)

407
 408 **Multimodal Comparison:** As shown in Tab. 2, fusing EEG with visual inputs boosts accuracies
 409 across both evaluation protocols. Under the cross-subject only setting, the vision-only baseline
 410 achieves 78.44% Top-1 accuracy for action classification, while Brain-TIM reaches 80.16%, giv-
 411 ing a 1.72% improvement. Specifically, under the most difficult cross-scene setting, the vision-
 412 only baseline achieves 63.40% Top-1 accuracy for action classification, while Brain-TIM with both
 413 modalities reaches 66.70%, yielding a 3.30% absolute improvement on the 29-class task. This per-
 414 formance gain answers **RQ1** and further highlights the semantic complementarity between the two
 415 modalities: while the visual stream captures external manifestations of action, EEG encodes neural
 416 signatures of motor intention and implicit knowledge that are not observable from eyes alone.

417 Importantly, the performance gains of EEG are not attributable to differences in model capacity, but
 418 rather to its unique cognitive value. Our EEG encoder is extremely lightweight, with only 5.8M
 419 parameters (approximately 1/52 of the visual backbone), yet it still delivers statistically significant
 420 improvements. This demonstrates that EEG provides indispensable complementary information in
 421 cases of visual ambiguity or occlusion, thereby rendering visual understanding more complete.

422 5.2 ABLATION STUDY

424 To answer **RQ2** and see whether all the proposed techniques are positively contributing to the de-
 425 coding task, we removed some components from Brain-TIM and conducted ablation study.

426 Table 3 presents the performance under three modality settings: Brain Only, Visual Only, and Vi-
 427 sual & Brain. For each setting, we evaluate different combinations of three key components: the
 428 embedding layer $g^{(v,b)}$, the time interval MLP $I^{(v,b)}$, and the modality embedding $\mathbf{m}^{(v,b)}$.

429 Overall, each component improves performance in both the pure EEG and multimodal settings. The
 430 embedding layer strengthens feature representations. The time-interval MLP helps encode temporal
 431 information. The modality embedding preserves modality-specific cues.

432 Table 3: **Ablation results of Brain-TIM.** These results provide a detailed view of key module
 433 contributes to performance under the Brain-Only, Visual-Only, and combined Visual & Brain settings.
 434

	Brain Only				Visual Only				Visual & Brain			
Embedding Layer $g^{(v,b)}$	X	✓	X	✓	X	✓	X	✓	X	✓	X	✓
Time Interval MLP $I^{(v,b)}$	X	X	✓	✓	X	X	✓	✓	X	X	✓	✓
Modality Embedding $m^{(v,b)}$	—	—	—	—	—	—	—	—	—	—	—	—
Action Acc.% @Top-1 Mean	7.44	7.54	6.15	9.36	64.94	64.67	64.01	63.40	65.71	65.81	66.39	66.18
Action Acc.% @Top-1 STD	0.39	0.05	0.06	0.52	3.64	1.75	6.34	0.95	0.43	2.15	0.09	2.22
												0.83



457 Figure 4: **Confusion matrix for verb classification.** **a** Visual-only. **b** Visual + Brain fusion. Owing
 458 to space constraints, verb names are abbreviated; the full abbreviation table is provided in Table 6.
 459

460 Interestingly, these additional designs reduce performance in the vision-only setting. We suspect that
 461 the visual modality alone is already sufficient for accurate predictions, and the additional parameters
 462 introduce unnecessary complexity that interferes with the training process.

463 In an additional ablation, we compare Brain-TIM with a spatial-fusion variant and confirm that
 464 temporal fusion achieves better performance on complex action recognition; full details and results
 465 are provided in the Appendix E.

467 5.3 DETAILED ANALYSIS

468 To answer **RQ3**, we further conduct a more detailed analysis of specific categories and representative
 469 cases to clarify when the multimodal framework outperforms the unimodal approaches.
 470

471 **Confusion Matrix of Classification:** We present in Fig. 4 the confusion matrices comparing uni-
 472 modal and multimodal models for verb classification. Comparing Fig. 4a (Visual-only) and Fig.
 473 4b (Visual + Brain) reveals that EEG integration does not uniformly improve all categories. No-
 474 table improvements are seen in “*Play(I)*” (0.46 → 0.64), suggesting EEG complements cognitively
 475 demanding actions. The “*Drink*” category benefits from EEG under visual occlusion (0.87 → 0.94).

476 However, “*Write*” accuracy decreases (0.83 → 0.77), likely due to kinematic redundancy, where
 477 EEG introduces noise in cases of clear visual motion patterns. These results indicate EEG’s com-
 478 pensatory effect is task-dependent, offering marginal gains when visual cues are strong. Due to space
 479 limitations, the complete confusion matrices for all 29 action classes are provided in the Appendix F.

480 **Benefits of Integrating EEG:** As shown in Fig. 5a above, when a subject is drawing in a notebook
 481 (e.g., *Santa Claus*), the visual model misclassifies the action as “*Writing*” due to the high visual
 482 similarity between the two tasks. However, after incorporating EEG data, the model correctly clas-
 483 sifies the action as “*Drawing*”. This suggests that EEG signals may capture neural patterns related
 484 to task intent and offer additional discriminative cues. It indicates that EEG reflects distinct neural
 485 activations associated with visuospatial motor planning, as opposed to language-related tasks—a
 distinction that has been well documented in prior neuroscience studies (Tang et al., 2024).

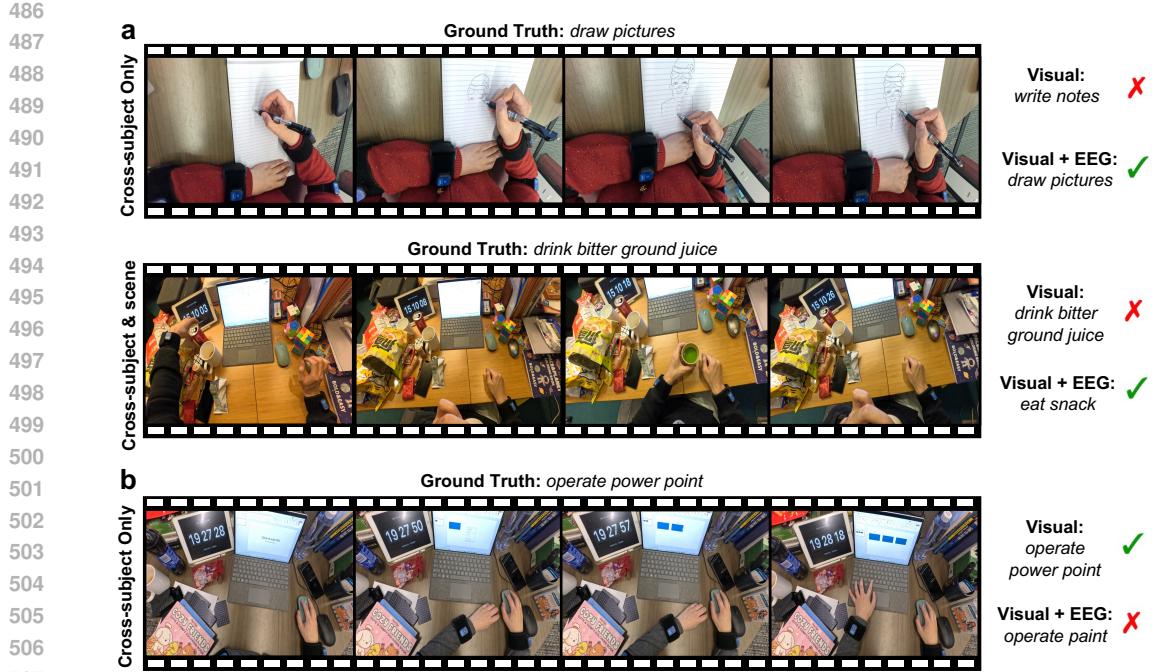


Figure 5: **Success and Failure Cases for Unimodal (Visual) and Multimodal (Visual + EEG) Models.** (a) Multimodal model correctly recognizes actions that the visual-only model misses, aided by EEG. (b) EEG causes misclassification, possibly due to overlapping cognitive strategies.

Another example in Fig.5a involves the action of “*Drink - bitter ground juice*”. Due to occlusion, the subject’s hand and the cup are not visible, and the visual model misclassifies the action as “*Snack*” based on nearby contextual visual cues (e.g., a bag of chips). With EEG integration, the model not only correctly identifies the verb “*Drink*” but also the object “*bitter melon juice*”. This improvement likely stems from EEG’s ability to reflect orofacial motor patterns and anticipatory neural activity related to swallowing, which differ from those associated with chewing(Saito et al., 2024). The results underscore EEG’s value in disambiguating semantically similar actions when vision is limited.

Limitations of Integrating EEG: Despite these advantages, EEG does not always lead to improved recognition. Fig.5b presents failure cases of the multimodal model. The subject is actually operating PowerPoint, but the model incorrectly identifies the task as “*Draw Pictures*”. Possible reason is that the subject is creating multiple rectangles, evoking visuomotor activity patterns that resemble those during freehand drawing. Prior studies have shown that such overlapping cognitive strategies lead to similar EEG signatures(Dvorak et al., 2018), making semantic discrimination harder.

6 CONCLUSION AND DISCUSSION

We draw on the metaphor that “*the eyes are the windows to the mind*” to argue that egocentric video can illuminate neural states that EEG alone cannot fully capture. Despite its promise, no dataset or systematic study has yet explored EEG–vision synergy in real-world tasks. To address this gap, we construct EgoBrain, the first action understanding dataset that simultaneously captures first-person video and EEG signals, aiming to advance research on vision-brain signal integration. We further develop Brain-TIM as the first multimodal research baseline on EgoBrain. Experimental results show that combining EEG and visual modalities significantly outperforms single-modality approaches, highlighting the potential of multimodal modeling in complex cognitive scenarios.

Our work lays the foundation for applying multimodal brain–computer interfaces to high-level cognitive tasks by introducing a new visuo-neural dataset and an efficient benchmark model. We believe that these contributions will open up new possibilities for brain–vision multimodal learning, and we anticipate future work to actively explore the underlying interaction mechanisms between visual and neural modalities, thereby further inspiring the discovery of new research tasks and directions.

540 REFERENCES
541

542 H. Alsuradi, J. Hong, A. Sarmadi, R. Volcic, H. Salam, S. F. Atashzar, F. Khorrami, and M. Eid.
543 Neural signatures of motor imagery for a supernumerary thumb in vr: an eeg analysis. *Scientific
544 Reports*, 14:21558, 2024. doi: 10.1038/s41598-024-72358-3.

545 G. K. Anumanchipalli, J. Chartier, and E. F. Chang. Speech synthesis from neural decoding of
546 spoken sentences. *Nature*, 568:493–498, 2019. doi: 10.1038/s41586-019-1119-1.

547 Y. Bai, X. Wang, Y. p. Cao, Y. Ge, C. Yuan, and Y. Shan. Dreamdiffusion: Generating high-quality
548 images from brain eeg signals. *arXiv preprint arXiv:2306.16934*, 2023.

549 T. Bertoni, J. P. Noel, M. Bockbrader, C. Foglia, S. Colachis, B. Orset, N. Evans, B. Herbelin,
550 A. Rezai, S. Panzeri, C. Becchio, O. Blanke, and A. Serino. Pre-movement sensorimotor oscil-
551 lations shape the sense of agency by gating cortical connectivity. *Nature Communications*, 16:
552 3594, 2025. doi: 10.1038/s41467-025-58683-9.

553 J. Chalk, J. Huh, E. Kazakos, A. Zisserman, and D. Damen. TIM: A Time Interval Machine for
554 Audio-Visual Action Recognition. In *Proceedings of the IEEE/CVF Conference on Computer
555 Vision and Pattern Recognition (CVPR)*, pp. 18153–18163, 2024.

556 D. Damen, H. Doughty, G. M. Farinella, A. Furnari, J. Ma, E. Kazakos, D. Moltisanti, J. Munro,
557 T. Perrett, W. Price, and M. Wray. Rescaling egocentric vision: Collection, pipeline and chal-
558 lenges for epic-kitchens-100. *International Journal of Computer Vision (IJCV)*, 130(1):33–55,
559 2022.

560 A. Darkhalil, D. Shan, B. Zhu, J. Ma, A. Kar, R. E. L. Higgins, S. Fidler, D. Fouhey, and D. Damen.
561 EPIC-KITCHENS VISOR benchmark: Video segmentations and object relations. In *Proceedings
562 of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks*,
563 2022.

564 J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
565 image database. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
566 Recognition (CVPR)*, pp. 248–255, 2009.

567 P. Dreyer, A. Roc, L. Pillette, S. Rimbert, and F. Lotte. A large eeg database with users’ profile
568 information for motor imagery brain-computer interface research. *Scientific Data*, 10:580, 2023.
569 doi: 10.1038/s41597-023-02445-z.

570 D. Dvorak, A. Shang, S. Abdel-Baki, W. Suzuki, and A. A. Fenton. Cognitive behavior classification
571 from scalp eeg signals. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*,
572 26(4):729–739, 2018.

573 K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar, J. Hamburger, H. Jiang,
574 M. Liu, X. Liu, M. Martin, T. Nagarajan, I. Radosavovic, S. K. Ramakrishnan, F. Ryan, J. Sharma,
575 M. Wray, M.g Xu, E. Zhongcong Xu, C. Zhao, S. Bansal, D. Batra, V. Cartillier, S. Crane, T. Do,
576 M. Doulaty, A. Erappalli, C. Feichtenhofer, A. Fragomeni, Q. Fu, C. Fuegen, A. Gebreselasie,
577 C. Gonzalez, J. Hillis, X. Huang, Y. Huang, W. Jia, W. Khoo, J. Kolar, S. Kottur, A. Kumar,
578 F. Landini, C. Li, Y. Li, Z. Li, K. Mangalam, R. Modhugu, J. Munro, T. Murrell, T. Nishiyasu,
579 W. Price, P. R. Puentes, M. Ramazanova, L. Sari, K. Somasundaram, A. Southerland, Y. Sugano,
580 R. Tao, M. Vo, Y. Wang, X. Wu, T. Yagi, Y. Zhu, P. Arbelaez, D. Crandall, D. Damen, G. M.
581 Farinella, B. Ghanem, V. K. Ithapu, C. V. Jawahar, H. Joo, K. Kitani, H. Li, R. Newcombe,
582 A. Oliva, H. Soo Park, J. M. Rehg, Y. Sato, J. Shi, M. Z. Shou, A. Torralba, Lo Torresani, M.i
583 Yan, and J. Malik. Ego4D: Around the world in 3, 000 hours of egocentric video. In *Proceedings
584 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 18973–
585 18990, 2022.

586 K. Grauman, A. Westbury, L. Torresani, K. Kitani, J. Malik, T. Afouras, K. Ashutosh, V. Baiyya,
587 S. Bansal, B. Boote, E. Byrne, Z. Chavis, J. Chen, F. Cheng, F.-J. Chu, S. Crane, A. Dasgupta,
588 J. Dong, M. Escobar, C. Forigua, A. Gebreselasie, S. Haresh, J. Huang, M. M. Islam, S. D. Jain,
589 R. Khirodkar, D. Kukreja, K. J. Liang, J.-W. Liu, S. Majumder, Y. Mao, M. Martin, E. Mavroudi,
T. Nagarajan, F. Ragusa, S. K. Ramakrishnan, L. Seminara, A. Somayazulu, Y. Song, S. Su,

594 Z. Xue, E. Zhang, J. Zhang, A. Castillo, C. Chen, X. Fu, R. Furuta, C. González, P. Gupta, J. Hu,
 595 Y. Huang, Y. Huang, W. Khoo, and et al. Ego-exo4d: Understanding skilled human activity from
 596 first- and third-person perspectives. In *Proceedings of the IEEE/CVF Conference on Computer*
 597 *Vision and Pattern Recognition (CVPR)*, pp. 19383–19400, 2024.

598 E. Guttmann-Flury, X. Sheng, and X. Zhu. Dataset combining eeg, eye-tracking, and high-speed
 599 video for ocular activity analysis across bci paradigms. *Scientific Data*, 12:587, 2025. doi: 10.
 600 1038/s41597-025-04861-9.

602 Y. Huang, G. Chen, J. Xu, M. Zhang, L. Yang, B. Pei, H. Zhang, D. Lu, Y. Wang, L. Wang, and
 603 Y. Qiao. Egoexolearn: A dataset for bridging asynchronous ego- and exo-centric view of proce-
 604 dural activities in real world. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 605 *and Pattern Recognition (CVPR)*, pp. 22072–22086, 2024.

606 W. Jiang, L. Zhao, and B. Lu. Large brain model for learning generic representations with tremen-
 607 dous EEG data in BCI. In *Proceedings of the International Conference on Learning Representa-
 608 tions (ICLR)*, 2024.

610 M. Kaya, M. Binli, E. Ozbay, H. Yanar, and Y. Mishchenko. A large electroencephalographic motor
 611 imagery dataset for electroencephalographic brain computer interfaces. *Scientific Data*, 5:180211,
 612 2018. doi: 10.1038/sdata.2018.211.

614 T. Kwon, B. Tekin, J. Stühmer, F. Bogo, and M. Pollefeys. H2O: two hands manipulating objects for
 615 first person interaction recognition. In *Proceedings of the IEEE/CVF International Conference*
 616 *on Computer Vision (ICCV)*, pp. 10118–10128, 2021.

617 Y.-T. Lan, K. Ren, Y. Wang, W.-L. Zheng, D. Li, B.-L. Lu, and L. Qiu. Seeing through the
 618 brain: Image reconstruction of visual perception from human brain signals. *arXiv preprint*
 619 *arXiv:2308.02510*, 2023.

621 J. Li, Y. Wang, N. Lin, and D. Li. Translating mental imaginations into characters with code-
 622 books and dynamics-enhanced decoding. In *Proceedings of the IEEE International Conference*
 623 *on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 2025.

624 H. Liu, P. Wei, H. Wang, X. Lv, W. Duan, M. Li, Y. Zhao, Q. Wang, X. Chen, G. Shi, B. Han,
 625 and J. Hao. An eeg motor imagery dataset for brain computer interface in acute stroke patients.
 626 *Scientific Data*, 11:131, 2024a. doi: 10.1038/s41597-023-02787-8.

628 X. Liu, Y. Liu, Y. Wang, K. Ren, H. Shi, Z. Wang, D. Li, B. Lu, and W. Zheng. Eeg2video: Towards
 629 decoding dynamic visual perception from eeg signals. *Proceedings of the Advances in Neural*
 630 *Information Processing Systems (NeurIPS)*, pp. 72245–72273, 2024b.

631 Y. Liu, Y. Liu, C. Jiang, K. Lyu, W. Wan, H. Shen, B. Liang, Z. Fu, H. Wang, and L. Yi. Hoi4d: A 4d
 632 egocentric dataset for category-level human-object interaction. In *Proceedings of the IEEE/CVF*
 633 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 21013–21022, 2022.

635 Y. Liu, Z. Gui, D. Yan, Z. Wang, R. Gao, N. Han, J. Chen, J. Wu, and D. Ming. Lower limb motor
 636 imagery eeg dataset based on the multi-paradigm and longitudinal-training of stroke patients.
 637 *Scientific Data*, 12:314, 2025. doi: 10.1038/s41597-025-04618-4.

639 J. Ma, B. Yang, W. Qiu, Y. Li, S. Gao, and X. Xia. A large eeg dataset for studying cross-session
 640 variability in motor imagery brain-computer interface. *Scientific Data*, 9:531, 2022. doi: 10.1038/
 641 s41597-022-01647-1.

642 X. Ma, S. Qiu, and H. He. Multi-channel eeg recording during motor imagery of different joints
 643 from the same limb. *Scientific Data*, 7:191, 2020. doi: 10.1038/s41597-020-0535-2.

644 S. L. Metzger, K. T. Littlejohn, A. B. Silva, D. A. Moses, M. P. Seaton, R. Wang, M. E. Dougherty,
 645 J. R. Liu, P. Wu, M. A. Berger, I. Zhuravleva, A. Tu-Chan, K. Ganguly, G. K. Anumanchipalli,
 646 and E. F. Chang. A high-performance neuroprosthesis for speech decoding and avatar control.
 647 *Nature*, 620(7976):1037–1046, 2023.

648 F. Mushtaq, D. Welke, A. Gallagher, Y. G. Pavlov, L. Kouara, J. Bosch-Bayard, J. J. F. van den
 649 Bosch, M. Arvaneh, A. R. Bland, M. Chaumon, C. Borck, X. He, S. J. Luck, M. G. Machizawa,
 650 C. Pernet, A. Puce, S. J. Segalowitz, C. Rogers, M. Awais, C. Babiloni, N. W. Bailey, S. Baillet,
 651 R. C. A. Bendall, D. Brady, M. L. Bringas-Vega, N. A. Busch, A. Calzada-Reyes, A. Chatard,
 652 P. E. Clayson, M. X. Cohen, J. Cole, M. Constant, A. Corneyllie, D. Coyle, D. Cruse, I. Delis,
 653 A. Delorme, D. Fair, T. H. Falk, M. Gamer, G. Ganis, K. Gloy, S. Gregory, C. D. Hassall, K. E.
 654 Hiley, R. B. Ivry, K. Jerbi, M. Jenkins, J. Kaiser, A. Keil, R. T. Knight, S. Kochen, B. Kotchoubey,
 655 O. E. Krigolson, N. Langer, H. R. Liesefeld, S. Lippé, R. E. London, A. MacNamara, S. Makeig,
 656 W. Marinovic, E. Martínez-Montes, A. A. Marzuki, R. K. Mathew, C. Michel, J. d. R. Millán,
 657 M. Mon-Williams, L. Morales-Chacón, R. Naar, G. Nilsonne, G. Niso, E. Nyhus, R. Oostenveld,
 658 K. Paul, W. Paulus, D. M. Pfabigan, G. Pourtois, S. Rampp, M. Rausch, K. Robbins, P. M.
 659 Rossini, M. Ruzzoli, B. Schmidt, M. Senderecka, N. Srinivasan, Y. Stegmann, P. M. Thompson,
 660 M. Valdes-Sosa, M. J. W. van der Molen, D. Veniero, E. Verona, B. Voytek, D. Yao, A. C. Evans,
 661 and P. Valdes-Sosa. One hundred years of eeg for brain and behaviour research. *Nature Human
 Behaviour*, 8:1437–1443, 2024. doi: 10.1038/s41562-024-01941-5.

662 T. Ohkawa, K. He, F. Sener, T. Hodan, L. Tran, and C. Keskin. AssemblyHands: Towards egocentric
 663 activity understanding via 3D hand pose estimation. In *Proceedings of the IEEE/CVF Conference
 664 on Computer Vision and Pattern Recognition (CVPR)*, pp. 12999–13008, 2023.

665 M. Ortiz, L. de la Ossa, J. Juan, E. Iáñez, D. Torricelli, J. Tornero, and J. M. Azorín. An eeg database
 666 for the cognitive assessment of motor imagery during walking with a lower-limb exoskeleton.
 667 *Scientific Data*, 10:343, 2023. doi: 10.1038/s41597-023-02243-7.

668 F. Ragusa, A. Furnari, S. Livatino, and G. M. Farinella. The MECCANO dataset: Understanding
 669 human-object interactions from egocentric videos in an industrial-like domain. In *Proceedings of
 670 the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 1568–1577,
 671 2021.

672 N. Saito, T. Ogawa, N. Shiraishi, R. Koide, H. Komine, M. Yokoyama, S. Hanawa, and K. Sasaki.
 673 Difference in the electromyographic behavior of the masticatory and swallowing muscles during
 674 cued versus spontaneous swallowing. *Dysphagia*, 39(3):398–406, 2024. doi: 10.1007/
 675 s00455-024-10031-1.

676 F. Sener, D. Chatterjee, D. Shelepor, K. He, D. Singhania, R. Wang, and A. Yao. Assembly101: A
 677 large-scale multi-view video dataset for understanding procedural activities. In *Proceedings of the
 678 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 21096–21106,
 679 2022.

680 R. Sivasakthivel, M. Rajagopal, G. Anitha, K. Loganathan, M. Abbas, A. Ksibi, and K. S. Rao.
 681 Simulating online and offline tasks using hybrid cheetah optimization algorithm for patients
 682 affected by neurodegenerative diseases. *Scientific Reports*, 15:8951, 2025. doi: 10.1038/
 683 s41598-025-93047-9.

684 Y. Song, B. Liu, X. Li, N. Shi, Y. Wang, and X. Gao. Decoding natural images from eeg for object
 685 recognition. *arXiv preprint arXiv:2308.13234*, 2023.

686 J. Tang, Y. Yang, Q. Zhao, Y. Ding, J. Zhang, Y. Song, and W. Kong. Visual guided dual-spatial inter-
 687 action network for fine-grained brain semantic decoding. *IEEE Transactions on Instrumentation
 688 and Measurement*, 2024. doi: 10.1109/TIM.2024.3480232.

689 Z. Tong, Y. Song, J. Wang, and L. Wang. VideoMAE: Masked autoencoders are data-efficient learn-
 690 ers for self-supervised video pre-training. In *Proceedings of the Advances in Neural Information
 691 Processing Systems (NeurIPS)*, pp. 10078–10093, 2022.

692 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
 693 sukhin. Attention is all you need. In *Proceedings of the Advances in Neural Information Process-
 694 ing Systems (NeurIPS)*, 2017.

695 X. Wang, T. Kwon, M. Rad, B. Pan, I. Chakraborty, S. Andrist, D. Bohus, A. Feniello, B. Tekin,
 696 F. Vieira Frujeri, N. Joshi, and M. Pollefeyns. Holoassist: an egocentric human interaction dataset
 697 for interactive AI assistants in the real world. In *Proceedings of the IEEE/CVF International
 698 Conference on Computer Vision (ICCV)*, pp. 20213–20224, 2023.

702 F. R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson, and K. V. Shenoy. High-
703 performance brain-to-text communication via handwriting. *Nature*, 593:249–254, 2021. doi:
704 10.1038/s41586-021-03506-2.

705 B. Yang, F. Rong, Y. Xie, D. Li, J. Zhang, F. Li, G. Shi, and X. Gao. A multi-day and high-quality
706 eeg dataset for motor imagery brain-computer interface. *Scientific Data*, 12(1):488, 2025. doi:
707 10.1038/s41597-025-04826-y.

708 S. Zhang, Q. Ma, Y. Zhang, Z. Qian, T. Kwon, M. Pollefeys, F. Bogo, and S. Tang. Egobody: Human
709 body shape and motion of interacting people from head-mounted devices. In *Proceedings of the*
710 *European Conference on Computer Vision (ECCV)*, pp. 180–200, 2022.

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A EEG PREPROCESSING PIPELINE**
757758 Following LaBraM(Jiang et al., 2024)’s preprocessing pipeline to ensure compatibility across
759 modalities, we first applied a band-pass filter of 0.1–75 Hz to suppress low-frequency noise, fol-
760 lowed by a 50 Hz notch filter to eliminate power-line interference. The signals were then resampled
761 to 200 Hz and normalized by scaling the EEG amplitudes from their raw range (−0.1 mV to 0.1 mV)
762 to approximately −1 to 1, with 0.1 mV set as the unit. Unused or noisy channels were removed to
763 further improve signal quality. Finally, raw EEG recordings (e.g., in .edf format) were converted
764 into HDF5 files to facilitate efficient storage and training.
765766 **B SUPPLEMENTARY DESCRIPTION OF THE EGOBRAIN DATASET**
767768 To ensure sufficient demographic diversity and enhance the generalizability of multimodal human-
769 centric models, the EgoBrain dataset was collected from a broad and diverse pool of volunteer
770 participants. This section provides an overview of the recruited subjects, the dataset split protocol,
771 and additional visualizations that highlight the richness and variability embodied in EgoBrain.
772773 **Subjects:** The dataset includes recordings from a total of 40 participants, with a gender ratio of
774 27 male to 13 female subjects. All subjects were informed of the experimental process and signed
775 informed consent forms before the experiment. This study was approved by the ethical committee
776 of local Institutional Review Board for Human Research Protections.
777778 **Data Split:** We divide the dataset into training, validation, and test sets following the standard
779 data split protocol. To increase the evaluation challenge of the EgoBrain dataset, we design two
780 splits of different difficulty gradient, namely the Cross-subject-only split and the Cross-subject &
781 Cross-scene split. The entire training pipeline strictly follows the standard procedure of selecting
782 the best-performing model on the validation set before conducting the final evaluation on the test
783 set, ensuring fairness and reproducibility in the results.
784785 For the Cross-subject-only setting, we collected 34 different subjects under the same physical envi-
786 ronment and object arrangement. These sessions are divided into a train set of 22 subjects (32.96
787 hours), a validation set of 6 subjects (7.75 hours), and a test set of 6 subjects (9.08 hours).
788789 **For the Cross-Subject & Cross-Scene split, we additionally collected 6 new sessions from entirely**
790 **new subjects in a different environment. These sessions follow the same data collection protocol,**
791 **but use a completely different object arrangement and take place in a distinct background setting.**
792 The train set and validation set consists of 28 subjects (40.71 hours) and 6 subjects (9.08 hours), and
793 the 6 more sessions (11.28 hours) in the new environment constitutes the test set, assuring that the
794 new environment is never seen during the training and validation stage.
795796 **Visualization Across Subjects:** To illustrate the inter-subject diversity inherent in EgoBrain, we
797 present representative initial egocentric video frames from all 40 participants. Fig. 6 and 7 showcase
798 subjects P0001–P0020 and P0021–P0040, respectively. These visualizations highlight substantial
799 cross-subject variability in appearance, posture, and interaction style, reflecting the richness of the
800 collected participant pool and supporting robust generalization in downstream multimodal modeling.
801802 **Visualization Across Action Categories.** To further demonstrate the breadth of daily activities
803 captured in EgoBrain, we provide visualizations from all 29 annotated action categories. Figures 8–
804 12 present representative egocentric frames across major action types such as operating computers,
805 reading, writing, playing games, and consuming food or beverages. These examples reveal the
806 diversity of visuomotor patterns and contextual scenes within each action class, offering valuable
807 insights into the multimodal dynamics of real-world human behavior.
808809 Overall, the EgoBrain combines demographic diversity, multi-environment robustness, and compre-
810 hensive visual recordings, ultimately forming a highly reliable resource for advancing multimodal
811 brain–computer interface research and enabling deeper exploration of real-world human behavior.
812

810 **C SUPPLEMENTARY DESCRIPTION OF THE BRAIN-TIM MODEL**
811

812 This section provides additional technical details of the Brain-TIM model. We first supplement the
813 feature extraction stage by detailing how the Time-Interval MLP (TIM) encodes temporal structure
814 and how modality-specific embeddings distinguish vision and EEG tokens. We then describe how
815 the shared Transformer encoder processes these enriched representations and how the dual-head
816 classifier leverages the verb–action semantic hierarchy during training.
817

818 **Time-aware Token Embedding:** To incorporate the time-specific information to the tokens, we
819 explicitly add it by introducing the Time-Interval MLP (TIM), $I(\cdot) : \mathbb{R}^2 \rightarrow \mathbb{R}^D$, consisting of three
820 linear layers with ReLU activations and LayerNorm operation. This TIM module takes the start and
821 end time (t_s, t_e) of the corresponding interval as input and generate the temporal embedding which
822 can be further appended to the specific token as a time-aware token embedding.
823

824 For the feature tokens $\tilde{\mathbf{e}}_i^v$ and $\tilde{\mathbf{e}}_i^b$, the time interval is determined by the i -th window $[t_i, t_i + \Delta t]$,
825 also named feature time in (Chalk et al., 2024). The temporal embedding is thus calculated as
826 $\mathbf{e}_i^f = I(t_i, t_i + \Delta t) \in \mathbb{R}^D$. As for the CLS tokens \mathbf{c}_j^v and \mathbf{c}_j^b , the time interval corresponds to the
827 j -th query $[(j-1)T/Q, jT/Q]$, also known as query time. And the temporal embedding is similarly
828 obtained as $\mathbf{e}_j^q = I((j-1)T/Q, jT/Q) \in \mathbb{R}^D$.
829

830 **Modality-specific Embedding:** To distinguish tokens of different modality, we further introduced
831 the modality-specific embedding, represented by two learnable vectors, $\mathbf{m}^v \in \mathbb{R}^{2D}$ and $\mathbf{m}^b \in \mathbb{R}^{2D}$,
832 to store shared vision-modality and EEG-modality information, respectively. The modality-specific
833 embeddings are directly added to the tokens of corresponding modality.
834

835 **Transformer Encoder:** As shown in the Transformer encoder on the right side of Fig. 3, the
836 input sequence \mathbf{X} is processed by a stack of Transformer encoder layers. Each layer consists of a
837 self-attention mechanism followed by a feedforward network, following the architecture proposed
838 in (Vaswani et al., 2017). The self-attention mechanism enables the model to capture long-range
839 dependencies across different positions in the sequence, while the feedforward network applies non-
840 linear transformations to the input. Each layer uses residual connections and layer normalization
841 to facilitate gradient flow, with the output passed to the next layer to refine the input sequence \mathbf{X}
842 representations.
843

844 **Linear Classification:** Following the Transformer Encoder, as shown in the bottom right of Fig. 3,
845 we extract the modality-specific and query-specific CLS tokens from the output sequence. These to-
846 kens are fed into their respective classification heads, h^v and h^b , which consist of linear layers
847 followed by softmax to produce class probabilities. The two modality branches are trained and eval-
848 uated independently, without merging their predicted probabilities into a single unified prediction.
849

850 The model is supervised using modality-specific cross-entropy losses, denoted as \mathcal{L}_v and \mathcal{L}_b for the
851 visual and EEG branches, respectively. The total loss function \mathcal{L} is defined as the sum of the visual
852 modality loss \mathcal{L}_v and a weighted term for the EEG modality loss \mathcal{L}_b , scaled by a hyperparameter λ :
853

854
$$\mathcal{L} = \mathcal{L}_v + \lambda \cdot \mathcal{L}_b.$$

855

856 It is worth highlighting that the high-level semantic structure (e.g., “Work”, “Play”, “Learn”, “Con-
857 sume”) is intentionally not used during training. The three-tier hierarchy (“high-level category →
858 verb → action”) was introduced primarily to conceptually abstract and organize human daily activi-
859 ties. As such, the highest level serves merely as a semantic scaffold for dataset users and is not
860 suitable to function as a supervisory signal for model optimization.
861

862 In contrast, our classification design explicitly incorporates the two semantic levels used during
863 training—verbs and actions. These labels are fully leveraged in our training pipeline: the embed-
864 dings produced by the Transformer encoder are passed into two separate classification heads—one
865 for verbs and one for actions—each equipped with its own loss function. This design enables the
866 model to learn behavior representations at multiple levels of semantic granularity, while avoiding the
867 potential biases that may arise from enforcing overly coarse, concept-driven category supervision.
868

864 **D ADDITIONAL EXPERIMENTAL RESULTS**
865866 **Random-baseline Result:** To provide a clearer sense of the lower bound performance on the
867 EgoBrain benchmark, we report several standard random baselines for both verb and action classi-
868 fication. These baselines help contextualize the difficulty of the task and offer reference points for
869 interpreting the multimodal models.870 We evaluate three commonly used forms of random performance: (1) uniform chance level, (2)
871 prior-based random sampling that follows the empirical class-frequency distribution, and (3) the
872 majority-class baseline. The results are summarized in Table 4.
873874 **Table 4: Random baselines for EgoBrain verb and action classification.**
875

Metric	Verb Classes	Action Classes
Chance Level	10.00%	3.45%
Prior-based Random	11.77%	4.02%
Majority Class	18.59%	7.02%

881 Among these, the majority-class classifier yields the strongest random performance, with 7.02%
882 accuracy for action classification. To contextualize the Brain-only model under the challenging
883 Cross-Subject & Cross-Scene protocol, we compare its performance against this upper-bound ran-
884 dom baseline. The Brain-only model achieves 9.36 ± 0.52 , corresponding to a 33.3% relative im-
885 provement over the majority-class baseline.886 These baselines demonstrate that, despite the substantial inter-subject variability and the inherent
887 difficulty of EEG-based prediction in real-world scenarios, the Brain-only model consistently sur-
888 passes all random and prior-driven strategies. At the same time, the gap between these baselines and
889 the Brain-only performance indicates meaningful room for future progress on EgoBrain, inviting
890 further exploration from the research community.891 **Robustness Comparison:** Interestingly, the Brain-only model shows slightly higher action accuracy
892 under the cross-subject & cross-scene protocol. This arises because EEG captures head-centered
893 neural dynamics that remain largely invariant across environments, so increasing the training set
894 from 22 to 28 subjects directly enhances its discriminability. In contrast, VideoMAE depends on
895 visual appearance and motion cues that shift significantly with background, lighting, and object
896 changes, leading to strong degradation under scene variation. Consequently, EEG benefits from
897 richer cross-subject diversity, whereas VideoMAE suffers from cross-scene domain shift.898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 E TEMPORAL FUSION vs. SPATIAL FUSION
919

920 Our Brain-TIM adopts a temporal fusion strategy to integrate visual and EEG modalities when
921 constructing the multimodal input sequence \mathbf{X} . In contrast, a simpler alternative way is to concatenate
922 modality features along the spatial dimension while keeping the fusion module active but effectively
923 removing one modality’s tokens. We refer to this baseline as *spatial fusion*. Under this formulation,
924 the input \mathbf{X} is formed as:

$$926 \quad \mathbf{X} = \text{Concat}\left(\underbrace{\{\tilde{\mathbf{e}}_i^v \parallel \tilde{\mathbf{e}}_i^b \parallel \mathbf{e}_i^f\}_{i=1}^N}_{\text{feature block}}, \underbrace{\{\mathbf{c}_j^v \parallel \mathbf{c}_j^b \parallel \mathbf{e}_j^q\}_{j=1}^Q}_{\text{CLS token block}}\right) \in \mathbb{R}^{(N+Q) \times 3D}.$$

925 The key difference between the two fusion paradigms lies in how modality-specific structure is
926 preserved. Brain-TIM uses dedicated modality embeddings \mathbf{E}_V and \mathbf{E}_E to explicitly encode visual
927 and EEG token identities before temporal fusion. In contrast, the spatial-fusion baseline directly
928 concatenates the visual and EEG representations:

$$934 \quad \mathbf{X}_{\text{fusion}} = \text{Concat}(\mathbf{X}_V, \mathbf{X}_E) \in \mathbb{R}^{B \times (V+E)},$$

935 and treats the concatenated tensor as a single fused modality without distinguishing token types.

936 Table 5: Comparison of temporal fusion (Brain-TIM) and spatial fusion. Temporal fusion clearly
937 improves performance for the more challenging action recognition task.

941 Setting	942 Verb Acc.	943 Action Acc.
942 Vision Only	943 81.67 ± 1.89	944 63.40 ± 0.95
943 Visual & Brain (Spatial fusion)	944 83.74 ± 0.62	945 64.81 ± 1.04
944 Visual & Brain (Brain-TIM)	945 83.43 ± 0.41	946 66.70 ± 0.83

947 To ensure consistency with our main experimental protocol, all results were averaged across five dif-
948 ferent random seeds. The comparison between the two fusion strategies is summarized in Table 5.
949 While both methods achieve comparable performance on verb classification, Brain-TIM with
950 temporal fusion substantially outperforms spatial fusion on the more challenging 29-way action recog-
951 nition task. This demonstrates that although simple feature concatenation can suffice for coarse
952 semantic discrimination, explicitly modeling temporal dependencies across time steps leads to more
953 robust and discriminative multimodal representations—particularly beneficial for fine-grained, real-
954 world action recognition.

F CONFUSION MATRIX OF ACTION

Table 6: **Verb-level and action-level abbreviations used in the EgoBrain dataset.** Each verb is assigned a two-letter code (“Verb code”). Each fine-grained action is assigned a two-letter “Action code”, and the final label is formed as Verb_Action.

Verb	Verb code	Action	Abbreviation
Operate	OP	Operate Word	OP_WD
		Operate PowerPoint	OP_PP
		Operate Excel	OP_EX
		Operate Paint	OP_PT
Watch	WA	Watch Computer	WA_CP
		Watch Smartphone	WA_SP
Play (I)	P1	Play(I) Spider Solitaire	P1_SS
		Play(I) 3D Pinball	P1_PB
Play (II)	P2	Play(II) Toys	P2_TY
		Play(II) Cards	P2_CD
		Play(II) Puzzle	P2_PZ
		Play(II) Cube	P2_CB
Play (III)	P3	Play(III) Fruit Ninja	P3_FN
		Play(III) Subway Surfers	P3_SS
		Play(III) Angry Birds	P3_AB
		Play(III) Chess	P3_CH
Write	WR	Write Copybook	WR_CB
		Write Notes	WR_NT
Read	RD	Read Textbook	RD_TB
		Read Comic	RD_CM
		Read Research Paper	RD_RP
Draw	DR	Draw Trace	DR_TR
		Draw Pictures	DR_PC
Eat	ET	Eat Snack	ET_SN
		Eat Spicy strips	ET_SS
		Eat Sugars	ET_SG
Drink	DK	Drink Water	DK_WT
		Drink Cola	DK_CL
		Drink Bitter gourd juice	DK_BG

To maintain clarity in the main paper, we omit the full 29-way action confusion matrices due to their size and the limited space available. These matrices, however, offer useful insights into fine-grained model behavior and characteristic error patterns. To present them compactly and coherently in the supplementary material, we adopt the verb–action abbreviation scheme in Tab. 6, where each action is encoded using a concise two-level code. This scheme preserves semantic interpretability while enabling a cleaner and readable visualization of the dense 29×29 matrices. In Fig. 13 and Fig. 14, we provide the complete confusion matrices for the visual-only and visual-brain models, offering a more comprehensive view of their respective error distributions and class-separation behavior.

Taken together, the two confusion matrices offer a detailed view of how visual and multimodal models behave in fine-grained egocentric action recognition. The Visual-only model tends to struggle with actions that share similar hand trajectories, object appearances, or desktop-level contexts, which leads to noticeable clusters of confusion in several verb groups. When EEG is incorporated, the Visual+Brain model shows a general trend toward stronger diagonal concentration and reduced cross-class ambiguity, suggesting that neural signals may provide complementary cues that help differentiate visually similar actions. Overall, these results indicate that multimodal integration can improve recognition in scenarios where vision alone is limited or ambiguous.

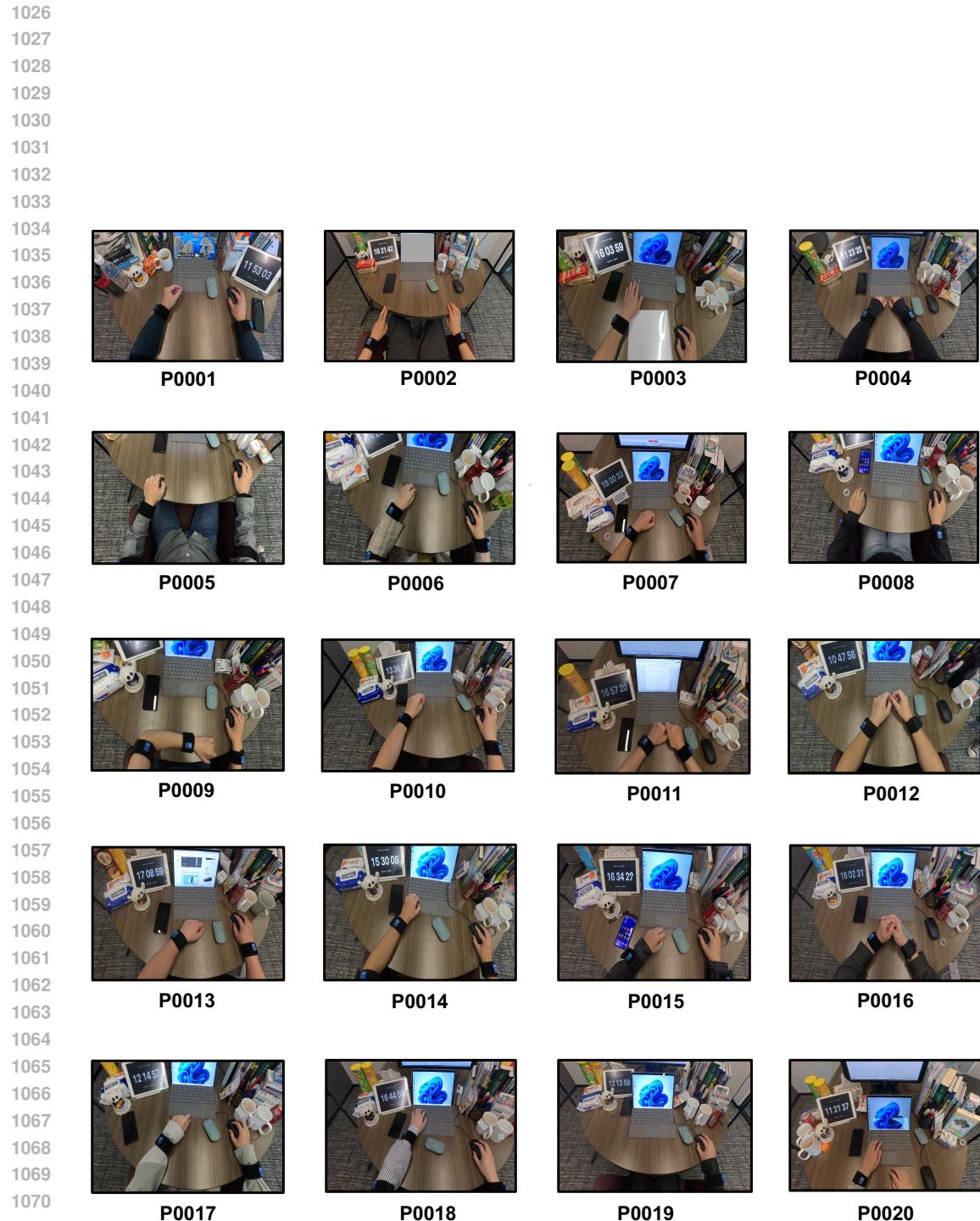


Figure 6: We provide visualizations of initial video frames from participants: P0001 to P0020.

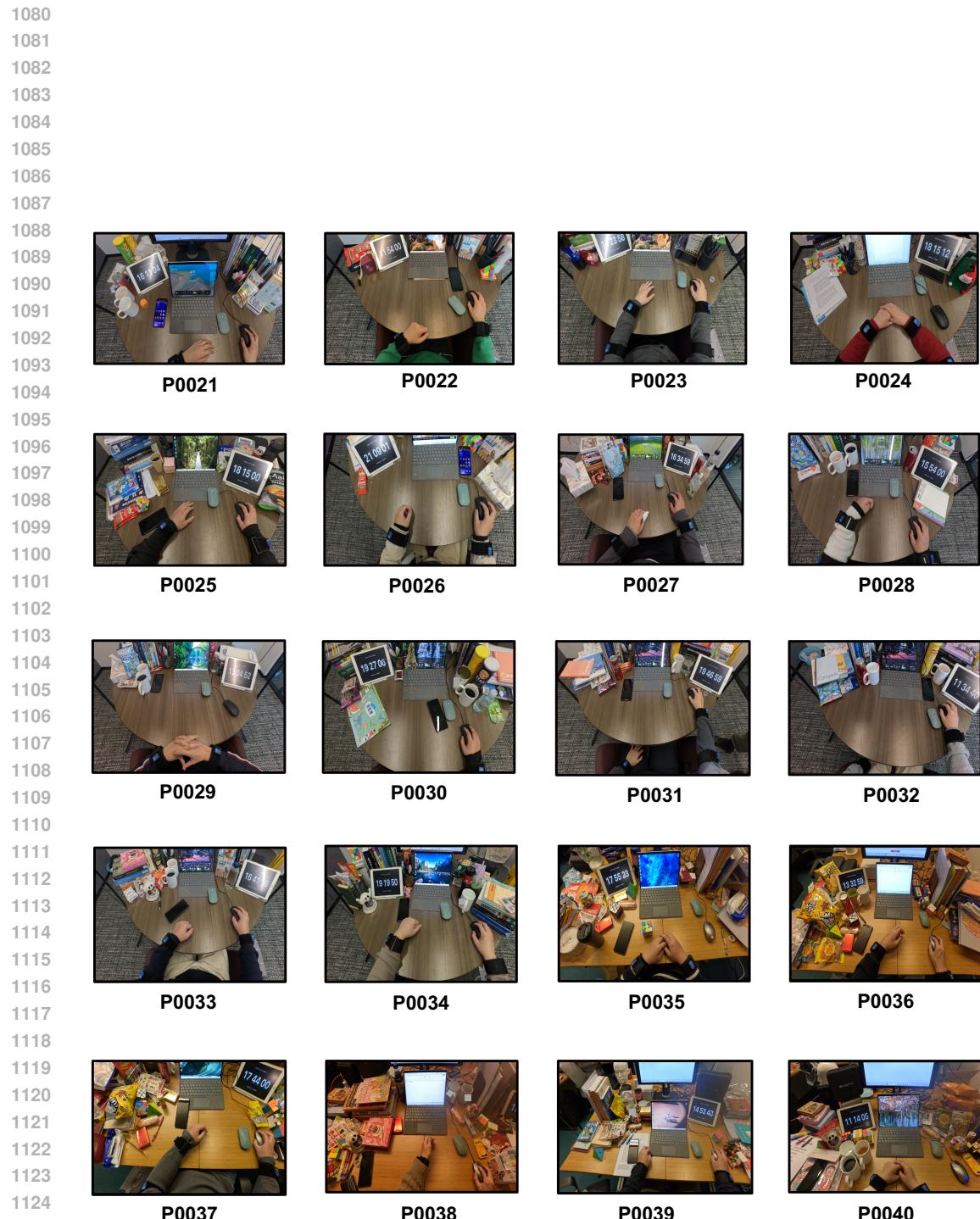


Figure 7: We provide visualizations of initial video frames from participants: P0021 to P0040.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1) Operate Word

1144

1145

1146

1147

1148

1149

1150

2) Operate PowerPoint

1151

1152

1153

1154

1155

1156

1157

1158

3) Operate Excel

1159

1160

1161

1162

1163

1164

1165

4) Operate Paint

1166

1167

1168

1169

1170

1171

1172

1173

5) Watch Computer

1174

1175

1176

1177

1178

1179

1180

6) Watch Smartphone

1181

1182

Figure 8: **Visualization of selected action categories including “Operate” and “Watch”.** The egocentric perspective in each sequence offers intuitive insight into the subject’s ongoing motor behavior.

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

7) Play(I) Spider Solitaire

1198

1199

1200

1201

1202

1203

1204

1205

1206

8) Play(I) 3D Pinball

1207

1208

1209

1210

1211

1212

9) Play(II) Toys

1213

1214

1215

1216

1217

1218

1219

10) Play(II) Cards

1220

1221

11) Play(II) Puzzle

1222

1223

1224

1225

1226

1227

12) Play(II) Cube

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237 Figure 9: **Visualization of selected action categories including “Play(I)” and “Play(II)”.** The
1238 egocentric perspective in each sequence offers intuitive insight into the subject’s ongoing motor
1239 behavior.
1240
1241

1242

1243

1244

1245

1246

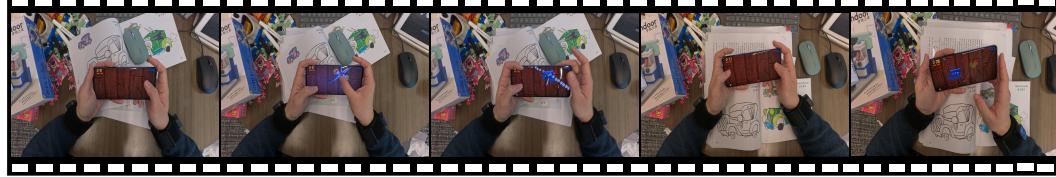
1247

1248

1249

1250

1251



13) Play(III) Fruit Ninja

1252

1253

1254

1255

1256

1257

1258

1259

14) Play(III) Subway Surfers

1260

1261

1262

1263

1264

1265

1266

15) Play(III) Angry Birds

1267

1268

1269

1270

1271

1272

1273

16) Play(III) Chess

1274

1275

1276

1277

1278

1279

1280

17) Write Copybook

1281

1282

1283

1284

1285

1286

1287

1288

18) Write Notes

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

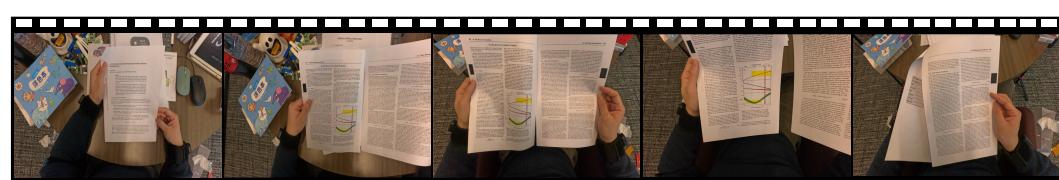
1299

1300

1301

1302

1303

19) **Read Textbook**20) **Read Comic book**21) **Read Research**22) **Draw Trace**23) **Draw Pictures**

1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 11: Visualization of selected action categories including “Read” and “Draw”. The ego-centric perspective in each sequence offers intuitive insight into the subject’s ongoing motor behavior.

1350

1351

1352

1353

1354

24) Eat Snack

1360

1361

25) Eat Spicy strips

1362

1363

1364

1365

1366

1367

26) Eat Sugars

1368

1369

1370

1371

1372

1373

1374

27) Drink Water

1375

1376

28) Drink Cola

1377

1378

1379

1380

1381

29) Drink Bitter Gourd Juice

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

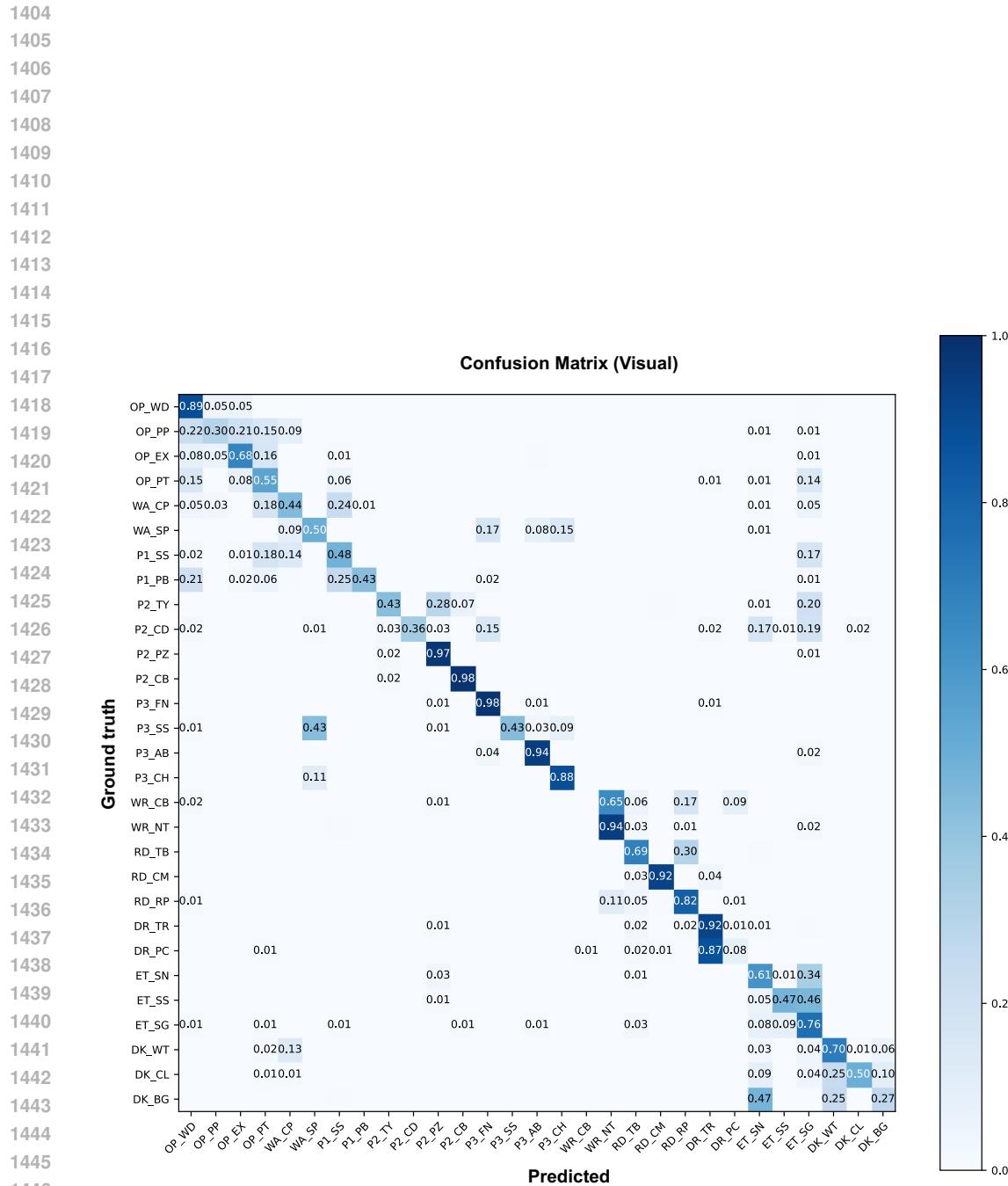


Figure 13: **29-way action confusion matrix of the Visual-only model.**

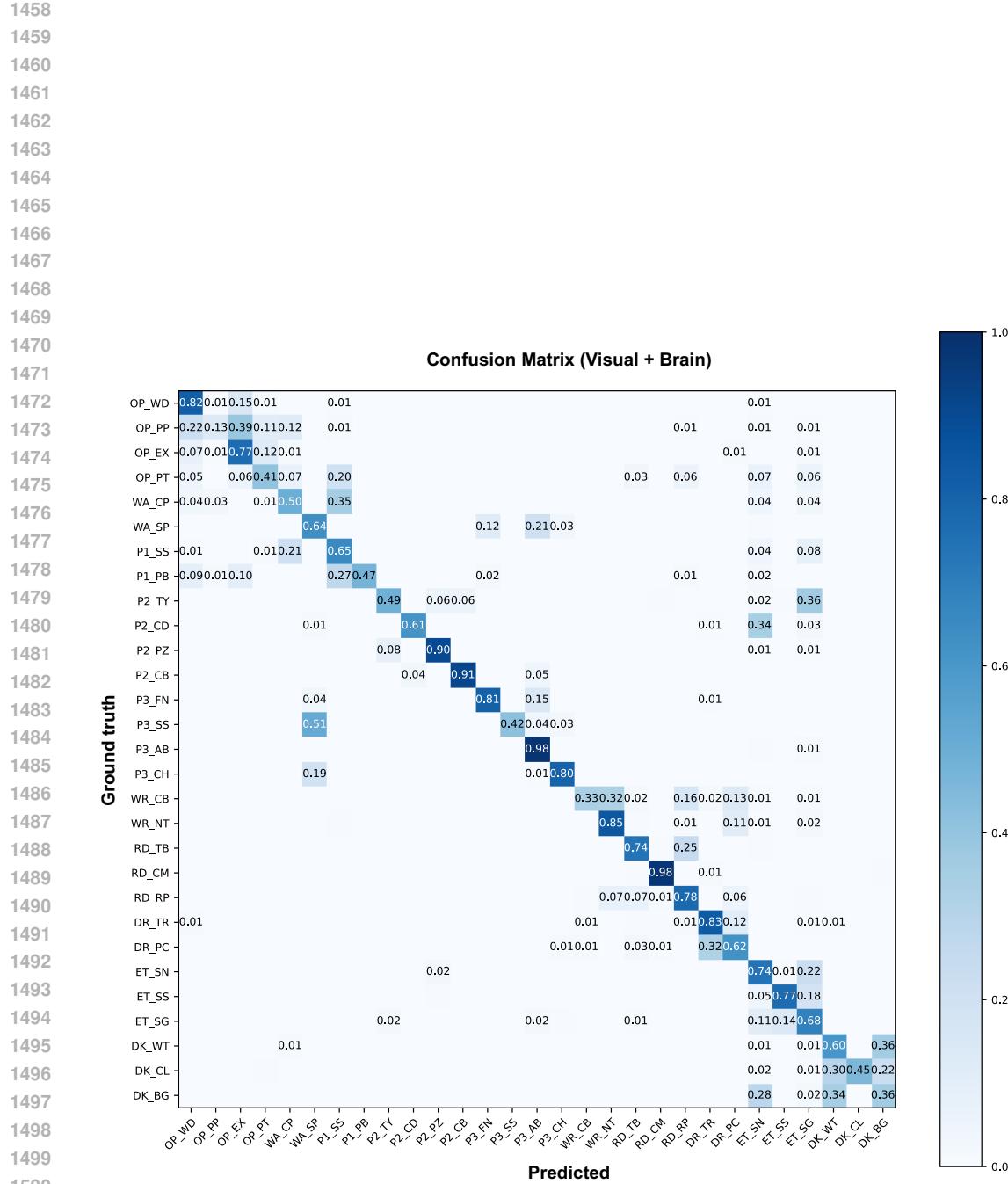


Figure 14: 29-way action confusion matrix of the Visual+Brain (multimodal) model.

1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511