
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OBJECT-ORIENTED TRANSITION MODELING
WITH INDUCTIVE LOGIC PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

Building models of the world from observation, i.e., induction, is one of the major
challenges in machine learning. In order to be useful, models need to maintain
accuracy when used in novel situations, i.e., generalize. In addition, they should
be easy to interpret and efficient to train. Prior work has investigated these con-
cepts in the context of object-oriented representations inspired by human cogni-
tion. In this paper, we develop a novel learning algorithm that is substantially
more powerful than these previous methods. Our thorough experiments, includ-
ing ablation tests and comparison with neural baselines, demonstrate a significant
improvement over the state-of-the-art. The source code for all of our algorithms
and benchmarks will be available online after publication.

1 INTRODUCTION

Learning is a vital part of any intelligent agent’s behavior. In particular, one of the most important
problems in the field of machine learning is induction: constructing general rules from examples,
allowing an agent to explain its observations and make predictions in the future. Induction is also
an important part of how humans – and humanity as a whole – acquire knowledge. While much of
science takes the form of induction, it also encompasses other learning activities, such as categoriz-
ing shapes, playing a new video game, and even practicing physical skills. To enable these feats,
the human implementation of induction has several essential traits. First, we create models that gen-
eralize, i.e., make accurate predictions in new situations. Second, our models are interpretable, so
they can be reasoned about and communicated to others. Third, we learn efficiently, in terms of both
number of observations and computational power.

To make induction tractable, humans think of the world in terms of objects and their relationships,
which allows for efficient learning and generalization of knowledge to new situations (Spelke, 1990).
In artificial intelligence, object-oriented representations seek to capture this insight by representing
an agent’s perception of the world as a set of objects, each consisting of a type and a collection of
numerical vector attributes (Diuk et al., 2008; Stella & Loguinov, 2024). The object-based represen-
tation serves as a middle-ground between low-level (sensory) input, for which learning structured
rules remains intractable (Locatello et al., 2020), and high-level (relational) formulations, which use
a large amount of domain knowledge to simplify the task structure (Garrett et al., 2020). This makes
object-oriented inductive learning an important, but challenging, problem.

One particularly important form of induction is learning about the dynamics of a system, i.e., dis-
covering physical laws from observation. This can be modeled using the Markov Decision Process
(MDP) framework (Sutton & Barto, 2018). In this setting, the agent interacts with an unknown en-
vironment by taking actions a in response to observations of the environment’s state s. Each action
causes the environment to transition to a new state s′ according to its transition function T , such
that s′ = T (s, a). In learning the dynamics of an MDP, the agent’s objective is to create a model T̂
that produces the same outputs as the environment’s ground-truth T . This learning process occurs
online, meaning that the agent must refine its model continuously as it receives a stream of observa-
tions. In addition, the agent should be able to learn the dynamics of various environments without
extensive domain-specific tuning.

Traditionally, learning a transition model might mean enumerating the values of T Sutton et al.
(1999). However, by using a structured state format – e.g., as a set of objects with attributes – we

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

action: UP

Agent

Environment

(a) an example transition in the keys domain

object type pos status locked
16 wall (4, 2) - -
50 player (5, 2) - -
51 door (3, 4) - true
52 key (4, 1) free -
53 goal (2, 4) - -

(b) partial object listing for the initial state in (a)

Figure 1: An example game transition with a partial listing of the initial state in the object-oriented
representation. Although we use meaningful names to increase readability, the information given to
an agent does not contain these labels.

can instead represent the MDP intrinsically by implementing T as a program operating on states in
this representation. This leads to the possibility – and accompanying challenges – of generalization,
as the use of an implicit representation allows for a potentially infinite space of states and transitions
to be defined by a single program of finite size. The agent’s model of the world should allow it to
accurately predict the outcome of all of these possible transitions.

Because very little prior work has studied this problem, most existing induction methods have sig-
nificant limitations. For example, the most popular approach in modern machine learning is deep
learning, which uses artificial neural networks to approximate arbitrary functions (Schrittwieser
et al., 2020). However, as shown by prior work and our own experiments, they do not learn effi-
ciently or generalize reliably (Nagarajan et al., 2021; Zhang et al., 2023; Mirzadeh et al., 2024). In
addition, although their parameters could be considered “learned rules” in the induction sense, they
are difficult to interpret (Ghorbani et al., 2019; Druce et al., 2021).

To overcome these limitations, Stella & Loguinov (2024) introduced QORA, which uses an Induc-
tive Logic Programming (ILP)-based framework to tackle the problem of object-oriented transition
learning. This yields interpretable models, but as we discover through experiments in several novel
domains, their ILP method does not converge in many cases. Unfortunately, other existing ILP algo-
rithms are not suitable replacements, as the application to object-oriented prediction imposes several
requirements. First, the majority of prior ILP methods only support batch-mode learning (Cropper
& Dumančić, 2022); using these algorithms in the online setting would require rebuilding each rule
from scratch every time a new observation is made, which is intractable. Second, whereas we seek
algorithms that do not require manual input of domain knowledge, many existing approaches need
extensive domain-specific configuration in the form of, e.g., meta-rules (Cropper & Tourret, 2020) or
architecture selection (Dong et al., 2019). Although the TG algorithm meets these two requirements
(Driessens et al., 2001), it conducts continuous-valued scalar regression, which makes it inapplicable
to object attribute vector prediction.

In this paper, we introduce TreeLearn, a novel ILP algorithm that is well-suited to use with the
object-oriented transition learning framework. Our method conducts statistically-guided induction
of logical programs, incrementally building more-complex models as necessary to achieve better
prediction accuracy. TreeLearn models take the form of first-order logical decision trees (FOLDTs)
(Blockeel & De Raedt, 1998), a highly expressive and interpretable representation for inductive
models, allowing us to tackle a variety of complex domains. Using TreeLearn, we build TreeThink,
an object-oriented transition learning algorithm that efficiently and reliably produces models that
generalize strongly to novel transitions within their environment. We demonstrate the efficacy of
our approach with a thorough empirical evaluation, including ablation tests and comparison with
sophisticated neural baselines.

2 TREETHINK

In this section, we describe our algorithm, TreeThink, which provides two high-level interfaces:
observe, which is used to train the learner, and predict, which queries the model. The obser-
vation function takes transition triples consisting of a state, an action, and the resulting next state
(s, a, s′) such that s′ = T (s, a). The prediction function uses the learned model to compute T̂ (s, a).
Both functions operate on object-based states, such as those shown in Figure 1.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1a shows an example of a transition in one of our domains, called keys. In this environment,
which we use as a running example throughout this section, the agent controls a player character
moving through a maze-like area containing keys, doors, and goals. The doors, initially locked, can
be opened by bringing an unused key to them. Any key can open any door, but each key can only be
used once. The agent receives a penalty for each move, with a larger penalty for attempting to make
an illegal move (e.g., bumping into a wall or locked door). A reward is given if the player character
ends up on a goal.

Figure 1b shows a subset of the transition’s initial state in the object-oriented representation, using
human-readable labels for clarity (compare to Figure 6 in Appendix C). The state s consists of a
set of some number ns of objects. Each object belongs to a class, e.g., player or wall, and has
some attributes, e.g., position (shortened to pos) and color. We use s.c to refer to the subset
of objects in s that have class type c. Each of an object’s attributes has some value, which is a vector
of integers, e.g., (5, 2); the length of the vector is determined by the attribute it corresponds to. We
use the notation si to refer to object i in state s and si[m] to refer to the value of attribute m of that
object. The notation X[m] is also used when an object is labeled X = si. We denote by class(s, i)
and attr(s, i) the class of object i and its set of attributes, respectively. Any reward signal R is
folded into the state transition function T through inclusion of a special object of class game with
a single attribute called score, which tracks the cumulative sum of rewards. Thus, no separate
reward model is necessary.

With this framework, we can formulate the model as an algorithm that predicts the change in each
object’s attribute values from s to s′. TreeThink breaks this down using a collection of subroutines,
which are called rules (Stella & Loguinov, 2024). Each rule T̂c,m,a predicts the changes for a
particular attribute m in objects of a specific class c when a certain action a is taken. For example,
one rule may predict the player’s position when the right action is taken, while another could
predict the game object’s score attribute when the up action is taken. This allows us to simplify
the model while retaining generality, as individual rules are each typically small, but any particular
rule can still be highly complex if necessary. The process of prediction using rules is shown in
Figure 2b. We represent these rules using First-Order Logical Decision Trees (FOLDTs).

2.1 FIRST-ORDER LOGICAL DECISION TREES

FOLDTs are an extension of classical decision trees to the setting of first-order logic. They are
highly expressive, allowing us to model rules for complex domains, and interpretable, making it
easy to decode the knowledge they learn through training (Blockeel & De Raedt, 1998). A FOLDT
representing a rule from the keys domain is shown in Fig. 2a. The tree takes as input a state and
a “target” object to make predictions for. It then uses information from the state to produce an
output for the target object, i.e., to determine how one of its attributes should change. The top box
(labeled 0) shows metadata about this tree’s rule: its input object X0 is a player and it predicts
how that player’s position changes when the RIGHT action is taken. Evaluation proceeds recursively,
starting from the root.

Each branch of the tree (numbered > 0) contains a test, which evaluates to either true or false
based on conditions in the current state. These tests are logical formulas that refer to properties of,
or relations between, objects. The tests are existentially quantified, meaning that they pass if any
objects exist that satisfy the condition. If a test passes, the left branch is taken and the quantified
variable(s) are bound. If the test fails, any variable appearing in a quantifier in that test is not bound
(since no such object exists). This means that, e.g., the X1 in box 2 (∃X1 ∈ doors) is the same
as in box 3 (X1[open] = 1), but not the same as the one in box 1 (∃X1 ∈ walls). In tests without
quantifiers, it is implicit that any satisfying binding is acceptable; e.g., if the test in box 1 fails, then
as long as there is any door next to the player (box 2) that also is open (box 3), the latter will test
pass and the tree will return (1, 0). Thus, a test only fails if there is no possible binding that will
satisfy it. When a leaf node is reached, the value (or distribution of values) in that leaf is returned.
The procedure encoded by this FOLDT is equivalent to the program shown in Figure 2c.

The tree we have shown outputs constants at its leaves, which do not depend on the player’s current
position. To use these values for our rules, we treat them as deltas. Thus, if Fc,m,a is the FOLDT
for a rule T̂c,m,a, then

T̂c,m,a(s, si) = si[m] + Fc,m,a(s, si). (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

falsetrue

(1, 0)

∃ X1 ∈ walls:
X1[pos] - X0[pos] =

(1, 0)

false

(0, 0)

(1, 0)

true

true

false

∃ X1 ∈ doors:

X1[pos] - X0[pos] =

(1, 0)

X1[open] = 1

∃ X2 ∈ keys:

X2[held] = 1

X0: player

attribute: pos

action: RIGHT

false

(1, 0)

true

(0, 0)

1

2

3

4

0

(a) rule expressed as a FOLDT

1 Func predict(State s, Action a) → State

2 State s′ = s // copy the current state

3 for ID i in {1, ..., ns} do
4 for Member m in attr(s, i) do

5 T̂c,m,a = rules[class(s, i), m, a]
6 s′i[m] = T̂c,m,a(s, si)
7 return s′

(b) Prediction using independent rules

1 Rule [player, pos, RIGHT](s, X0) → Vector

2 if ∃X1 ∈ s.walls : X1[pos]−X0[pos] = (1, 0)
then

3 return (0, 0)
4 else if

∃X1 ∈ s.doors : X1[pos]−X0[pos] = (1, 0)
then

5 if X1[open] = 1 then
6 return (1, 0)
7 else if ∃X2 ∈ s.keys : X2[held] = 1 then
8 return (1, 0)
9 else

10 return (0, 0)
11 return (1, 0)

(c) a program equivalent to the tree in (a)

Figure 2: FOLDT and equivalent program representation of a rule for the keys domain.

The last factor to settle is the kind of conditions, which we also call facts, that can be used as tests.
We use the same two types as QORA: attribute equality, of the form

Pm,v(i) : Xi[m] = v, (2)

and relative difference, of the form

Pm,v(i, j) : Xj [m]−Xi[m] = v. (3)

The space of tests can be augmented with more varieties, but these two domain-agnostic condition
classes are sufficient for all those that we have conducted experiments in. Even the (c,m, a) rule
structure could be implemented, in part, as tests in the tree; however, enforcing rule separation in
the way we do improves both efficiency and interpretability.

2.2 TREELEARN

We now describe how to construct FOLDTs from examples. The approach we take is top-down
induction, similar to classical decision trees Quinlan (1986), which grows the tree (starting from a
single leaf node) by splitting leaves based on some information metric. Our incremental algorithm
does this through a recursive process with three steps, beginning at the tree’s root each time an
observation is received. First, statistics for all candidate tests being tracked at the current node are
updated. Second, the test used for the node may be updated. If the current node is a leaf, we check
if it should be split into a branch; if it is already a branch, we check if it should use a different test.
Third, the algorithm recurses to the appropriate child based on the evaluation of the branch’s test.
We next cover each of these steps in more detail.

Updating Tests Our algorithm keeps track of candidate tests and corresponding statistics in each
node. A separate candidate is created for each observed fact and every arrangement of variables

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(both existing, from higher levels of the tree, and new) as arguments to the condition. The informa-
tion kept for each candidate consists of a table of counters, incremented for each observed sample,
indexed in one dimension by whether the test was true or false and in the other by the output for that
sample. This can be treated as a joint probability distribution, over which an information metric can
be computed to assess the utility of the test.

Updating Nodes The goal of the algorithm is to eventually converge to a stable tree structure
that tests only the information that is necessary to determine the outcome of each transition. To
accomplish this, we allow existing branches to change their test over time. However, this requires
resetting the tree nodes below that branch, which slows learning. Thus, we need a test evaluation
method that allows us to ensure that leaves and branches are only modified when there is a high level
of certainty that the new test will improve the model’s performance. For this, we use the predictive
power score introduced by Stella & Loguinov (2024).

For a test with joint probability distribution P̂ , which distinguishes conditions in a set X and predicts
outputs from the observed set Y , the score S is

S =
∑

(x,y)∈X×Y

P̂ (y|x)P̂ (x, y), (4)

which gives the test’s expected confidence in the correct output on a randomly-sampled input. This
score takes values in [0, 1], where 1 means the predictions are perfectly accurate. To evaluate tests,
we compute a confidence interval over their S scores. The interval sizes are controlled by a single
confidence-level hyperparameter, α. When a test’s confidence interval is greater than (not overlap-
ping) the current test, it becomes the node’s new test. For a leaf node, the initial test is an uninformed
baseline. Leaves become branches when any test surpasses the baseline.

This confidence-based testing is also key to TreeLearn’s ability to model stochastic transition func-
tions. Algorithms that learn decision trees for deterministic processes typically continue refining
the model until each leaf contains only a single class. However, we are also interested in modeling
stochastic domains, in which the same condition may lead to more than one outcome. In this case,
no test will reliably give better predictions than the baseline, so our learning process will stop while
one or more leaves still contain multiple output values. Instead of yielding the most-common value
(or sampling from the observed values), our model returns the entire distribution of whichever leaf it
reaches. This enables us to faithfully reconstruct the probability distribution of stochastic transition
functions and to interpret the model’s uncertainty during learning in deterministic environments.

Recursion The last step of the algorithm is to recurse down the tree, passing the observation
sequentially to every node in the path determined by each branch’s current test. To ensure correctness
when updating tests in each node and its descendants – i.e., so that each test can be evaluated
correctly – we compute the set of all satisfying bindings at every branch that is visited. When a
left-branch is taken, this set is modified to include new variables and ensure each binding satisfies
the branch’s test.

2.3 INFERENCE OPTIMIZATIONS

Evaluating a FOLDT for inference (i.e., prediction) proceeds recursively, similar to the learning
process. However, when the tree is not being trained, there are two major optimizations that can be
used to drastically improve the efficiency of tree evaluation. The first is on-demand queries. Instead
of computing every true fact from the object-oriented state as input to the ILP model, these can be
checked only as-needed (and then cached) when evaluating branch tests. Since most facts are not
used during inference, this leads to substantial savings, as only a small portion of the objects need to
be processed. The second is short-circuit branch evaluation. Rather than explicitly computing the
set of all satisfying bindings, the tree can be evaluated in a depth-first style. Specifically, any time a
binding is found that allows a left-branch to be taken, the algorithm can immediately recurse; if that
binding allows the node’s descendants to also take left-branches, then evaluation can immediately
return, passing the appropriate output value back to the current node’s parent. This both reduces
memory overhead and enables the algorithm to terminate as soon as a binding is found that leads to
a “preferred” path through the tree.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We have included complete pseudocode for our algorithm in Appendices A (ILP) and B (object-
oriented interfaces). We next discuss the results of our empirical evaluations.

3 EXPERIMENTS

We conduct experiments in three groups: first, comparison against the prior state-of-the-art in object-
oriented transition modeling, QORA (Stella & Loguinov, 2024); second, ablation and performance
tests, investigating details of TreeThink’s operation; third, evaluation of a sophisticated neural-
network baseline. In many experiments, we also include a “naive” baseline that we call static,
which is a model implementing T̂ (s, a) = s (i.e., it predicts that nothing ever changes). We use
the Earth Mover’s Distance (EMD) state-distance metric described by Stella & Loguinov (2024) to
evaluate model error, for which a value of zero indicates perfect accuracy. To ensure good coverage,
we run tests in a variety of domains.

3.1 ENVIRONMENTS

We conduct tests in nine domains and one “domain set”, which is a parameterized meta-domain
used to study the scaling properties of a learning algorithm. Several of these environments come
from (or are based on domains from) Stella & Loguinov (2024). Domains that have no reward
signal are marked “not scored”. In our evaluation, we also evaluate on altered versions of some
domains in which the reward signal has been erased (marked “-scoreless”) and transfer to larger,
more complex instances (marked “-t”). More details (and sample images) for all environments are
given in Appendix C; here, we briefly describe domains for which we include experimental results
in the main text. fish is a stochastic environment in which the agent must estimate the conditional
distribution of fish movements (not scored). maze is an extension of the walls domain (Stella
& Loguinov, 2024) that adds goal objects and a reward signal that encourages short paths. coins
is a Traveling Salesman-style routing problem that takes place inside of a maze full of coins to be
picked up. keys is a maze task in which the goal may be blocked behind one or more locked doors,
which can be opened by picking up keys. switches is a combination of the walls and lights
environments (Stella & Loguinov, 2024), where the player must navigate through a maze to toggle
lights remotely (not scored). scale(np, nc) is a combination of the moves and players domain
sets Stella & Loguinov (2024), which augments the walls domain with np independent player
objects, each of which has nc copies of each movement action (not scored).

3.2 COMPARISON WITH PRIOR WORK

Consider Figs. 3a-3f, showing TreeThink and QORA learning in several domains. In all of these
environments, TreeThink rapidly converges to zero error. On the other hand, QORA never achieves
perfect accuracy in any of the domains with reward signals. Notably, because the reward signal is
transparently folded into the transition function, this limitation of QORA is not unique to reward
modeling; any particularly complex rules – such as those in keys-scoreless and switches
– appear to be impossible for QORA to learn. Certain rules are also significantly more challenging
for QORA to learn, such as those in coins-scoreless, where it takes approximately four times
longer than TreeThink to converge.

The root cause for these issues, which TreeLearn addresses, seems to be twofold. First, QORA’s
ILP method is unable to express formulas with nested quantifiers, which are necessary to represent
rules such as the one shown in Figure 2c. In contrast, FOLDTs can nest quantifiers arbitrarily deep.
Second, QORA has no variable binding process, which leads to difficulty resolving rules with two
or more conditions involving the same quantified object, such as with boxes 2 and 3 in Figure 2a.
In constrast, our algorithm keeps track of variable bindings as part of each hypothesis, allowing it to
differentiate between a new test using a previously-bound object and a new test using a newly-bound
object. This enables TreeLearn to determine the utility of new conditions more quickly and reliably.

Moving on to Figs. 3g-3j, we find that TreeThink’s learning process is highly stable, while QORA
suffers from significant performance issues when faced with complex rules. In several of our ex-
periments (including the one shown in Figs. 3i and 3j), QORA’s resource usage suddenly increases,
leading to a crash. In environments such as fish, the α hyperparameter had to be reduced to prevent
this behavior, while ThreeThink reliably converges even with a relatively high value of α = 0.01.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

200 400 600 800 1000
observations

0.0

0.1

0.2

0.3

0.4

er
ro

r (
EM

D)

static
QORA
TreeThink

(a) maze-scoreless

20 40 60 80 100
observations 1e3

0.0

0.1

0.2

0.3

0.4

er
ro

r (
EM

D)

static
QORA
TreeThink

(b) coins-scoreless

0.5 1.0 1.5 2.0
observations 1e6

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(c) keys-scoreless

1000 2000 3000 4000 5000
observations

0.0

0.5

1.0

1.5

er
ro

r (
EM

D)

static
QORA
TreeThink

(d) maze

20 40 60 80 100
observations 1e3

0.0

0.5

1.0

1.5

er
ro

r (
EM

D)

static
QORA
TreeThink

(e) coins

0.5 1.0 1.5
observations 1e6

0

1

2

3

er
ro

r (
EM

D)

static
QORA
TreeThink

(f) keys

0.5 1.0 1.5 2.0
observations 1e6

0

25

50

75

100

125

tim
e 

(m
s)

QORA
TreeThink

(g) keys-scoreless time

0.5 1.0 1.5
observations 1e6

0

100

200

300

400

tim
e 

(m
s)

QORA
TreeThink

(h) keys time

50000 100000 150000 200000 250000
observations

0

50

100

150

200

250

tim
e 

(m
s)

QORA
TreeThink

(i) fish time, α = 0.01

1 2 3 4 5 6
observations 1e6

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(j) fish, α = 0.001

1000 2000 3000 4000 5000
observations

0.0

0.5

1.0

1.5

er
ro

r (
EM

D)

static
QORA
TreeThink

(k) maze-t learning curve

0.5 1.0 1.5 2.0
observations 1e6

0

1

2

3

er
ro

r (
EM

D)

static
TreeThink

(l) keys-t learning curve

Figure 3: TreeThink vs. QORA predictive modeling

Lastly, we conduct transfer learning experiments to larger levels in the maze, coins, and keys do-
mains. Specifically, training occurrs in 8×8 grids, while evaluation is done in 32×32 grids. Results
for maze and keys are shown in Figures 3k and 3l, respectively. As expected, TreeThink displays
perfect generalization, as its learned models align with the ground-truth transition dynamics. This
can be verified easily by inspecting the models; examples of FOLDTs learned by TreeThink are
shown in Appendix D, Fig. 19. For many other additional results, see Appendix D.

3.3 ABLATION AND PERFORMANCE TESTS

We next conduct ablation tests to analyze the impact of our inference optimizations and branch
updating process. We then demonstrate some interesting properties of TreeThink’s performance.

Inference Optimizations We test four settings of the two inference optimizations: none (no op-
timizations to inference), eval (short-circuit tree evaluation), query (on-demand state queries),
and both (optimizing state queries and tree evaluation). Figure 4a shows that these optimizations
do not negatively impact the learning process, as expected; when given the same data, the training
proceeds identically regardless of the inference optimization setting. Figure 4b demonstrates the
massive performance boost to inference (i.e., the predict function) that is given by the optimiza-
tions. In small levels (8 × 8) in the maze domain, inference with both optimizations is approx.
34× faster than without either. We conducted additional experiments in switches and keys with

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1000 2000 3000 4000 5000
observations

0.0

0.2

0.4

0.6

0.8

er
ro

r (
EM

D)

none
eval
query
both

(a) learning rate in maze, varying
inference optimizations

1000 2000 3000 4000 5000
observations

102

103

tim
e 

(
s) none

eval
query
both

(b) prediction time in maze, vary-
ing inference optimizations

50000 100000 150000 200000
observations

10 4

10 3

10 2

er
ro

r (
EM

D)

off
on

(c) updating vs. non-updating
branches in switches domain

0.2 0.4 0.6 0.8 1.0
observations 1e6

10 2

10 1

er
ro

r (
EM

D)

off
on

(d) updating vs. non-updating
branches in fish domain

1000 2000 3000 4000 5000
observations

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r (
EM

D)

0.001
0.01
0.05
0.1

(e) learning rate, varying α in the
maze domain

10 20 30 40 50 60
np * nc

0

5

10

15

20

la
st

 e
rro

r s
te

p

1e3

(f) time to convergence as environ-
ment complexity increases

Figure 4: Ablation and Performance Tests

similar results. Most importantly, the performance boost increases with the number of objects in the
state; in maze-t, we observe a speedup of 880× compared to running with no optimizations. The
results of the tests in these domains are shown in Appendix E.

Branch Updating The purpose of branch updating is to ensure that, as the agent continues to
receive data, each level of the tree has the opportunity to make use of the best possible test. If a
branch’s test is fixed upon creation, then it is possible for spurious correlations to lead to incorrect
tree formation, i.e., incorporating unnecessary information. Thus, updating branches should im-
prove the algorithm’s convergence, both in rate and stability – which is what we find, as shown in
Figures 4c and 4d, where breaks in a curve indicate zeroes.

Hyperparameter Robustness When learning algorithms have hyperparameters, it can be difficult
to apply them to new problems. Neural networks, for example, have many hyperparameters; in
addition, their performance is often highly sensitive to the specific values of these hyperparameters
(Adkins et al., 2024). TreeThink, on the other hand, has only a single hyperparameter, α ∈ (0, 1).
Fortunately, as shown in Figure 4e, our algorithm operates well across a wide range of values. In all
of our other experiments throughout this paper, we use α = 0.01 (unless otherwise specified), which
leads to rapid and stable convergence in both the simpler domains and the highly complex ones.

Performance Scaling One of the core motivations behind using program induction for object-
oriented transition learning is that it should allow the agent to scale much more efficiently. While our
previous experiments showed that TreeThink scales to larger levels, it is also interesting to note how
the learning rate (i.e., sample complexity) scales with the complexity of the environment’s transition
function. For example, if an environment has many actions that behave almost identically, the agent’s
learning rate should scale linearly with the number of actions (as it can learn each independently).
This is exactly what we find in experiments in the scale(np, nc) domain set, where we can vary
np and nc to arbitrarily increase the environment’s complexity without qualitatively changing the
dynamics. Figure 4f shows the results of our experiment, in which we track the last observation on
which TreeThink makes an error in prediction (i.e., the number of steps before it fully converges)
for many runs using randomly sampled np and nc, each in {1, ..., 8}.

3.4 NEURAL BASELINES

Neural networks have become a popular tool for nearly every induction task, including ones involv-
ing object-oriented representations. For example, Chang et al. (2016) introduced the Neural Physics

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0
observations 1e6

10 4

10 3

10 2

10 1

100

er
ro

r (
EM

D)

(a) learning curve

0.2 0.4 0.6 0.8 1.0
observations 1e6

10 5

10 4

10 3

10 2

10 1

100

lo
ss

(b) loss curve while learning

0.2 0.4 0.6 0.8 1.0
observations 1e6

101

102

103

er
ro

r (
EM

D)

NPE_1_1
NPE_2_1
NPE_1_2
NPE_8_2
NPE_8_3
static

(c) transfer error while learning

Figure 5: Using various NPE architectures to model the maze domain. Semilog-y plots are used to
better visualize small values. Breaks in a line (e.g., the error of NPE 8 3) indicate zeroes.

Engine (NPE) for modeling physical dynamics. Stella & Loguinov (2024) evaluated an NPE archi-
tecture for object-oriented transition learning, finding that it fails to reach zero error in the walls
domain. However, it is unclear whether their network design had sufficient capacity to represent
the environment’s transition function in principle. Thus, inspired by Zhang et al. (2023), we create
a custom NPE architecture with hand-tuned weights that achieves perfect accuracy (zero error) on
every possible transition in the maze domain. We then train randomly-initialized copies of this
network, as well as larger variations of it, to investigate whether the training process can discover
weights that generalize. More details and results are included in Appendix F.

To match the tests in the prior subsections, we train the networks in 8 × 8 levels. We denote by
NPE X Y a network X times wider than our hand-crafted design with Y − 1 extra layers in each
final feed-forward block. Shown in Fig. 5a, we find that NPE 8 3 is seemingly able to achieve
perfect accuracy after approx. 340K observations, which is about 200× slower than TreeThink in
this domain. As displayed in Fig. 5b, this coincides with the network reaching zero training loss (to
measured precision). However, it eventually (after about 770K observations) encounters a state in
which it produces a significant error, after which its performance immediately rises and remains at
the same level as the other networks. We suspect that there are at least two causes: first, the optima
found by the training process performs well in many cases, but poorly in others, though this fact
may not be apparent even after thorough testing; and second, the gradient of the loss is very steep
near these optima, so small deviations can lead to parameter updates that significantly diminish the
network’s accuracy on almost all transitions.

During training, we also test each network in 16 × 16 instances of the same environment. While
the networks manage to easily surpass the static baseline in the 8 × 8 levels, Fig. 5c shows
that they almost always output predictions with massive error in these new levels; only NPE 1 1,
which gets the highest training error, dips below the static line for a brief moment. In other
words, the networks’ knowledge does not transfer – even to levels only slightly more complex. This
also significantly impacts the agent’s ability to plan successfully; see Appendix G for experiments
comparing TreeThink and NPE using Monte-Carlo Tree Search (Schrittwieser et al., 2020).

4 FUTURE WORK

We introduced TreeThink, a new object-oriented transition learning algorithm capable of modeling
more-complex environments than prior work, including domains with reward signals. TreeThink is
based on our novel ILP algorithm, TreeLearn. To facilitate reproduction and extension of our results,
the code for our algorithms, neural baselines, and benchmarks will be released after publication.

Our contributions open up several paths for future work. First, it will be worthwhile to investigate
potential runtime optimizations, especially to the observe function. Second, extension to even
more kinds of environments should follow naturally from the framework we have outlined. Third,
a theoretical analysis of the convergence and sample complexity of TreeThink would be extremely
worthwhile. Fourth, as TreeThink represents the first object-oriented transition learning algorithm
capable of modeling reward functions, our work enables future developments in planning for object-
oriented reinforcement learning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jacob Adkins, Michael Bowling, and Adam White. A method for evaluating hyperparameter sensi-
tivity in reinforcement learning. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, Dec. 2024.

Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order logical decision trees. Arti-
ficial Intelligence, 101(1):285–297, May 1998.

Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. A compositional
object-based approach to learning physical dynamics. CoRR, abs/1612.00341, 2016.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In Computers
and Games, pp. 72–83, 2007.

Andrew Cropper and Sebastijan Dumančić. Inductive logic programming at 30: A new introduction.
JAIR, 74:147–172, Sep. 2022.

Andrew Cropper and Sophie Tourret. Logical reduction of metarules. Machine Learning, 109(7):
1323–1369, July 2020.

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation for efficient
reinforcement learning. In Proc. ICML, pp. 240–247, July 2008.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In International Conference on Learning Representations, May 2019.

Kurt Driessens, Jan Ramon, and Hendrik Blockeel. Speeding up relational reinforcement learning
through the use of an incremental first order decision tree learner. In Proceedings of the 12th
European Conference on Machine Learning, pp. 97–108, Sept. 2001.

Jeff Druce, James Niehaus, Vanessa Moody, David Jensen, and Michael Littman. Brittle ai,
causal confusion, and bad mental models: Challenges and successes in the xai program. CoRR,
abs/2106.05506, Jun. 2021.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. CoRR,
abs/2010.01083, Oct. 2020.

Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile. In
Proceedings of the AAAI conference on artificial intelligence, pp. 3681–3688, 2019.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
tion. In Advances in Neural Information Processing Systems, pp. 11525–11538, Dec. 2020.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models. CoRR, abs/2410.05229, Oct. 2024.

Vaishnavh Nagarajan, Anders Andreassen, and Behnam Neyshabur. Understanding the failure
modes of out-of-distribution generalization. In International Conference on Learning Repre-
sentations, Jan. 2021.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, Mar. 1986.

Christopher Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artificial
Intelligence, 61:203–230, Sept. 2010.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Elizabeth S. Spelke. Principles of object perception. Cognitive Science, 14(1):29–56, Jan. 1990.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gabriel Stella and Dmitri Loguinov. QORA: Zero-shot transfer via interpretable object-relational
model learning. In Forty-first International Conference on Machine Learning, July 2024.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd edition,
2018.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, Aug.
1999.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On the
paradox of learning to reason from data. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI-23, pp. 3365–3373, Aug. 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A FOLDT LEARNER PSEUDOCODE

To improve portability and usability, our implementation of TreeThink’s FOLDT-learning ILP
method is self-contained. For completeness, we describe all of the components of our codebase
here. We use Python-esque syntax for types; e.g., MyClass[T] refers to a generic (i.e., templated)
class with a single type parameter, T.

A.1 UTILITY CLASSES

We make use of several general-purpose utility classes and functions. As the implementations are
typically straightforward, we generally include only the interface, though pseudocode implementa-
tions are given for more complex components.

A.1.1 TREE CLASS

We use a templated binary tree class as the basis for our first-order logical decision trees. The class
has two template parameters: the datatype stored in each branch, which we denote by B, and the
datatype stored in each leaf, which we denote by L. As the implementation is fairly straightforward
and typical, we simply enumerate the interfaces in Algorithm 1. For conciseness, we refer to the
type Tree[B, L] as Tree, as the template parameters remain the same throughout.

Algorithm 1: The interface to a generic binary tree class

1 Func Tree.init(B data, Tree left, Tree right) → Tree
// Initialize a branch with two children

2 Func Tree.init(L data) → Tree
// Initialize a leaf

3 Func Tree.isBranch() → bool
// Test if this tree node is a branch

4 Func Tree.getBranchData() → B
// If this tree is a branch, get its branch data

5 Func Tree.getLeftChild() → Tree
// If this tree is a branch, get its left child sub-tree

6 Func Tree.getRightChild() → Tree
// If this tree is a branch, get its right child sub-tree

7 Func Tree.isLeaf() → bool
// Test if this tree node is a leaf

8 Func Tree.getLeafData() → L
// If this tree is a leaf, get its leaf data

9 Func Tree.convertToLeaf(L data) → void
// Turn this tree node into a leaf with the specified data; any existing child sub-trees are

deleted

10 Func Tree.convertToBranch(B data, Tree left, Tree right) → void
// Turn this tree node into a branch with the specified data and children

A.1.2 JOINT PROBABILITY DISTRIBUTION

We use a class template called FTable, shown in Algorithm 2, to manage the joint probability dis-
tribution associated with each test (as well as the baseline inside each leaf). The class is a template
parameterized by the input space X (representing the possible values of the test, e.g., true and false)
and output space Y (representing the set of outputs that have been observed). Note that the imple-
mentation of this class determines the input and output space sizes dynamically, as observations are
received.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 2: The interface to our conditional probability distribution class, FTable

1 Func FTable.init() → FTable
// Initialize an empty joint probability distribution

2 Func FTable.observe(X input, Y output) → void
// Record a single (input, output) observation (x, y) ∈ X × Y

3 Func FTable.getConditionalDistribution(X input) → ProbabilityDistribution[Y]
// Return the conditional distribution P̂ (y|x) for a specified input value x ∈ X

4 Func FTable.getScoreinterval() → ConfidenceInterval
// Compute a confidence interval over this joint probability distribution’s S score (Equation 4)

A.1.3 CONFIDENCE INTERVAL

We use a class with data members lower and upper to represent confidence intervals. The only
additional noteworthy component is the non-overlapping comparison we use, as shown in Algo-
rithm 3.

Algorithm 3: The interface for a simple confidence interval structure

1 Func ConfidenceInterval.init(float lower, float upper) → ConfidenceInterval
// Initialize a confidence interval with 0 ≤ lower ≤ upper ≤ 1

2 Func isBetterThan(ConfidenceInterval a, ConfidenceInterval b) → bool
// Is interval a greater than (not overlapping) interval b?

3 return a.lower > b.upper

A.1.4 PREDICATES

Several classes are shown in Algorithm 4. The Predicate class represents a type of predicate,
e.g., P (i) : Xi[pos] = (1, 0). The GroundPredicate structure represents a predicate with objects
bound to its arguments. The predicate set classes are used to input truth values to FOLDTs.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 4: Utility classes related to predicates

// An abstract class, extended by specific predicate types (e.g., attribute equality, relative
difference)

1 class {
2 Func getArgumentCount() → int

// The arity of this predicate

3 Func getArgumentTypes() → list[int]
// The class type of each argument to this predicate

4 } Predicate

// A predicate, along with object bindings to each of its argument slots
5 struct {

// The (lifted, with no bound variables) predicate type of this ground predicate
6 Predicate p

// The ids of the objects that are bound as input to the predicate p
7 list[int] arguments
8 } GroundPredicate

// Stores the truth value of (ground) predicates, computed from an object-based state, for use by
FOLDTs

9 class {
10 Func getValue(GroundPredicate g) → bool

// Check whether the given fact (predicate evaluated on specific objects) is true

11 Func getObservations(Predicate p) → set[GroundPredicate]
// Get all of the ground predicates for a predicate type p
// This corresponds to all object bindings that make the predicate true in the current state

12 } AbstractPredicateSet

// Explicitly lists all true predicates from an object-based state
13 class {
14 Func add(GroundPredicate g) → void

// Store the fact that g is true

15 Func getPredicates() → set[Predicate]
// Enumerate all the types of predicates that have true bindings (used to optimize FOLDT

observation)
16 } FullPredicateSet extends AbstractPredicateSet

// Implements the on-demand predicate query optimization: only predicates that are used by a
FOLDT get computed

// When the predicate set is queried by a FOLDT, it checks its cache;
// If the cache is missing an entry, the predicate set will evaluate the truth-value directly from the

object-based state.
17 class {
18 Func init(State s) → QueryPredicateSet

// Initialize the predicate set with an empty cache
19 } QueryPredicateSet extends AbstractPredicateSet

A.1.5 COMBINATORIAL FUNCTIONS

We use several combinatorics functions, e.g., to generate combinations and cartesian products. The
most important functions for tree building are newvars and bindings, which are used to enu-
merate all of the ways that existing (and new) variables can be bound into a predicate of a given
arity. The functions are shown in Algorithm 5.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 5: The combinatorics functions we use

1 Func Combinatorics.combinations(int n, int r) → list[list[int]]
// Compute all choices of r elements from the set {0, ..., n− 1}

2 Func Combinatorics.product(int n, int r) → list[list[int]]
// Compute the Cartesian product {0, ..., n− 1}r

3 Func Combinatorics.product(list[set[int]] sets) → list[list[int]]
// Compute the Cartesian product of the sets in a list
// If the input is a list of sets [X1, X2, ..., Xn], then the output contains all elements in the set
X1 ×X2 × ...×Xn

4 Func Combinatorics.newvars(int k) → set[tuple[list[int], int]]
// Computes all ways to generate new variables to fill in k argument slots (up to the

equivalence of new variables)
// For example, k = 1 gives: (X0); k = 2 gives: (X0, X0), (X0, X1);
// and k = 3 gives: (X0, X0, X0), (X0, X0, X1), (X0, X1, X0), (X0, X1, X1), (X0, X1, X2)
// The function returns a set of tuples, each containing a list of variable ids and the number of

new variables in that list

5 set[tuple[list[int], int]] listings = newvars(k − 1)

6 set[tuple[list[int], int]] result = {} // Initialize empty set

7 for (listing, n) in listings do

// Add all combinations up to n
8 for i in {0, ..., n− 1} do
9 list[int] vars = copy(listing) // new list with same contents

10 vars.append(i)
11 result.insert((vars, n))

// Add listing with a new variable
12 listing.append(n)
13 result.insert((listing, n+ 1))

14 return result

15 Func Combinatorics.bindings(int e, int n) → set[tuple[list[int], int]]
// Computes all ways to generate bindings for a predicate with n arguments, using up to e

existing variables
// The function returns a set of tuples, each containing a list of variable ids and the number of

new variables in that list

16 set[tuple[list[int], int]] result = {} // Initialize empty set

17 for m in {0, ..., n} do

18 list[list[int]] slots new = combinations(n, m) // Each list[int] specifies which slots will get
a new variable

19 list[list[int]] existing vars = product(e, n−m) // Which existing variables will we use?
20 set[tuple[list[int], int]] new vars = newvars(m) // How will we bind new variables?

21 for snew in slots new do

22 sexist = {0, ..., n− 1} \ snew

23 for (vnew, k) in new vars do
24 for vexist in existing vars do

25 list[int] args = [0, 0, ...] // List initialized to length n

// Fill in the slots with both existing and new variables
26 for (i, v) in zip(sexist, vexist) do
27 args[i] = v
28 for (i, v) in zip(snew, vnew) do
29 args[i] = v + e // Offset new variable indices by the number of existing

variables

30 result.insert((args, k))

31 return result

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.1.6 FOLDT DATA CLASSES

The structures in Algorithm 6 hold data for the FOLDT learning and evaluation processes. Each
branch node contains a Hypothesis (used as the test for that branch) and TrackingData (for continual
updates); each leaf contains solely TrackingData (its baseline output distribution is used as the leaf’s
output).

Algorithm 6: The classes used to manage FOLDT data

1 struct {
// The condition this hypothesis is testing

2 Predicate p

// The ids of the variables that are input to this hypothesis’ test’s predicate condition
// Note that this refers to variables from the tree’s quantifiers, not to the ids of objects in a

state
3 list[int] var ids

// The number of new variables this hypothesis’ test introduces
// All quantified variables have ids that count up starting from zero

4 int n new vars

// The class type of each quantified variable at this node, using this test (inherits from parent
nodes)

5 list[int] var class types

6 } Hypothesis

7 struct {
8 Hypothesis hypothesis

9 FTable counter

10 } Candidate

11 struct {
// The number of variables that are already bound by the parents of this node

12 int n existing vars

// The class type of each quantified variable before this node (inherits from parent nodes)
13 list[int] var class types

// The set of predicates that have been observed and tracked, so they don’t get
double-tracked

14 set[Predicate] observed

// List of hypotheses being evaluated, along with their observed joint probability distributions
15 list[Candidate] current

// The baseline probability distribution of outputs observed at this node (not conditioned on
any test)

16 FTable baseline

17 } TrackingData

18 struct {
// The test used to make decisions at this branch

19 Hypothesis hypothesis

// Tracking data, in case this branch needs to be updated
20 TrackingData tracking

21 } Branch

22 struct {
23 TrackingData tracking

24 } Leaf

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.2 FOLDT CLASS

The FOLDT class, shown in Algorithm 7, ties all of the above pieces together to implement the ob-
servation and prediction interfaces. The FOLDT class is templated by its output type, Y . Functions
related to observation are shown in Algorithms 8, 9, 10, 11, and 12. Functions related to prediction
are shown in Algorithms 13 and 14.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 7: The FOLDT class interface

1 class {
// The learning hyperparameter, α ∈ (0, 1); we use a default value of 0.01

2 float α = 0.01

// The number of objects this FOLDT takes as an arguent (for our purposes, this is always
one)

3 int arg count = 1

// The class type of each input object for this FOLDT
4 list[int] arg types

// This FOLDT’s internal binary tree, using our generic utility class
5 Tree[Branch, Leaf] tree

6 Func init(float α, int arg count, list[int] arg types) → FOLDT
// Initializes a First-Order Logical Decision Tree

7 Func reset() → void
// Resets this FOLDT’s internal tree back to a leaf with no recorded observations

8 Func observe(PredicateSetFull observation, list[int] arguments, Y output) → void
// Record a single observation

9 return observeRecursive(tree, observation, {arguments}, output)

10 Func predict(AbstractPredicateSet observation, list[int] arguments) → ProbabilityDistribution[Y]
// Compute a distribution over the output for a given input

11 result = evaluateShortCircuit(tree, observation, arguments)
12 return result[0].tracking.baseline.getConditionalDistribution(0)

13 } FOLDT[Y]

Algorithm 8: FOLDT class function: observeRecursive

1 Func observeRecursive(Tree t, PredicateSetFull observation, set[list[int]] bindings in, Y output) → void

2 TrackingData tracking = (t.getBranchData().tracking if t.isBranch() else
t.getLeafData().tracking)

// Update current node
3 addPredicates(tracking, observation)

// If this flag is true, we’ll reset the node’s children
4 bool new test = updateTests(tracking, observation, bindings in, output value)

// Convert leaf → branch or branch → leaf
5 if updateNodeType(t, tracking) then
6 new test = false // We don’t want to reset the node’s children twice

// Reset or recurse
7 if t.isBranch() then

8 if new test then

9 resetBranch(t, tracking)
10 else
11 (branch, bindings out) = checkBranch(observation, t.getBranchData().hypothesis,

bindings in)

12 if branch then
13 observeRecursive(t.getLeftChild(), observation, bindings out, output)
14 else
15 observeRecursive(t.getRightChild(), observation, bindings out, output)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 9: FOLDT class function: addPredicates

1 Func addPredicates(TrackingData tracking, PredicateSetFull observation) → void
2 for Predicate p ∈ observation.getPredicates() do
3 if p ̸∈ tracking.observed then
4 tracking.observed.insert(p)

// Generate all candidates for this predicate (with all bindings of new and existing
variables)

5 n = p.getArgumentCount()
6 for (binding, nnew) ∈ Combinatorics.bindings(tracking.n existing vars, n) do

// Ensure this binding is consistent with the predicate’s class restrictions
7 list[int] var types = tracking.var class types
8 valid = true
9 for i ∈ {0, ..., n− 1} do

10 v = binding[i]
11 class restriction = p.getArgumentTypes()[i]
12 if v < len(var types) then

// This variable may already have a type; maybe sure it’s consistent
13 int var type = var types[v]
14 if var type is None then

// Not inconsistent yet, but may need to be restricted now
15 var types[v] = class restriction
16 else if class restriction is not None then

// Need to ensure that variable type and predicate restriction match
17 if var type != class restriction then
18 valid = false
19 else
20 var types.append(class restriction)
21 if not valid then
22 continue

// Add the new hypothesis
23 Hypothesis h
24 h.p = p
25 h.var ids = binding
26 h.n new vars = nnew

27 h.var class types = var types
28 tracking.current.append(Candidate(h, FTable()))

Algorithm 10: FOLDT class function: updateTests

1 Func updateTests(TrackingData tracking, PredicateSetFull observation, set[list[int]] bindings in, Y
output) → bool

2 tracking.baseline.observe(0, output)

3 for Candidate c ∈ tracking.current do
4 branch = checkBranch(observation, c.hypothesis, bindings in)
5 c.counter.observe(branch, output) // branch will be either 0 (false) or 1 (true)

// “Bubble up” the best hypothesis (sort, descending, by score intervals)
6 for i ∈ [len(tracking.current)− 2, .., 0] do
7 Candidate a = tracking.current[i] Candidate b = tracking.current[i+ 1]

// If b is better than a (with confidence), swap them (so b moves up in the list)
8 if isBetterThan(b.counter.getScoreInterval(), a.counter.getScoreInterval()) then
9 swap(a, b)

10 if i = 0 then
// New best candidate; if this node is a branch, it will need to be reset

11 return true
12 return false

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 11: FOLDT class function: updateNodeType

1 Func updateNodeType(Tree t, TrackingData tracking) → bool
2 if t.isLeaf() then

// Should we make this leaf back into a branch?
// (i.e., is there a candidate with a confidence interval strictly greater than the baseline?)

3 if len(tracking.current) > 0 and
tracking.current[0].counter.getScoreInterval() > tracking.baseline.getScoreInterval() then

4 Candidate best = tracking.current[0]
5 h = best.hypothesis
6 left = Leaf(TrackingData(tracking.n existing vars + h.n new vars, h.var class types, {},

[], FTable()))
7 right = Leaf(TrackingData(tracking.n existing vars, h.var class types, {}, [], FTable()))
8 t.convertToBranch(Branch(h, tracking), left, right)
9 return true

10 else
// Should we make this branch back into a leaf?

11 if len(tracking.current) = 0 or
tracking.current[0].counter.getScoreInterval() ̸> tracking.baseline.getScoreInterval() then

12 t.convertToLeaf(Leaf(tracking))
13 return true
14 return false // No update occurred

Algorithm 12: FOLDT class function: resetBranch

1 Func resetBranch(Tree t, TrackingData tracking) → void
2 Branch b = t.getBranchData()
3 Candidate best = tracking.current[0] // Best test; we’ll use it to reset the node and construct

the children
4 h = best.hypothesis

// Update the branch to use the new best test
5 b.hypothesis = h

// Reset the branch’s children using the new test’s bound variable information
6 t.left = Leaf(TrackingData(tracking.n existing vars + h.n new vars, h.var class types, {}, [],

FTable()))
7 t.right = Leaf(TrackingData(tracking.n existing vars, h.var class types, {}, [], FTable()))

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 13: FOLDT class function: checkBranch

1 Func matchVars(list[int] bindings, list[int] hvars, list[int] args) → (bool, list[int])
// Determine if additional variables can be matched to produce a consistent binding

2 for i in {0, ..., len(args)− 1} do
// The index of the variable at this position in the hypothesis
// E.g., if the hypothesis is P (X0, X2) and i = 1, then v = 2

3 v = hvars[i]
// The id of the object we are currently looking to bind

4 o = args[i]

// Check if variable index is bound
5 if v < len(bindings) then

// If bound, object id must match
6 if o ̸= bindings[v] then
7 return (false, [])
8 else

// The variable isn’t bound, so we can try binding it to this object

// This only allows unique bindings (e.g., object B cannot be bound to both X0 and X1)
9 if o ∈ bindings then

10 return (false, [])

11 bindings.append(o)

12 return (true, bindings)

13 Func checkBranch(AbstractPredicateSet observation, Hypothesis h, set[list[int]] bindings in) → (bool,
set[list[int]])

// Determine whether left branch or right should be taken, based on available bindings and
facts of the observation

14 set[list[int]] bindings left // Potential variable bindings, if the left branch can be taken
15 for list[int] bindings ∈ bindings in do

// Looping over getObservations(predicate) automatically restricts the search to results
with the right class types

16 for GroundPredicate g ∈ observation.getObservations(h.p) do
// Check if this ground predicate’s arguments are consistent with existing variable

bindings
// (and hypothesis variable indices)

17 (match, var bindings) = matchVars(bindings, h.var ids, g.arguments)
18 if match then
19 bindings left.insert(var bindings)
20 if bindings left is not empty then

// The left branch can be taken, so we provide the new variable bindings
21 return (true, bindings left)
22 else

// If the right branch is taken, no new variables are bound
23 return (false, bindings in)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 14: FOLDT class function: evaluateShortCircuit

1 Func evaluateShortCircuit(Tree t, AbstractPredicateSet observation, list[int] bindings) → (Leaf, bool,
BitString)

// An optimized version of checkBranch that evaluates recursively, in DFS order, and
returns as soon as possible

2 if t.isLeaf() then
3 return (t.getLeafData(), true, “1”)

4 Hypothesis h = t.getBranchData().hypothesis

5 (Leaf, bool, BitString) best result = (None, false, “0”)
6 best rank = 0

7 for GroundPredicate g ∈ observation.getObservations(h.p) do
// Check if this ground predicate’s arguments are consistent with existing variable bindings
// (and hypothesis variable indices)

8 (match, var bindings) = matchVars(bindings, h.var ids, g.arguments) // See
Algorithm 13

9 if match then
// There is a match, so we can take the left branch

10 result = evaluateShortCircuit(t.getLeftChild(), observation, var bindings)
11 rank = result[2] + “1” // Shift over the BitString by inserting a one at the end

12 if result[1] then
// This child (and all of its children, recursively) got preferred paths; return

immediately
13 return (result[0], true, rank)
14 else

// Not preferred, but still good; see if it’s better than the currently-most-preferred
binding

15 if rank > best rank then
16 best rank = rank
17 best result = result

// Can the left branch be taken?
18 if best rank > 0 then
19 return best result

// No match, have to take right branch (not preferred)
20 result = evaluateShortCircuit(t.getRightChild(), observation, bindings)
21 return (result[0], false, result[2] + “0”) // Shift over the BitString by inserting a zero at the

end

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B OORL LEARNER PSEUDOCODE

Algorithm 15 shows the TreeThink API, comprising two functions: observe(s, a, s’) and
predict(s, a). Algorithm 16 shows the extractFacts function. Algorithm 17 shows how
the QueryPredicateSet scans an object-based state to update its predicate cache. Recall that
our implementation uses typed predicates (i.e., their argument slots are annotated with variable class
types).

Algorithm 15: TreeThink’s high-level observe and predict procedures

1 Func observe(State s, Action a, State s′) → void

2 facts = extractFacts(s) // extract facts (ground predicates) from the object-based state

3 for i in {1, ..., ns} do

4 for Member m in attr(s, i) do
// calculate the change in attribute m’s value, e.g., +(1, 0)

5 Value v = s′i[m]− si[m]

// learn to predict this attribute

6 Tree t = rules[class(s, i), m, a]
7 t.observe(facts, [i], v)

8 Func predict(State s, Action a) → State

9 facts = QueryPredicateSet(s) // use on-demand predicate queries

10 State s′ = State() // initialize empty state

11 for i in {1, ..., ns} do

12 for Member m in attr(s, i) do

13 Tree t = rules[class(s, i), m, a]

// predict (a distribution over) this attribute’s value

14 Value v = t.predict(facts, [i])
15 s′i[m] = si[m] + v
16 return s′

Algorithm 16: The extractFacts function

1 Func extractFacts(State s) → FullPredicateSet
// For some class(es) of predicates, find all true bindings of those predicates in state s

2 FullPredicateSet facts // initially empty

3 for i in {1, ..., ns} do

4 c1 = class(s, i)
// Extract attribute value predicates

5 for Member m in attr(s, i) do

6 v = si[m]
7 g = GroundPredicate(Pm,v(c1 X) : X[m] = v, [si])
8 facts.add(g)

// Extract relative difference predicates
9 for j in {i+ 1, ..., ns} do

10 c2 = class(s, j)
11 for Member m in attr(s, i) ∩ attr(s, j) do

12 v = sj [m]− si[m]
13 g = GroundPredicate(Pm,v(c1 X, c2 Y ) : Y [m]−X[m] = v, [si, sj ])
14 facts.add(g)

15 return facts

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 17: Updating the QueryPredicateSet cache; makes use of optimized state subsets (by
class and by attribute value)

1 Func scan(State s, Predicate p) → set[GroundPredicate]
// Find all of the variable bindings for which p is true in state s

2 if p is of type attribute value, p = Pm,v(c1 X) then

3 return scanAbs(s, c1, m, v)

4 if p is of type relative difference, p = Pm,v(c1 X, c2 Y ) then

5 return scanRel(s, c1, c2, m, v)

6 return None // Additional predicate classes would necessitate additional cases

7 Func scanAbs(State s, Predicate p, Type c, Member m, Value v) → set[GroundPredicate]

8 set[GroundPredicate] facts = {} // Initialize empty set

9 for i ∈ {i | si[m] = v} do
10 if class(s, i) = c then
11 g = GroundPredicate(p, [si])
12 facts.insert(g)

13 return facts

14 Func scanRel(State s, Predicate p, Type c1, Type c2, Member m, Value v) → set[GroundPredicate]

15 set[GroundPredicate] facts = {} // Initialize empty set

16 for i ∈ {i | class(s, i) = c1} do
17 v1 = si[m]
18 for j ∈ {j | sj [m] = v + v1} do
19 if class(s, j) = c2 then
20 g = GroundPredicate(p, [si, sj ])
21 facts.insert(g)
22 return facts

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C ENVIRONMENT DETAILS

This section includes more details about each environment. As mentioned in the main text, some are
taken from (or based on environments from) Stella & Loguinov (2024). Example states are shown
in Figs. 7, 8, 9, and 10. As an additional example of the object-oriented state representation, Fig. 6
shows the initial state from Fig. 1 in the form that an agent receives it (i.e., with no meaningful
labels). Learning solely from this numerical data poses a significant challenge.

object type pos status locked
2 wall (2, 0) - -

16 wall (4, 2) - -
30 wall (3, 5) - -
50 player (5, 2) - -
51 door (3, 4) - true
52 key (4, 1) free -
53 goal (2, 4) - -

(a) human-readable object list

object type attr 0 attr 1 attr 2
2 0 (2, 0) - -
16 0 (4, 2) - -
30 0 (3, 5) - -
50 1 (5, 2) - -
51 2 (3, 4) - (0)
52 3 (4, 1) (0) -
53 4 (2, 4) - -

(b) object list as observed by an agent

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(c) a state in the keys domain

Figure 6: The initial state from Figure 1, now showing in (b) the state data (object list) in the form
that the agent receives it (i.e., with no semantic labeling of any attribute types or values). Note that
for brevity, the lists show only a subset of the objects in the state.

Walls Shown in Fig. 7a, this is a maze-like domain in which the agent must learn basic relational
rules. The environment’s four actions allow the player to move their character by one unit in each of
the four grid directions. If the character would move into a wall, the action does nothing. Although
this seems simple to humans, learning the rules of this environment directly from object-oriented
transitions is difficult for existing methods. Notably, the importance of local rules (i.e., checking for
walls near the player) is not included in the information that the agent receives.

Doors Shown in Fig. 7b, this domain extends walls with the addition of door objects and a color
attribute. Both the player character and the doors possess the color attribute, which takes values in
{0, 1} in this domain. The agent can use the new change-color action toggle its color. Doors
that are a different color from the player block its movement. Thus, the rules for this domain are
more complex than those of the walls domain.

Fish Shown in Fig. 7c, this domain replaces the player character with one or more fish objects
that move in a random direction – conditional on the surrounding walls – at each step. Thus, this
environment tests an agent’s ability to robustly model stochastic transition functions.

Gates Shown in Fig. 7d, this is a highly-complex grid-world environment that features a large
number of classes and actions. The new gate objects block normal player movement, except that the

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

player can jump over gates (as long as the other side is not blocked) using the new jump actions
(one for each direction). The guard object, which is controlled independently of the player, is not
blocked by gates. Switches are also spread randomly throughout the walkable parts of the level;
whenever the player moves over a switch, its state is toggled.

Maze Shown in Figs. 8a and 8b, this environment augments the walls domain with a reward
signal and goal objects. By default, all actions receive a penalty of −1 to incentivize the agent to
take the shortest path to a goal. Actions that attempt to move the player into a wall instead receive
a penalty of −2, since the agent should never take such an action. If the agent does not attempt to
move into a wall, and its action results in it standing on a goal (i.e., by moving onto a goal or by
choosing to stay still when already on a goal), it receives a reward of +1. Although these dynamics
seem simple to most humans, we find that existing algorithms cannot learn this domain.

Coins Shown in Figs. 8c and 8d, this environment is similar to the maze domain, but it replaces
the goals with coins. Unlike goals, coins disappear (i.e., are “picked up”) when the agent moves
over them, so each only gives a single reward. Thus, this domain encodes a routing problem, similar
to the Traveling Salesman Problem.

Keys Shown in Figs. 9a and 9b, this environment adds keys and doors to the maze domain. Doors
are initially locked, preventing the player from passing through them. To move through a door, the
player must unlock it by bringing an unused key to it. Although any key can be used to open any
door, each key can only be used once. Out of all of the tested domains, this is the most challenging
to learn, likely due to the presence of highly complex and rare interactions (e.g., the player cannot
step onto an unused key if it is currently holding another key).

Lights Shown in Fig. 9c, this is a simple non-grid-world domain in which the agent controls a
tunable remote that can be used to toggle lights. We augment the version from Stella & Loguinov
(2024) with a reward signal such that the agent receives a small penalty for tuning the remote (decre-
menting or incrementing the channel), a large penalty for turning a light on, and a large reward for
turning a light off.

Switches Shown in 9d, this domain combines walls and lights into a more complex and
interesting scenario. Here, the player moves around a maze filled with switches and lights (formed
in pairs, indicated in our example images by their hue). When on top of a switch, the agent can take
the toggle action to mutate the state of the corresponding light, regardless of the position of the
light in the level. Thus, unlike the other grid-world domains, the switches environment contains
a kind of non-local behavior.

Scale(np, nc) Shown in Fig. 10, this set of environments augments the walls domain with np

distinct player classes, each of which has nc copies of each movement action. This allows us to
evaluate the way an algorithm’s learning speed scales with the number of classes and actions in a
manner that keeps all else (i.e., the complexity of the environment’s rules) equal. In the example
images, since players may overlap, each player is indicated by a dot in a different position within
the white squares.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) walls

(b) doors

(c) fish

(d) gates

Figure 7: Example states, pt. 1 (walls, doors, fish, gates)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(a) maze

(b) maze-t

(c) coins

(d) coins-t

Figure 8: Example states, pt. 2 (maze, maze-t, coins, coins-t)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(a) keys

(b) keys-t

(c) lights

(d) switches

Figure 9: Example states, pt. 3 (keys, keys-t, lights, switches)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(a) scale(1, 1)

(b) scale(2, 2)

(c) scale(4, 4)

(d) scale(8, 8)

Figure 10: Example states, scale(np, nc)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

D EXPERIMENT DETAILS: TREETHINK VS. QORA

In each experiment (except those where QORA failed to complete training due to, e.g., causing the
test machine to crash), we run both TreeThink and QORA ten times, averaging the runs’ results
together. We used the same α setting for both algorithms within each experiment, α = 0.01 unless
otherwise stated. Results are shown in Figs. 11, 12, 13, 14, 15, 16, 17, and 18. Note that because
several machines were used for testing, timing results are not always comparable across different
domains or configurations. However, each row of plots corresponds to a single test, so timings can
be compared within the row.

Figs. 11, 12, 13, and 14 show the full data collected from tests in each domain (other than the scaling
tests). Fig. 15 shows transfer tests (maze-t, coins-t, and keys-t). Figs. 16, 17, and 18 show
results from the scale(np, nc) domains.

Several examples of trees constructed by TreeThink are shown in Fig. 19.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

200 400 600 800 1000
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(a) walls learning curve

200 400 600 800 1000
observations

0

1

2

3

4

5

tim
e 

(m
s)

QORA
TreeThink

(b) walls observation time

200 400 600 800 1000
observations

0.00

0.02

0.04

0.06

0.08

tim
e 

(m
s)

QORA
TreeThink

(c) walls prediction time

10000 20000 30000 40000 50000
observations

0.0

0.1

0.2

0.3

0.4

er
ro

r (
EM

D)

static
QORA
TreeThink

(d) doors learning curve

10000 20000 30000 40000 50000
observations

0

2

4

6

8

10
tim

e 
(m

s)

QORA
TreeThink

(e) doors observation time

10000 20000 30000 40000 50000
observations

0.000

0.025

0.050

0.075

0.100

0.125

tim
e 

(m
s)

QORA
TreeThink

(f) doors prediction time

1000 2000 3000 4000 5000
observations

0

1

2

3

er
ro

r (
EM

D)

static
QORA
TreeThink

(g) lights learning curve

1000 2000 3000 4000 5000
observations

0.0

0.5

1.0

1.5

tim
e 

(m
s)

QORA
TreeThink

(h) lights observation time

1000 2000 3000 4000 5000
observations

0.00

0.01

0.02

0.03

0.04

tim
e 

(m
s)

QORA
TreeThink

(i) lights prediction time

1000 2000 3000 4000 5000
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(j) lights-scoreless learn-
ing curve

1000 2000 3000 4000 5000
observations

0.0

0.2

0.4

0.6

0.8

tim
e 

(m
s)

QORA
TreeThink

(k) lights-scoreless obser-
vation time

1000 2000 3000 4000 5000
observations

0.000

0.005

0.010

0.015

0.020

0.025

tim
e 

(m
s)

QORA
TreeThink

(l) lights-scoreless predic-
tion time

50 100 150 200
observations 1e3

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(m) gates learning curve

50 100 150 200
observations 1e3

0

10

20

30

40

tim
e 

(m
s)

QORA
TreeThink

(n) gates observation time

50 100 150 200
observations 1e3

0.000

0.025

0.050

0.075

0.100

0.125

tim
e 

(m
s)

QORA
TreeThink

(o) gates prediction time

Figure 11: TreeThink vs. QORA (walls, doors, lights, lights-scoreless, gates)

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

1000 2000 3000 4000 5000
observations

0.0

0.5

1.0

1.5

er
ro

r (
EM

D)

static
QORA
TreeThink

(a) maze learning curve

1000 2000 3000 4000 5000
observations

0.0

2.5

5.0

7.5

10.0

tim
e 

(m
s)

QORA
TreeThink

(b) maze observation time

1000 2000 3000 4000 5000
observations

0.000

0.025

0.050

0.075

0.100

0.125

tim
e 

(m
s)

QORA
TreeThink

(c) maze prediction time

200 400 600 800 1000
observations

0.0

0.1

0.2

0.3

0.4

er
ro

r (
EM

D)

static
QORA
TreeThink

(d) maze-scoreless learning
curve

200 400 600 800 1000
observations

0

2

4

6

8

10
tim

e 
(m

s)

QORA
TreeThink

(e) maze-scoreless observa-
tion time

200 400 600 800 1000
observations

0.00

0.05

0.10

0.15

tim
e 

(m
s)

QORA
TreeThink

(f) maze-scoreless prediction
time

20 40 60 80 100
observations 1e3

0.0

0.5

1.0

1.5

er
ro

r (
EM

D)

static
QORA
TreeThink

(g) coins learning curve

20 40 60 80 100
observations 1e3

0

10

20

30

tim
e 

(m
s)

QORA
TreeThink

(h) coins observation time

20 40 60 80 100
observations 1e3

0.000

0.025

0.050

0.075

0.100

0.125

tim
e 

(m
s)

QORA
TreeThink

(i) coins prediction time

20 40 60 80 100
observations 1e3

0.0

0.1

0.2

0.3

0.4

er
ro

r (
EM

D)

static
QORA
TreeThink

(j) coins-scoreless learning
curve

20 40 60 80 100
observations 1e3

0

10

20

30

tim
e 

(m
s)

QORA
TreeThink

(k) coins-scoreless observa-
tion time

20 40 60 80 100
observations 1e3

0.00

0.05

0.10

0.15

tim
e 

(m
s)

QORA
TreeThink

(l) coins-scoreless predic-
tion time

20 40 60 80 100
observations 1e3

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r (
EM

D)

static
QORA
TreeThink

(m) switches learning curve

20 40 60 80 100
observations 1e3

0

5

10

15

20

tim
e 

(m
s)

QORA
TreeThink

(n) switches observation time

20 40 60 80 100
observations 1e3

0.00

0.05

0.10

0.15

tim
e 

(m
s)

QORA
TreeThink

(o) switches prediction time

Figure 12: TreeThink vs. QORA (maze, maze-scoreless, coins, coins-scoreless,
switches)

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0.5 1.0 1.5
observations 1e6

0

1

2

3

er
ro

r (
EM

D)

static
QORA
TreeThink

(a) keys learning curve

0.5 1.0 1.5
observations 1e6

0

100

200

300

400

tim
e 

(m
s)

QORA
TreeThink

(b) keys observation time

0.5 1.0 1.5
observations 1e6

0.00

0.05

0.10

0.15

0.20

tim
e 

(m
s)

QORA
TreeThink

(c) keys prediction time

0.5 1.0 1.5 2.0
observations 1e6

0

1

2

3

er
ro

r (
EM

D)

static
TreeThink

(d) keys learning curve

0.5 1.0 1.5 2.0
observations 1e6

0

10

20

30

40

50

tim
e 

(m
s)

(e) keys observation time

0.5 1.0 1.5 2.0
observations 1e6

0.00

0.02

0.04

0.06

tim
e 

(m
s)

(f) keys prediction time

0.5 1.0 1.5 2.0
observations 1e6

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(g) keys-scoreless learning
curve

0.5 1.0 1.5 2.0
observations 1e6

0

25

50

75

100

125

tim
e 

(m
s)

QORA
TreeThink

(h) keys-scoreless observa-
tion time

0.5 1.0 1.5 2.0
observations 1e6

0.00

0.05

0.10

0.15

tim
e 

(m
s)

QORA
TreeThink

(i) keys-scoreless prediction
time

0.5 1.0 1.5 2.0
observations 1e6

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
TreeThink

(j) keys-scoreless learning
curve

0.5 1.0 1.5 2.0
observations 1e6

0

10

20

30

40

tim
e 

(m
s)

(k) keys-scoreless observa-
tion time

0.5 1.0 1.5 2.0
observations 1e6

0.00

0.02

0.04

0.06

tim
e 

(m
s)

(l) keys-scoreless prediction
time

Figure 13: TreeThink vs. QORA (keys and keys-scoreless); since QORA could not finish in
some cases, we also ran experiments with just TreeThink.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

50000 100000 150000 200000 250000
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(a) fish learning curve, α = 0.01

50000 100000 150000 200000 250000
observations

0

50

100

150

200

250

tim
e 

(m
s)

QORA
TreeThink

(b) fish observation time, α =
0.01

50000 100000 150000 200000 250000
observations

0.00

0.01

0.02

0.03

0.04

0.05

tim
e 

(m
s)

QORA
TreeThink

(c) fish prediction time, α =
0.01

0.2 0.4 0.6 0.8 1.0
observations 1e6

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
TreeThink

(d) fish learning curve, α = 0.01

0.2 0.4 0.6 0.8 1.0
observations 1e6

0

10

20

30
tim

e 
(m

s)

(e) fish observation time, α =
0.01

0.2 0.4 0.6 0.8 1.0
observations 1e6

0.000

0.025

0.050

0.075

0.100

tim
e 

(m
s)

(f) fish prediction time, α = 0.01

0.2 0.4 0.6 0.8 1.0
observations 1e6

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(g) fish learning curve, α =
0.001

0.2 0.4 0.6 0.8 1.0
observations 1e6

0

10

20

30

40

tim
e 

(m
s)

QORA
TreeThink

(h) fish observation time, α =
0.001

0.2 0.4 0.6 0.8 1.0
observations 1e6

0.00

0.05

0.10

0.15

tim
e 

(m
s)

QORA
TreeThink

(i) fish prediction time, α =
0.001

0.2 0.4 0.6 0.8 1.0
observations 1e6

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
TreeThink

(j) fish learning curve, α =
0.001

0.2 0.4 0.6 0.8 1.0
observations 1e6

0

10

20

30

tim
e 

(m
s)

(k) fish observation time, α =
0.001

0.2 0.4 0.6 0.8 1.0
observations 1e6

0.00

0.02

0.04

0.06

0.08

0.10

tim
e 

(m
s)

(l) fish prediction time, α =
0.001

0.2 0.4 0.6 0.8 1.0
observations 1e6

10 2

10 1

er
ro

r (
EM

D)

static
TreeThink

(m) fish learning curve, α =
0.01, log-y

0.2 0.4 0.6 0.8 1.0
observations 1e6

10 2

10 1

er
ro

r (
EM

D)

static
QORA
TreeThink

(n) fish learning curve, α =
0.001, log-y

1 2 3 4 5 6
observations 1e6

10 3

10 2

10 1

er
ro

r (
EM

D)

static
QORA
TreeThink

(o) fish learning curve, α =
0.001, log-y

Figure 14: TreeThink vs. QORA (fish); since QORA could not finish in some cases, we also ran
experiments with just TreeThink. Semilog-y plots are included to better visualize small values.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

1000 2000 3000 4000 5000
observations

0.0

0.5

1.0

1.5

er
ro

r (
EM

D)

static
QORA
TreeThink

(a) maze-t learning curve

1000 2000 3000 4000 5000
observations

0

5

10

15
tim

e 
(m

s)

QORA
TreeThink

(b) maze-t observation time

1000 2000 3000 4000 5000
observations

0.0

0.5

1.0

1.5

tim
e 

(m
s)

QORA
TreeThink

(c) maze-t prediction time

20 40 60 80 100
observations 1e3

0.0

0.5

1.0

1.5

er
ro

r (
EM

D)

static
QORA
TreeThink

(d) coins-t learning curve

20 40 60 80 100
observations 1e3

0

10

20

30

tim
e 

(m
s)

QORA
TreeThink

(e) coins-t observation time

20 40 60 80 100
observations 1e3

0.00

0.25

0.50

0.75

1.00

1.25

tim
e 

(m
s)

QORA
TreeThink

(f) coins-t prediction time

0.5 1.0 1.5 2.0
observations 1e6

0

1

2

3

er
ro

r (
EM

D)

static
TreeThink

(g) keys-t learning curve

0.5 1.0 1.5 2.0
observations 1e6

0

10

20

30

40

50

tim
e 

(m
s)

(h) keys-t observation time

0.5 1.0 1.5 2.0
observations 1e6

0.0

0.2

0.4

0.6

0.8

tim
e 

(m
s)

(i) keys-t prediction time

Figure 15: TreeThink vs. QORA, transfer to larger instances (32 × 32) while training in smaller
worlds (8×8). We ran only TreeThink in the keys domain because QORA often crashes. TreeThink
displays perfect generalization in each environment.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

100 200 300 400 500
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(a) scale(1, 1) learning curve

100 200 300 400 500
observations

0.0

0.5

1.0

1.5

2.0

2.5

tim
e 

(m
s)

QORA
TreeThink

(b) scale(1, 1) observation
time

100 200 300 400 500
observations

0.00

0.01

0.02

0.03

0.04

0.05

tim
e 

(m
s)

QORA
TreeThink

(c) scale(1, 1) prediction time

200 400 600 800 1000
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(d) scale(1, 2) learning curve

200 400 600 800 1000
observations

0

1

2

3

tim
e 

(m
s)

QORA
TreeThink

(e) scale(1, 2) observation
time

200 400 600 800 1000
observations

0.00

0.01

0.02

0.03

0.04

0.05

tim
e 

(m
s)

QORA
TreeThink

(f) scale(1, 2) prediction time

500 1000 1500 2000
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(g) scale(1, 4) learning curve

500 1000 1500 2000
observations

0

1

2

3

tim
e 

(m
s)

QORA
TreeThink

(h) scale(1, 4) observation
time

500 1000 1500 2000
observations

0.00

0.01

0.02

0.03

0.04

0.05

tim
e 

(m
s)

QORA
TreeThink

(i) scale(1, 4) prediction time

1000 2000 3000 4000
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(j) scale(1, 8) learning curve

1000 2000 3000 4000
observations

0.0

0.5

1.0

1.5

2.0

2.5

tim
e 

(m
s)

QORA
TreeThink

(k) scale(1, 8) observation
time

1000 2000 3000 4000
observations

0.00

0.01

0.02

0.03

0.04

0.05

tim
e 

(m
s)

QORA
TreeThink

(l) scale(1, 8) prediction time

Figure 16: TreeThink vs. QORA, scaling tests: nc = 1, varying np. Note that as the x-axis scales up
proportionally to np, the plots maintain the same proportions, meaning that learning time is scaling
up linearly with the number of classes (and corresponding actions).

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

100 200 300 400 500
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(a) scale(1, 1) learning curve

100 200 300 400 500
observations

0.0

0.5

1.0

1.5

2.0

2.5

tim
e 

(m
s)

QORA
TreeThink

(b) scale(1, 1) observation
time

100 200 300 400 500
observations

0.00

0.01

0.02

0.03

0.04

0.05

tim
e 

(m
s)

QORA
TreeThink

(c) scale(1, 1) prediction time

200 400 600 800 1000
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(d) scale(2, 1) learning curve

200 400 600 800 1000
observations

0

1

2

3

tim
e 

(m
s)

QORA
TreeThink

(e) scale(2, 1) observation
time

200 400 600 800 1000
observations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

tim
e 

(m
s)

QORA
TreeThink

(f) scale(2, 1) prediction time

500 1000 1500 2000
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(g) scale(4, 1) learning curve

500 1000 1500 2000
observations

0

1

2

3

4

tim
e 

(m
s)

QORA
TreeThink

(h) scale(4, 1) observation
time

500 1000 1500 2000
observations

0.00

0.01

0.02

0.03

0.04

0.05

tim
e 

(m
s)

QORA
TreeThink

(i) scale(4, 1) prediction time

1000 2000 3000 4000
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(j) scale(8, 1) learning curve

1000 2000 3000 4000
observations

0

2

4

6

tim
e 

(m
s)

QORA
TreeThink

(k) scale(8, 1) observation
time

1000 2000 3000 4000
observations

0.00

0.02

0.04

0.06

tim
e 

(m
s)

QORA
TreeThink

(l) scale(8, 1) prediction time

Figure 17: TreeThink vs. QORA, scaling tests: varying nc, np = 1. Note that as the x-axis scales up
proportionally to nc, the plots maintain the same proportions, meaning that learning time is scaling
up linearly with the number of actions.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

100 200 300 400 500
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(a) scale(1, 1) learning curve

100 200 300 400 500
observations

0.0

0.5

1.0

1.5

2.0

2.5

tim
e 

(m
s)

QORA
TreeThink

(b) scale(1, 1) observation
time

100 200 300 400 500
observations

0.00

0.01

0.02

0.03

0.04

0.05

tim
e 

(m
s)

QORA
TreeThink

(c) scale(1, 1) prediction time

500 1000 1500 2000
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(d) scale(2, 2) learning curve

500 1000 1500 2000
observations

0

1

2

3

tim
e 

(m
s)

QORA
TreeThink

(e) scale(2, 2) observation
time

500 1000 1500 2000
observations

0.00

0.01

0.02

0.03

0.04

0.05

tim
e 

(m
s)

QORA
TreeThink

(f) scale(2, 2) prediction time

2000 4000 6000 8000
observations

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(g) scale(4, 4) learning curve

2000 4000 6000 8000
observations

0

1

2

3

4

tim
e 

(m
s)

QORA
TreeThink

(h) scale(4, 4) observation
time

2000 4000 6000 8000
observations

0.00

0.01

0.02

0.03

0.04

0.05

tim
e 

(m
s)

QORA
TreeThink

(i) scale(4, 4) prediction time

5 10 15 20 25 30
observations 1e3

0.0

0.2

0.4

0.6

er
ro

r (
EM

D)

static
QORA
TreeThink

(j) scale(8, 8) learning curve

5 10 15 20 25 30
observations 1e3

0

2

4

6

tim
e 

(m
s)

QORA
TreeThink

(k) scale(8, 8) observation
time

5 10 15 20 25 30
observations 1e3

0.00

0.02

0.04

0.06

tim
e 

(m
s)

QORA
TreeThink

(l) scale(8, 8) prediction time

Figure 18: TreeThink vs. QORA, scaling tests: varying nc and np. Note that as the x-axis scales
up proportionally to nc ×np, the plots maintain the same proportions, meaning that learning time is
scaling up linearly with the number of actions.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

(1, 0)

X1: wall

X1[pos] - X0[pos] =

(1, 0)

(0, 0)

true false

X0: player

attribute: position


action: RIGHT


(a) learned FOLDT for
player[pos] in the maze
domain

X1: player, X2: wall

X2[pos] - X1[pos] =

(1, 0)

-2
X1: player, X2: goal

X2[pos] - X1[pos] =

(1, 0)

-11

falsetrue

true false

X0: game

attribute: score

action: RIGHT


(b) learned FOLDT for game[score]
in the maze domain

(-1, 0)

X1: wall

X1[pos] - X0[pos] =

(-1, 0)

(0, 0)

true false

X0: player

attribute: position


action: LEFT


(c) learned FOLDT for
player[pos] in the coins
domain

X1: player, X2: coin

X2[pos] - X1[pos] =

(0, 1)

X2[used] = 0

X1: player, X2: wall

X2[pos] - X1[pos] =

(0, 1)

-2

-1

5 -1

X0: game

attribute: score

action: DOWN


falsetrue

true false

falsetrue

(d) learned FOLDT for game[score] in the coins
domain

X1: player

X0[pos] - X1[pos] =

(0, 1)

X0[used] = 0 0

1 0

X0: coin

attribute: used

action: DOWN


falsetrue

falsetrue

(e) learned FOLDT for coin[used] in the coins
domain

Figure 19: Example FOLDTs learned by TreeThink in the maze and coins domains. The top
(green) box of each tree notes the tree’s (c,m, a) triplet and its argument variable X0. Variables
bound by subsequent branch tests are labeled at the top of the corresponding box (e.g., in (c), X1:
wall). Note that if a test fails (i.e., the right branch is taken), its variables are not bound; hence, in
the second test in tree (b), X1 and X2 are not related to the X1 and X2 from the prior test.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

E EXPERIMENT DETAILS: ABLATION TESTS

Since the inference time stays consistent over time, we report the average time per predict call
from each set of runs. Figure 20 shows both a chart, to visualize the massive performance improve-
ment, as well as a table, for more detailed comparison.

maze maze-t switches keys
102

103

104

105

tim
e 

(
s)

none
eval

query
both

(a) average inference time (µs) chart

domain none eval query both
maze 1842 1835 62.3 53.2

maze-t 481822 481597 710 546
switches 1920 1909 78.6 67.0

keys 2748 2736 99.4 85.2

(b) average inference time (µs) table

Figure 20: Average inference time in four domains, varying optimizations. Settings are: none (no
optimizations to inference), eval (optimizing tree evaluation), query (optimizing state queries),
and both (optimizing state queries and tree evaluation).

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

F EXPERIMENT DETAILS: NEURAL BASELINES

We apply a custom NPE architecture, shown in Figure 21, based on the design that Stella & Loguinov
(2024) used for object-oriented transition learning. The objects in a state are input as vectors Xi,
formed by concatenating the object’s one-hot-encoded class and all of its attribute value vectors (if
an object is lacking some attribute, a zero vector of the appropriate size is substituted). The action
a ∈ A is also input to the network, one-hot encoded.

The blocks F1 and F2 are feed-forward networks comprising alternating linear and ReLU layers (
F1 ends with an ReLU layer, F2 ends with a linear layer). Let d be the total length of an object
vector (since they are all the same length) and e be the length of the output vector of F1. Then,
the first layer of F1 has width 2d and the first layer of F2 has width d + |A| + e. To predict object
attributes, the output dimension of F2 is d.

To make the network structure simpler and more efficient, we keep the reward signal separate. A
second network, which outputs a scalar value, is used to model the reward. This network uses an
NPE internally, but the final sum X

(t)
i +∆

(t+1)
i is skipped (the output of the network is just ∆(t+1)

i ).
This allows us to set F2 to output a vector that is not of size d. The reward network sums all of the
outputs of F2,

∑ns

i=1 ∆
(t+1)
i , then passes the result through a linear layer to produce a scalar output.

Our hand-tuned networks for the maze environment, where d = 5 and |A| = 5, use the following
network dimensions:

• T , F1: 10 → 16 → 8 → 8 → 4

• T , F2: 14 → 4 → 5

• R, F1: 10 → 16 → 8 → 8 → 16

• R, F2: 26 → 16

The weights (approximately four hundred hand-tuned values) are included in the codebase that will
be released upon publication. Although not shown in the plots (because it is not very interesting to
look at), we included a network with the hand-tuned weights in all of our experiments. It got perfect
accuracy (zero error) on all tested transitions.

For training, we run several variations of the hand-tuned architecture. We use NPE X Y to denote
a network X times wider than our hand-crafted design with Y − 1 extra layers in each of F1 and
F2 (all the same width as the layer before them, i.e., the hand-crafted last layer width times X).
The networks collect observations in episodes; one epoch of training occurs at the end of each
episode. We utilize a replay buffer with one thousand slots, which is split into ten random batches
for each epoch. While our initial experiments used a typical deque replay buffer, this approach
was unsuccessful; to increase the variety in the data, we moved to a replay buffer that, when full,
randomly selects an existing item to evict. This led to the results we show in the paper. After trying
several optimizers and hyperparameter values, we settled on AdamW (supplied by PyTorch) with a
learning rate of 0.001.

Additional results from our NPE experiments are shown in Figure 22.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Xi
(t)

Xi
(t)

X1
(t)

F1

Xi
(t)

X2
(t)

F1

Xi
(t)

Xn
(t)

F1

...

Σ

F2a Δi
(t+1) Σ Xi

(t+1)

Figure 21: The architecture used for our NPE implementation, based on the structure described
by Stella & Loguinov (2024) for object-oriented transition learning. The F1 and F2 modules are
feed-forward networks comprising alternating linear and ReLU layers.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0
observations 1e6

0.0

0.2

0.4

0.6

0.8

1.0
er

ro
r (

EM
D)

NPE_1_1
NPE_2_1
NPE_1_2
NPE_8_2
NPE_8_3

(a) learning curve

0.2 0.4 0.6 0.8 1.0
observations 1e6

10 4

10 3

10 2

10 1

100

er
ro

r (
EM

D)

NPE_1_1
NPE_2_1
NPE_1_2
NPE_8_2
NPE_8_3

(b) learning curve, log-y

0.2 0.4 0.6 0.8 1.0
observations 1e6

0.0

0.1

0.2

0.3

0.4

0.5

lo
ss

NPE_1_1
NPE_2_1
NPE_1_2
NPE_8_2
NPE_8_3

(c) loss curve while learning

0.2 0.4 0.6 0.8 1.0
observations 1e6

10 5

10 4

10 3

10 2

10 1

100

lo
ss

NPE_1_1
NPE_2_1
NPE_1_2
NPE_8_2
NPE_8_3

(d) loss curve while learning, log-y

0.2 0.4 0.6 0.8 1.0
observations 1e6

0

200

400

600

800

1000

er
ro

r (
EM

D)

NPE_1_1
NPE_2_1
NPE_1_2
NPE_8_2
NPE_8_3
static

(e) transfer error while learning

0.2 0.4 0.6 0.8 1.0
observations 1e6

101

102

103

er
ro

r (
EM

D)

NPE_1_1
NPE_2_1
NPE_1_2
NPE_8_2
NPE_8_3
static

(f) transfer error while learning, log-y

0.2 0.4 0.6 0.8 1.0
observations 1e6

0

5

10

15

20

25

tim
e 

(m
s)

NPE_1_1
NPE_2_1
NPE_1_2
NPE_8_2
NPE_8_3

(g) training time

0.2 0.4 0.6 0.8 1.0
observations 1e6

101

2 × 101

tim
e 

(m
s)

NPE_1_1
NPE_2_1
NPE_1_2
NPE_8_2
NPE_8_3

(h) training time, log-y

0.2 0.4 0.6 0.8 1.0
observations 1e6

0

50

100

150

tim
e 

(m
s)

NPE_1_1
NPE_2_1
NPE_1_2
NPE_8_2
NPE_8_3

(i) inference time

0.2 0.4 0.6 0.8 1.0
observations 1e6

102

1.1 × 102

1.2 × 102

1.3 × 102

1.4 × 102
1.5 × 102
1.6 × 102

tim
e 

(m
s)

NPE_1_1
NPE_2_1
NPE_1_2
NPE_8_2
NPE_8_3

(j) inference time, log-y

Figure 22: Using various NPE architectures to model the maze domain. Semilog-y plots are in-
cluded to better visualize small values. Breaks in a line (e.g., the error of NPE 8 3) in semilog-y
plots indicate zeroes.

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

G PLANNING EXPERIMENTS

We now show results of planning experiments using Monte-Carlo Tree Search (MCTS) with the
pUCT rule (Coulom, 2007; Rosin, 2010; Schrittwieser et al., 2020) and a computation budget of
100 simulations (i.e., model evaluations) per action. Scores are normalized for each episode into
the range [−1, 1], where −1 indicates pessimal performance (the lowest score obtainable for that
episode), 0 indicates trivial performance (that of an agent that does nothing, neither productive or
harmful), and 1 indicates optimal performance. The various settings shown in our experiments,
which vary the level size, number of walls, number of goals, and episode length, are detailed in
Table 1.

Table 1: Planning experiment settings

Width Height Interior walls Goals Episode length
8 8 10 2 10

10 10 20 5 20
12 12 50 10 30
14 14 80 15 40
16 16 160 20 50

Our planner uses solely an environment model (supplying T̂ and R̂); the prior policy is uniform (i.e.,
no action is given any special weight a priori during search) and the value estimator outputs zero for
all states. Nonetheless, as shown in Figure 23, the planner is able to get near-optimal scores using
both TreeThink (trained in the same way as in our prior experiments, i.e., in 8× 8 levels) and NPE*
(our hand-tuned perfectly-accurate neural network).

8 10 12 14 16
size

1.0

0.5

0.0

0.5

1.0

sc
or

e

TreeThink
NPE*

Figure 23: TreeThink (fully trained) and NPE* (hand-tuned to be perfectly accurate) planning in
various world sizes; highlights show one standard deviation

We next take NPE 1 1 and NPE 8 3 and train them using the same setup as in Section 3.4 and
Appendix F. During training, we periodically (every 100k observations) run the MCTS planner
using the partially-trained models. The results are shown in Figure 24. The different behavior
between NPE 1 1 and NPE 8 3, especially as the levels become more complex, is immediately
apparent. While NPE 1 1 never achieves perfect accuracy (see Figure 22 in Appendix F), it also
seems to overfit less; thus, although it never performs well, MCTS with NPE 1 1 is much more
stable as level size increases. On the other hand, NPE 8 3 is able to (for some amount of time)
accurately model the 8 × 8 levels, allowing MCTS to achieve relatively high scores in this setting.
However, the model apparently drastically overfits, which leads MCTS to find low-quality plans in
the other settings. In fact, even in 12× 12 levels, the planner using NPE 8 3 begins returning plans
that are almost as bad as possible. In real-world deployment, this kind of outcome – where the agent
suddenly takes harmful actions upon transfer to new conditions – could be extremely dangerous.

For further analysis, Figure 25 shows the performance of each model checkpoint across each level
size. Again, NPE 1 1 remains stable, even as training progresses. In contrast, while NPE 8 3
initially (@0) gets similar performance across all level sizes, but after even just a small amount of
training, it overfits to the 8 × 8 worlds. Further training improves performance in this setting in
exchange for poor returns in all other scenarios.

Finally, Figure 26 compares the planning time of MCTS using TreeThink, NPE*, NPE 1 1, and
NPE 8 3. As expected, the runtime using NPE* and NPE 1 1 are essentially identical, since the

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

architectures are the same (only the parameters differ). Notably, the planner using TreeThink is by
far the fastest due to the lower time required to evaluate the TreeThink models.

0 2 4 6 8
observations 1e5

1.0

0.5

0.0

0.5

1.0

sc
or

e

NPE_1_1 @ 8x8
NPE_1_1 @ 10x10
NPE_1_1 @ 12x12
NPE_1_1 @ 14x14
NPE_1_1 @ 16x16

0 2 4 6 8
observations 1e5

1.0

0.5

0.0

0.5

1.0

sc
or

e

NPE_8_3 @ 8x8
NPE_8_3 @ 10x10
NPE_8_3 @ 12x12
NPE_8_3 @ 14x14
NPE_8_3 @ 16x16

Figure 24: Planning in the maze domain with NPE 1 1 and NPE 8 3 during training, varying world
sizes. Highlights show 1/4 stdev, to preserve clarity.

8 10 12 14 16
size

1.0

0.5

0.0

0.5

1.0

sc
or

e

NPE*
NPE_1_1 @ 0
NPE_1_1 @ 1
NPE_1_1 @ 2
NPE_1_1 @ 3
NPE_1_1 @ 4
NPE_1_1 @ 5
NPE_1_1 @ 6
NPE_1_1 @ 7
NPE_1_1 @ 8
NPE_1_1 @ 9 8 10 12 14 16

size
1.0

0.5

0.0

0.5

1.0

sc
or

e

NPE*
NPE_8_3 @ 0
NPE_8_3 @ 1
NPE_8_3 @ 2
NPE_8_3 @ 3
NPE_8_3 @ 4
NPE_8_3 @ 5
NPE_8_3 @ 6
NPE_8_3 @ 7
NPE_8_3 @ 8
NPE_8_3 @ 9

Figure 25: Planning in the maze domain with NPE 1 1 and NPE 8 3 across several world sizes,
varying number of observations. Highlights show 1/4 stdev, to preserve clarity.

8 10 12 14 16
size

0

200

400

600

800

tim
e 

(s
ec

)

TreeThink
NPE*
NPE_1_1
NPE_8_3

(a) planning time per episode as world size increases

8 10 12 14 16
size

10 1

100

101

102

103

tim
e 

(s
ec

)

TreeThink
NPE*
NPE_1_1
NPE_8_3

(b) planning time per episode as world size increases,
log-y

Figure 26: Planning time in the maze domain.

46


	Introduction
	TreeThink
	First-Order Logical Decision Trees
	TreeLearn
	Inference Optimizations

	Experiments
	Environments
	Comparison with Prior Work
	Ablation and Performance Tests
	Neural Baselines

	Future Work
	FOLDT Learner Pseudocode
	Utility Classes
	Tree Class
	Joint Probability Distribution
	Confidence Interval
	Predicates
	Combinatorial Functions
	FOLDT Data Classes

	FOLDT Class

	OORL Learner Pseudocode
	Environment Details
	Experiment Details: TreeThink vs. QORA
	Experiment Details: Ablation Tests
	Experiment Details: Neural Baselines
	Planning Experiments

