

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OBJECT-ORIENTED TRANSITION MODELING WITH INDUCTIVE LOGIC PROGRAMMING

Anonymous authors

Paper under double-blind review

ABSTRACT

Building models of the world from observation, i.e., *induction*, is one of the major challenges in machine learning. In order to be useful, models need to maintain accuracy when used in novel situations, i.e., generalize. In addition, they should be easy to interpret and efficient to train. Prior work has investigated these concepts in the context of *object-oriented representations* inspired by human cognition. In this paper, we develop a novel learning algorithm that is substantially more powerful than these previous methods. Our thorough experiments, including ablation tests and comparison with neural baselines, demonstrate a significant improvement over the state-of-the-art. The source code for all of our algorithms and benchmarks will be available online after publication.

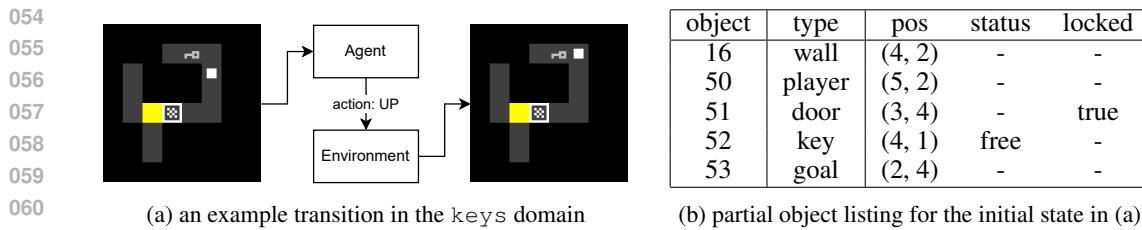
1 INTRODUCTION

Learning is a vital part of any intelligent agent’s behavior. In particular, one of the most important problems in the field of machine learning is *induction*: constructing general rules from examples, allowing an agent to explain its observations and make predictions in the future. Induction is also an important part of how humans – and humanity as a whole – acquire knowledge. While much of science takes the form of induction, it also encompasses other learning activities, such as categorizing shapes, playing a new video game, and even practicing physical skills. To enable these feats, the human implementation of induction has several essential traits. First, we create models that *generalize*, i.e., make accurate predictions in new situations. Second, our models are *interpretable*, so they can be reasoned about and communicated to others. Third, we learn *efficiently*, in terms of both number of observations and computational power.

To make induction tractable, humans think of the world in terms of objects and their relationships, which allows for efficient learning and generalization of knowledge to new situations (Spelke, 1990). In artificial intelligence, *object-oriented* representations seek to capture this insight by representing an agent’s perception of the world as a set of objects, each consisting of a type and a collection of numerical vector attributes (Diuk et al., 2008; Stella & Loguinov, 2024). The object-based representation serves as a middle-ground between low-level (sensory) input, for which learning structured rules remains intractable (Locatello et al., 2020), and high-level (relational) formulations, which use a large amount of domain knowledge to simplify the task structure (Garrett et al., 2020). This makes object-oriented inductive learning an important, but challenging, problem.

One particularly important form of induction is learning about the dynamics of a system, i.e., discovering physical laws from observation. This can be modeled using the Markov Decision Process (MDP) framework (Sutton & Barto, 2018). In this setting, the agent interacts with an unknown environment by taking actions a in response to observations of the environment’s state s . Each action causes the environment to transition to a new state s' according to its *transition function* T , such that $s' = T(s, a)$. In learning the dynamics of an MDP, the agent’s objective is to create a model \hat{T} that produces the same outputs as the environment’s ground-truth T . This learning process occurs *online*, meaning that the agent must refine its model continuously as it receives a stream of observations. In addition, the agent should be able to learn the dynamics of various environments *without* extensive domain-specific tuning.

Traditionally, learning a transition model might mean enumerating the values of T Sutton et al. (1999). However, by using a structured state format – e.g., as a set of objects with attributes – we



062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: An example game transition with a partial listing of the initial state in the object-oriented representation. Although we use meaningful names to increase readability, the information given to an agent does not contain these labels.

can instead represent the MDP *intrinsically* by implementing T as a program operating on states in this representation. This leads to the possibility – and accompanying challenges – of *generalization*, as the use of an implicit representation allows for a potentially infinite space of states and transitions to be defined by a single program of finite size. The agent’s model of the world should allow it to accurately predict the outcome of *all of these possible transitions*.

Because very little prior work has studied this problem, most existing induction methods have significant limitations. For example, the most popular approach in modern machine learning is *deep learning*, which uses artificial neural networks to approximate arbitrary functions (Schrittwieser et al., 2020). However, as shown by prior work and our own experiments, they do not learn efficiently or generalize reliably (Nagarajan et al., 2021; Zhang et al., 2023; Mirzadeh et al., 2024). In addition, although their parameters could be considered “learned rules” in the induction sense, they are difficult to interpret (Ghorbani et al., 2019; Druce et al., 2021).

To overcome these limitations, Stella & Loguinov (2024) introduced QORA, which uses an Inductive Logic Programming (ILP)-based framework to tackle the problem of object-oriented transition learning. This yields interpretable models, but as we discover through experiments in several novel domains, their ILP method does not converge in many cases. Unfortunately, other existing ILP algorithms are not suitable replacements, as the application to object-oriented prediction imposes several requirements. First, the majority of prior ILP methods only support batch-mode learning (Cropper & Dumančić, 2022); using these algorithms in the online setting would require rebuilding each rule from scratch every time a new observation is made, which is intractable. Second, whereas we seek algorithms that do not require manual input of domain knowledge, many existing approaches need extensive domain-specific configuration in the form of, e.g., meta-rules (Cropper & Tourret, 2020) or architecture selection (Dong et al., 2019). Although the TG algorithm meets these two requirements (Driessens et al., 2001), it conducts continuous-valued scalar regression, which makes it inapplicable to object attribute vector prediction.

In this paper, we introduce *TreeLearn*, a novel ILP algorithm that is well-suited to use with the object-oriented transition learning framework. Our method conducts statistically-guided induction of logical programs, incrementally building more-complex models as necessary to achieve better prediction accuracy. *TreeLearn* models take the form of *first-order logical decision trees* (FOLDTs) (Blockeel & De Raedt, 1998), a highly expressive and interpretable representation for inductive models, allowing us to tackle a variety of complex domains. Using *TreeLearn*, we build *TreeThink*, an object-oriented transition learning algorithm that efficiently and reliably produces models that generalize strongly to novel transitions within their environment. We demonstrate the efficacy of our approach with a thorough empirical evaluation, including ablation tests and comparison with sophisticated neural baselines.

2 TREETHINK

In this section, we describe our algorithm, *TreeThink*, which provides two high-level interfaces: `observe`, which is used to train the learner, and `predict`, which queries the model. The observation function takes transition triples consisting of a state, an action, and the resulting next state (s, a, s') such that $s' = T(s, a)$. The prediction function uses the learned model to compute $\hat{T}(s, a)$. Both functions operate on object-based states, such as those shown in Figure 1.

108 Figure 1a shows an example of a transition in one of our domains, called `keys`. In this environment,
 109 which we use as a running example throughout this section, the agent controls a player character
 110 moving through a maze-like area containing keys, doors, and goals. The doors, initially locked, can
 111 be opened by bringing an unused key to them. Any key can open any door, but each key can only be
 112 used once. The agent receives a penalty for each move, with a larger penalty for attempting to make
 113 an illegal move (e.g., bumping into a wall or locked door). A reward is given if the player character
 114 ends up on a goal.

115 Figure 1b shows a subset of the transition’s initial state in the object-oriented representation, using
 116 human-readable labels for clarity (compare to Figure 6 in Appendix C). The state s consists of a
 117 set of some number n_s of objects. Each object belongs to a class, e.g., `player` or `wall`, and has
 118 some attributes, e.g., `position` (shortened to `pos`) and `color`. We use $s.c$ to refer to the subset
 119 of objects in s that have class type c . Each of an object’s attributes has some value, which is a vector
 120 of integers, e.g., $(5, 2)$; the length of the vector is determined by the attribute it corresponds to. We
 121 use the notation s_i to refer to object i in state s and $s_i[m]$ to refer to the value of attribute m of that
 122 object. The notation $X[m]$ is also used when an object is labeled $X = s_i$. We denote by $class(s, i)$
 123 and $attr(s, i)$ the class of object i and its set of attributes, respectively. Any reward signal R is
 124 folded into the state transition function T through inclusion of a special object of class `game` with
 125 a single attribute called `score`, which tracks the cumulative sum of rewards. Thus, no separate
 126 reward model is necessary.

127 With this framework, we can formulate the model as an algorithm that predicts the change in each
 128 object’s attribute values from s to s' . TreeThink breaks this down using a collection of subroutines,
 129 which are called *rules* (Stella & Loguinov, 2024). Each rule $\hat{T}_{c,m,a}$ predicts the changes for a
 130 particular attribute m in objects of a specific class c when a certain action a is taken. For example,
 131 one rule may predict the player’s position when the `right` action is taken, while another could
 132 predict the game object’s `score` attribute when the `up` action is taken. This allows us to simplify
 133 the model while retaining generality, as individual rules are each typically small, but any particular
 134 rule can still be highly complex if necessary. The process of prediction using rules is shown in
 135 Figure 2b. We represent these rules using *First-Order Logical Decision Trees* (FOLDTs).
 136

2.1 FIRST-ORDER LOGICAL DECISION TREES

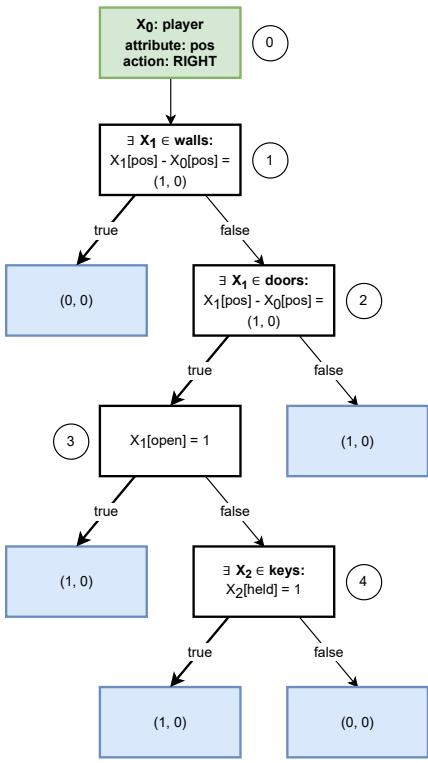
138 FOLDTs are an extension of classical decision trees to the setting of first-order logic. They are
 139 highly expressive, allowing us to model rules for complex domains, and interpretable, making it
 140 easy to decode the knowledge they learn through training (Blockeel & De Raedt, 1998). A FOLDT
 141 representing a rule from the `keys` domain is shown in Fig. 2a. The tree takes as input a state and
 142 a “target” object to make predictions for. It then uses information from the state to produce an
 143 output for the target object, i.e., to determine how one of its attributes should change. The top box
 144 (labeled 0) shows metadata about this tree’s rule: its input object X_0 is a `player` and it predicts
 145 how that player’s position changes when the `RIGHT` action is taken. Evaluation proceeds recursively,
 146 starting from the root.

147 Each branch of the tree (numbered > 0) contains a *test*, which evaluates to either true or false
 148 based on conditions in the current state. These tests are logical formulas that refer to properties of,
 149 or relations between, objects. The tests are existentially quantified, meaning that they pass if *any*
 150 objects exist that satisfy the condition. If a test passes, the left branch is taken and the quantified
 151 variable(s) are bound. If the test fails, any variable appearing in a quantifier in that test is not bound
 152 (since no such object exists). This means that, e.g., the X_1 in box 2 ($\exists X_1 \in \text{doors}$) is the same
 153 as in box 3 ($X_1[\text{open}] = 1$), but not the same as the one in box 1 ($\exists X_1 \in \text{walls}$). In tests without
 154 quantifiers, it is implicit that *any* satisfying binding is acceptable; e.g., if the test in box 1 fails, then
 155 as long as there is *any* door next to the player (box 2) that also is open (box 3), the latter will test
 156 pass and the tree will return $(1, 0)$. Thus, a test only fails if there is no possible binding that will
 157 satisfy it. When a leaf node is reached, the value (or distribution of values) in that leaf is returned.
 158 The procedure encoded by this FOLDT is equivalent to the program shown in Figure 2c.

159 The tree we have shown outputs constants at its leaves, which do not depend on the player’s current
 160 position. To use these values for our rules, we treat them as *deltas*. Thus, if $F_{c,m,a}$ is the FOLDT
 161 for a rule $\hat{T}_{c,m,a}$, then

$$\hat{T}_{c,m,a}(s, s_i) = s_i[m] + F_{c,m,a}(s, s_i). \quad (1)$$

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186



(a) rule expressed as a FOLDT

1 **Func** *predict(State s, Action a) → State*
 2 State $s' = s$ // copy the current state
 3 **for** ID i in $\{1, \dots, n_s\}$ **do**
 4 **for** Member m in *attr*(s, i) **do**
 5 $\hat{T}_{c,m,a} = \text{rules}[\text{class}(s, i), m, a]$
 6 $s'_i[m] = \hat{T}_{c,m,a}(s, s_i)$
 7 **return** s'

(b) Prediction using independent rules

1 **Rule** $[\text{player}, \text{pos}, \text{RIGHT}](s, X_0) \rightarrow \text{Vector}$
 2 **if** $\exists X_1 \in s.\text{walls}: X_1[\text{pos}] - X_0[\text{pos}] = (1, 0)$
 3 **then**
 4 **return** $(0, 0)$
 5 **else if**
 6 $\exists X_1 \in s.\text{doors}: X_1[\text{pos}] - X_0[\text{pos}] = (1, 0)$
 7 **then**
 8 **if** $X_1[\text{open}] = 1$ **then**
 9 **return** $(1, 0)$
 10 **else if** $\exists X_2 \in s.\text{keys}: X_2[\text{held}] = 1$ **then**
 11 **return** $(1, 0)$
 12 **else**
 13 **return** $(0, 0)$
 14 **return** $(1, 0)$

(c) a program equivalent to the tree in (a)

187
188

Figure 2: FOLDT and equivalent program representation of a rule for the keys domain.

189
190
191

The last factor to settle is the kind of conditions, which we also call *facts*, that can be used as tests. We use the same two types as QORA: *attribute equality*, of the form

$$P_{m,v}(i): X_i[m] = v, \quad (2)$$

192
193
194
195
196
197
198

and *relative difference*, of the form

$$P_{m,v}(i, j): X_j[m] - X_i[m] = v. \quad (3)$$

199
200
201
202
203
204

The space of tests can be augmented with more varieties, but these two domain-agnostic condition classes are sufficient for all those that we have conducted experiments in. Even the (c, m, a) rule structure could be implemented, in part, as tests in the tree; however, enforcing rule separation in the way we do improves both efficiency and interpretability.

2.2 TREELEARN

205
206
207
208
209
210
211
212
213
214
215

We now describe how to construct FOLDTs from examples. The approach we take is *top-down induction*, similar to classical decision trees Quinlan (1986), which grows the tree (starting from a single leaf node) by splitting leaves based on some information metric. Our incremental algorithm does this through a recursive process with three steps, beginning at the tree’s root each time an observation is received. First, statistics for all candidate tests being tracked at the current node are updated. Second, the test used for the node may be updated. If the current node is a leaf, we check if it should be split into a branch; if it is already a branch, we check if it should use a different test. Third, the algorithm recurses to the appropriate child based on the evaluation of the branch’s test. We next cover each of these steps in more detail.

Updating Tests Our algorithm keeps track of candidate tests and corresponding statistics in each node. A separate candidate is created for each observed fact and every arrangement of variables

(both existing, from higher levels of the tree, and new) as arguments to the condition. The information kept for each candidate consists of a table of counters, incremented for each observed sample, indexed in one dimension by whether the test was true or false and in the other by the output for that sample. This can be treated as a joint probability distribution, over which an information metric can be computed to assess the utility of the test.

Updating Nodes The goal of the algorithm is to eventually converge to a stable tree structure that tests only the information that is necessary to determine the outcome of each transition. To accomplish this, we allow existing branches to change their test over time. However, this requires resetting the tree nodes below that branch, which slows learning. Thus, we need a test evaluation method that allows us to ensure that leaves and branches are only modified when there is a high level of certainty that the new test will improve the model’s performance. For this, we use the predictive power score introduced by Stella & Loguinov (2024).

For a test with joint probability distribution \hat{P} , which distinguishes conditions in a set X and predicts outputs from the observed set Y , the score \mathcal{S} is

$$\mathcal{S} = \sum_{(x,y) \in X \times Y} \hat{P}(y|x) \hat{P}(x, y), \quad (4)$$

which gives the test’s expected confidence in the correct output on a randomly-sampled input. This score takes values in $[0, 1]$, where 1 means the predictions are perfectly accurate. To evaluate tests, we compute a confidence interval over their \mathcal{S} scores. The interval sizes are controlled by a single confidence-level hyperparameter, α . When a test’s confidence interval is greater than (not overlapping) the current test, it becomes the node’s new test. For a leaf node, the initial test is an uninformed baseline. Leaves become branches when any test surpasses the baseline.

This confidence-based testing is also key to TreeLearn’s ability to model stochastic transition functions. Algorithms that learn decision trees for deterministic processes typically continue refining the model until each leaf contains only a single class. However, we are also interested in modeling *stochastic* domains, in which the same condition may lead to more than one outcome. In this case, no test will reliably give better predictions than the baseline, so our learning process will stop while one or more leaves still contain multiple output values. Instead of yielding the most-common value (or sampling from the observed values), our model returns the entire distribution of whichever leaf it reaches. This enables us to faithfully reconstruct the probability distribution of stochastic transition functions *and* to interpret the model’s uncertainty during learning in deterministic environments.

Recursion The last step of the algorithm is to recurse down the tree, passing the observation sequentially to every node in the path determined by each branch’s current test. To ensure correctness when updating tests in each node and its descendants – i.e., so that each test can be evaluated correctly – we compute the set of all satisfying bindings at every branch that is visited. When a left-branch is taken, this set is modified to include new variables and ensure each binding satisfies the branch’s test.

2.3 INFERENCE OPTIMIZATIONS

Evaluating a FOLDT for inference (i.e., prediction) proceeds recursively, similar to the learning process. However, when the tree is not being trained, there are two major optimizations that can be used to drastically improve the efficiency of tree evaluation. The first is *on-demand queries*. Instead of computing every true fact from the object-oriented state as input to the ILP model, these can be checked only as-needed (and then cached) when evaluating branch tests. Since most facts are not used during inference, this leads to substantial savings, as only a small portion of the objects need to be processed. The second is *short-circuit branch evaluation*. Rather than explicitly computing the set of all satisfying bindings, the tree can be evaluated in a depth-first style. Specifically, any time a binding is found that allows a left-branch to be taken, the algorithm can immediately recurse; if that binding allows the node’s descendants to also take left-branches, then evaluation can immediately return, passing the appropriate output value back to the current node’s parent. This both reduces memory overhead and enables the algorithm to terminate as soon as a binding is found that leads to a “preferred” path through the tree.

270 We have included complete pseudocode for our algorithm in Appendices A (ILP) and B (object-
 271 oriented interfaces). We next discuss the results of our empirical evaluations.
 272

273 3 EXPERIMENTS

274 We conduct experiments in three groups: first, comparison against the prior state-of-the-art in object-
 275 oriented transition modeling, QORA (Stella & Loguinov, 2024); second, ablation and performance
 276 tests, investigating details of TreeThink’s operation; third, evaluation of a sophisticated neural-
 277 network baseline. In many experiments, we also include a “naive” baseline that we call `static`,
 278 which is a model implementing $\hat{T}(s, a) = s$ (i.e., it predicts that nothing ever changes). We use
 279 the Earth Mover’s Distance (EMD) state-distance metric described by Stella & Loguinov (2024) to
 280 evaluate model error, for which a value of zero indicates perfect accuracy. To ensure good coverage,
 281 we run tests in a variety of domains.
 282

283 3.1 ENVIRONMENTS

284 We conduct tests in nine domains and one “domain set”, which is a parameterized meta-domain
 285 used to study the scaling properties of a learning algorithm. Several of these environments come
 286 from (or are based on domains from) Stella & Loguinov (2024). Domains that have no reward
 287 signal are marked “not scored”. In our evaluation, we also evaluate on altered versions of some
 288 domains in which the reward signal has been erased (marked “-scoreless”) and transfer to larger,
 289 more complex instances (marked “-t”). More details (and sample images) for all environments are
 290 given in Appendix C; here, we briefly describe domains for which we include experimental results
 291 in the main text. `fish` is a stochastic environment in which the agent must estimate the conditional
 292 distribution of fish movements (not scored). `maze` is an extension of the `walls` domain (Stella
 293 & Loguinov, 2024) that adds goal objects and a reward signal that encourages short paths. `coins`
 294 is a Traveling Salesman-style routing problem that takes place inside of a maze full of coins to be
 295 picked up. `keys` is a maze task in which the goal may be blocked behind one or more locked doors,
 296 which can be opened by picking up `keys`. `switches` is a combination of the `walls` and `lights`
 297 environments (Stella & Loguinov, 2024), where the player must navigate through a maze to toggle
 298 lights remotely (not scored). `scale`(n_p, n_c) is a combination of the `moves` and `players` domain
 299 sets Stella & Loguinov (2024), which augments the `walls` domain with n_p independent player
 300 objects, each of which has n_c copies of each movement action (not scored).
 301

302 3.2 COMPARISON WITH PRIOR WORK

303 Consider Figs. 3a-3f, showing TreeThink and QORA learning in several domains. In all of these
 304 environments, TreeThink rapidly converges to zero error. On the other hand, QORA never achieves
 305 perfect accuracy in any of the domains with reward signals. Notably, because the reward signal is
 306 transparently folded into the transition function, this limitation of QORA is not unique to reward
 307 modeling; any particularly complex rules – such as those in `keys-scoreless` and `switches`
 308 – appear to be impossible for QORA to learn. Certain rules are also significantly more challenging
 309 for QORA to learn, such as those in `coins-scoreless`, where it takes approximately four times
 310 longer than TreeThink to converge.
 311

312 The root cause for these issues, which TreeLearn addresses, seems to be twofold. First, QORA’s
 313 ILP method is unable to express formulas with nested quantifiers, which are necessary to represent
 314 rules such as the one shown in Figure 2c. In contrast, FOLDTs can nest quantifiers arbitrarily deep.
 315 Second, QORA has no variable binding process, which leads to difficulty resolving rules with two
 316 or more conditions involving the same quantified object, such as with boxes 2 and 3 in Figure 2a.
 317 In contrast, our algorithm keeps track of variable bindings as part of each hypothesis, allowing it to
 318 differentiate between a new test using a *previously-bound* object and a new test using a *newly-bound*
 319 object. This enables TreeLearn to determine the utility of new conditions more quickly and reliably.
 320

321 Moving on to Figs. 3g-3j, we find that TreeThink’s learning process is highly stable, while QORA
 322 suffers from significant performance issues when faced with complex rules. In several of our ex-
 323 periments (including the one shown in Figs. 3i and 3j), QORA’s resource usage suddenly increases,
 324 leading to a crash. In environments such as `fish`, the α hyperparameter had to be reduced to prevent
 325 this behavior, while TreeThink reliably converges even with a relatively high value of $\alpha = 0.01$.
 326

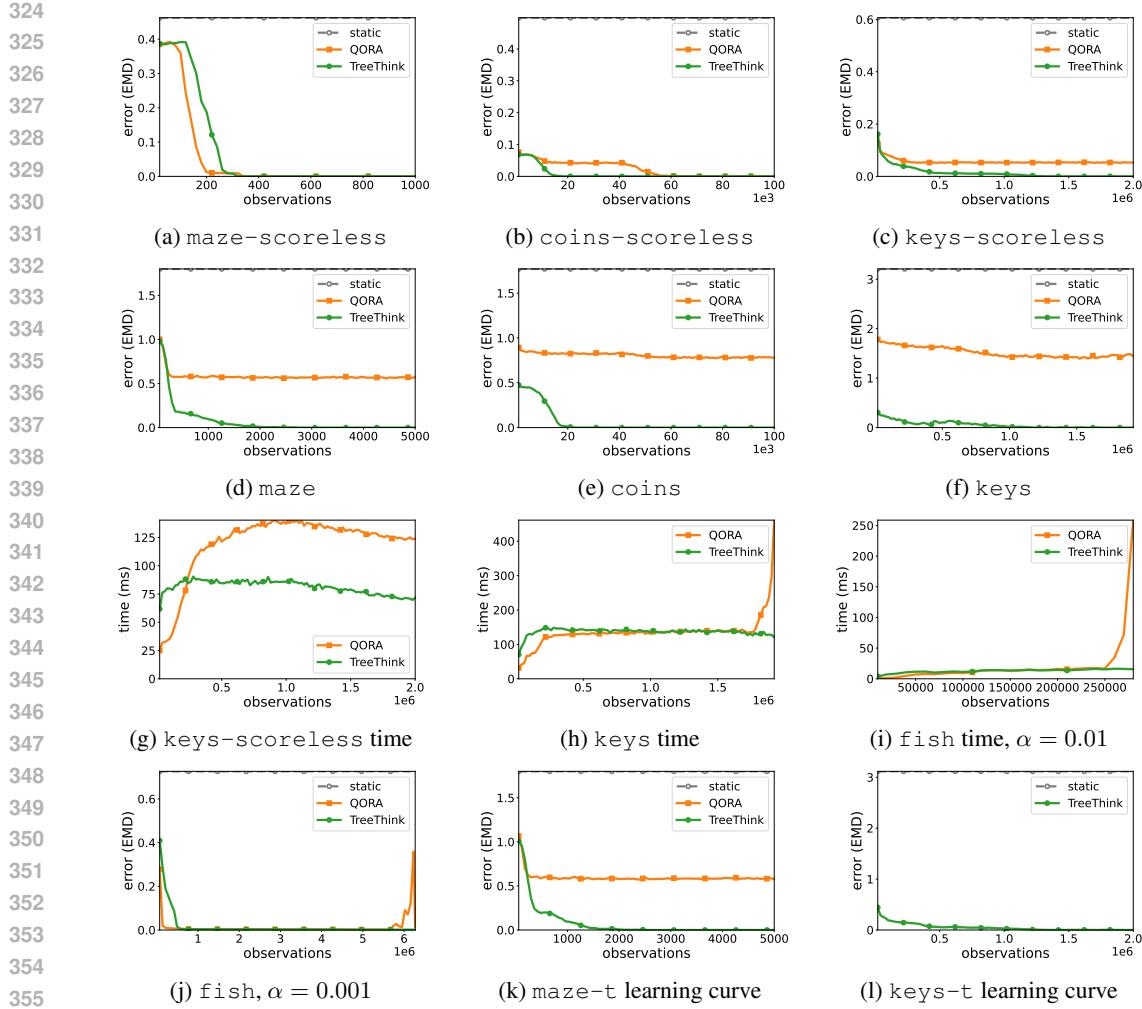


Figure 3: TreeThink vs. QORA predictive modeling

Lastly, we conduct transfer learning experiments to larger levels in the `maze`, `coins`, and `keys` domains. Specifically, training occurs in 8×8 grids, while evaluation is done in 32×32 grids. Results for `maze` and `keys` are shown in Figures 3k and 3l, respectively. As expected, TreeThink displays perfect generalization, as its learned models align with the ground-truth transition dynamics. This can be verified easily by inspecting the models; examples of FOLDTs learned by TreeThink are shown in Appendix D, Fig. 19. For many other additional results, see Appendix D.

3.3 ABLATION AND PERFORMANCE TESTS

We next conduct ablation tests to analyze the impact of our inference optimizations and branch updating process. We then demonstrate some interesting properties of TreeThink’s performance.

Inference Optimizations We test four settings of the two inference optimizations: `none` (no optimizations to inference), `eval` (short-circuit tree evaluation), `query` (on-demand state queries), and `both` (optimizing state queries and tree evaluation). Figure 4a shows that these optimizations do not negatively impact the learning process, as expected; when given the same data, the training proceeds identically regardless of the inference optimization setting. Figure 4b demonstrates the massive performance boost to inference (i.e., the `predict` function) that is given by the optimizations. In small levels (8×8) in the `maze` domain, inference with both optimizations is approx. 34 \times faster than without either. We conducted additional experiments in `switches` and `keys` with

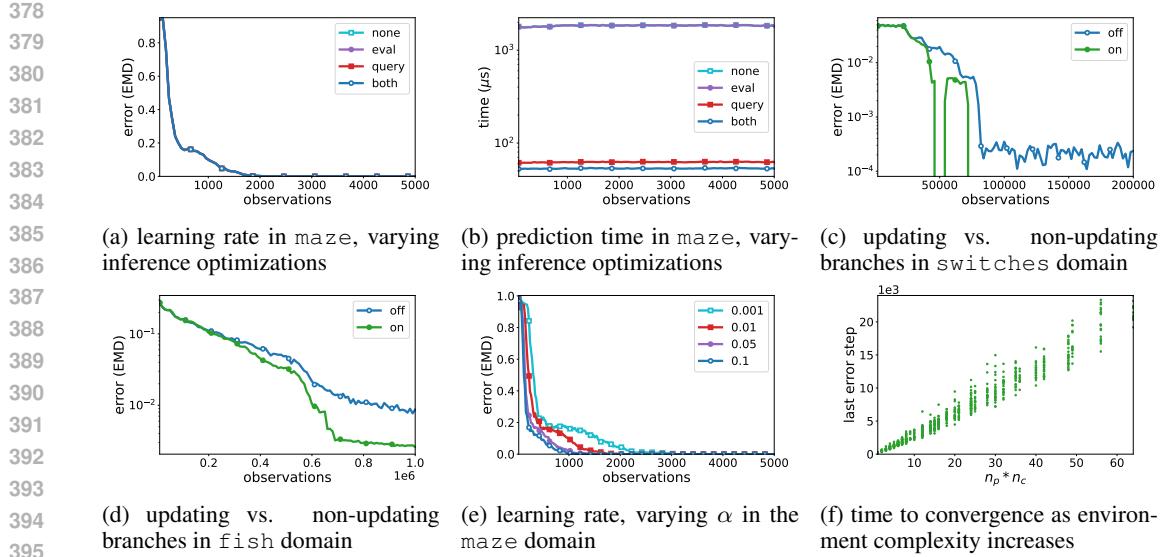


Figure 4: Ablation and Performance Tests

similar results. Most importantly, the performance boost increases with the number of objects in the state; in `maze-t`, we observe a speedup of $880\times$ compared to running with no optimizations. The results of the tests in these domains are shown in Appendix E.

Branch Updating The purpose of branch updating is to ensure that, as the agent continues to receive data, each level of the tree has the opportunity to make use of the best possible test. If a branch’s test is fixed upon creation, then it is possible for spurious correlations to lead to incorrect tree formation, i.e., incorporating unnecessary information. Thus, updating branches should improve the algorithm’s convergence, both in rate and stability – which is what we find, as shown in Figures 4c and 4d, where breaks in a curve indicate zeroes.

Hyperparameter Robustness When learning algorithms have hyperparameters, it can be difficult to apply them to new problems. Neural networks, for example, have many hyperparameters; in addition, their performance is often highly sensitive to the specific values of these hyperparameters (Adkins et al., 2024). TreeThink, on the other hand, has only a single hyperparameter, $\alpha \in (0, 1)$. Fortunately, as shown in Figure 4e, our algorithm operates well across a wide range of values. In all of our other experiments throughout this paper, we use $\alpha = 0.01$ (unless otherwise specified), which leads to rapid and stable convergence in both the simpler domains and the highly complex ones.

Performance Scaling One of the core motivations behind using program induction for object-oriented transition learning is that it should allow the agent to scale much more efficiently. While our previous experiments showed that TreeThink scales to larger levels, it is also interesting to note how the learning rate (i.e., sample complexity) scales with the complexity of the environment’s transition function. For example, if an environment has many actions that behave almost identically, the agent’s learning rate should scale linearly with the number of actions (as it can learn each independently). This is exactly what we find in experiments in the `scale(np, nc)` domain set, where we can vary n_p and n_c to arbitrarily increase the environment’s complexity without qualitatively changing the dynamics. Figure 4f shows the results of our experiment, in which we track the last observation on which TreeThink makes an error in prediction (i.e., the number of steps before it fully converges) for many runs using randomly sampled n_p and n_c , each in $\{1, \dots, 8\}$.

3.4 NEURAL BASELINES

Neural networks have become a popular tool for nearly every induction task, including ones involving object-oriented representations. For example, Chang et al. (2016) introduced the *Neural Physics*

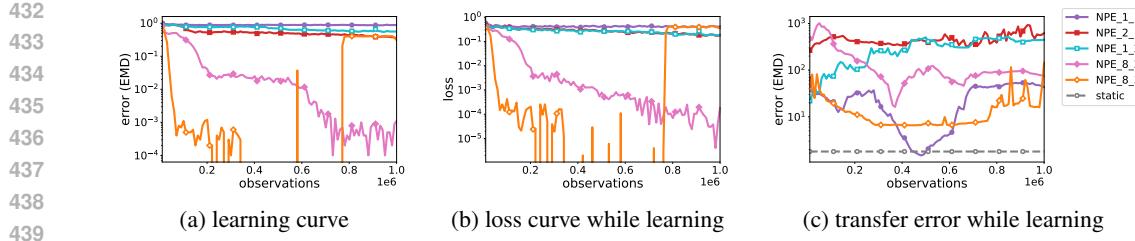


Figure 5: Using various NPE architectures to model the `maze` domain. Semilog- y plots are used to better visualize small values. Breaks in a line (e.g., the error of NPE_8_3) indicate zeroes.

Engine (NPE) for modeling physical dynamics. Stella & Loguinov (2024) evaluated an NPE architecture for object-oriented transition learning, finding that it fails to reach zero error in the `walls` domain. However, it is unclear whether their network design had sufficient capacity to represent the environment’s transition function *in principle*. Thus, inspired by Zhang et al. (2023), we create a custom NPE architecture with hand-tuned weights that achieves perfect accuracy (zero error) on every possible transition in the `maze` domain. We then train randomly-initialized copies of this network, as well as larger variations of it, to investigate whether the training process can discover weights that generalize. More details and results are included in Appendix F.

To match the tests in the prior subsections, we train the networks in 8×8 levels. We denote by NPE_X_Y a network X times wider than our hand-crafted design with $Y - 1$ extra layers in each final feed-forward block. Shown in Fig. 5a, we find that NPE_8_3 is seemingly able to achieve perfect accuracy after approx. 340K observations, which is about 200 \times slower than TreeThink in this domain. As displayed in Fig. 5b, this coincides with the network reaching zero training loss (to measured precision). However, it eventually (after about 770K observations) encounters a state in which it produces a significant error, after which its performance immediately rises and remains at the same level as the other networks. We suspect that there are at least two causes: first, the optima found by the training process performs well in many cases, but poorly in others, though this fact may not be apparent even after thorough testing; and second, the gradient of the loss is very steep near these optima, so small deviations can lead to parameter updates that significantly diminish the network’s accuracy on almost all transitions.

During training, we also test each network in 16×16 instances of the same environment. While the networks manage to easily surpass the `static` baseline in the 8×8 levels, Fig. 5c shows that they almost always output predictions with *massive* error in these new levels; only NPE_1_1, which gets the highest training error, dips below the `static` line for a brief moment. In other words, the networks’ knowledge does not transfer – even to levels only slightly more complex. This also significantly impacts the agent’s ability to plan successfully; see Appendix G for experiments comparing TreeThink and NPE using Monte-Carlo Tree Search (Schrittwieser et al., 2020).

4 FUTURE WORK

We introduced *TreeThink*, a new object-oriented transition learning algorithm capable of modeling more-complex environments than prior work, including domains with reward signals. TreeThink is based on our novel ILP algorithm, *TreeLearn*. To facilitate reproduction and extension of our results, the code for our algorithms, neural baselines, and benchmarks will be released after publication.

Our contributions open up several paths for future work. First, it will be worthwhile to investigate potential runtime optimizations, especially to the `observe` function. Second, extension to even more kinds of environments should follow naturally from the framework we have outlined. Third, a theoretical analysis of the convergence and sample complexity of TreeThink would be extremely worthwhile. Fourth, as TreeThink represents the first object-oriented transition learning algorithm capable of modeling reward functions, our work enables future developments in planning for object-oriented reinforcement learning.

486 REFERENCES
487

488 Jacob Adkins, Michael Bowling, and Adam White. A method for evaluating hyperparameter sensi-
489 tivity in reinforcement learning. In *The Thirty-eighth Annual Conference on Neural Information*
490 *Processing Systems*, Dec. 2024.

491 Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order logical decision trees. *Arti-
492 ficial Intelligence*, 101(1):285–297, May 1998.

493 Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. A compositional
494 object-based approach to learning physical dynamics. *CoRR*, abs/1612.00341, 2016.

495 Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In *Computers
496 and Games*, pp. 72–83, 2007.

497 Andrew Cropper and Sebastian Dumančić. Inductive logic programming at 30: A new introduction.
498 *JAIR*, 74:147–172, Sep. 2022.

499 Andrew Cropper and Sophie Tourret. Logical reduction of metarules. *Machine Learning*, 109(7):
500 1323–1369, July 2020.

501 Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation for efficient
502 reinforcement learning. In *Proc. ICML*, pp. 240–247, July 2008.

503 Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
504 machines. In *International Conference on Learning Representations*, May 2019.

505 Kurt Driessens, Jan Ramon, and Hendrik Blockeel. Speeding up relational reinforcement learning
506 through the use of an incremental first order decision tree learner. In *Proceedings of the 12th
507 European Conference on Machine Learning*, pp. 97–108, Sept. 2001.

508 Jeff Druce, James Niehaus, Vanessa Moody, David Jensen, and Michael Littman. Brittle ai,
509 causal confusion, and bad mental models: Challenges and successes in the xai program. *CoRR*,
510 abs/2106.05506, Jun. 2021.

511 Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
512 Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. *CoRR*,
513 abs/2010.01083, Oct. 2020.

514 Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile. In
515 *Proceedings of the AAAI conference on artificial intelligence*, pp. 3681–3688, 2019.

516 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
517 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
518 tion. In *Advances in Neural Information Processing Systems*, pp. 11525–11538, Dec. 2020.

519 Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
520 Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
521 language models. *CoRR*, abs/2410.05229, Oct. 2024.

522 Vaishnavh Nagarajan, Anders Andreassen, and Behnam Neyshabur. Understanding the failure
523 modes of out-of-distribution generalization. In *International Conference on Learning Repre-
524 sentations*, Jan. 2021.

525 J. R. Quinlan. Induction of decision trees. *Machine Learning*, 1:81–106, Mar. 1986.

526 Christopher Rosin. Multi-armed bandits with episode context. *Annals of Mathematics and Artificial
527 Intelligence*, 61:203–230, Sept. 2010.

528 Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
529 Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
530 go, chess and shogi by planning with a learned model. *Nature*, 588(7839):604–609, 2020.

531 Elizabeth S. Spelke. Principles of object perception. *Cognitive Science*, 14(1):29–56, Jan. 1990.

540 Gabriel Stella and Dmitri Loguinov. QORA: Zero-shot transfer via interpretable object-relational
541 model learning. In *Forty-first International Conference on Machine Learning*, July 2024.
542

543 R. S. Sutton and A. G. Barto. *Reinforcement Learning: An Introduction*. MIT Press, 2nd edition,
544 2018.

545 Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
546 for temporal abstraction in reinforcement learning. *Artificial Intelligence*, 112(1):181–211, Aug.
547 1999.

548 Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On the
549 paradox of learning to reason from data. In *Proceedings of the Thirty-Second International Joint
550 Conference on Artificial Intelligence, IJCAI-23*, pp. 3365–3373, Aug. 2023.
551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 A FOLDT LEARNER PSEUDOCODE
595596
597 To improve portability and usability, our implementation of TreeThink’s FOLDT-learning ILP
598 method is self-contained. For completeness, we describe all of the components of our codebase
599 here. We use Python-esque syntax for types; e.g., `MyClass[T]` refers to a generic (i.e., templated)
600 class with a single type parameter, `T`.
601602 A.1 UTILITY CLASSES
603604 We make use of several general-purpose utility classes and functions. As the implementations are
605 typically straightforward, we generally include only the interface, though pseudocode implemen-
606 tations are given for more complex components.
607608 A.1.1 TREE CLASS
609610 We use a templated binary tree class as the basis for our first-order logical decision trees. The class
611 has two template parameters: the datatype stored in each branch, which we denote by `B`, and the
612 datatype stored in each leaf, which we denote by `L`. As the implementation is fairly straightforward
613 and typical, we simply enumerate the interfaces in Algorithm 1. For conciseness, we refer to the
614 type `Tree[B, L]` as `Tree`, as the template parameters remain the same throughout.
615616 **Algorithm 1:** The interface to a generic binary tree class617
1 **Func** `Tree.init(B data, Tree left, Tree right) → Tree`
618 | // Initialize a branch with two children
619 2 **Func** `Tree.init(L data) → Tree`
620 | // Initialize a leaf
621 3 **Func** `Tree.isBranch() → bool`
622 | // Test if this tree node is a branch
623 4 **Func** `Tree.getBranchData() → B`
624 | // If this tree is a branch, get its branch data
625 5 **Func** `Tree.getLeftChild() → Tree`
626 | // If this tree is a branch, get its left child sub-tree
627 6 **Func** `Tree.getRightChild() → Tree`
628 | // If this tree is a branch, get its right child sub-tree
629 7 **Func** `Tree.isLeaf() → bool`
630 | // Test if this tree node is a leaf
631 8 **Func** `Tree.getLeafData() → L`
632 | // If this tree is a leaf, get its leaf data
633 9 **Func** `Tree.convertToLeaf(L data) → void`
634 | // Turn this tree node into a leaf with the specified data; any existing child sub-trees are
635 | deleted
636 10 **Func** `Tree.convertToBranch(B data, Tree left, Tree right) → void`
637 | // Turn this tree node into a branch with the specified data and children640
641 A.1.2 JOINT PROBABILITY DISTRIBUTION
642643 We use a class template called `FTable`, shown in Algorithm 2, to manage the joint probability dis-
644 tribution associated with each test (as well as the baseline inside each leaf). The class is a template
645 parameterized by the input space `X` (representing the possible values of the test, e.g., true and false)
646 and output space `Y` (representing the set of outputs that have been observed). Note that the imple-
647 mentation of this class determines the input and output space sizes dynamically, as observations are
648 received.

648
649

Algorithm 2: The interface to our conditional probability distribution class, FTable

```

650 1 Func FTable.init() → FTable
651  | // Initialize an empty joint probability distribution
652 2 Func FTable.observe(X input, Y output) → void
653  | // Record a single (input, output) observation  $(x, y) \in X \times Y$ 
654 3 Func FTable.getConditionalDistribution(X input) → ProbabilityDistribution[Y]
655  | // Return the conditional distribution  $\hat{P}(y|x)$  for a specified input value  $x \in X$ 
656 4 Func FTable.getScoreinterval() → ConfidenceInterval
657  | // Compute a confidence interval over this joint probability distribution's  $\mathcal{S}$  score (Equation 4)
658
659
```

660
661
662
663
664**A.1.3 CONFIDENCE INTERVAL**

We use a class with data members `lower` and `upper` to represent confidence intervals. The only additional noteworthy component is the non-overlapping comparison we use, as shown in Algorithm 3.

665
666
667
668
669
670
671

Algorithm 3: The interface for a simple confidence interval structure

```

1 Func ConfidenceInterval.init(float lower, float upper) → ConfidenceInterval
| // Initialize a confidence interval with  $0 \leq \text{lower} \leq \text{upper} \leq 1$ 
2 Func isBetterThan(ConfidenceInterval a, ConfidenceInterval b) → bool
| // Is interval a greater than (not overlapping) interval b?
3 return a.lower > b.upper
```

672
673
674
675
676
677**A.1.4 PREDICATES**

Several classes are shown in Algorithm 4. The `Predicate` class represents a type of predicate, e.g., $P(i) : X_i[\text{pos}] = (1, 0)$. The `GroundPredicate` structure represents a predicate with objects bound to its arguments. The predicate set classes are used to input truth values to FOLDTs.

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **Algorithm 4:** Utility classes related to predicates

703

704 // An abstract class, extended by specific predicate types (e.g., attribute equality, relative
705 // difference)

706 **class** {

707 **Func** *getArgumentCount()* \rightarrow *int*
708 | // The arity of this predicate

709 **Func** *getArgumentTypes()* \rightarrow *list[int]*
710 | // The class type of each argument to this predicate

711 } *Predicate*

712 // A predicate, along with object bindings to each of its argument slots

713 **struct** {

714 // The (lifted, with no bound variables) predicate type of this ground predicate
715 *Predicate p*

716 // The ids of the objects that are bound as input to the predicate *p*
717 *list[int]* *arguments*

718 } *GroundPredicate*

719 // Stores the truth value of (ground) predicates, computed from an object-based state, for use by
720 // FOLDTs

721 **class** {

722 **Func** *getValue(GroundPredicate g)* \rightarrow *bool*
723 | // Check whether the given fact (predicate evaluated on specific objects) is true

724 **Func** *getObservations(Predicate p)* \rightarrow *set[GroundPredicate]*
725 | // Get all of the ground predicates for a predicate type *p*
726 | // This corresponds to all object bindings that make the predicate true in the current state

727 } *AbstractPredicateSet*

728 // Explicitly lists all true predicates from an object-based state

729 **class** {

730 **Func** *add(GroundPredicate g)* \rightarrow *void*
731 | // Store the fact that *g* is true

732 **Func** *getPredicates()* \rightarrow *set[Predicate]*
733 | // Enumerate all the types of predicates that have true bindings (used to optimize FOLDT
734 | // observation)

735 } *FullPredicateSet* extends *AbstractPredicateSet*

736 // Implements the on-demand predicate query optimization: only predicates that are used by a
737 // FOLDT get computed

738 // When the predicate set is queried by a FOLDT, it checks its cache;
739 // If the cache is missing an entry, the predicate set will evaluate the truth-value directly from the
740 // object-based state.

741 **class** {

742 **Func** *init(State s)* \rightarrow *QueryPredicateSet*
743 | // Initialize the predicate set with an empty cache

744 } *QueryPredicateSet* extends *AbstractPredicateSet*

745

746

747

748

749

A.1.5 COMBINATORIAL FUNCTIONS

750

751

752

753 We use several combinatorics functions, e.g., to generate combinations and cartesian products. The
754 most important functions for tree building are *newvars* and *bindings*, which are used to enum-
755 erate all of the ways that existing (and new) variables can be bound into a predicate of a given
arity. The functions are shown in Algorithm 5.

756
757**Algorithm 5:** The combinatorics functions we use

```

758 1 Func Combinatorics.combinations(int n, int r)  $\rightarrow$  list[list[int]]
759  | // Compute all choices of r elements from the set  $\{0, \dots, n - 1\}$ 
760 2 Func Combinatorics.product(int n, int r)  $\rightarrow$  list[list[int]]
761  | // Compute the Cartesian product  $\{0, \dots, n - 1\}^r$ 
762 3 Func Combinatorics.product(list[set[int]] sets)  $\rightarrow$  list[list[int]]
763  | // Compute the Cartesian product of the sets in a list
764  | // If the input is a list of sets  $[X_1, X_2, \dots, X_n]$ , then the output contains all elements in the set
765  |  $X_1 \times X_2 \times \dots \times X_n$ 
766 4 Func Combinatorics.newvars(int k)  $\rightarrow$  set[tuple[list[int], int]]
767  | // Computes all ways to generate new variables to fill in k argument slots (up to the
768  | equivalence of new variables)
769  | // For example, k = 1 gives:  $(X_0)$ ; k = 2 gives:  $(X_0, X_0), (X_0, X_1)$ ;
770  | // and k = 3 gives:  $(X_0, X_0, X_0), (X_0, X_0, X_1), (X_0, X_1, X_0), (X_0, X_1, X_1), (X_0, X_1, X_2)$ 
771  | // The function returns a set of tuples, each containing a list of variable ids and the number of
772  | new variables in that list
773 5 set[tuple[list[int], int]] listings = newvars(k - 1)
774 6 set[tuple[list[int], int]] result = {} // Initialize empty set
775 7 for (listing, n) in listings do
776  | // Add all combinations up to n
777 8 for i in  $\{0, \dots, n - 1\} do
778 9 | list[int] vars = copy(listing) // new list with same contents
779 10 | vars.append(i)
780 11 | result.insert((vars, n))
781 12 // Add listing with a new variable
782 13 listing.append(n)
783 14 result.insert((listing, n + 1))
784 15 return result
785 15 Func Combinatorics.bindings(int e, int n)  $\rightarrow$  set[tuple[list[int], int]]
786  | // Computes all ways to generate bindings for a predicate with n arguments, using up to e
787  | existing variables
788  | // The function returns a set of tuples, each containing a list of variable ids and the number of
789  | new variables in that list
790 16 set[tuple[list[int], int]] result = {} // Initialize empty set
791 17 for m in  $\{0, \dots, n\}$  do
792 18 | list[list[int]] slots_new = combinations(n, m) // Each list[int] specifies which slots will get
793 19 | a new variable
794 20 | list[list[int]] existing_vars = product(e, n - m) // Which existing variables will we use?
795 21 | set[tuple[list[int], int]] new_vars = newvars(m) // How will we bind new variables?
796 21 for s_new in slots_new do
797 22 | s_exist =  $\{0, \dots, n - 1\} \setminus s_{new}$ 
798 23 | for (v_new, k) in new_vars do
799 24 | | for v_exist in existing_vars do
800 25 | | | list[int] args = [0, 0, ...] // List initialized to length n
801 26 | | | // Fill in the slots with both existing and new variables
802 26 | | | for (i, v) in zip(s_exist, v_exist) do
803 27 | | | | args[i] = v
804 28 | | | for (i, v) in zip(s_new, v_new) do
805 29 | | | | args[i] = v + e // Offset new variable indices by the number of existing
806 29 | | | | variables
807 30 | | | | result.insert((args, k))
808 31 return result
809$ 
```

810 A.1.6 FOLDT DATA CLASSES
811

812 The structures in Algorithm 6 hold data for the FOLDT learning and evaluation processes. Each
813 branch node contains a Hypothesis (used as the test for that branch) and TrackingData (for continual
814 updates); each leaf contains solely TrackingData (its baseline output distribution is used as the leaf's
815 output).

816 **Algorithm 6:** The classes used to manage FOLDT data
817

```

818 1 struct {
819     // The condition this hypothesis is testing
820     Predicate p
821
822     // The ids of the variables that are input to this hypothesis' test's predicate condition
823     // Note that this refers to variables from the tree's quantifiers, not to the ids of objects in a
824     // state
825     list[int] var_ids
826
827     // The number of new variables this hypothesis' test introduces
828     // All quantified variables have ids that count up starting from zero
829     int n_new_vars
830
831     // The class type of each quantified variable at this node, using this test (inherits from parent
832     // nodes)
833     list[int] var_class_types
834
835 } Hypothesis
836
837 7 struct {
838     Hypothesis hypothesis
839     FTable counter
840
841 } Candidate
842
843 11 struct {
844     // The number of variables that are already bound by the parents of this node
845     int n_existing_vars
846
847     // The class type of each quantified variable before this node (inherits from parent nodes)
848     list[int] var_class_types
849
850     // The set of predicates that have been observed and tracked, so they don't get
851     // double-tracked
852     set[Predicate] observed
853
854     // List of hypotheses being evaluated, along with their observed joint probability distributions
855     list[Candidate] current
856
857     // The baseline probability distribution of outputs observed at this node (not conditioned on
858     // any test)
859     FTable baseline
860
861 } TrackingData
862
863 18 struct {
864     // The test used to make decisions at this branch
865     Hypothesis hypothesis
866
867     // Tracking data, in case this branch needs to be updated
868     TrackingData tracking
869
870 } Branch
871
872 22 struct {
873     TrackingData tracking
874
875 } Leaf

```

864 A.2 FOLDT CLASS
865866 The FOLDT class, shown in Algorithm 7, ties all of the above pieces together to implement the ob-
867 servation and prediction interfaces. The FOLDT class is templated by its output type, Y . Functions
868 related to observation are shown in Algorithms 8, 9, 10, 11, and 12. Functions related to prediction
869 are shown in Algorithms 13 and 14.870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920**Algorithm 7:** The FOLDT class interface

```

921 1 class {
922 2     // The learning hyperparameter,  $\alpha \in (0, 1)$ ; we use a default value of 0.01
923 3     float  $\alpha = 0.01$ 
924 4     // The number of objects this FOLDT takes as an argument (for our purposes, this is always
925 5     one)
926 6     int arg_count = 1
927 7     // The class type of each input object for this FOLDT
928 8     list[int] arg_types
929 9     // This FOLDT's internal binary tree, using our generic utility class
930 10    Tree[Branch, Leaf] tree
931 11
932 12    Func init(float  $\alpha$ , int arg_count, list[int] arg_types)  $\rightarrow$  FOLDT
933 13    | // Initializes a First-Order Logical Decision Tree
934 14    Func reset()  $\rightarrow$  void
935 15    | // Resets this FOLDT's internal tree back to a leaf with no recorded observations
936 16    Func observe(PredicateSetFull observation, list[int] arguments, Y output)  $\rightarrow$  void
937 17    | // Record a single observation
938 18    | return observeRecursive(tree, observation, {arguments}, output)
939 19
940 20    Func predict(AbstractPredicateSet observation, list[int] arguments)  $\rightarrow$  ProbabilityDistribution[Y]
941 21    | // Compute a distribution over the output for a given input
942 22    | result = evaluateShortCircuit(tree, observation, arguments)
943 23    | return result[0].tracking.baseline.getConditionalDistribution(0)
944 24
945 25
946 26
947 27
948 28
949 29

```

Algorithm 8: FOLDT class function: observeRecursive

```

950 1 Func observeRecursive(Tree t, PredicateSetFull observation, set[list[int]] bindings_in, Y output)  $\rightarrow$  void
951 2     TrackingData tracking = (t.getBranchData().tracking if t.isBranch() else
952 3         t.getLeafData().tracking)
953 4     // Update current node
954 5     addPredicates(tracking, observation)
955 6     // If this flag is true, we'll reset the node's children
956 7     bool new_test = updateTests(tracking, observation, bindings_in, output_value)
957 8     // Convert leaf  $\rightarrow$  branch or branch  $\rightarrow$  leaf
958 9     if updateNodeType(t, tracking) then
959 10    | new_test = false // We don't want to reset the node's children twice
960 11
961 12    // Reset or recurse
962 13    if t.isBranch() then
963 14        if new_test then
964 15            | resetBranch(t, tracking)
965 16        | (branch, bindings_out) = checkBranch(observation, t.getBranchData().hypothesis,
966 17            bindings_in)
967 18        if branch then
968 19            | observeRecursive(t.getLeftChild(), observation, bindings_out, output)
969 20        else
970 21            | observeRecursive(t.getRightChild(), observation, bindings_out, output)

```

971

972
973
974**Algorithm 9:** FOLDT class function: addPredicates

```

975 1 Func addPredicates(TrackingData tracking, PredicateSetFull observation)  $\rightarrow$  void
976 2   for Predicate p  $\in$  observation.getPredicates() do
977 3     if p  $\notin$  tracking.observed then
978 4       tracking.observed.insert(p)
979 5       // Generate all candidates for this predicate (with all bindings of new and existing
980 6       // variables)
981 7       n = p.getArgumentCount()
982 8       for (binding, nnew)  $\in$  Combinatorics.bindings(tracking.n_existing_vars, n) do
983 9         // Ensure this binding is consistent with the predicate's class restrictions
984 10        list[int] var_types = tracking.var_class_types
985 11        valid = true
986 12        for i  $\in$  {0, ..., n - 1} do
987 13          v = binding[i]
988 14          class_restriction = p.getArgumentTypes()[i]
989 15          if v < len(var_types) then
990 16            // This variable may already have a type; maybe sure it's consistent
991 17            int var_type = var_types[v]
992 18            if var_type is None then
993 19              // Not inconsistent yet, but may need to be restricted now
994 20              var_types[v] = class_restriction
995 21            else if class_restriction is not None then
996 22              // Need to ensure that variable type and predicate restriction match
997 23              if var_type != class_restriction then
998 24                valid = false
999 25              else
1000 26                var_types.append(class_restriction)
1001 27            if not valid then
1002 28              continue
1003 29          // Add the new hypothesis
1004 30          Hypothesis h
1005 31          h.p = p
1006 32          h.var_ids = binding
1007 33          h.n_new_vars = nnew
1008 34          h.var_class_types = var_types
1009 35          tracking.current.append(Candidate(h, FTable()))

```

1005
1006
1007**Algorithm 10:** FOLDT class function: updateTests

```

1008 1 Func updateTests(TrackingData tracking, PredicateSetFull observation, set[list[int]] bindings_in, Y
1009 2   output)  $\rightarrow$  bool
1010 3   tracking.baseline.observe(0, output)
1011 4   for Candidate c  $\in$  tracking.current do
1012 5     branch = checkBranch(observation, c.hypothesis, bindings_in)
1013 6     c.counter.observe(branch, output) // branch will be either 0 (false) or 1 (true)
1014 7     // "Bubble up" the best hypothesis (sort, descending, by score intervals)
1015 8     for i  $\in$  [len(tracking.current) - 2, ..., 0] do
1016 9       Candidate a = tracking.current[i] Candidate b = tracking.current[i + 1]
1017 10      // If b is better than a (with confidence), swap them (so b moves up in the list)
1018 11      if isBetterThan(b.counter.getScoreInterval(), a.counter.getScoreInterval()) then
1019 12        swap(a, b)
1020 13        if i = 0 then
1021 14          // New best candidate; if this node is a branch, it will need to be reset
1022 15          return true
1023 16
1024 17 return false

```

1025

1026
1027
1028
1029
1030
1031

Algorithm 11: FOLDT class function: updateNodeType

```

1 Func updateNodeType(Tree t, TrackingData tracking) → bool
2   if t.isLeaf() then
3     // Should we make this leaf back into a branch?
4     // (i.e., is there a candidate with a confidence interval strictly greater than the baseline?)
5     if len(tracking.current) > 0 and
6       tracking.current[0].counter.getScoreInterval() > tracking.baseline.getScoreInterval() then
7         Candidate best = tracking.current[0]
8         h = best.hypothesis
9         left = Leaf(TrackingData(tracking.n_existing_vars + h.n_new_vars, h.var_class_types, {}, [],
10           [], FTable()))
11        right = Leaf(TrackingData(tracking.n_existing_vars, h.var_class_types, {}, [], FTable()))
12        t.convertToBranch/Branch(h, tracking), left, right)
13        return true
14   else
15     // Should we make this branch back into a leaf?
16     if len(tracking.current) = 0 or
17       tracking.current[0].counter.getScoreInterval() > tracking.baseline.getScoreInterval() then
18         t.convertToLeaf(Leaf(tracking))
19         return true
20   return false // No update occurred
  
```

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062

Algorithm 12: FOLDT class function: resetBranch

```

1 Func resetBranch(Tree t, TrackingData tracking) → void
2   Branch b = t.getBranchData()
3   Candidate best = tracking.current[0] // Best test; we'll use it to reset the node and construct
4     the children
5   h = best.hypothesis
6   // Update the branch to use the new best test
7   b.hypothesis = h
8   // Reset the branch's children using the new test's bound variable information
9   t.left = Leaf(TrackingData(tracking.n_existing_vars + h.n_new_vars, h.var_class_types, {}, [],
10     FTable()))
11  t.right = Leaf(TrackingData(tracking.n_existing_vars, h.var_class_types, {}, [], FTable()))
  
```

1075
1076
1077
1078
1079

1080
1081
1082
1083
1084
1085
1086
1087
1088

Algorithm 13: FOLDT class function: checkBranch

```

1089 1 Func matchVars(list[int] bindings, list[int] hvars, list[int] args) → (bool, list[int])
1090 2   // Determine if additional variables can be matched to produce a consistent binding
1091 3   for i in {0, ..., len(args) – 1} do
1092 4     // The index of the variable at this position in the hypothesis
1093 5     // E.g., if the hypothesis is  $P(X_0, X_2)$  and i = 1, then v = 2
1094 6     v = hvars[i]
1095 7     // The id of the object we are currently looking to bind
1096 8     o = args[i]
1097 9     // Check if variable index is bound
1098 10    if v < len(bindings) then
1099 11      // If bound, object id must match
1100 12      if o ≠ bindings[v] then
1101 13        | return (false, [])
1102 14    else
1103 15      // The variable isn't bound, so we can try binding it to this object
1104 16      // This only allows unique bindings (e.g., object B cannot be bound to both  $X_0$  and  $X_1$ )
1105 17      if o ∈ bindings then
1106 18        | return (false, [])
1107 19      bindings.append(o)
1108 20
1109 21    return (true, bindings)
1110
1111 13 Func checkBranch(AbstractPredicateSet observation, Hypothesis h, set[list[int]] bindings_in) → (bool,
1112 14   set[list[int]])
1113 15   // Determine whether left branch or right should be taken, based on available bindings and
1114 16   // facts of the observation
1115 17   set[list[int]] bindings_left // Potential variable bindings, if the left branch can be taken
1116 18   for list[int] bindings ∈ bindings_in do
1117 19     // Looping over getObservations(predicate) automatically restricts the search to results
1118 20     // with the right class types
1119 21     for GroundPredicate g ∈ observation.getObservations(h.p) do
1120 22       // Check if this ground predicate's arguments are consistent with existing variable
1121 23       // bindings
1122 24       // (and hypothesis variable indices)
1123 25       // (match, var_bindings) = matchVars(bindings, h.var_ids, g.arguments)
1124 26       if match then
1125 27         | bindings_left.insert(var_bindings)
1126 28
1127 29   if bindings_left is not empty then
1128 30     // The left branch can be taken, so we provide the new variable bindings
1129 31     return (true, bindings_left)
1130
1131 22   else
1132 23     // If the right branch is taken, no new variables are bound
1133 24     return (false, bindings_in)

```

1127
1128
1129
1130
1131
1132
1133

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143

Algorithm 14: FOLDT class function: evaluateShortCircuit

```

1 Func evaluateShortCircuit(Tree t, AbstractPredicateSet observation, list[int] bindings) → (Leaf, bool, BitString)
2   // An optimized version of checkBranch that evaluates recursively, in DFS order, and
3   // returns as soon as possible
4   if t.isLeaf() then
5     | return (t.getLeafData(), true, “1”)
6   Hypothesis h = t.getBranchData().hypothesis
7   (Leaf, bool, BitString) best_result = (None, false, “0”)
8   best_rank = 0
9   for GroundPredicate g ∈ observation.getObservations(h.p) do
10    // Check if this ground predicate’s arguments are consistent with existing variable bindings
11    // (and hypothesis variable indices)
12    (match, var_bindings) = matchVars(bindings, h.var_ids, g.arguments) // See
13    Algorithm 13
14    if match then
15      // There is a match, so we can take the left branch
16      result = evaluateShortCircuit(t.getLeftChild(), observation, var_bindings)
17      rank = result[2] + “1” // Shift over the BitString by inserting a one at the end
18      if result[1] then
19        // This child (and all of its children, recursively) got preferred paths; return
20        // immediately
21        return (result[0], true, rank)
22      else
23        // Not preferred, but still good; see if it’s better than the currently-most-preferred
24        // binding
25        if rank > best_rank then
26          | best_rank = rank
27          | best_result = result
28
29    // Can the left branch be taken?
30    if best_rank > 0 then
31      | return best_result
32
33    // No match, have to take right branch (not preferred)
34    result = evaluateShortCircuit(t.getRightChild(), observation, bindings)
35    return (result[0], false, result[2] + “0”) // Shift over the BitString by inserting a zero at the
36    // end
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
```

1188
1189

B OORL LEARNER PSEUDOCODE

1190
1191
1192
1193
1194
1195

Algorithm 15 shows the TreeThink API, comprising two functions: `observe(s, a, s')` and `predict(s, a)`. Algorithm 16 shows the `extractFacts` function. Algorithm 17 shows how the `QueryPredicateSet` scans an object-based state to update its predicate cache. Recall that our implementation uses typed predicates (i.e., their argument slots are annotated with variable class types).

1196

Algorithm 15: TreeThink's high-level `observe` and `predict` procedures1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

```

1 Func observe(State s, Action a, State s')  $\rightarrow$  void
2   facts = extractFacts(s) // extract facts (ground predicates) from the object-based state
3   for  $i \in \{1, \dots, n_s\}$  do
4     for Member  $m$  in attr(s, i) do
5       // calculate the change in attribute  $m$ 's value, e.g.,  $+(1, 0)$ 
6       Value  $v = s'_i[m] - s_i[m]$ 
7       // learn to predict this attribute
8       Tree  $t = \text{rules}[\text{class}(s, i), m, a]$ 
9        $t.\text{observe}(\text{facts}, [i], v)$ 
10
11 Func predict(State s, Action a)  $\rightarrow$  State
12   facts = QueryPredicateSet(s) // use on-demand predicate queries
13   State  $s' = \text{State}()$  // initialize empty state
14   for  $i \in \{1, \dots, n_s\}$  do
15     for Member  $m$  in attr(s, i) do
16       Tree  $t = \text{rules}[\text{class}(s, i), m, a]$ 
17       // predict (a distribution over) this attribute's value
18       Value  $v = t.\text{predict}(\text{facts}, [i])$ 
19        $s'_i[m] = s_i[m] + v$ 
20   return  $s'$ 

```

1221
1222**Algorithm 16:** The `extractFacts` function1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

```

1 Func extractFacts(State s)  $\rightarrow$  FullPredicateSet
2   // For some class(es) of predicates, find all true bindings of those predicates in state  $s$ 
3   FullPredicateSet facts // initially empty
4   for  $i \in \{1, \dots, n_s\}$  do
5      $c_1 = \text{class}(s, i)$ 
6     // Extract attribute value predicates
7     for Member  $m$  in attr(s, i) do
8        $v = s_i[m]$ 
9        $g = \text{GroundPredicate}(P_{m,v}(c_1 X) : X[m] = v, [s_i])$ 
10      facts.add( $g$ )
11
12     // Extract relative difference predicates
13     for  $j \in \{i + 1, \dots, n_s\}$  do
14        $c_2 = \text{class}(s, j)$ 
15       for Member  $m$  in attr(s, i) \cap attr(s, j) do
16          $v = s_j[m] - s_i[m]$ 
17          $g = \text{GroundPredicate}(P_{m,v}(c_1 X, c_2 Y) : Y[m] - X[m] = v, [s_i, s_j])$ 
18         facts.add( $g$ )
19
20   return facts

```

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255

Algorithm 17: Updating the QueryPredicateSet cache; makes use of optimized state subsets (by class and by attribute value)

1256 1 **Func** *scan*(*State s, Predicate p*) \rightarrow *set[GroundPredicate]*
 1257 | // Find all of the variable bindings for which *p* is true in state *s*
 1258 2 **if** *p* is of type attribute value, *p* = $P_{m,v}(c_1 X)$ **then**
 1259 3 | **return** *scanAbs*(*s, c₁, m, v*)
 1260 4 **if** *p* is of type relative difference, *p* = $P_{m,v}(c_1 X, c_2 Y)$ **then**
 1261 5 | **return** *scanRel*(*s, c₁, c₂, m, v*)
 1262 6 **return** None // Additional predicate classes would necessitate additional cases
 1263
 1264 7 **Func** *scanAbs*(*State s, Predicate p, Type c, Member m, Value v*) \rightarrow *set[GroundPredicate]*
 1265 | *set[GroundPredicate]* *facts* = {} // Initialize empty set
 1266 8 **for** *i* \in $\{i \mid s_i[m] = v\}$ **do**
 1267 9 | **if** *class*(*s, i*) = *c* **then**
 1268 10 | | *g* = *GroundPredicate*(*p, [s_i]*)
 1269 11 | | *facts.insert*(*g*)
 1270 12 **return** *facts*
 1271
 1272 13
 1273
 1274 14 **Func** *scanRel*(*State s, Predicate p, Type c₁, Type c₂, Member m, Value v*) \rightarrow *set[GroundPredicate]*
 1275 | *set[GroundPredicate]* *facts* = {} // Initialize empty set
 1276 15 **for** *i* \in $\{i \mid \text{class}(s, i) = c_1\}$ **do**
 1277 16 | *v₁* = *s_i[m]*
 1278 17 | **for** *j* \in $\{j \mid s_j[m] = v + v_1\}$ **do**
 1279 18 | | **if** *class*(*s, j*) = *c₂* **then**
 1280 19 | | | *g* = *GroundPredicate*(*p, [s_i, s_j]*)
 1281 20 | | | *facts.insert*(*g*)
 1282 21 **return** *facts*
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 **C ENVIRONMENT DETAILS**
12971298 This section includes more details about each environment. As mentioned in the main text, some are
1299 taken from (or based on environments from) Stella & Loguinov (2024). Example states are shown
1300 in Figs. 7, 8, 9, and 10. As an additional example of the object-oriented state representation, Fig. 6
1301 shows the initial state from Fig. 1 in the form that an agent receives it (i.e., with no meaningful
1302 labels). Learning solely from this numerical data poses a significant challenge.
13031304

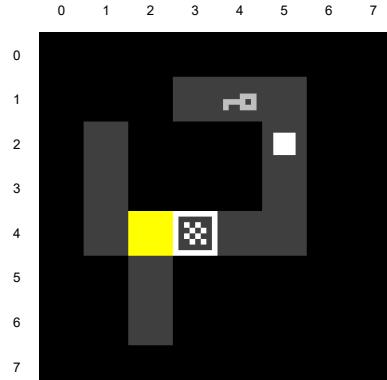
object	type	pos	status	locked
2	wall	(2, 0)	-	-
16	wall	(4, 2)	-	-
30	wall	(3, 5)	-	-
50	player	(5, 2)	-	-
51	door	(3, 4)	-	true
52	key	(4, 1)	free	-
53	goal	(2, 4)	-	-

1304

object	type	attr 0	attr 1	attr 2
2	0	(2, 0)	-	-
16	0	(4, 2)	-	-
30	0	(3, 5)	-	-
50	1	(5, 2)	-	-
51	2	(3, 4)	-	(0)
52	3	(4, 1)	(0)	-
53	4	(2, 4)	-	-

1312 (a) human-readable object list

1312 (b) object list as observed by an agent



1314 (c) a state in the keys domain

1315 Figure 6: The initial state from Figure 1, now showing in (b) the state data (object list) in the form
1316 that the agent receives it (i.e., with no semantic labeling of any attribute types or values). Note that
1317 for brevity, the lists show only a subset of the objects in the state.1318 **Walls** Shown in Fig. 7a, this is a maze-like domain in which the agent must learn basic relational
1319 rules. The environment’s four actions allow the player to move their character by one unit in each of
1320 the four grid directions. If the character would move into a wall, the action does nothing. Although
1321 this seems simple to humans, learning the rules of this environment directly from object-oriented
1322 transitions is difficult for existing methods. Notably, the importance of local rules (i.e., checking for
1323 walls near the player) is not included in the information that the agent receives.1324 **Doors** Shown in Fig. 7b, this domain extends walls with the addition of door objects and a color
1325 attribute. Both the player character and the doors possess the color attribute, which takes values in
1326 $\{0, 1\}$ in this domain. The agent can use the new change-color action toggle its color. Doors
1327 that are a different color from the player block its movement. Thus, the rules for this domain are
1328 more complex than those of the walls domain.1329 **Fish** Shown in Fig. 7c, this domain replaces the player character with one or more fish objects
1330 that move in a random direction – conditional on the surrounding walls – at each step. Thus, this
1331 environment tests an agent’s ability to robustly model stochastic transition functions.1332 **Gates** Shown in Fig. 7d, this is a highly-complex grid-world environment that features a large
1333 number of classes and actions. The new gate objects block normal player movement, except that the

1350 player can jump over gates (as long as the other side is not blocked) using the new `jump` actions
 1351 (one for each direction). The guard object, which is controlled independently of the player, is not
 1352 blocked by gates. Switches are also spread randomly throughout the walkable parts of the level;
 1353 whenever the player moves over a switch, its state is toggled.
 1354

1355 **Maze** Shown in Figs. 8a and 8b, this environment augments the `walls` domain with a reward
 1356 signal and goal objects. By default, all actions receive a penalty of -1 to incentivize the agent to
 1357 take the shortest path to a goal. Actions that attempt to move the player into a wall instead receive
 1358 a penalty of -2 , since the agent should never take such an action. If the agent does not attempt to
 1359 move into a wall, and its action results in it standing on a goal (i.e., by moving onto a goal or by
 1360 choosing to stay still when already on a goal), it receives a reward of $+1$. Although these dynamics
 1361 seem simple to most humans, we find that existing algorithms cannot learn this domain.
 1362

1363 **Coins** Shown in Figs. 8c and 8d, this environment is similar to the `maze` domain, but it replaces
 1364 the goals with coins. Unlike goals, coins disappear (i.e., are “picked up”) when the agent moves
 1365 over them, so each only gives a single reward. Thus, this domain encodes a routing problem, similar
 1366 to the Traveling Salesman Problem.
 1367

1368 **Keys** Shown in Figs. 9a and 9b, this environment adds keys and doors to the `maze` domain. Doors
 1369 are initially locked, preventing the player from passing through them. To move through a door, the
 1370 player must unlock it by bringing an unused key to it. Although any key can be used to open any
 1371 door, each key can only be used once. Out of all of the tested domains, this is the most challenging
 1372 to learn, likely due to the presence of highly complex and rare interactions (e.g., the player cannot
 1373 step onto an unused key if it is currently holding another key).
 1374

1375 **Lights** Shown in Fig. 9c, this is a simple non-grid-world domain in which the agent controls a
 1376 tunable remote that can be used to toggle lights. We augment the version from Stella & Loguinov
 1377 (2024) with a reward signal such that the agent receives a small penalty for tuning the remote (decre-
 1378 menting or incrementing the channel), a large penalty for turning a light on, and a large reward for
 1379 turning a light off.
 1380

1381 **Switches** Shown in 9d, this domain combines `walls` and `lights` into a more complex and
 1382 interesting scenario. Here, the player moves around a maze filled with switches and lights (formed
 1383 in pairs, indicated in our example images by their hue). When on top of a switch, the agent can take
 1384 the `toggle` action to mutate the state of the corresponding light, regardless of the position of the
 1385 light in the level. Thus, unlike the other grid-world domains, the `switches` environment contains
 1386 a kind of non-local behavior.
 1387

1388 **Scale(n_p, n_c)** Shown in Fig. 10, this set of environments augments the `walls` domain with n_p
 1389 distinct player classes, each of which has n_c copies of each movement action. This allows us to
 1390 evaluate the way an algorithm’s learning speed scales with the number of classes and actions in a
 1391 manner that keeps all else (i.e., the complexity of the environment’s rules) equal. In the example
 1392 images, since players may overlap, each player is indicated by a dot in a different position within
 1393 the white squares.
 1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

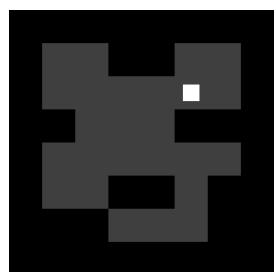
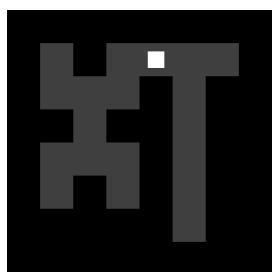
1453

1454

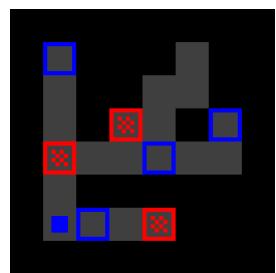
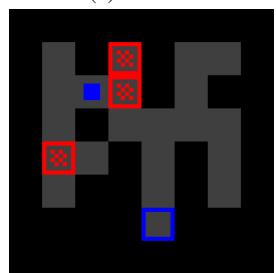
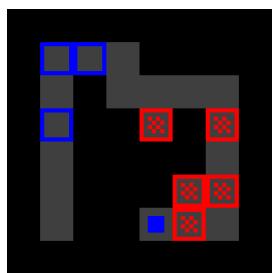
1455

1456

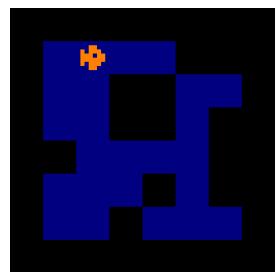
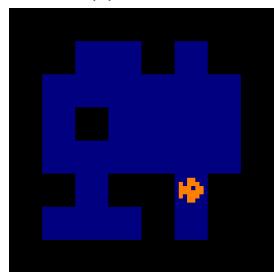
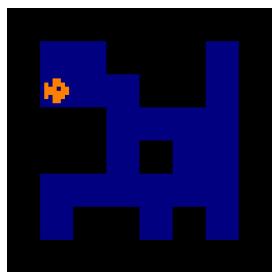
1457



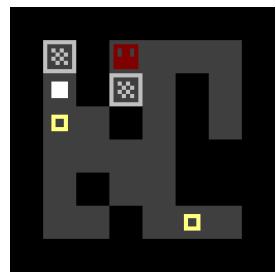
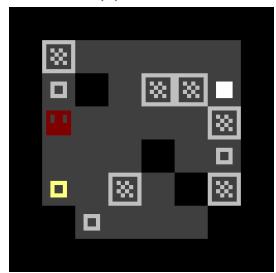
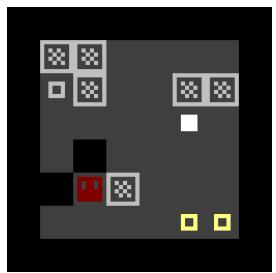
(a) walls



(b) doors



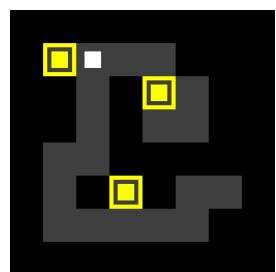
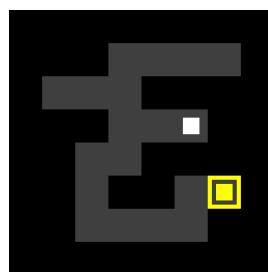
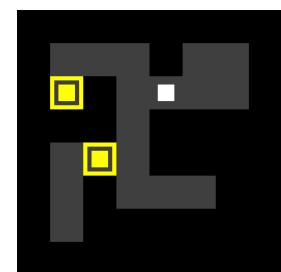
(c) fish



(d) gates

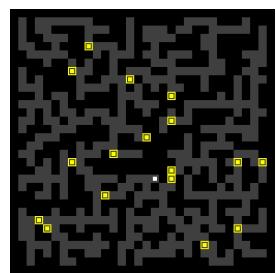
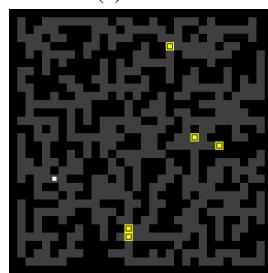
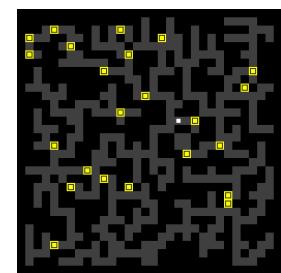
Figure 7: Example states, pt. 1 (walls, doors, fish, gates)

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473



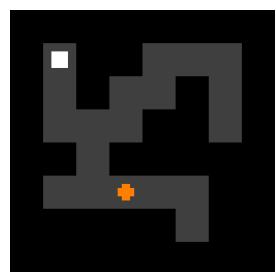
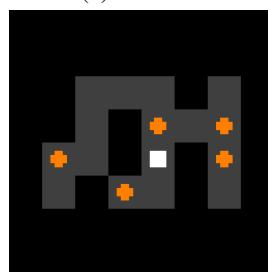
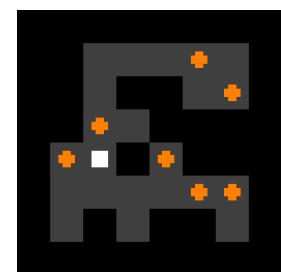
(a) maze

1474
1475
1476
1477
1478
1479
1480
1481
1482



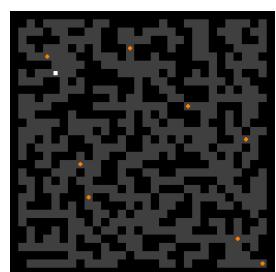
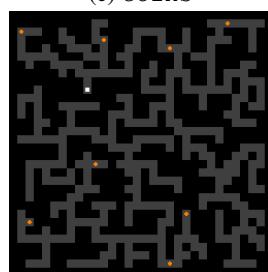
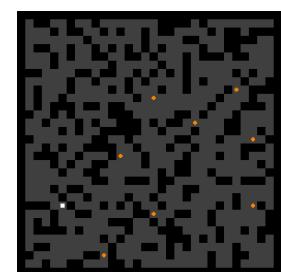
(b) maze-t

1483
1484
1485
1486
1487
1488
1489
1490
1491
1492



(c) coins

1493
1494
1495
1496
1497
1498
1499
1500
1501
1502

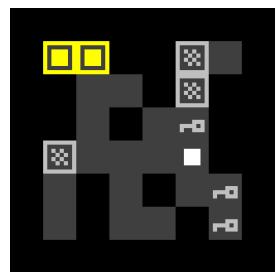
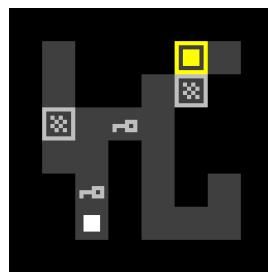
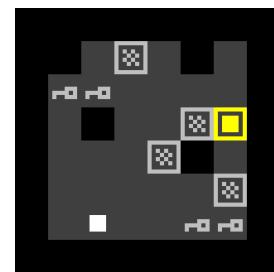


(d) coins-t

1503
1504
1505
1506
1507
1508
1509
1510
1511

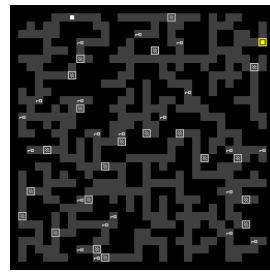
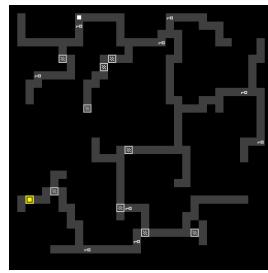
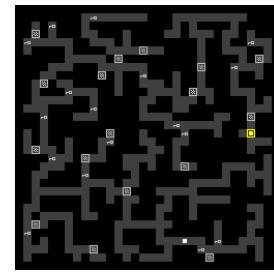
Figure 8: Example states, pt. 2 (maze, maze-t, coins, coins-t)

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527



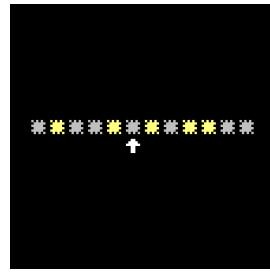
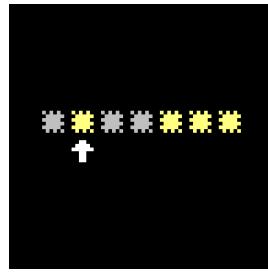
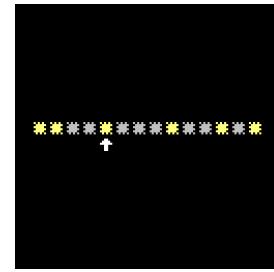
(a) keys

1528
1529
1530
1531
1532
1533
1534
1535
1536



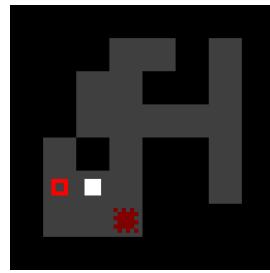
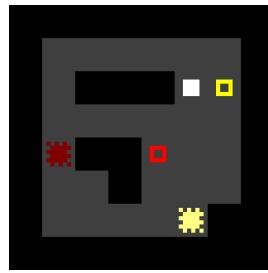
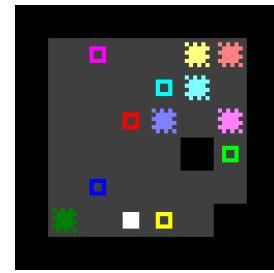
(b) keys-t

1537
1538
1539
1540
1541
1542
1543
1544
1545
1546



(c) lights

1547
1548
1549
1550
1551
1552
1553
1554
1555
1556



(d) switches

1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 9: Example states, pt. 3 (keys, keys-t, lights, switches)

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

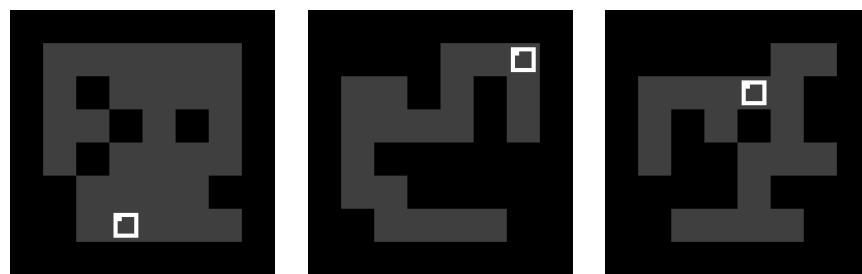
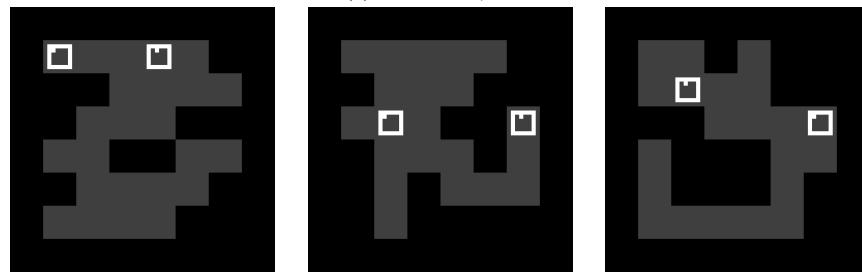
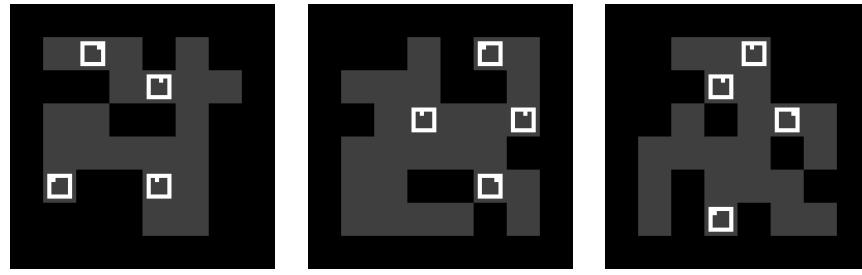
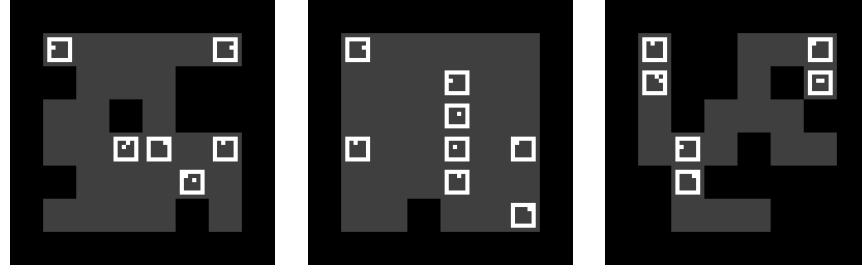
1609

1610

1611

1612

1613

(a) $\text{scale}(1, 1)$ (b) $\text{scale}(2, 2)$ (c) $\text{scale}(4, 4)$ (d) $\text{scale}(8, 8)$ Figure 10: Example states, $\text{scale}(n_p, n_c)$

1614

1615

1616

1617

1618

1619

1620 **D EXPERIMENT DETAILS: TREETHINK VS. QORA**
16211622 In each experiment (except those where QORA failed to complete training due to, e.g., causing the
1623 test machine to crash), we run both TreeThink and QORA ten times, averaging the runs' results
1624 together. We used the same α setting for both algorithms within each experiment, $\alpha = 0.01$ unless
1625 otherwise stated. Results are shown in Figs. 11, 12, 13, 14, 15, 16, 17, and 18. Note that because
1626 several machines were used for testing, timing results are not always comparable across different
1627 domains or configurations. However, each row of plots corresponds to a single test, so timings can
1628 be compared within the row.1629 Figs. 11, 12, 13, and 14 show the full data collected from tests in each domain (other than the scaling
1630 tests). Fig. 15 shows transfer tests (maze-t, coins-t, and keys-t). Figs. 16, 17, and 18 show
1631 results from the $\text{scale}(n_p, n_c)$ domains.1632 Several examples of trees constructed by TreeThink are shown in Fig. 19.
16331634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

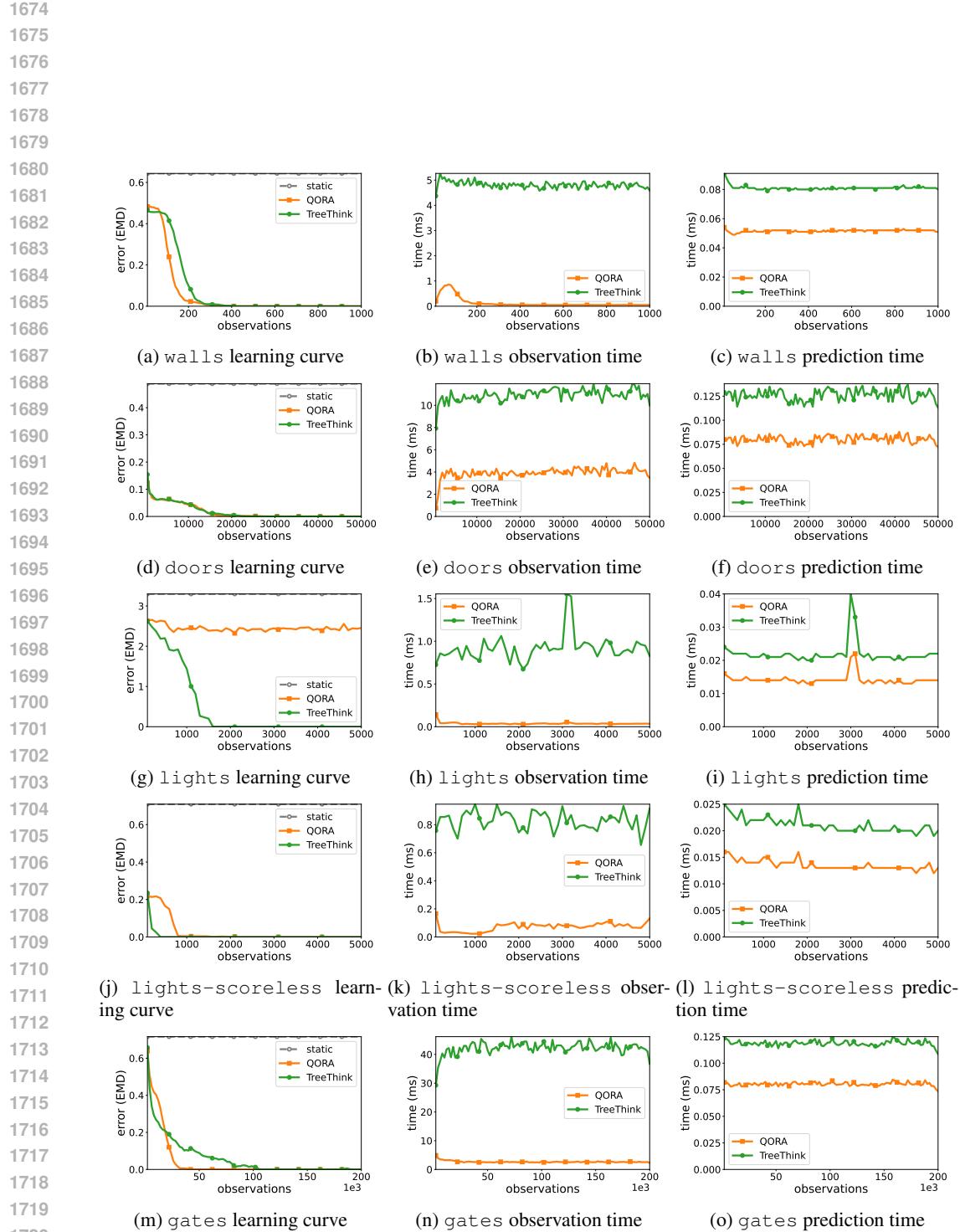


Figure 11: TreeThink vs. QORA (walls, doors, lights, lights-scoreless, gates)

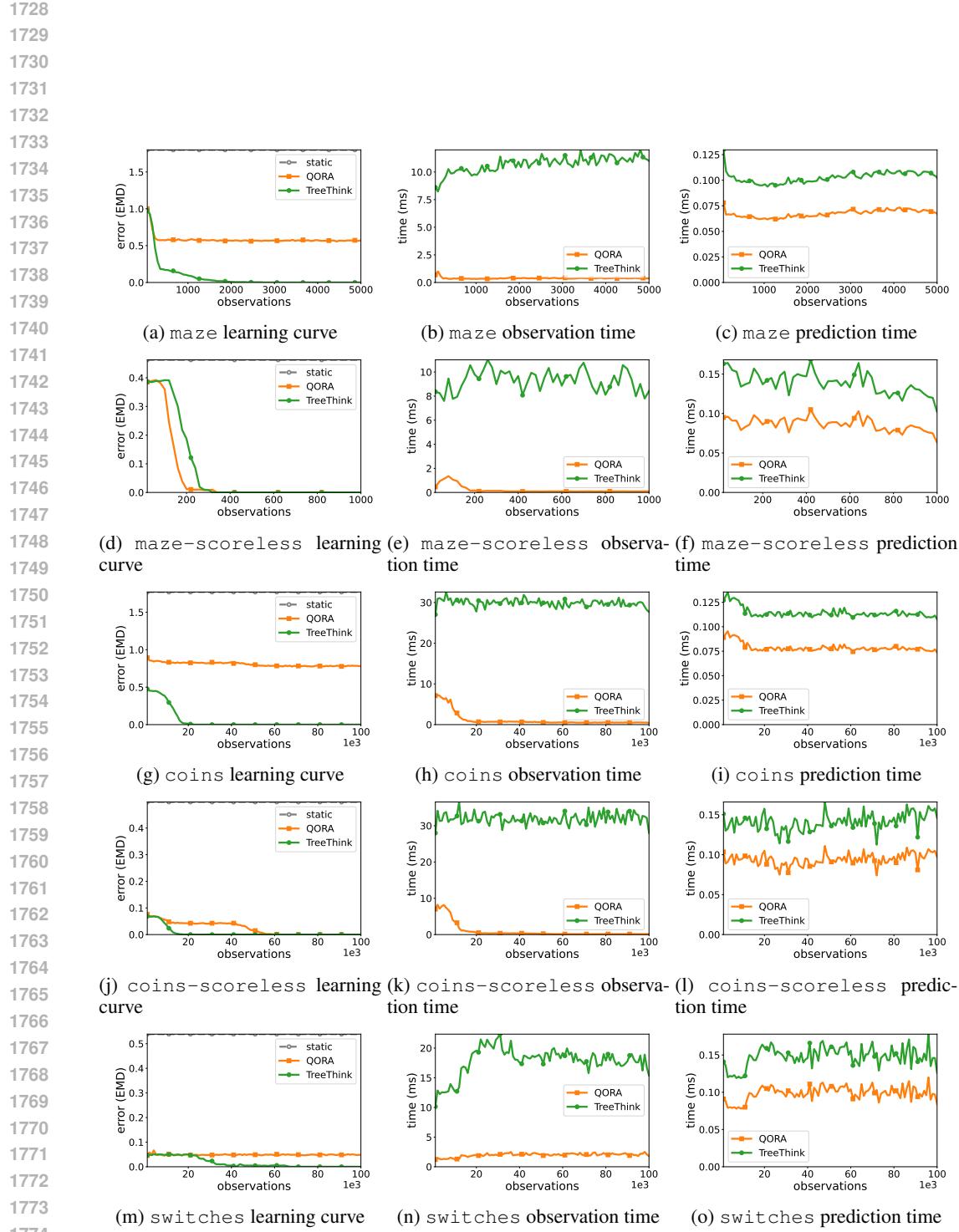


Figure 12: TreeThink vs. QORA (maze, maze-scoreless, coins, coins-scoreless, switches)

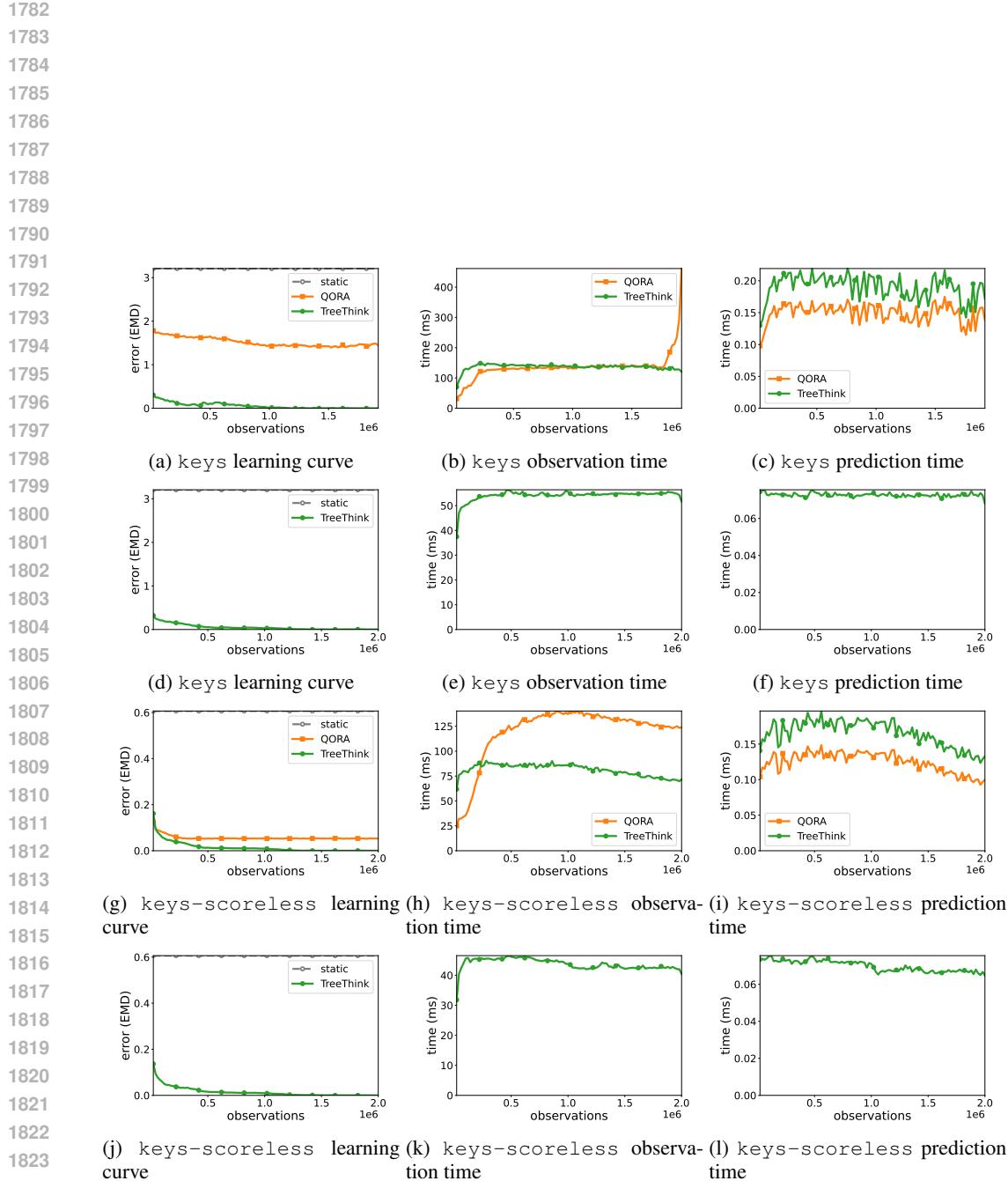


Figure 13: TreeThink vs. QORA (keys and keys-scoreless); since QORA could not finish in some cases, we also ran experiments with just TreeThink.

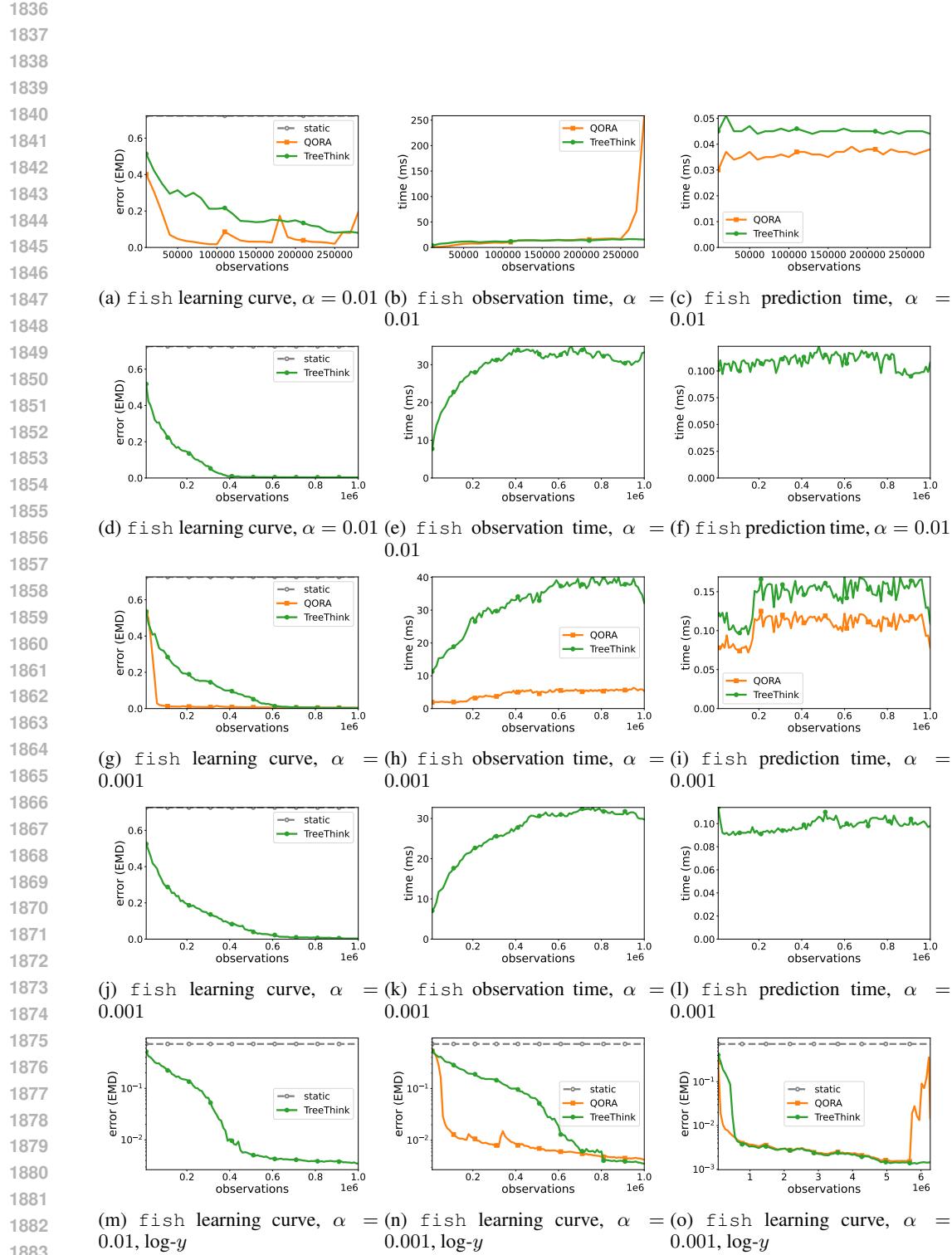


Figure 14: TreeThink vs. QORA (fish); since QORA could not finish in some cases, we also ran experiments with just TreeThink. Semilog-y plots are included to better visualize small values.

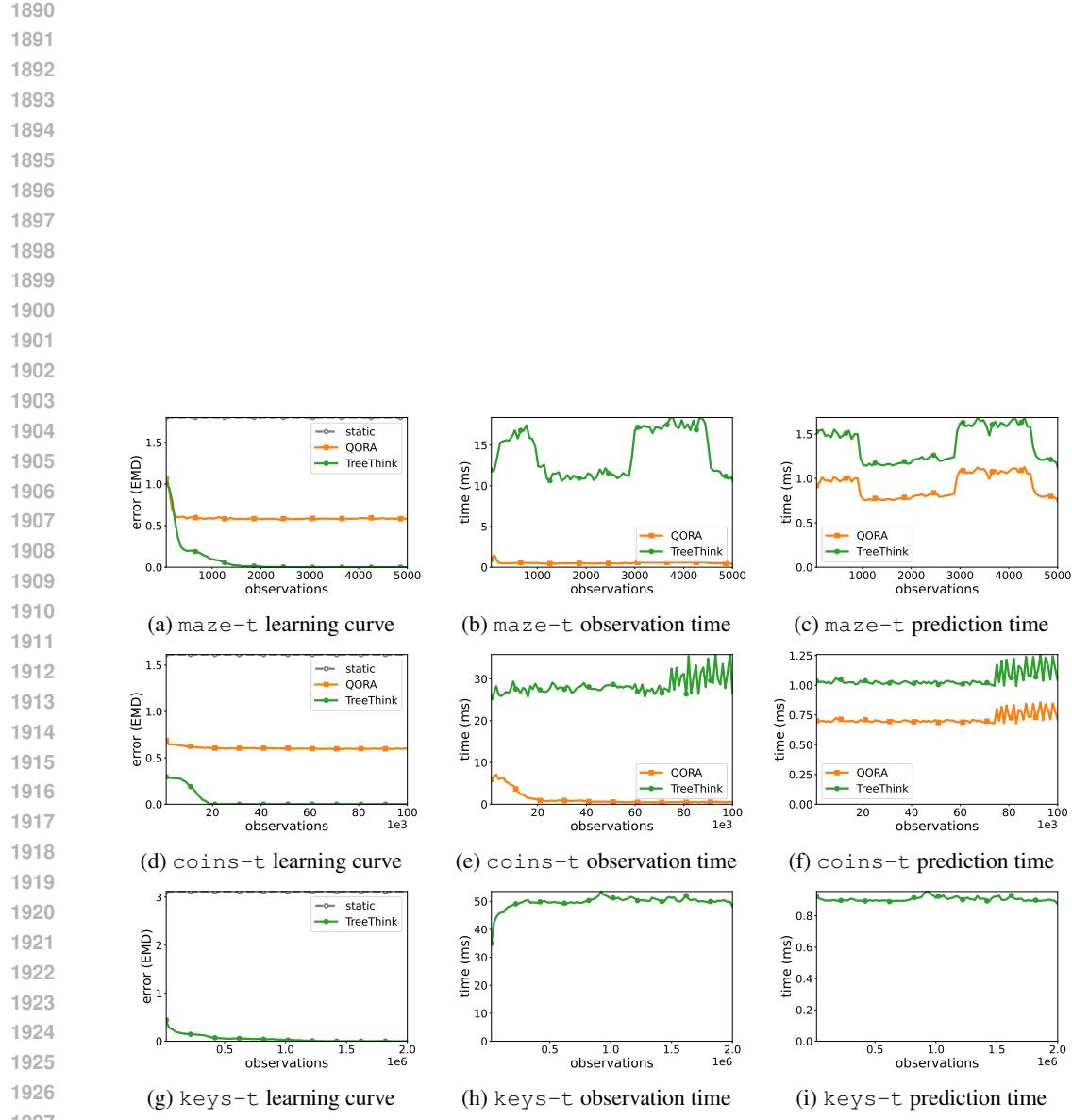


Figure 15: TreeThink vs. QORA, transfer to larger instances (32×32) while training in smaller worlds (8×8). We ran only TreeThink in the keys domain because QORA often crashes. TreeThink displays perfect generalization in each environment.

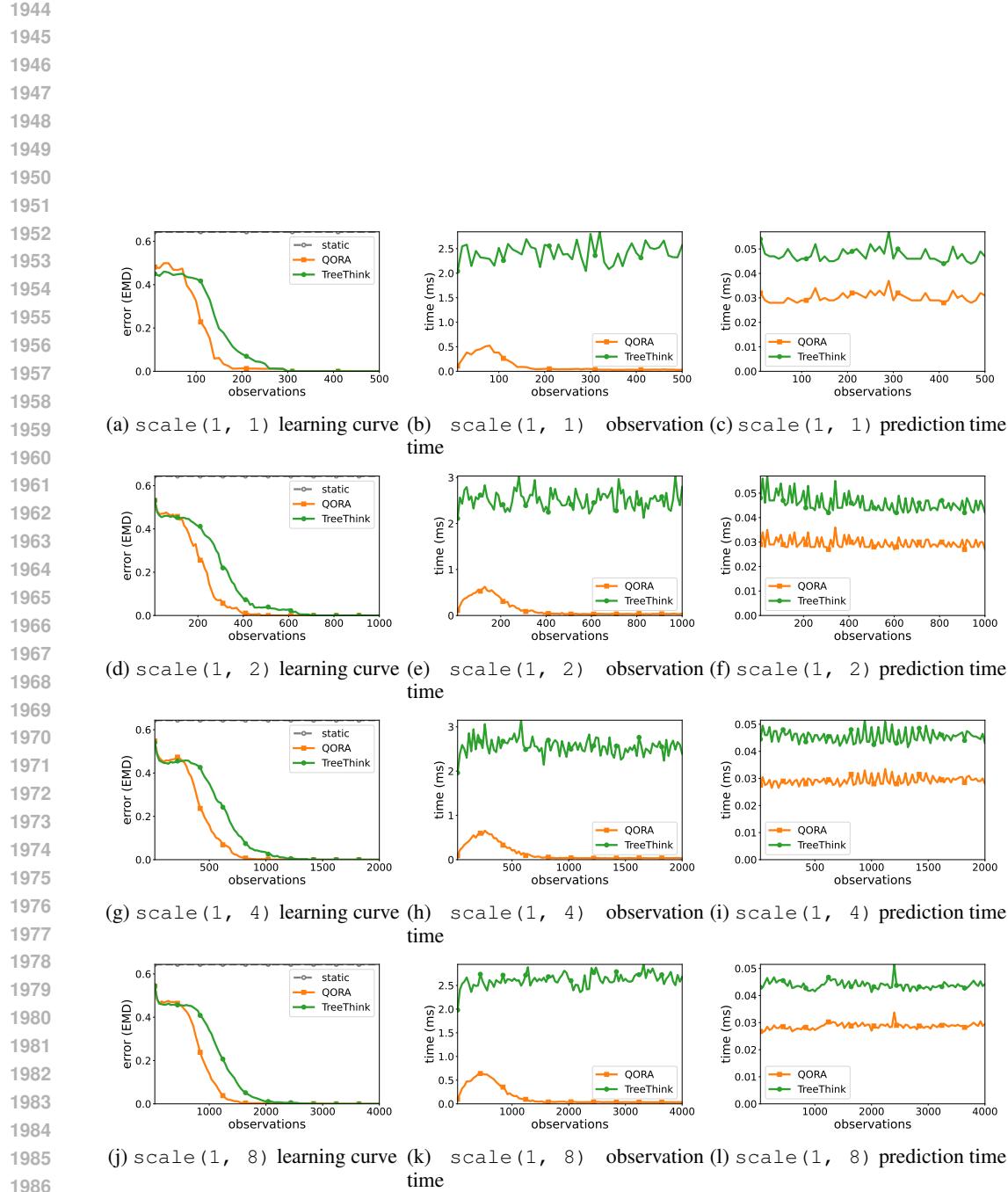


Figure 16: TreeThink vs. QORA, scaling tests: $n_c = 1$, varying n_p . Note that as the x -axis scales up proportionally to n_p , the plots maintain the same proportions, meaning that learning time is scaling up linearly with the number of classes (and corresponding actions).

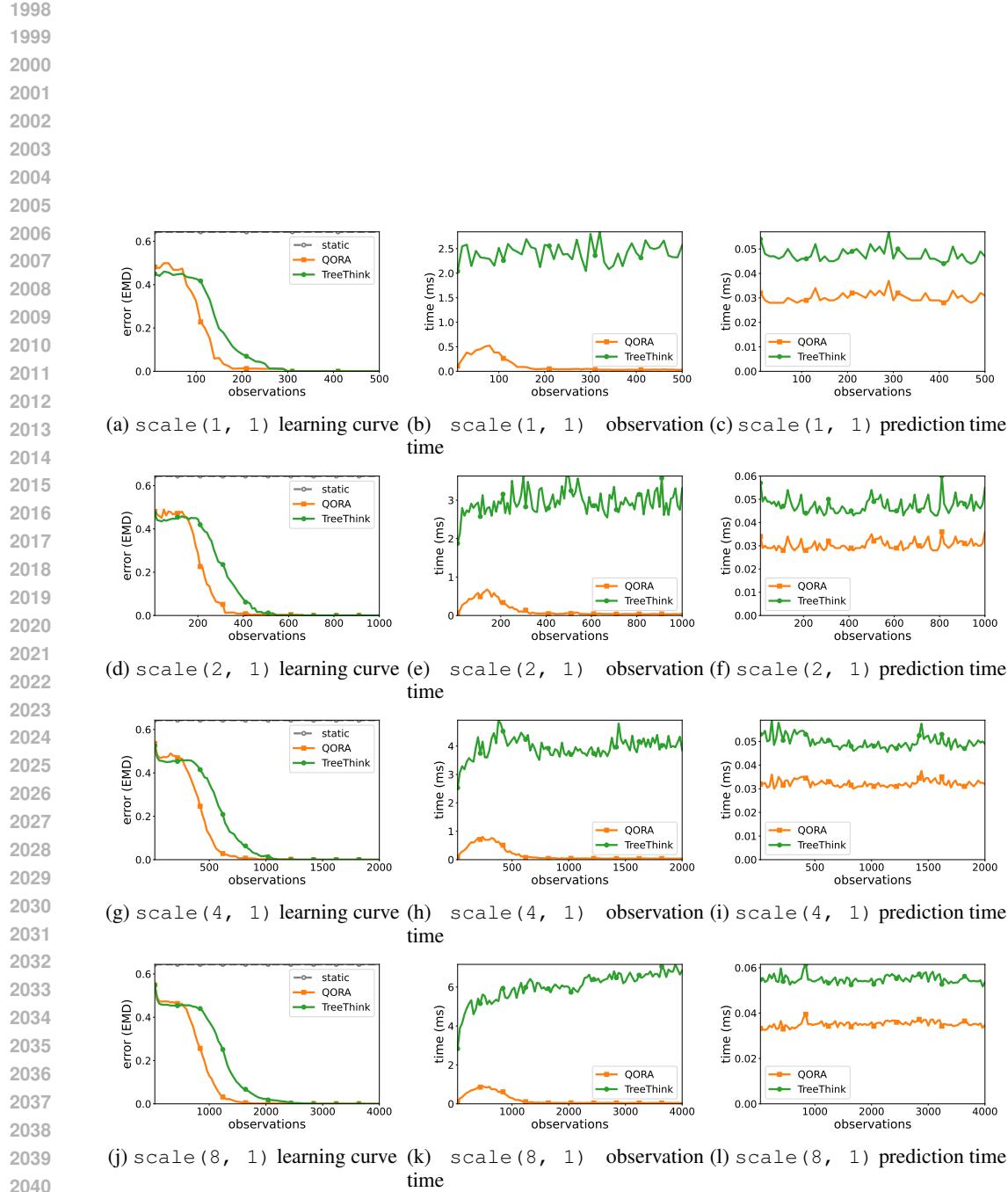


Figure 17: TreeThink vs. QORA, scaling tests: varying $n_c, n_p = 1$. Note that as the x -axis scales up proportionally to n_c , the plots maintain the same proportions, meaning that learning time is scaling up linearly with the number of actions.

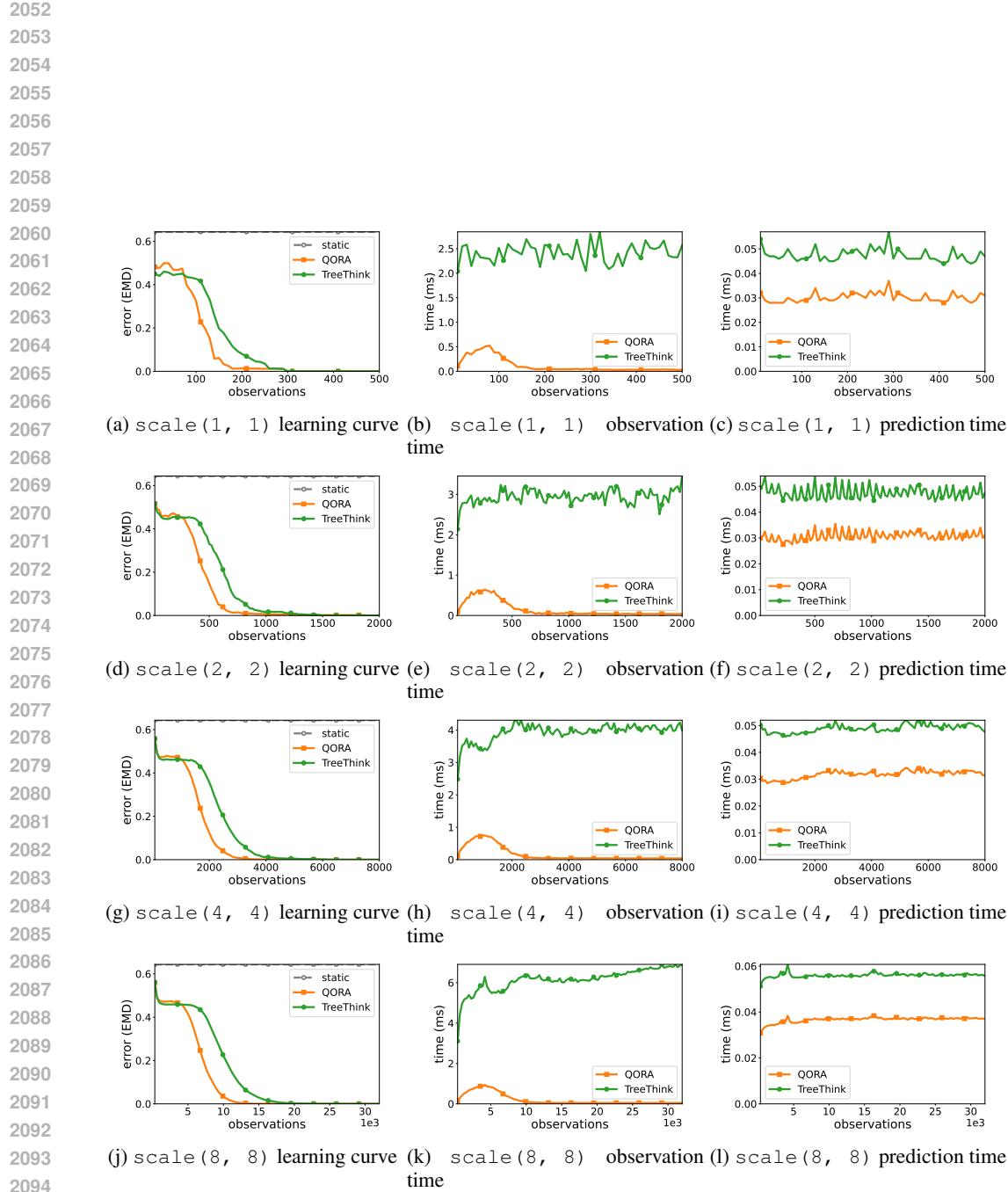


Figure 18: TreeThink vs. QORA, scaling tests: varying n_c and n_p . Note that as the x -axis scales up proportionally to $n_c \times n_p$, the plots maintain the same proportions, meaning that learning time is scaling up linearly with the number of actions.

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

(a) learned FOLDT for player[pos] in the maze domain
 (b) learned FOLDT for game[score] in the maze domain
 (c) learned FOLDT for player[pos] in the coins domain

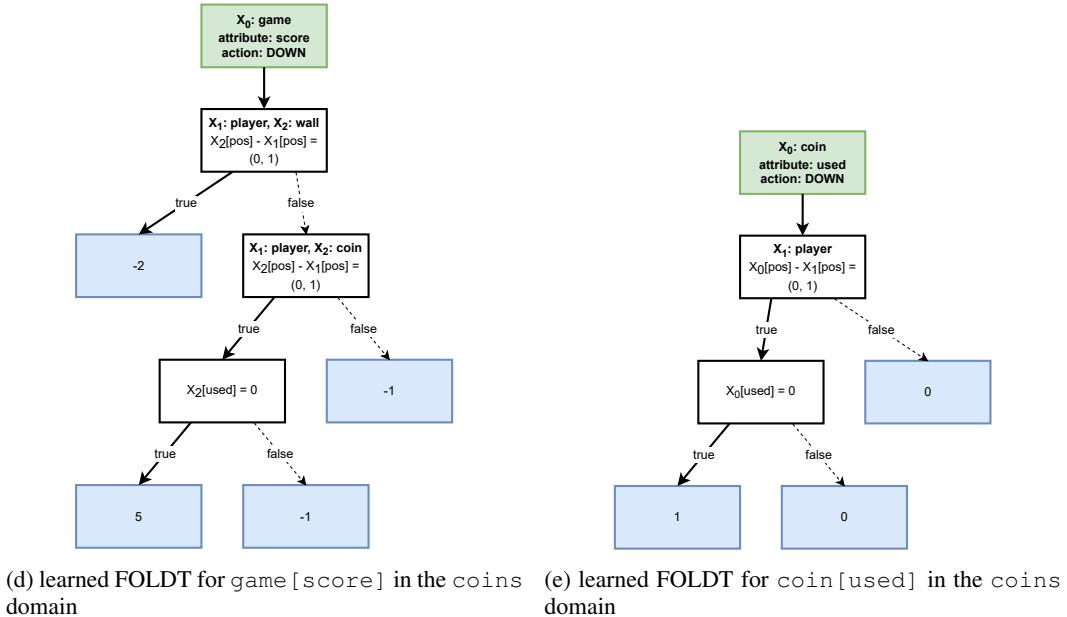


Figure 19: Example FOLDTs learned by TreeThink in the maze and coins domains. The top (green) box of each tree notes the tree's (c, m, a) triplet and its argument variable X_0 . Variables bound by subsequent branch tests are labeled at the top of the corresponding box (e.g., in (c), X_1 : wall). Note that if a test fails (i.e., the right branch is taken), its variables are not bound; hence, in the second test in tree (b), X_1 and X_2 are not related to the X_1 and X_2 from the prior test.

2149

2150

2151

2152

2153

2154

2155

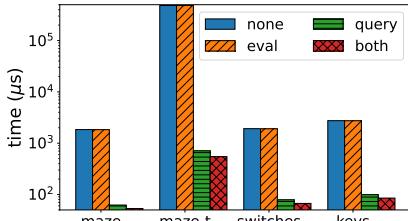
2156

2157

2158

2159

2160 **E EXPERIMENT DETAILS: ABLATION TESTS**
2161

2162 Since the inference time stays consistent over time, we report the average time per `predict` call
2163 from each set of runs. Figure 20 shows both a chart, to visualize the massive performance improve-
2164 ment, as well as a table, for more detailed comparison.
2165
(a) average inference time (μ s) chart
2174

domain	none	eval	query	both
maze	1842	1835	62.3	53.2
maze-t	481822	481597	710	546
switches	1920	1909	78.6	67.0
keys	2748	2736	99.4	85.2

(b) average inference time (μ s) table
2176 Figure 20: Average inference time in four domains, varying optimizations. Settings are: `none` (no
2177 optimizations to inference), `eval` (optimizing tree evaluation), `query` (optimizing state queries),
2178 and `both` (optimizing state queries and tree evaluation).
2179

2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

2214 **F EXPERIMENT DETAILS: NEURAL BASELINES**
2215

2216 We apply a custom NPE architecture, shown in Figure 21, based on the design that Stella & Loguinov
2217 (2024) used for object-oriented transition learning. The objects in a state are input as vectors X_i ,
2218 formed by concatenating the object’s one-hot-encoded class and all of its attribute value vectors (if
2219 an object is lacking some attribute, a zero vector of the appropriate size is substituted). The action
2220 $a \in A$ is also input to the network, one-hot encoded.
2221

2222 The blocks F_1 and F_2 are feed-forward networks comprising alternating linear and ReLU layers (
2223 F_1 ends with a ReLU layer, F_2 ends with a linear layer). Let d be the total length of an object
2224 vector (since they are all the same length) and e be the length of the output vector of F_1 . Then,
2225 the first layer of F_1 has width $2d$ and the first layer of F_2 has width $d + |A| + e$. To predict object
2226 attributes, the output dimension of F_2 is d .
2227

2228 To make the network structure simpler and more efficient, we keep the reward signal separate. A
2229 second network, which outputs a scalar value, is used to model the reward. This network uses an
2230 NPE internally, but the final sum $X_i^{(t)} + \Delta_i^{(t+1)}$ is skipped (the output of the network is just $\Delta_i^{(t+1)}$).
2231 This allows us to set F_2 to output a vector that is not of size d . The reward network sums all of the
2232 outputs of F_2 , $\sum_{i=1}^{n_s} \Delta_i^{(t+1)}$, then passes the result through a linear layer to produce a scalar output.
2233

2234 Our hand-tuned networks for the `maze` environment, where $d = 5$ and $|A| = 5$, use the following
2235 network dimensions:
2236

2237

2238 - $T, F_1: 10 \rightarrow 16 \rightarrow 8 \rightarrow 8 \rightarrow 4$
2239 - $T, F_2: 14 \rightarrow 4 \rightarrow 5$
2240 - $R, F_1: 10 \rightarrow 16 \rightarrow 8 \rightarrow 8 \rightarrow 16$
2241 - $R, F_2: 26 \rightarrow 16$

2242

2243 The weights (approximately four hundred hand-tuned values) are included in the codebase that will
2244 be released upon publication. Although not shown in the plots (because it is not very interesting to
2245 look at), we included a network with the hand-tuned weights in all of our experiments. It got perfect
2246 accuracy (zero error) on all tested transitions.
2247

2248 For training, we run several variations of the hand-tuned architecture. We use NPE_X_Y to denote
2249 a network X times wider than our hand-crafted design with $Y - 1$ extra layers in each of F_1 and
2250 F_2 (all the same width as the layer before them, i.e., the hand-crafted last layer width times X).
2251 The networks collect observations in episodes; one epoch of training occurs at the end of each
2252 episode. We utilize a replay buffer with one thousand slots, which is split into ten random batches
2253 for each epoch. While our initial experiments used a typical deque replay buffer, this approach
2254 was unsuccessful; to increase the variety in the data, we moved to a replay buffer that, when full,
2255 randomly selects an existing item to evict. This led to the results we show in the paper. After trying
2256 several optimizers and hyperparameter values, we settled on AdamW (supplied by PyTorch) with a
2257 learning rate of 0.001.
2258

2259 Additional results from our NPE experiments are shown in Figure 22.
2260

2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321

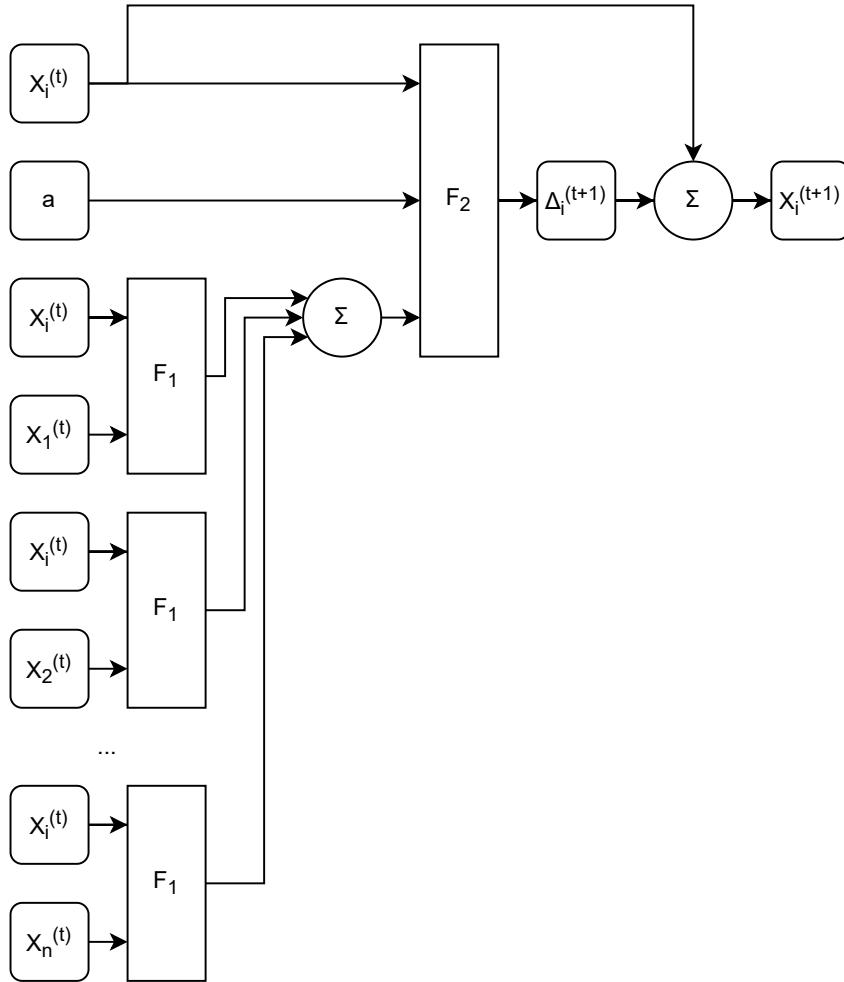


Figure 21: The architecture used for our NPE implementation, based on the structure described by Stella & Loguinov (2024) for object-oriented transition learning. The F_1 and F_2 modules are feed-forward networks comprising alternating linear and ReLU layers.

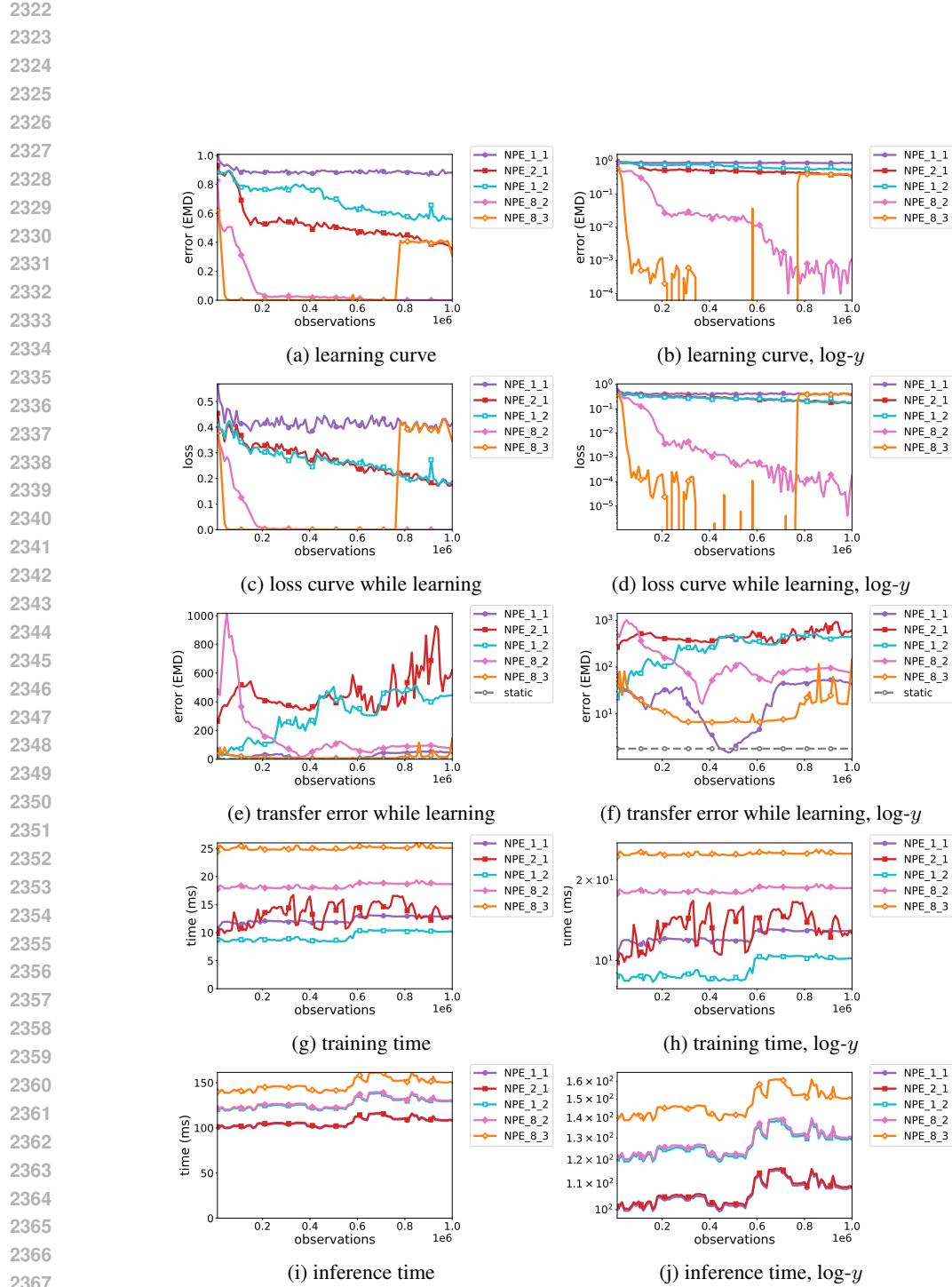


Figure 22: Using various NPE architectures to model the maze domain. Semilog- y plots are included to better visualize small values. Breaks in a line (e.g., the error of NPE_8_3) in semilog- y plots indicate zeroes.

2376 **G PLANNING EXPERIMENTS**
2377

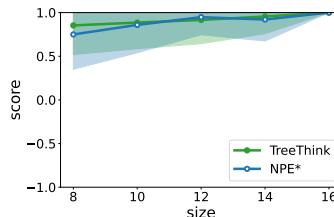
2378 We now show results of planning experiments using Monte-Carlo Tree Search (MCTS) with the
2379 PUCT rule (Coulom, 2007; Rosin, 2010; Schrittwieser et al., 2020) and a computation budget of
2380 100 simulations (i.e., model evaluations) per action. Scores are normalized for each episode into
2381 the range $[-1, 1]$, where -1 indicates *pessimal* performance (the lowest score obtainable for that
2382 episode), 0 indicates *trivial* performance (that of an agent that does nothing, neither productive or
2383 harmful), and 1 indicates *optimal* performance. The various settings shown in our experiments,
2384 which vary the level size, number of walls, number of goals, and episode length, are detailed in
2385 Table 1.

2386 Table 1: Planning experiment settings
2387

2388

Width	Height	Interior walls	Goals	Episode length
8	8	10	2	10
10	10	20	5	20
12	12	50	10	30
14	14	80	15	40
16	16	160	20	50

2389

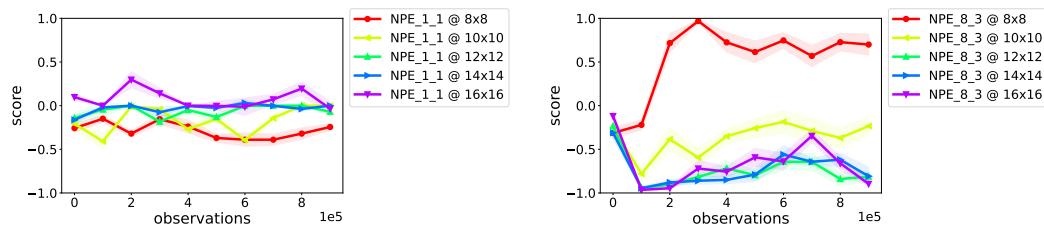
2395 Our planner uses solely an environment model (supplying \hat{T} and \hat{R}); the prior policy is uniform (i.e.,
2396 no action is given any special weight *a priori* during search) and the value estimator outputs zero for
2397 all states. Nonetheless, as shown in Figure 23, the planner is able to get near-optimal scores using
2398 both TreeThink (trained in the same way as in our prior experiments, i.e., in 8×8 levels) and NPE*
2399 (our hand-tuned perfectly-accurate neural network).

2409 Figure 23: TreeThink (fully trained) and NPE* (hand-tuned to be perfectly accurate) planning in
2410 various world sizes; highlights show one standard deviation
2411

2412 We next take NPE_1_1 and NPE_8_3 and train them using the same setup as in Section 3.4 and
2413 Appendix F. During training, we periodically (every 100k observations) run the MCTS planner
2414 using the partially-trained models. The results are shown in Figure 24. The different behavior
2415 between NPE_1_1 and NPE_8_3, especially as the levels become more complex, is immediately
2416 apparent. While NPE_1_1 never achieves perfect accuracy (see Figure 22 in Appendix F), it also
2417 seems to overfit less; thus, although it never performs well, MCTS with NPE_1_1 is much more
2418 stable as level size increases. On the other hand, NPE_8_3 is able to (for some amount of time)
2419 accurately model the 8×8 levels, allowing MCTS to achieve relatively high scores in this setting.
2420 However, the model apparently *drastically* overfits, which leads MCTS to find low-quality plans in
2421 the other settings. In fact, even in 12×12 levels, the planner using NPE_8_3 begins returning plans
2422 that are *almost as bad as possible*. In real-world deployment, this kind of outcome – where the agent
2423 suddenly takes harmful actions upon transfer to new conditions – could be extremely dangerous.

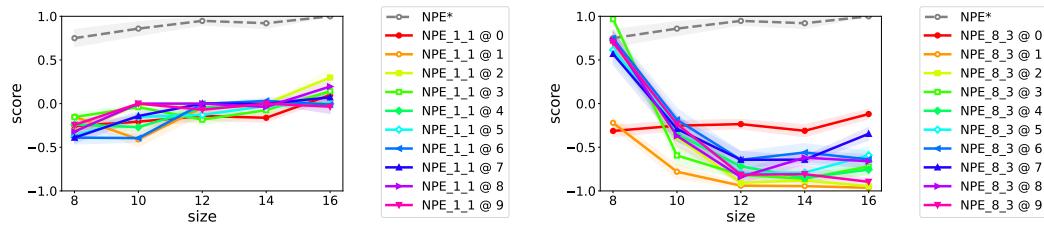
2424 For further analysis, Figure 25 shows the performance of each model checkpoint across each level
2425 size. Again, NPE_1_1 remains stable, even as training progresses. In contrast, while NPE_8_3
2426 initially (@0) gets similar performance across all level sizes, but after even just a small amount of
2427 training, it overfits to the 8×8 worlds. Further training improves performance in this setting in
2428 exchange for poor returns in all other scenarios.

2429 Finally, Figure 26 compares the planning time of MCTS using TreeThink, NPE*, NPE_1_1, and
2430 NPE_8_3. As expected, the runtime using NPE* and NPE_1_1 are essentially identical, since the

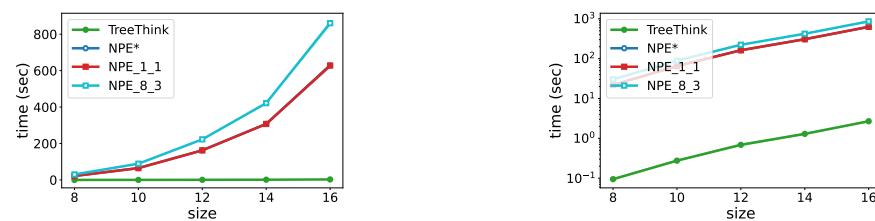
2430 architectures are the same (only the parameters differ). Notably, the planner using TreeThink is by
 2431 far the fastest due to the lower time required to evaluate the TreeThink models.
 2432



2459 Figure 24: Planning in the maze domain with NPE_1_1 and NPE_8_3 during training, varying world
 2460 sizes. Highlights show 1/4 stdev, to preserve clarity.



2470 Figure 25: Planning in the maze domain with NPE_1_1 and NPE_8_3 across several world sizes,
 2471 varying number of observations. Highlights show 1/4 stdev, to preserve clarity.



2480 (a) planning time per episode as world size increases (b) planning time per episode as world size increases,
 2481 log- y

2482 Figure 26: Planning time in the maze domain.
 2483