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Abstract

Deformable image registration (DIR) is ill-posed. Many registration-specific designs and
regularizations, whose rationale carries across classic optimization methods to deep-learning-
based (DL) frameworks, are crucial to registration performance. This paper presents a com-
prehensive “ablation” type study to pinpoint the key drivers for unsupervised monomodal
DL-DIR. We conducted controlled experiments and benchmarked performance against
state-of-the-art methods. Our findings highlight the benefits of multi-resolution pyramids,
local correlation, and inverse-consistency constraints, and demonstrate that simple network
architectures can achieve strong performance—even with far less training data. The code
will be publicly available at: Unsupervised-DL-DIR-Revisited.

Keywords: Deformable Image Registration, Unsupervised Learning, Benchmark, Abla-
tion Study

1. Introduction

Deformable image registration (DIR) involves spatially aligning images using non-linear
deformation fields and is critical in many medical image analysis tasks. Deep-learning-based
DIR (DL-DIR) has recently risen in popularity, with unsupervised and weakly supervised
training becoming the dominant approaches. Numerous novel network architectures have
been proposed (Mok and Chung, 2020; Kang et al., 2022; Chen et al., 2022; Jia et al., 2022;
Shi et al., 2022; Guo et al., 2024; Tan et al., 2024). However, Jena et al. (2024) shows that
well-optimized conventional methods perform on par with or surpass many unsupervised
DL-DIR methods. In addition, Jian et al. (2024) demonstrates that high-level registration-
specific designs such as multi-resolution pyramid and correlation calculation are more critical
than the choice of low-level computational blocks (e.g., U-Net vs. Transformer vs. Mamba).
Notably, the latter study was restricted to a weakly supervised setting, where label-matching
supervision could skew results in favor of less competitive architectures. These observations
raise key questions about whether unsupervised DL-DIR can truly surpass conventional
methods—and, if so, which components drive that performance.

To elucidate these questions, we conduct a comprehensive evaluation of different de-
formation estimation blocks under controlled conditions. Our findings reveal that simple
architectures, when combined with effective registration-specific design elements, can de-
liver state-of-the-art (SOTA) performance, even with far less training data. This suggests
that future efforts should prioritize refining registration-specific strategies over pursuing
increasingly complex architectures.
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2. Methods and Datasets

We employ three registration-specific designs that have proved their efficacy: the multi-
resolution pyramid, correlation calculation, and inverse consistency setup. The multi-
resolution coarse-to-fine pyramid strategy from conventional methods is now commonly
used in DL-DIR, where one standard practice is to employ a dual-stream feature encoder
for image pairs and apply progressively upsampling and warping for deformation prediction
(Kang et al., 2022; Honkamaa and Marttinen, 2024; Tan et al., 2024). We refer to this
dual-stream pyramid architecture as DP. Local feature correlation inspired by optical flow
studies has shown promise in improving registration accuracy (Kang et al., 2022; Jian et al.,
2024). Liu et al. (2024) further introduced vector field attention (VFA), a novel deforma-
tion estimation paradigm that directly computes displacement vectors using correlation as
weights. Finally, symmetry and inverse consistency constraints have demonstrated superior
performance in both conventional methods (Avants et al., 2008) and DL-DIR (Honkamaa
and Marttinen, 2024), as they provide a robust inductive bias and regularization effect that
promotes smoother, more realistic deformations.

Following these guidelines, we experimented with different deformation prediction mod-
ules in a controlled setting, as shown in Figure A1. We universally adopted the DP setting
and used the same standard residual U-Net encoder for multilevel feature extraction. For de-
formation prediction, we experimented with three settings: (a) residual convolution blocks,
(b) residual convolution blocks with built-in inverse consistency, and (c) VFA. The built-in
inverse consistency in (b) follows SITReg (Honkamaa and Marttinen, 2024) while uses the
same network as (a). For inputs of (a) and (b), we can concatenate moving and fixed fea-
tures (denoted as MF), further concatenate correlation (MFC) or use correlation only (C).
In total, we experimented with 6 configurations, as shown in Table 1.

Experiments were conducted on two publicly available brain MR datasets from the
Learn2Reg challenge: OASIS and LUMIR. The 414 images of OASIS were split into 300/30/84
for training, validation, and testing. For testing, we randomly sampled 200 pairs from the
84 images. For LUMIR, the training includes 3,384 images and and we submit to challenge
leaderboard to evaluate on the validation set (38 pairs). For comparison, we adopted two
widely used methods, VoxelMorph (Balakrishnan et al., 2019) and TransMorph (Chen et al.,
2022), as well as two SOTA methods from the Learn2Reg LUMIR challenge: the best base-
line VFA (Liu et al., 2024) and the winning method SITReg (Honkamaa and Marttinen,
2024). In addition, we included a conventional baseline called Greedy (Yushkevich et al.,
2016), which was the best conventional method reported in Jena et al. (2024).

3. Results

Results on the OASIS dataset (Table 1 and Figure B3) show that all proposed variants
achieve competitive performance, matching SOTA accuracies while outperforming the con-
ventional Greedy method and baselines lacking registration-specific designs (VoxelMorph
and TransMorph). The correlation-only models (DP-Conv-C and DP-ConvIC-C) surpasses
their counterparts with more parameters, highlighting the role of correlation in deformation
estimation. This also explains the success of the DP-VFA variant, which directly extracts
deformation from correlation via VFA with substantially fewer trainable parameters. The
Appendix includes LUMIR results and further experiments on model scaling and training
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set size. Notably, competitive performance can be attained with substantially less training
data when registration-specific designs are properly applied.

Table 1: Registration results for the OASIS brain MRI dataset (200 test pairs). The pro-
posed variants list parameter counts in the “(encoder/decoder) total” format.
Metrics in bold denote the best-performing methods, while those underlined are
competitively close.

Dice ↑ HD95 ↓ SDlogJ (×100) ↓ NDV (%) ↓ Params (M)
Initial 0.5759 (0.0682) 3.95 (0.95) - - -
Greedy 0.8068 (0.0297) 2.02 (0.56) 13.18 (0.95) 0.0007 -
VoxelMorph 0.7647 (0.0392) 2.55 (0.72) 21.96 (2.77) 1.27 0.30
TransMorph 0.7934 (0.0276) 2.15 (0.56) 17.00 (1.79) 0.83 46.56
VFA 0.8203 (0.0233) 1.87 (0.45) 14.00 (0.89) 0.065 2.01

SITReg (IC) 0.8230 (0.0232) 1.81 (0.45) 12.98 (1.00) 0.027 15.08

(a)DP-Conv-MF 0.8237 (0.0237) 1.82 (0.46) 15.32 (1.02) 0.33 (0.51/2.35) 2.85

(a)DP-Conv-MFC 0.8281 (0.0227) 1.79 (0.45) 15.63 (1.12) 0.37 (0.51/2.66) 3.17
(a)DP-Conv-C 0.8283 (0.0226) 1.79 (0.46) 14.64 (0.98) 0.33 (0.51/1.49) 1.99

(b)DP-ConvIC-MF 0.8223 (0.0244) 1.82 (0.47) 12.98 (0.98) 0.027 (0.51/2.35) 2.85

(b)DP-ConvIC-C 0.8244 (0.0225) 1.80 (0.45) 12.79 (1.01) 0.028 (0.51/1.80) 2.31

(c)DP-VFA 0.8199 (0.0237) 1.87 (0.46) 13.91 (0.94) 0.031 (0.51/0.28) 0.79

4. Discussion and Conclusion

Registration-specific designs—such as multi-resolution pyramids, correlation computation,
and inverse consistency constraints—are essential for achieving robust performance in un-
supervised monomodal DL-DIR. Notably, multi-resolution refinement and inverse consis-
tency constraints serve as effective regularizers for the inherently ill-posed DIR and should
be incorporated whenever possible. Additionally, our results show that models leveraging
only correlation-based features (e.g., DP-Conv-C, DP-ConvIC-C, DP-VFA) are particularly
promising. This suggests that commonly used methods, which directly apply convolutions
to fixed and moving image features, may expend unnecessary capacity to address model mis-
matches in displacement prediction, whereas exploiting feature correlations directly offers
a more efficient and targeted solution.

Our study also points to promising avenues for future work—particularly the develop-
ment of novel registration-specific strategies and their integration into a cohesive, synergistic
framework. Further integrating deep-learning-based representation learning with conven-
tional optimization schemes is also promising and has already produced encouraging results
in recent studies (Jena et al., 2025; Siebert et al., 2025; Xin et al., 2024).
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Appendix A. Extended Methods

Architectural Details Figure A1 illustrates the dual-stream pyramid (DP) architecture
incorporating the same feature encoder with various deformation prediction blocks. We fix
the number of levels to be 5 (i.e., 4 levels of downsampling are used). We intentionally
avoid the use of large convolution kernels or self/cross-attention mechanisms in the feature
encoder and deformation decoder and keep them as simple as possible. The encoder is a
standard U-Net encoder with residual connections. It employs standard 3×3×3 convolutions
with stride-2 downsampling, along with InstanceNorm and LeakyReLU (with a negative
slope of 0.2). For the deformation decoder, types (a) and (b) use two layers of standard
3×3×3 convolutions with residual connections, followed by a final layer that outputs the
deformation field. Specifically, the deformation output layer is implemented with a kernel
size of 3, stride of 1, 3 output channels, weights initialized from a normal distribution (mean
0, variance 1e-5), and biases set to zero. The inputs for types (a) and (b) may consist
of concatenated fixed and moving features (MF), optionally augmented with correlation
(MFC) or correlation only (C). In the inverse consistent setup (b), correlations are computed
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Figure A1: The dual-stream pyramid (DP) architecture with the same feature encoder and
different variations of deformation decoders.

in both directions. Due to memory constraints, the DP-ConvIC-MFC variant is not tested.
For type (c) DP-VFA, the moving and fixed features are first processed through a 3×3×3
convolutional projection layer before being fed into the deterministic VFA module.

Training Details All experiments were conducted on NVIDIA RTX 6000 Ada GPUs.
In each epoch, 100 fixed/moving image pairs (50 pairs evaluated in both directions) were
randomly sampled for model training. We employed the same loss function, Loss = Lsim+
λ ∗Lreg, with 1−NCC as similarity loss and diffusion as smoothness regularization. λ was
empirically set to 1. The random seed of training was set to 42 to ensure consistent training
data across all experiments. For OASIS, all models were trained for 200 epochs using a
constant learning rate of 10−4, and the model achieving the best validation Dice score was
selected for final testing. For LUMIR, all models were trained for 1,500 epochs using cosine
annealing with warm starts (learning rate between 10−3 and 10−5), and the model with the
lowest validation Lsim was saved.

Appendix B. Extended Results

Effect of Model Scaling Figure B2 (left) demonstrates the scaling effect for VoxelMorph
and the proposed variant DP-Conv-MF. Both models benefit from increased model size;
however, DP-Conv-MF exhibits a significantly higher baseline performance. TransMorph is
used as the reference.

Effect of Training Set Size There is currently no consensus on the ideal dataset
size for training unsupervised DL-DIR models, with most studies using as much data as
possible. For inter-subject registration, N ∗ (N − 1) image pairs can be generated with N
images (consider both directions), so we can potentially train registration networks with
a small dataset. Using our competitive benchmark DP-Conv-MF, we assessed the impact
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Figure B2: Left: the effect of scaling up model size (parameter count) for VoxelMorph and
proposed variant DP-Conv-MF. The training set size is fixed to 300. Right: the
effect of training set size. The model is fixed to be DP-Conv-MF (medium).

of training set size of OASIS by reducing it in steps proportional to a factor of
√
2, with

each smaller set being a strict subset of the larger one. As shown in Figure B2 (right),
the performance gains diminish as the training sample size exceeds 50. We performed a
similar experiment on LUMIR using the DP-ConvIC-C variant and the quantitative results
are summarized in Table B3. Notably, in both cases, the proposed variants trained on only
∼ 10 images achieved comparable Dice with TransMorph trained on the entire dataset.
This result suggests that with a well-designed architecture, competitive performance can be
achieved with much less training data.
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Table B2: Registration results for the LUMIR brain MRI dataset (38 validation pairs).
Superscripts indicate sources: official baselines1, challenge winners2, and our re-
trained/reported baselines and our proposed variants3. SITReg-v1 is the vanilla
version trained with NCC and diffusion loss. SITReg-v2 is the final challenge-
winning version, further trained with group consistency and NDV loss (not used
by other methods in this table).

Model Dice ↑ HD95 ↓ TRE (mm) ↓ NDV (%) ↓
Official baselines
VoxelMorph1 0.7186± 0.0340 3.9821 3.1545 1.1836
TransMorph1 0.7594± 0.0319 3.5074 2.4225 0.3509
VFA1 0.7726± 0.0286 3.2127 2.4949 0.0788

Challenge-winning
SITReg-v12 0.7742± 0.0291 3.3039 2.3112 0.0231
SITReg-v22 0.7805± 0.0287 3.1187 2.3005 0.0025

Our re-trained/reported baselines3

Greedy 0.7531± 0.0334 3.6953 2.2994 0.0004
VFA 0.7734± 0.0286 3.2063 2.4739 0.1051
SITReg-v1 0.7727± 0.0284 3.3319 2.3120 0.0308

Our variants3

(a) DP-Conv-MF 0.7713± 0.0290 3.3534 2.4676 0.4158
(a) DP-Conv-MFC 0.7730± 0.0291 3.3566 2.4449 0.4672
(a) DP-Conv-C 0.7747± 0.0295 3.3666 2.4135 0.3795
(b) DP-ConvIC-MF 0.7717± 0.0288 3.3489 2.3660 0.0310
(b) DP-ConvIC-C 0.7724± 0.0288 3.3873 2.3357 0.0309
(c) DP-VFA 0.7764± 0.0284 3.2157 2.4420 0.0540

Table B3: Registration performance on the LUMIR brain MRI validation set (38 pairs)
using varying training set sizes. The (b) DP-ConvIC-C variant is used for all
experiments. Bold indicates the best value in each column.

Training set size Dice ↑ HD95 ↓ TRE (mm) ↓ NDV (%) ↓
all data / 3,384 0.7724± 0.0288 3.3873 2.3357 0.0309
1,000 0.7726± 0.0283 3.3772 2.3088 0.0332
300 0.7725± 0.0287 3.3756 2.3208 0.0303
100 0.7717± 0.0280 3.3966 2.3305 0.0319
50 0.7705± 0.0286 3.4162 2.3479 0.0304
30 0.7690± 0.0287 3.4576 2.3723 0.0328
20 0.7674± 0.0288 3.4521 2.4053 0.0358
10 0.7642± 0.0308 3.5216 2.3771 0.0361

8



Registration-Specific Designs Matter

Figure B3: Qualitative results of a test case in OASIS. The last row shows the Jacobian
determinant maps with the non-positive regions contoured in black.
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