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ABSTRACT

The integration of brain-computer interfaces (BCIs), in particular electroen-
cephalography (EEG), with artificial intelligence (AI) has shown tremendous
promise in decoding human cognition and behavior from neural signals. In par-
ticular, the rise of multimodal AI models have brought new possibilities that
have never been imagined before. Here, we present EgoBrain—the world’s first
large-scale, temporally aligned multimodal dataset that synchronizes egocentric
vision and EEG of human brain over extended periods of time, establishing a
new paradigm for human-centered behavior analysis. This dataset comprises 61
hours of synchronized 32-channel EEG recordings and first-person video from
40 participants engaged in 29 categories of daily activities. We then developed a
muiltimodal learning framework to fuse EEG and vision for action understanding,
validated across both cross-subject and cross-environment challenges, achieving
an action recognition accuracy of 66.70%. EgoBrain paves the way for a unified
framework for brain-computer interface with multiple modalities. All data, tools,
and acquisition protocols together with the source code are openly shared to foster
open science in cognitive computing.

1 INTRODUCTION

The explosive growth of artificial intelligence has greatly advanced the field of Brain-computer in-
terfaces (BCI), with massive research efforts to understand brain functions from neural recordings.
Among various neural signals, non-invasive systems such as scalp electroencephalograph (EEG) are
more scalable, cost-effective, and safer for large-scale adoption (Willett et al., 2021} /Anumanchipalli
et al.} 2019; |Sivasakthivel et al.l 2025 [Metzger et al.l 2023} |Bai et al., [2023} [Li et al., 2025} [Lan
et al.l 2023)), thus appealing increasing interest to connect EEG with human perceptions and in-
tentions. Boosted by deep learning techniques, booming breakthroughs have been seen in recent
years to decode visual and acoustic stimuli in controlled laboratory settings. For example, recent
works achieved accuracies of 15.6% in a 200-way zero-shot task on the EEG-image dataset (Song
et al.l 2023) and 21.9% in a 9-way task on the EEG-video dataset (Liu et al.| |2024b). However,
the visual stimuli in existing studies were merely presented on screens and the informative envi-
ronmental background was ignored. Moreover, the active interactions between the subjects and the
environment are less explored due to the passive settings in the experiments.

To better capture real-world human perceptions and actions, we introduce egocentric (first-person-
view) vision as a complementary modality to EEG. The egocentric vision has emerged as a pow-
erful paradigm for modeling human-object interactions and perceptual processes in real-world
settings, with representative large-scale datasets such as EPIC-KITCHENS(Damen et al., [2022)),
Ego4D(Grauman et al.,|2022) and HoloAssist(Wang et al., 2023). These datasets primarily capture
observable outcomes from a human-like perspective, yielding valuable analysis of human behavior
such as action recognition, hand pose estimation and human-object interaction understanding.

However, despite the rapid progress in both EEG decoding and egocentric vision, these two research
lines remain fundamentally disconnected. Existing egocentric datasets capture what people do but
not what they internally perceive, while traditional EEG studies reveal these internal processes but
lack the richness and ecological validity of real-world human—environment interaction. As a result,
current benchmarks can only reflect either the external visual outcomes or the internal cognitive re-
sponses, but never the interplay between the two. This motivates us to introduce EEG into egocentric
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vision research, with the goal of filling this critical scientific gap. By pairing real-world egocentric
video with simultaneously recorded brain activity, we aim to enable a deeper understanding of how
perception and cognition jointly shape human actions.

Interestingly, EEG and egocentric vision provide mutually reinforcing information. While the first-
person-view video offers objective information about scenes and actions, the sensorimotor experi-
ences, intentions, and other forms of implicit knowledge remain largely unobservable. The missing
pieces can be seamlessly complemented by EEG signals which reveal the latent cognitive signals
related to attention, motor planning, decision-making, and intention. Given the complementary na-
ture of egocentric vision and EEG, three fundamental questions arise. First, can their combination
lead to a deeper understanding of human behavior? Second, when does this integration outperform
unimodal approaches? Third, what technical methodologies can effectively handle the fusion?

To seek the answer and advance human-centric multimodal research, we start from introducing
EgoBrain, a large multimodal dataset that synchronously captures EEG and egocentric video from 40
participants engaged in natural daily activities. With a sophisticated design of 29 actions and diverse
environmental conditions in test sets, EgoBrain offers the first benchmark of multimodal action
recognition from synchronized EEG and egocentric video, paving the way for a unified framework
for brain-computer interface.

Similar to other multimodal tasks with synchronized timeline, it’s crucial to handle the shared tem-
poral structure carefully and fuse information from modalities for downstream prediction. Upon our
EgoBrain dataset, we present an adaptive Brain-Time Interval Machine (Brain-TIM) model, inspired
from (Chalk et al.l [2024) to integrate synchronized visual and EEG signals and capture rich multi-
modal information for action understanding. Each modality is processed through modality-specific
embedding layers and merged to the aggregated global context, while the shared temporal structure
is explicitly modeled using the Time Interval MLP (TIM) module. We then conducted experiments
with our Brain-TIM to evaluate both the standalone effectiveness of individual modalities and their
synergy, and the highlighted results confirmed that the fusion of EEG and vision consistently out-
performs unimodal approaches across multiple experiments. Further visualization provide deeper
insight into the complementary roles of egocentric vision and EEG signals.

In summary, the main contribution of this paper is threefold:

1) We introduce EgoBrain, the first large synchronized EEG dataset designed for egocentric vision
research. Featuring data from 40 participants engaged in real-world activities such as tool use and
daily tasks (in total 61 hours), this dataset sets a benchmark for cross-modal action understanding
and advances the application of BCI technologies in real-life settings.

2) To lay the groundwork, we provide standardized preprocessing pipelines for vision-brain syn-
chronization data, along with benchmark evaluations and our proposed Brain-TIM model. These
resources ensure experimental reproducibility and offer a unified comparative benchmark for future
research based on EgoBrain.

3) We conduct ablation studies to assess the individual and combined contributions of different
modalities. Our findings offer valuable insights into designing cross-modal learning frameworks for
egocentric vision and brain signal integration.

2 RELATED WORK

EEG & Vision Integration: In recent years, combining electroencephalography (EEG) with visual
data has emerged as a central theme in brain—computer interface (BCI) research, elucidating cog-
nitive processes and motor intentions(Mushtaq et al.l 2024} |Guttmann-Flury et al.l 2025} Bertoni
et al., 2025} Dreyer et al, 2023} Kaya et al., |2018). EEG’s high temporal resolution and portabil-
ity enable real-time monitoring of brain states, yet most work examines resting-state responses to
static visual stimuli, neglecting neural dynamics during natural movement(Yang et al. 2025} [Liu
et al.l 2025; Ma et al.l 2022} 2020; [Liu et all 2024a). A few studies have recorded EEG during
active locomotion—for example, assessing cognitive load while walking in a lower-limb exoskele-
ton(Ortiz et al.l 2023)—and virtual-reality tasks like supernumerary thumb control via motor im-
agery(Alsuradi et al) [2024). However, these efforts target prosthetic control and lack a systematic
exploration of real-world, first-person multimodal interactions in unconstrained movement.
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Figure 1: The EgoBrain dataset and experimental setup. a (Left) Acoustic isolation chamber with
adjustable lighting and modular workstation containing standardized interaction objects. (Right)
Portable apparatus configuration showing helmet-mounted GoPro camera and Emotive FLEX 2 Gel
EEG headset. b High-fidelity egocentric video recording hand-object interactions and 32-channel
EEG signals. ¢ Subject performing (“Read book’) action following on-screen textual prompts. d
From command display (“Play Cube”) to object interaction and completion confirmation.

Egocentric Vision Datasets: Recent egocentric video corpora have advanced human—object in-

teraction modeling through varied contexts and annotations(Damen et al.| 2022} [Grauman et al.
2022; Wang et al., 2023} [Darkhalil et al.| 2022 [Kwon et al., 2021} [Liu et al., 2022} Ragusa et al.

2021} |Sener et al., 2022} [Ohkawa et al., 2023} [Zhang et al.| 2022} |Grauman et al., 2024} [Huang|
et al., [2024). EPIC-KITCHENS(Damen et al., 2022) offers detailed kitchen-activity labels, while

Ego4D(Grauman et al., [2022)) provides the largest in-the-wild egocentric set for 3D perception and
social analysis. HoloAssist(Wang et al. enables multi-user task completion, and Assembly-
series(Sener et al.| 2022} [Ohkawa et al., [2023) and H20(Kwon et al., 2021) cover procedural and
two-hand manipulations. More recent datasets like EgoExoLearn(Huang et al, [2024) and Ego-
Ex04D(Grauman et all, [2024)) deliver asynchronous and dual-perspective recordings of skilled ac-
tivities. While several egocentric datasets provide multimodal annotations (e.g., audio, IMU, gaze,
multi-view footage), none include human-centered internal neural signals such as EEG. As a re-
sult, existing resources cannot capture the coupling between brain activity and first-person visual
experience, which is the central focus of our work.

Overall, existing research overlooks the synchronization of egocentric visual data and brain activity
during dynamic interactions in daily life.

3 EGOBRAIN DATASET

Environment and Data Acquisition System: Fig[Th illustrates our data capture environment
within an acoustic isolation chamber. The setup incorporates adjustable lighting and a modular
workstation containing standardized objects (books, electronic devices, efc.) for controlled interac-
tions. The right panel of Fig.[Th illustrates the configuration of our portable recording apparatus. The
setup includes a helmet-mounted GoPro HERO12 camera (1080P/30Hz) for capturing high-quality
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Figure 2: The EgoBrain statistics. The total duration per category is presented, highlighting the
longest duration (Play puzzle: 4.29 hours) and the shortest duration (Drink Bitter Juice: 0.49 hours)

egocentric video and a 32-channel wireless EEG headset (Emotiv FLEX 2 Gel System, 256Hz sam-
pling rate) compliant with the international 10-20 electrode placement standard. Detailed EEG
preprocessing procedures, including filtering, normalization, channel selection, and file conversion,
are provided in Appendix [A]

Throughout the session, the subject remains seated to reduce excessive lower-limb movement that
may otherwise introduce artifacts into the EEG signals, and the GoPro camera is carefully aligned
to the participant’s visual horizon to ensure a natural first-person perspective. The subject is asked
to conduct some everyday interaction with the objects illustrated in Fig. [[c. Meanwhile, the data
acquisition system captures two key modalities: high-fidelity egocentric video recordings and 32-
channel EEG signals, with an example shown in Fig. [Tb. Both modalities are time-locked to the
execution of these actions, achieved through synchronization with a reference display (<1s jitter).

Data Acquisition Pipeline: Fig. [Id presents a detailed visualization of our standardized action
execution pipeline. A session consists of a predefined yet randomly shuffled sequence of 29 actions,
with “Consume’-related actions repeated for three times (narrated in the next section). At the begin-
ning of each action, a large display screen presents a task prompt (e.g., “Play Cube”). The prompt
instructs the subject to identify the relevant object placed on the table, initiate the corresponding
hand-object interaction. The completion of a task is marked by the subject successfully performing
the interaction and manually confirming it via a mouse click. This human-initiated confirmation
ensures the intentional execution and completeness of each action, and naturally results in varying
action durations across different tasks. Upon task completion, the system automatically advances to
the next predefined action until the subject completes the full set of programmed tasks.

Action Category Design: The EgoBrain dataset covers a broad spectrum of daily activities, con-
sisting of 29 action classes organized under 10 verbs (and four high-level semantic categories). We
illustrate the design of these semantics in Fig. 2] and provide a concise summary in Tab. [I] These
four top-level categories offer a coarse yet meaningful structure over the action space, ensuring
clear distinctions in cognitive demand, motor behavior, and real-world context. Specifically, “Work”
includes productivity-oriented computer operations, “Play” contains both digital and physical enter-
tainment activities, “Learn” captures reading and writing behaviors commonly observed in academic
environments, and “Consume” reflects everyday eating and drinking actions.
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Table 1: Overview of the four high-level activity classes in the EgoBrain dataset.

High-Level Description / Examples

(1) Work Operating office software such as Word, PowerPoint, Excel, and Paint, efc.
(2) Play Engaging in screen-based games, object-based puzzles, and mobile games, efc.
(3) Learn Performing writing tasks, reading various materials, and drawing activities, efc.

(4) Consume  Eating different types of snacks and drinking multiple beverages, ezc.

To more faithfully capture the diverse cognitive demands and motor behaviors inherent in different
forms of “Play”, we further subdivide the “Play” category into three finer-grained subtypes:

* Play I: Screen-based games such as “Spider Solitaire” and “3D Pinball”’, involving mini-
mal physical movement.

 Play II: Object-based activities such as “Toys”, “Cards”, “Puzzles”, and “Cubes”, requiring
moderate motor activity and hand—object interaction.

 Play III: Fast-reaction or strategy-oriented mobile games such as “Fruit Ninja”, “Subway
Surfers”, and “Chess”, requiring rapid responses or cognitive planning.

Although all three subtypes fall under the same high-level semantic verb “Play”, they differ substan-
tially in visual appearance, cognitive load, and behavioral patterns. Introducing this finer taxonomy
makes the dataset more rigorous. It also helps reduce long-tail effects during data collection and
annotation, particularly when modeling multimodal signals involving both vision and EEG.

These activities span a wide range of temporal scales, with individual task durations ranging from
1,753 seconds (approximately 0.49 hours) to 15,441 seconds (approximately 4.29 hours), reflecting
diversity in task complexity. We visualize the cumulative time per activity (in hours) in the Fig.[2}

From a temporal standpoint, the longest-duration activities predominantly fall within the “Play”
and “Work” categories. For instance, “Play Puzzles” demands sustained attention and intricate
hand movements, while “Watch Computer videos” or ‘Play Games” can span extended periods.
In contrast, actions within the “Consume” category are typically brief and episodic. To mitigate
under-representation of such short-duration behaviors, we introduced randomized repetition and
each “Consume”-related action was performed three times during collection.

Additional dataset statistics are provided in Appendix [B] including subject-level egocentric view-
point visualizations as well as complete visualizations for all action categories.

4 METHODS

After constructing the EgoBrain dataset, we detail how we build an effective framework, namely
Brain-TIM, to model these multimodal temporal inputs to address the action understanding task.

4.1 TASK DEFINITION

We consider a time-synchronized pair of raw data: the egocentric video stream and the EEG signal
sequence, both sharing a common timeline 7 = [0, T]. The video stream is represented as V™" =
{v € RHXWXB}z;JSU, sampled at a frame rate f¥, and the EEG signal as B™ = {b; € Rc}z;éb,
recorded at f® Hz, where C' is the number of channels. The target of action recognition task can be
formulated as finding the best mapping from input to the action and verb categories § = fy(V, B) €
{1,..., NC}Q, where N, equals to 10 for verb classification or 29 for action categories, and @) is
the number of consecutive queries which evenly divides the whole time interval [0, T, i.e, the i-th
query corresponds to the action within time [(i — 1)T/Q,iT/Q)].

4.2 OVERVIEW OF BRAIN-TIM

An overview of Brain-TIM is presented in Fig. [3] We first extract feature representations for each
modality using pre-trained backbone networks (Tong et al., {2022} Jiang et al.,[2024) into ¢¥ and ¢°.
These features are then projected into a shared embedding space via modality-specific embedding
layers: g¥ and g°. The embeddings from different modalities are concatenated to form a unified input
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Figure 3: The overall architecture of Brain-TIM. The model processes synchronized visual and
EEG signals using modality-specific encoders, followed by embedding layers to obtain token se-
quences. The shared temporal axis is concurrently encoded by the TIM module. A modality-aware
CLS token is appended to the sequence to capture global semantics. The resulting tokens are fed
into a Transformer encoder for downstream action classification.

sequence for the Transformer module on the right side of the Fig. 3] Eventually, the Transformer
encoder models the temporal dependencies and cross-modal interactions within the sequence and a
linear classifier maps the encoded features to the final action category predictions.

4.3 FEATURE EXTRACTION

Before performing action recognition, we first extract features from all modalities using pre-
trained encoders. EEG signals are processed through LaBraM(Jiang et al) 2024), a model pre-
trained on 2,500 hours of masked EEG data that generates 2000-dimensional features per channel.
Video frames are encoded using VideoMAE(Tong et al.| [2022), pre-trained on EPIC-KITCHENS-
100(Damen et al}, [2022), which outputs 1024-dimensional features per segment. During feature
extraction, we adopt the parameter settings for EEG features as suggested in (Jiang et al., [2024),
while the parameters for video features follow those introduced in (Chalk et al.,[2024).

Sliding Window Mechanism: To extract aligned segments, Brain-TIM apply a sliding window
mechanism with a duration of At and step size 0¢. Each window contains NV = f¥ - At video
frames and N® = f*. At EEG samples. The raw data are divided into segments aligned with
N = |I5AL] 4+ 1, represented as V = {v; € RV >HXWX3N and B = {b; € RNbXC}lN:l.
Below, we detail how to extract feature representations from V' and B.

The sliding-window mechanism further mitigates the impact of sub-second temporal jitter in a struc-
tural manner. In this design, the window stride 0t is always smaller than the potential misalignment,
and adjacent windows exhibit substantial temporal overlap. As a result, each moment in the se-
quence is covered by multiple windows, creating natural temporal redundancy. Moreover, both
modalities are segmented using identical window indices, ensuring that their relative temporal struc-
ture remains consistent even under slight timestamp shifts.

Visual Features: Within each window in V, we uniformly down-sample K frames from their cor-
responding segment, denoted as {v},...,v% }. The superscript i refers to the i-th window, and ¢;
is the starting timestamp of the i-th window, corresponding to the time interval [¢;,¢; + At). The
timestamps for each sampled frame are denoted as {7}, ..., 7i }, where 7§ = ¢; + 2521 . A¢, with
k € {1,..., K'}. This formula ensures that the sampled frames are evenly distributed within the time
window and are centered within the window. Each frame is resized to 224 x 224 and normalized
using ImageNet(Deng et al. statistics. These K frames are then passed through a frozen, pre-
trained visual encoder ¢” to produce a window-level feature vector e’ € R?", where d" represents
the feature dimension. Combining the sliding stride dt, the full video is encoded into a sequence of
window-level feature vectors £V = {e!, ..., eY }, where each e} € R%".
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Brain Features: We adopt the same mechanism to extract neural features from B. For the ¢-th time
window, the EEG signal is denoted as b;. For the EEG signal within the window, we first apply a
band-pass filter with a range of 0.5-50Hz, followed by downsampling to f Y Hz. The input b; is fed
into a frozen pre-trained encoder ¢° to obtain its feature representation ¢”(b;) € R“> Atxd” where

d® is the EEG feature dimension. The features are aggregated via channel-wise average pooling as
e = L7 ¢b(by,...,by) € RAtxd" and temporal pooling is applied when necessary. This
produces an aligned sequence of window-level features, denoted as £ = {e}, ..., el]’\,}, where each

el e R?" and the number of windows N kept consistent with the visual modality.

Token Preparation: After the features from both modalities are obtained, the learnable embedding
layers g¥(-) and g°(-) are applied to £V and £, respectively, to map modality-specific features into
a shared D-dimensional space. As a result, we obtain the visual feature tokens £V = {&/ € RP}Y,
and the EEG feature tokens £* = {&? € RP}Y | without dimension misalignment for further fusion.

To enable cross-modal interaction and support classification for the ) queries, 2() learnable clas-

sification tokens (c1s tokens) {c? € RP}2  and {c? € RP}Z | of the same dimension with the
feature tokens are introduced for vision and EEG modality, respectively.

4.4 SEQUENCE CONCATENATION

Temporal & Modality-Aware Token: We enrich all feature tokens &Y, &7 and CLS tokens cy,

5? with lightweight time-aware embeddings generated by the Time-Interval MLP (TIM), which

computes interval-based embeddings such as e{ and eg from their corresponding temporal ranges.

(¢}

To distinguish tokens of different modality, we further introduced the modality-specific embedding,
represented by two learnable vectors, m* € R?? and m® € R?P, to store shared vision-modality
and EEG-modality information, respectively. The modality-specific embeddings are directly added
to the tokens of corresponding modality.

Sequence Concatenation: The input sequence to the transformer encoder is obtained as follows:

X = Concat( {é;}Hezf +m } Y, {é?Hezf +m’} Y, {ctlled + mv}?:l» {C§Ile§ + mb}?:l )

visual feature block brain feature block visual CLS token block brain CLS token block

where each element is constructed by concatenating the original token with its temporal embedding,
added to the modality-specific embedding. This final input sequence X € RN +2@)*2D js formed
by orderly concatenating all processed feature representations and CLS tokens. After constructing
the final input sequence X, the tokens are processed by a standard Transformer encoder, followed
by a linear classification head. The details of these components are provided in the Appendix [C]

This design offers three key advantages: 1) it ensures cross-modal time-aware alignment through
shared temporal encodings; 2) preserves modality-specific characteristics by utilizing independent
modality embeddings; and 3) facilitates cross-modal interaction and query-specific classification by
implementing symmetric handling of CLS tokens.

5 EXPERIMENTAL RESULTS

We rephrase the research questions proposed in the introduction here:

RQ1: Does a combination of egocentric video and EEG enable a more comprehensive understand-
ing of human behavior?

RQ2: Is our proposed method effective for this multimodal action recognition task?

RQ3: When does this integration outperform unimodal approaches?

We designed comprehensive experiments to answer these research questions in this section.
5.1 ACTION CLASSIFICATION RESULTS ON EGOBRAIN

We evaluate Brain-TIM on test sets of the EgoBrain dataset (Tab. [2) to answer RQ1. Note that all
experimental results presented in the tables are Mean £ STD across five different random seeds.
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Table 2: Action recognition results on the EgoBrain test set. We systematically evaluate unimodal
(Brain only, Visual only) and multimodal (Visual+Brain) models under two protocols: cross-subject
only and cross-subject & cross-scene. The table reports the parameter scale (Params) of each
model and the mean + standard deviation across five random seeds to ensure statistical reliability.
The primary evaluation metric is Top-1 accuracy (%), with the best results highlighted in bold.

Protocol Modality Encoder Params Verb Acc.%  Action Acc.%
. Brain only LaBraM __ 58M  21.53+0.99 8.44+225
Cross-subject (Jiang et al. 2024)
only Visual only VideoMAE 305.0M 88.95+0.80 78.44+0.71
(Tong et al.}2022]
Visual + Brain  WACOMAE +LaBraM 316 gne 9011 £ 110 80.16 + 1.67
(Tong et al.j2022{/Jiang et al.,[2024)
. LaBraM
Cross-subject & Brain only [iang ot i 5o 5.8M 19.414+1.57  9.36 £0.52
Cross-scene  vicialonly — p9COMAE 305.0M 81.67+1.89 63.40 +0.95
(Tong et al. 2022}
Visual + Brain  YJ9cOMAE + LaBraM 310.8M 8343+ 041  66.70 + 0.83

(Tong et al.J2022]Jiang et al.}[2024)

Unimodal Comparison: As a well-studied computer vision problem, the visual modality demon-
strates significantly strong performance, achieving 88.95% Top-1 accuracy for verb classification
and 78.44 % for action classification in the cross-subject setting. Thanks to its superior spatial res-
olution and contextual richness, egocentric visual input provides fine-grained cues that are critical
for distinguishing actions and achieved the performances of 81.67% and 63.40% for verb and action
classification even under the challenging cross-subject and cross-scene settings.

As for the EEG modality, the model achieves relatively low yet significantly better performance
than chance level for both settings. While EEG data contains certain cognitive information, its
relatively low sampling rate and limited feature dimensionality restrict its effectiveness in complex
real-world scenarios applied individually. Due to space constraints, we provide the details of the
random-baseline results in the Appendix [D]for further reference.

Multmodal Comparison: As shown in Tab. |2} fusing EEG with visual inputs boosts accuracies
across both evaluation protocols. Under the cross-subject only setting, the vision-only baseline
achieves 78.44% Top-1 accuracy for action classification, while Brain-TIM reaches 80.16%, giv-
ing a 1.72% improvement. Specifically, under the most difficult cross-scene setting, the vision-
only baseline achieves 63.40% Top-1 accuracy for action classification, while Brain-TIM with both
modalities reaches 66.70%, yielding a 3.30% absolute improvement on the 29-class task. This per-
formance gain answers RQ1 and further highlights the semantic complementarity between the two
modalities: while the visual stream captures external manifestations of action, EEG encodes neural
signatures of motor intention and implicit knowledge that are not observable from eyes alone.

Importantly, the performance gains of EEG are not attributable to differences in model capacity, but
rather to its unique cognitive value. Our EEG encoder is extremely lightweight, with only 5.8M
parameters (approximately 1/52 of the visual backbone), yet it still delivers statistically significant
improvements. This demonstrates that EEG provides indispensable complementary information in
cases of visual ambiguity or occlusion, thereby rendering visual understanding more complete.

5.2 ABLATION STUDY

To answer RQ2 and see whether all the proposed techniques are positively contributing to the de-
coding task, we removed some components from Brain-TIM and conducted ablation study.

Table [3] presents the performance under three modality settings: Brain Only, Visual Only, and Vi-
sual & Brain. For each setting, we evaluate different combinations of three key components: the
embedding layer ¢(*?), the time interval MLP I(":?) and the modality embedding m(?).

Overall, each component improves performance in both the pure EEG and multimodal settings. The
embedding layer strengthens feature representations. The time-interval MLP helps encode temporal
information. The modality embedding preserves modality-specific cues.
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Table 3: Ablation results of Brain-TIM. These results provide a detailed view of key module con-
tributes to performance under the Brain-Only, Visual-Only, and combined Visual & Brain settings.

| Brain Only | Visual Only | Visual & Brain
Embedding Layer g(*:?) X v/ X v/ X v X v X v/ X X v
Time Interval MLP (V) X X v v/ X X v v X X v X v
Modality Embedding m®® | — - - - - - X X X v v

Action Acc.% @Top-1 Mean | 744 7.54 6.15 9.36 | 64.94 64.67 64.01 6340 | 6571 6581 66.39 66.18 66.70
Action Acc.% @Top-1 STD | 0.39 0.05 0.06 0.52 | 3.64 .75 634 095 | 043 215 0.09 222 0.83

a Confusion Matrix (Visual) b Confusion Matrix (Visual + Brain)
1.0
OP &8 0.00 0.07 0.00 0.00 0.00 0.01 000 0.04 0.00 Opﬂ 0.02 0.04 000 000 000 001 0.00 0.03 0.00
WA - 0.09 0.14 0.00 021 0.00 0.00 0.00 0.06 0.00 WA - 0.08 013 0.01 0.19 0.00 0.00 0.00 0.05 0.00
0.8
P1 4026 003 046 000 000 000 001 0.00 0.24 0.00 P14 0.10 0.10
= P2 4 0.00 0.00 0.00 P2 - 0.00 0.00
s 0.6
5 p34000 010 000 P34 0.00 017
2
3 WR {001 000 0.00 WR 4 0.00 0.00
°
= 0.4
o RD 4 0.00 0.00 0.00 RD 4 0.00 0.00
DR 4 0.00 0.00 0.00 DR 4 0.00 0.00
0.2
ET 4 0.00 0.00 0.00 ET - 0.00 0.00
DK 4 0.00 0.03 0.00 0.00 DK 4 0.00 0.00 0.00
—— ——— Lo.0
R F QI OESFE T R F QD DOESFE S
Predicted Predicted

Figure 4: Confusion matrix for verb classification. a Visual-only. b Visual + Brain fusion. Owing
to space constraints, verb names are abbreviated; the full abbreviation table is provided in Table @

Interestingly, these additional designs reduce performance in the vision-only setting. We suspect that
the visual modality alone is already sufficient for accurate predictions, and the additional parameters
introduce unnecessary complexity that interferes with the training process.

In an additional ablation, we compare Brain-TIM with a spatial-fusion variant and confirm that
temporal fusion achieves better performance on complex action recognition; full details and results
are provided in the Appendix [E]

5.3 DETAILED ANALYSIS

To answer RQ3, we further conduct a more detailed analysis of specific categories and representative
cases to clarify when the multimodal framework outperforms the unimodal approaches.

Confusion Matrix of Classification: We present in Fig. [4] the confusion matrices comparing uni-
modal and multimodal models for verb classification. Comparing Fig. @ (Visual-only) and Fig.
@b (Visual + Brain) reveals that EEG integration does not uniformly improve all categories. No-
table improvements are seen in “Play(I)” (0.46 — 0.64), suggesting EEG complements cognitively
demanding actions. The “Drink” category benefits from EEG under visual occlusion (0.87 — 0.94).

However, “Write” accuracy decreases (0.83 — 0.77), likely due to kinematic redundancy, where
EEG introduces noise in cases of clear visual motion patterns. These results indicate EEG’s com-
pensatory effect is task-dependent, offering marginal gains when visual cues are strong. Due to space
limitations, the complete confusion matrices for all 29 action classes are provided in the Appendix[F

Benefits of Integrating EEG: As shown in Fig[Sh above, when a subject is drawing in a notebook
(e.g., Santa Claus), the visual model misclassifies the action as “Writing” due to the high visual
similarity between the two tasks. However, after incorporating EEG data, the model correctly clas-
sifies the action as “Drawing”. This suggests that EEG signals may capture neural patterns related
to task intent and offer additional discriminative cues. It indicates that EEG reflects distinct neural
activations associated with visuospatial motor planning, as opposed to language-related tasks—a
distinction that has been well documented in prior neuroscience studies(Tang et al., [ 2024)).
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Figure 5: Success and Failure Cases for Unimodal (Visual) and Multimodal (Visual + EEG)
Models. (a) Multimodal model correctly recognizes actions that the visual-only model misses,
aided by EEG. (b) EEG causes misclassification, possibly due to overlapping cognitive strategies.

Another example in Fig[5h involves the action of “Drink - bitter ground juice”. Due to occlusion, the
subject’s hand and the cup are not visible, and the visual model misclassifies the action as “Snack”
based on nearby contextual visual cues (e.g., a bag of chips). With EEG integration, the model not
only correctly identifies the verb “Drink” but also the object “bitter melon juice”. This improvement
likely stems from EEG’s ability to reflect orofacial motor patterns and anticipatory neural activity re-
lated to swallowing, which differ from those associated with chewing(Saito et al.,[2024). The results
underscore EEG’s value in disambiguating semantically similar actions when vision is limited.

Limitations of Integrating EEG: Despite these advantages, EEG does not always lead to improved
recognition. Fig[5p presents failure cases of the multimodal model. The subject is actually operating
PowerPoint, but the model incorrectly identifies the task as “Draw Pictures”. Possible reason is that
the subject is creating multiple rectangles, evoking visuomotor activity patterns that resemble those
during freehand drawing. Prior studies have shown that such overlapping cognitive strategies lead
to similar EEG signatures(Dvorak et all, 2018)), making semantic discrimination harder.

6 CONCLUSION AND DISCUSSION

We draw on the metaphor that “the eyes are the windows to the mind” to argue that egocentric
video can illuminate neural states that EEG alone cannot fully capture. Despite its promise, no
dataset or systematic study has yet explored EEG-vision synergy in real-world tasks. To address
this gap, we construct EgoBrain, the first action understanding dataset that simultaneously captures
first-person video and EEG signals, aiming to advance research on vision-brain signal integration.
We further develop Brain-TIM as the first multimodal research baseline on EgoBrain. Experimental
results show that combining EEG and visual modalities significantly outperforms single-modality
approaches, highlighting the potential of multimodal modeling in complex cognitive scenarios.

Our work lays the foundation for applying multimodal brain—computer interfaces to high-level cog-
nitive tasks by introducing a new visuo-neural dataset and an efficient benchmark model. We believe
that these contributions will open up new possibilities for brain—vision multimodal learning, and we
anticipate future work to actively explore the underlying interaction mechanisms between visual and
neural modalities, thereby further inspiring the discovery of new research tasks and directions.
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A EEG PREPROCESSING PIPELINE

Following LaBraM(Jiang et al., 2024)’s preprocessing pipeline to ensure compatibility across
modalities, we first applied a band-pass filter of 0.1-75 Hz to suppress low-frequency noise, fol-
lowed by a 50 Hz notch filter to eliminate power-line interference. The signals were then resampled
to 200 Hz and normalized by scaling the EEG amplitudes from their raw range (—0.1 mV to 0.1 mV)
to approximately —1 to 1, with 0.1 mV set as the unit. Unused or noisy channels were removed to
further improve signal quality. Finally, raw EEG recordings (e.g., in . edf format) were converted
into HDF' 5 files to facilitate efficient storage and training.

B SUPPLEMENTARY DESCRIPTION OF THE EGOBRAIN DATASET

To ensure sufficient demographic diversity and enhance the generalizability of multimodal human-
centric models, the EgoBrain dataset was collected from a broad and diverse pool of volunteer
participants. This section provides an overview of the recruited subjects, the dataset split protocol,
and additional visualizations that highlight the richness and variability embodied in EgoBrain.

Subjects: The dataset includes recordings from a total of 40 participants, with a gender ratio of
27 male to 13 female subjects. All subjects were informed of the experimental process and signed
informed consent forms before the experiment. This study was approved by the ethical committee
of local Institutional Review Board for Human Research Protections.

Data Split: We divide the dataset into training, validation, and test sets following the standard
data split protocal. To increase the evaluation challenge of the EgoBrain dataset, we design two
splits of different difficulty gradient, namely the Cross-subject-only split and the Cross-subject &
Cross-scene split. The entire training pipeline strictly follows the standard procedure of selecting
the best-performing model on the validation set before conducting the final evaluation on the test
set, ensuring fairness and reproducibility in the results.

For the Cross-subject-only setting, we collected 34 different subjects under the same physical envi-
ronment and object arrangement. These sessions are divided into a train set of 22 subjects (32.96
hours), a validation set of 6 subjects (7.75 hours), and a test set of 6 subjects (9.08 hours).

For the Cross-Subject & Cross-Scene split, we additionally collected 6 new sessions from entirely
new subjects in a different environment. These sessions follow the same data collection protocol,
but use a completely different object arrangement and take place in a distinct background setting.
The train set and validation set consists of 28 subjects (40.71 hours) and 6 subjects (9.08 hours), and
the 6 more sessions (11.28 hours) in the new environment constitutes the test set, assuring that the
new environment is never seen during the training and validation stage.

Visualization Across Subjects: To illustrate the inter-subject diversity inherent in EgoBrain, we
present representative initial egocentric video frames from all 40 participants. Fig.[6]and[7]showcase
subjects PO001-P0020 and P0021-P0040, respectively. These visualizations highlight substantial
cross-subject variability in appearance, posture, and interaction style, reflecting the richness of the
collected participant pool and supporting robust generalization in downstream multimodal modeling.

Visualization Across Action Categories. To further demonstrate the breadth of daily activities
captured in EgoBrain, we provide visualizations from all 29 annotated action categories. Figures 8-
[12] present representative egocentric frames across major action types such as operating computers,
reading, writing, playing games, and consuming food or beverages. These examples reveal the
diversity of visuomotor patterns and contextual scenes within each action class, offering valuable
insights into the multimodal dynamics of real-world human behavior.

Overall, the EgoBrain combines demographic diversity, multi-environment robustness, and compre-
hensive visual recordings, ultimately forming a highly reliable resource for advancing multimodal
brain—computer interface research and enabling deeper exploration of real-world human behavior.
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C SUPPLEMENTARY DESCRIPTION OF THE BRAIN-TIM MODEL

This section provides additional technical details of the Brain-TIM model. We first supplement the
feature extraction stage by detailing how the Time-Interval MLP (TIM) encodes temporal structure
and how modality-specific embeddings distinguish vision and EEG tokens. We then describe how
the shared Transformer encoder processes these enriched representations and how the dual-head
classifier leverages the verb—action semantic hierarchy during training.

Time-aware Token Embedding: To incorporate the time-specific information to the tokens, we
explicitly add it by introducing the Time-Interval MLP (TIM), I(-) : R? — R, consisting of three
linear layers with ReL.U activations and LayerNorm operation. This TIM module takes the start and
end time (i, t.) of the corresponding interval as input and generate the temporal embedding which
can be further appended to the specific token as a time-aware token embedding.

For the feature tokens & and &?, the time interval is determined by the i-th window [t;,t; + At),
also named feature time in (Chalk et al.| 2024). The temporal embedding is thus calculated as
er = I(t;,t; + At) € RP. As for the CLS tokens c; and cg , the time interval corresponds to the

j-thquery [(—1)T/Q, jT/Q)], also known as query time. And the temporal embedding is similarly
obtained as e = I((j — 1)T/Q, jT/Q) € RP.

Modality-specific Embedding: To distinguish tokens of different modality, we further introduced
the modality-specific embedding, represented by two learnable vectors, m* € R?” and m® € R?P,
to store shared vision-modality and EEG-modality information, respectively. The modality-specific
embeddings are directly added to the tokens of corresponding modality.

Transformer Encoder: As shown in the Transformer encoder on the right side of Fig. 3] the
input sequence X is processed by a stack of Transformer encoder layers. Each layer consists of a
self-attention mechanism followed by a feedforward network, following the architecture proposed
in (Vaswani et al.| [2017). The self-attention mechanism enables the model to capture long-range
dependencies across different positions in the sequence, while the feedforward network applies non-
linear transformations to the input. Each layer uses residual connections and layer normalization
to facilitate gradient flow, with the output passed to the next layer to refine the input sequence X
representations.

Linear Classification: Following the Transformer Encoder, as shown in the bottom right of Fig.[3]
we extract the modality-specific and query-specific CLS tokens from the output sequence. These to-
kens are fed into their respective classification heads, h¥ and hP, which consist of linear layers
followed by softmax to produce class probabilities. The two modality branches are trained and eval-
uated independently, without merging their predicted probabilities into a single unified prediction.

The model is supervised using modality-specific cross-entropy losses, denoted as £, and L, for the
visual and EEG branches, respectively. The total loss function £ is defined as the sum of the visual
modality loss £,, and a weighted term for the EEG modality loss £;, scaled by a hyperparameter A:

L=Ly+ X Lp.

It is worth highlighting that the high-level semantic structure (e.g., “Work”, “Play”, “Learn”, “Con-
sume”) is intentionally not used during training. The three-tier hierarchy (“high-level category —
verb — action”) was introduced primarily to conceptually abstract and organize human daily activ-
ities. As such, the highest level serves merely as a semantic scaffold for dataset users and is not
suitable to function as a supervisory signal for model optimization.

In contrast, our classification design explicitly incorporates the two semantic levels used during
training—verbs and actions. These labels are fully leveraged in our training pipeline: the embed-
dings produced by the Transformer encoder are passed into two separate classification heads—one
for verbs and one for actions—each equipped with its own loss function. This design enables the
model to learn behavior representations at multiple levels of semantic granularity, while avoiding the
potential biases that may arise from enforcing overly coarse, concept-driven category supervision.
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D ADDITIONAL EXPERIMENTAL RESULTS

Random-baseline Result: To provide a clearer sense of the lower bound performance on the
EgoBrain benchmark, we report several standard random baselines for both verb and action classi-
fication. These baselines help contextualize the difficulty of the task and offer reference points for
interpreting the multimodal models.

We evaluate three commonly used forms of random performance: (1) uniform chance level, (2)
prior-based random sampling that follows the empirical class-frequency distribution, and (3) the
majority-class baseline. The results are summarized in Table ]

Table 4: Random baselines for EgoBrain verb and action classification.

Metric Verb Classes Action Classes
Chance Level 10.00% 3.45%
Prior-based Random 11.77% 4.02%
Majority Class 18.59 % 7.02%

Among these, the majority-class classifier yields the strongest random performance, with 7.02%
accuracy for action classification. To contextualize the Brain-only model under the challenging
Cross-Subject & Cross-Scene protocol, we compare its performance against this upper-bound ran-
dom baseline. The Brain-only model achieves 9.36 &+ 0.52, corresponding to a 33.3% relative im-
provement over the majority-class baseline.

These baselines demonstrate that, despite the substantial inter-subject variability and the inherent
difficulty of EEG-based prediction in real-world scenarios, the Brain-only model consistently sur-
passes all random and prior-driven strategies. At the same time, the gap between these baselines and
the Brain-only performance indicates meaningful room for future progress on EgoBrain, inviting
further exploration from the research community.

Robustness Comparison: Interestingly, the Brain-only model shows slightly higher action accuracy
under the cross-subject & cross-scene protocol. This arises because EEG captures head-centered
neural dynamics that remain largely invariant across environments, so increasing the training set
from 22 to 28 subjects directly enhances its discriminability. In contrast, VidleoMAE depends on
visual appearance and motion cues that shift significantly with background, lighting, and object
changes, leading to strong degradation under scene variation. Consequently, EEG benefits from
richer cross-subject diversity, whereas VideoMAE suffers from cross-scene domain shift.
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E TEMPORAL FUSION vs. SPATIAL FUSION

Our Brain-TIM adopts a temporal fusion strategy to integrate visual and EEG modalities when con-
structing the multimodal input sequence X. In contrast, a simpler alternative way is to concatenate
modality features along the spatial dimension while keeping the fusion module active but effectively
removing one modality’s tokens. We refer to this baseline as spatial fusion. Under this formulation,
the input X is formed as:

X = Concat({&}[|&}lle/ 1Y, {c}c}[le?} ., ) € RN+@x3P,
—_———————
feature block CLS token block

The key difference between the two fusion paradigms lies in how modality-specific structure is
preserved. Brain-TIM uses dedicated modality embeddings Ey and Eg to explicitly encode visual
and EEG token identities before temporal fusion. In contrast, the spatial-fusion baseline directly
concatenates the visual and EEG representations:

Xfusion = Concat(Xy,,Xg) € RBX(V+E)’
and treats the concatenated tensor as a single fused modality without distinguishing token types.

Table 5: Comparison of temporal fusion (Brain-TIM) and spatial fusion. Temporal fusion clearly
improves performance for the more challenging action recognition task.

Setting Verb Acc. Action Acc.

Vision Only 81.67+1.89 63.40+0.95
Visual & Brain (Spatial fusion) 83.74 £0.62 64.81 £ 1.04
Visual & Brain (Brain-TIM) 83.43+0.41 66.70+ 0.83

To ensure consistency with our main experimental protocol, all results were averaged across five dif-
ferent random seeds. The comparison between the two fusion strategies is summarized in Table [5
While both methods achieve comparable performance on verb classification, Brain-TIM with tem-
poral fusion substantially outperforms spatial fusion on the more challenging 29-way action recog-
nition task. This demonstrates that although simple feature concatenation can suffice for coarse
semantic discrimination, explicitly modeling temporal dependencies across time steps leads to more
robust and discriminative multimodal representations—particularly beneficial for fine-grained, real-
world action recognition.
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F CONFUSION MATRIX OF ACTION

Table 6: Verb-level and action-level abbreviations used in the EgoBrain dataset. Each verb is
assigned a two-letter code (“Verb code”). Each fine-grained action is assigned a two-letter “Action
code”, and the final label is formed as Verb_Action.

Verb Verb code Action Abbreviation
Operate Word OP_WD
Operate PowerPoint OP_PP
Operate oP Operate Excel OP_EX
Operate Paint OP_PT
Watch Computer WA_CP
Watch WA Watch Smartphone WA_SP
Play(I) Spider Solitaire P1_SsS
Play (D Pl Play(I) 3D Pinball P1_PB
Play(Il) Toys P2_TY
Play(II) Cards P2_CD
Play (I) P2 Play(II) Puzzle P2_P7
Play(II) Cube P2_CB
Play(III) Fruit Ninja P3_FN

Play(III) Subway Surfers P3_SS

Play (II) P3 Play(IIT) Angry Birds P3_AB

Play(III) Chess P3_CH

. Write Copybook WR_CB
Write WR Write Notes WR_NT
Read Textbook RD_TB

Read RD Read Comic RD_CM
Read Research Paper RD_RP

Draw Trace DR_TR

Draw DR Draw Pictures DR_PC
Eat Snack ET_SN

Eat ET Eat Spicy strips ET_SS
Eat Sugars ET_SG

Drink Water DK_WT

Drink DK Drink Cola DK_CL

Drink Bitter gourd juice =~ DK_BG

To maintain clarity in the main paper, we omit the full 29-way action confusion matrices due to their
size and the limited space available. These matrices, however, offer useful insights into fine-grained
model behavior and characteristic error patterns. To present them compactly and coherently in the
supplementary material, we adopt the verb—action abbreviation scheme in Tab. [6} where each action
is encoded using a concise two-level code. This scheme preserves semantic interpretability while
enabling a cleaner and readable visualization of the dense 29 x 29 matrices. In Fig.[T3|and Fig.[T4]
we provide the complete confusion matrices for the visual-only and visual-brain models, offering a
more comprehensive view of their respective error distributions and class-separation behavior.

Taken together, the two confusion matrices offer a detailed view of how visual and multimodal
models behave in fine-grained egocentric action recognition. The Visual-only model tends to strug-
gle with actions that share similar hand trajectories, object appearances, or desktop-level contexts,
which leads to noticeable clusters of confusion in several verb groups. When EEG is incorporated,
the Visual+Brain model shows a general trend toward stronger diagonal concentration and reduced
cross-class ambiguity, suggesting that neural signals may provide complementary cues that help dif-
ferentiate visually similar actions. Overall, these results indicate that multimodal integration can
improve recognition in scenarios where vision alone is limited or ambiguous.
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P0017 P0018 P0019 P0020

Figure 6: We provide visualizations of initial video frames from participants: P0001 to P0020.

20



Under review as a conference paper at ICLR 2026

A hiiﬁ/
; Y%

P0025 P0026 P0027 P0028

P0029

P0040

P0037 P0038

Figure 7: We provide visualizations of initial video frames from participants: P0021 to P0040.
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6) Watch Smartphone

Figure 8: Visualization of selected action categories including ““Operate” and “Watch. The
egocentric perspective in each sequence offers intuitive insight into the subject’s ongoing motor
behavior.
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12) Play(ll) Cube

Figure 9: Visualization of selected action categories including “Play(I)” and “Play(Il)”. The
egocentric perspective in each sequence offers intuitive insight into the subject’s ongoing motor
behavior.
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18) Notes

Figure 10: Visualization of selected action categories including ““Play(I11)” and “Write”. The
egocentric perspective in each sequence offers intuitive insight into the subject’s ongoing motor
behavior.
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23) Draw Pictures

Figure 11: Visualization of selected action categories including “Read” and “Draw”. The ego-
centric perspective in each sequence offers intuitive insight into the subject’s ongoing motor behav-
ior.
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Figure 12: Visualization of selected action categories including “Eaf’’ and “Drink”. The egocen-
tric perspective in each sequence offers intuitive insight into the subject’s ongoing motor behavior.
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Figure 13: 29-way action confusion matrix of the Visual-only model.
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Figure 14: 29-way action confusion matrix of the Visual+Brain (multimodal) model.
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