
Stationary Deep Reinforcement Learning with
Quantum K-spin Hamiltonian Equation

Anonymous Author(s)
Affiliation
Address
email

Abstract

A foundational issue in deep reinforcement learning (DRL) is that Bellman’s op-1

timality equation has multiple fixed points—failing to return a consistent one. A2

direct evidence is the instability of existing DRL algorithms, namely, the high3

variance of cumulative rewards over multiple runs. As a fix of this problem, we4

propose a quantum K-spin Hamiltonian regularization term (H-term) to help a5

policy network stably find a stationary policy, which represents the lowest energy6

configuration of a system. First, we make a novel analogy between a Markov7

Decision Process (MDP) and a quantum K-spin Ising model and reformulate the8

objective function into a quantum K-spin Hamiltonian equation, a functional of9

policy that measures its energy. Then, we propose a generic actor-critic algorithm10

that utilizes the H-term to regularize the policy/actor network and provide Hamilto-11

nian policy gradient calculations. Finally, on six challenging MuJoCo tasks over12

20 runs, the proposed algorithm reduces the variance of cumulative rewards by13

65.2% ∼ 85.6% compared with those of existing algorithms.14

1 Introduction15

Deep reinforcement learning (DRL) [36] algorithms are quite unstable, namely, agents trained with16

different random seeds may have dramatically different performance. Existing works [1, 13, 6, 24]17

reported a high variance over multiple runs, thus it requires to train tens of agents and then pick the18

best one. Such a high variance puts a challenge on reliability and reproducibility [15, 14], limiting19

the wider adoption in real-world tasks.20

The difficulty of guaranteeing stability lies in a foundational issue that Bellman’s optimality equation21

has multiple fixed points [4, 31, 22, 18] —failing to return a consistent one. Consider MDP examples22

with an terminal state 0, as shown in Fig. 1 (we adapt dynamic programming examples [4, 31] into23

reinforcement learning settings. Observational experiments are given in Section 2.2),24

• Shortest path problem (deterministic) in Fig. 1(a): At state 1, an agent transits to either state25

1 or 0 with reward 0 or b, respectively. Assume the value function for state 0 is V (0) = 0. The26

Bellman’s optimality equation for state 1 is V (1) = max{V (1), b}, where any V (1) ≥ b is a27

feasible solution. If initialize V0(1) ≥ b, a resulting policy is that an agent at state 1 always transits28

back to state 1; otherwise, drives to terminal state 0 (always returns back to itself with reward 0).29

• Blackmailer’s problem (stochastic) in Fig. 1(b): At state 1, a profit maximizing blackmailer30

demands a cash amount a ∈ (0, 1]; a victim transits to state 1 with probability a or state 0 with31

probability 1 − a, respectively. At state 0, a victim always refuses to yield, i.e., V (0) = 0. The32

Bellman’s optimality equation for state 1 is V (1) = maxa{a+(1−a)V (1)}, where any V (1) ≥ 133

is a feasible solution. If initialize V0(1) > 1, the blackmailer’s policy is demanding a→ 0 to keep34

the victim at state 1; otherwise, demanding a = 1 that drives the victim to terminal state 0.35

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

(a) Shortest path problem (b) Blackmailer’s problem (c) Optimal stopping problem

Figure 1: MDP examples where γ = 1. Examples with γ < 1 are given in Fig. 5 in Appx. A.

• Optimal stopping problem (terminating policies) in Fig. 1(c): In a space R2 with terminal36

state of point 0, an agent at point x ̸= 0 moves to either point 0 with negative reward −c or37

point αx with reward −||x||, respectively, where α ∈ (0, 1). The Bellman’s optimality equation38

is V (x) = max{−c,−||x||+ V (αx)} and the optimal policy is to continue inside the sphere of39

radius (1− α)c and to stop outside. If add a cone region C within which an agent always receives40

a reward −c, a second policy is jumping to point 0 at any point in region C.41

The instability problem has been partially addressed, such as ensemble methods [2, 8], regularization42

approaches [38, 9], and baseline-correction approaches [33, 42]. In particular, Generalized Advantage43

Estimation (GAE) [33] is a widely used one that significantly reduces the variance of the advantage44

function. However, they did NOT fix the foundational issue of Bellman’s optimality equation in Fig.45

1, thus the objective function inherently fails to search for a consistent policy. For practical usage, we46

often expect a DRL algorithm stably converges to a certain policy independent of initialization and47

noises.48

As a fix of the problem, we make a novel analogy between an MDP and a quantum K-spin Ising model49

[26, 12], and reformulate a reward-maximization RL task into an energy-minimization problem,50

namely, finding the lowest-energy configuration of a quantum spin system. We hypothesize that51

a physically stationary policy would have the lowest energy. Different from our quantum K-spin52

perspective, several recent papers utilized the (classical) Hamiltonian equation to endow RL agents53

the capability of inductive biases. For example, [21, 40] used Hamiltonian mechanics to train an54

agent that learns and respects conservation laws; [43] applied a Hamiltonian Monte Carlo (HMC)55

simulator to approximate the posterior action probability; and [28] proposed an unbiased estimator56

for the stochastic Hamiltonian gradient methods for min-max optimization problems.57

In this paper, we propose a quantum-inspired K-spin Hamiltonian regularization term (H-term) that58

helps policy gradient algorithms stably converge to a physically stationary policy. Our contributions59

are as follows: 1) we derive a novel regularizer, H-term, by a novel reformulation of the RL’s objective60

as a K-spin Hamiltonian equation that measures the energy of a policy; 2) we propose a generic61

actor-critic algorithm that utilizes the H-term to regularize the policy/actor network and provide62

Hamiltonian policy gradient calculations on both deterministic and stochastic cases; and 3) on six63

challenging MuJoCo tasks over 20 runs, we show that the proposed algorithm reduces the variance of64

cumulative rewards by 65.2% ∼ 85.6% compared with those of existing algorithms.65

2 Bellman’s Optimality Equation and Multiple Fixed Points66

We describe Bellman’s optimaility equation and provide observational experiments to verify the67

existence of multiple policies.68

2.1 Bellman’s Optimality Equation69

A reinforcement learning (RL) [36] agent interacts with an unknown environment and learns an70

optimal policy that maximizes the cumulative reward. Mathematically, the environment can be71

formulated as a Markov Decision Process (MDP) with the five-tuple ⟨S,A,P, R, γ⟩. Here S and72

A denote the state and action spaces; P : S ×A → ∆(S) denotes a transition probability function,73

where ∆ is a probability simplex; R : S × A × S → R denotes a reward function; and γ ∈ (0, 1]74

2

Figure 2: Different policy types for four MuJoCo [39] tasks. Two-legs running, one-leg running,
and running backward for Humanoid; running, diving, and balancing for Hopper; running, diving,
balancing and flipping for HalfCheetah; running and flipping for Ant. The bold ones indicate
physically stationary policies.

denotes a discount factor. The objective is to find an optimal policy π∗ : S → ∆(A) that maximizes75

(discounted) expected reward.76

Consider a discrete, finite, discounted MDP with infinite horizon, one can define the Q-value function77

of a state-action pair (s, a) under policy π as follows78

Qπ(s, a) = ESk+1∼P(·|Sk,Ak),Ak+1∼π(Sk+1,·)

[∞∑
k=0

γk ·R(Sk, Ak, Sk+1)|S0 = s,A0 = a

]
, (1)

where R(Sk, Ak, Sk+1) denotes the immediate reward when taking action Ak at state Sk and arriving79

at state Sk+1, capital letters denote random variables and lowercase letters denote values. The80

conventional objective function J(θ) of reinforcement learning [36] takes the following form81

J(θ) ≜ ES0,A0 [Q
πθ (S0, A0)] = Eτ∼π [R(τ) · P (τ |πθ)] , (2)

where τ is a trajectory, i.e., τ = (S0, A0, · · ·), and82

P (τ |πθ) = d0(s0) ·
∏T

k=0 P(sk+1|sk, ak)πθ(ak|sk).83

The Bellman equation [36] converts (1) into a recursive form as follows84

Qπ(s, a) =
∑
s′∈S

P(s′ | s, a)

[
R(s, a, s′) + γ

∑
a′∈A

π(s′, a′)Qπ(s′, a′)

]
= R(s, a) + γ

∑
s′∈S

P(s′ | s, a)
∑
a′∈A

π(s′, a′)Qπ(s′, a′),

(3)

which expresses the expected reward as a summation of immediate reward R(s, a) and discounted fu-85

ture rewards, and the immediate reward R(s, a) is defined as R(s, a) =
∑

s′∈S P(s′ | s, a)R(s, a, s′).86

The Bellman’s optimality equation [36] is87

Q∗(s, a) =
∑
s′∈S

P(s′ | s, a)
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
.. (4)

The optimal policy π∗ is given by a greedy strategy such that π∗ = argmaxπ Qπ(s, a).88

2.2 Observational Experiments for Multiple Policies and Physically Stationary Policy89

As we pointed out in Fig. 1, theoretically there exists multiple policies. Here, we perform observa-90

tional experiments on four challenging MuJoCo tasks [39], namely, Humanoid, Hopper, HalfCheetah,91

and Ant (details given in Appx. B.1), which are typical examples of the locomotion control of a robot.92

We render the obtained policies over multiple runs and then identify physically stationary ones. We93

observe various types of moving strategies, as shown in Fig. 2, which verifies that multiple policies94

3

Table 1: Analogy between MDP and quantum K-spin Ising model.

MDP (Our formulation in (7)) Quantum K-spin Ising Model [26, 12] in (5)
State-action pairs µ0, ..., µK−1 Spins j0, · · · , jK−1

Optimal policy π∗
µ0
× π∗

µ1
× · · · × π∗

µK−1
Optimal configuration σj0 × σj1 × · · · × σjK−1

Policy πµ0
× πµ1

× · · · × πµK−1
Configuration σj0 × σj1 × · · · × σjK−1

Discounted reward Lµ0...µK−1
Density function Lj0···jK−1

Functional of policy H(πµ0 , ..., πµK−1
) Functional of spins H(σj0 , · · · , σjK−1

)

Stationary condition
δH(πµ0

,··· ,πµK−1
)

δπµ
= 0 Stationary condition

δH(σj0
,··· ,σjK−1

)

δσj
= 0

are very common. For example, the Humanoid agent learns either jumping with a single leg or95

running with two legs, as shown in Fig. 2 (top-left); another interesting example is HalfCheetah, in96

which an agent can run normally or in a flipped manner, as shown in Fig. 2 (bottom-left). Among97

the obtained policies, one can easily identify the physically stationary polices that control the robot98

moving forward with a stable gait (defined as gait that does not lead to fall).99

3 Reinforcement Learning as Quantum K-spin Hamiltonian Equation100

First, we make a novel analogy between the MDP and a quantum K-spin Ising model, and reformulate101

the objective function (2) into a quantum K-spin Hamiltonian equation. Then, we show that this102

Hamiltonian equation helps fix the issue of multiple fixed points in Fig. 1.103

3.1 Motivation through Analogy with Quantum K-spin Ising Model104

Given the multiple policies in Section 2.2, it is critical to employ a proper criteria to search for a105

physically stationary policy. In Table 1, we make a novel analogy between an MDP and a quantum106

K-spin Ising model [26, 12].107

The Hamiltonian equation for a quantum K-spin Ising model [26, 12] measures the energy of a108

particular configuration of a quantum K-spin system and takes the following form109

H = −
K−1∑
k=0

N∑
j0=1

· · ·
N∑

jk=1

Lj0···jkσj0 · · ·σjk , (5)

where N is the number of spins in the k-th configuration, σjk = ±1 are spin variables, and Lj0...jk is110

an energy density function for k nearest spins’ configuration (σj0 , . . . , σjk).111

Analogy in Table 1. Starting from an analogy between a state-action pair µk = (Sk, Ak) and112

a spin jk, we can map an optimal policy π∗(µk) ∈ {0, 1} in (4) to a single-qubit spin operator113

σjk ∈ {−1, 1} via π∗(µk) ←→ (1µk
− σµk

)/2, where πθ(µk) denotes the probability of taking114

action Ak at state Sk, following policy πθ. The energy density function Lj0...jk can be defined as the115

discounted reward on a path (µ0, · · · , µk−1) of length k, i.e.,116

Lµ0,...,µk
= γk ·R(µk) · d0(s0) ·

k−1∏
ℓ=0

P(sℓ+1|µℓ), (obtained via Monte Carlo simulation) (6)

where d0(s0) denotes the distribution of initial state s0. Analogy to the quantum K-spin Ising model,117

we can derive a functional of policy H(πµ0 , ..., πµK−1
) in the context of MDP, which measures the118

energy of an RL policy. In this case, a physically stationary policy satisfies the stationary condition119

δH(πµ0
, · · · , πµK−1

)/δπµ = 0.120

4

3.2 Reformulation into Quantum K-spin Hamiltonian Equation121

Inspired by [17], we formally reformulate (2) into a K-spin Hamiltonian equation122

H(θ) ≜ −ES0,A0
[Qπθ (S0, A0)]

= − lim
K→∞

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
πθ(µ0) · · ·πθ(µk),

= − lim
K→∞

Eµ0,µ1,...,µK

[
K−1∑
k=0

Lµ0,...,µk

]
,

(7)

where K →∞, the expectation is taken over S0 ∼ d0(·), A0 ∼ πθ(S0, ·), and the density function123

Lµ0,...,µk
is given in (6).124

The following blue part will be put into the appendix.125

Monte Carlo Estimator [30]: Consider a general probabilistic objective F of the form:126

F ≜ Ep(x;θ)[f(x;ϕ)], (8)

in which a function f of an input variable x with structural parameters ϕ is evaluated on average127

with respect to an input distribution p(x; θ) with distributional parameters θ.128

A Monte Carlo method evaluates the function by first drawing independent samples x̂(1), ..., x̂(N)129

from the distribution p(x; θ), and then computing the average:130

F̂N =
1

N

N∑
i=1

f(x̂(i)), where x̂(i) ∼ p(x; θ) for i = 1, ..., N. (9)

131

The Monte Carlo estimator for (2) is132

Ĵ(θ) =
1

N

N∑
i=1

R(τ (i)), where τ (i) ∼ P (τ (i)|πθ) for i = 1, ..., N, (10)

and133

134

P (τ (i)|πθ) = d0(s
(i)
0) ·

T∏
k=0

P(s(i)k+1|s
(i)
k , a

(i)
k)πθ(a

(i)
k |s

(i)
k). (11)

135

The Monte Carlo estimator for (7) is136

Ĥ(θ) =
1

N ′

N ′∑
i=1

K−1∑
k=0

L
µ
(i)
0 ,...,µ

(i)
k

, for i = 1, ..., N ′, (12)

and137

L
µ
(i)
0 ,...,µ

(i)
k

= γk ·R(µ
(i)
k) · d0(s(i)0) ·

k−1∏
ℓ=0

P(s(i)ℓ+1|µ
(i)
ℓ). (13)

138

Remark: The above two Monte Carlo estimators are quite different in the simulation process. (11)139

samples a random trajectory by following an environment’s stochastic transition and a policy. In140

contrast, (13) measures a random path’s discounted reward (the “energy") without following any141

policy, and the Hamiltonian equation (7) combinatorially enumerates all possible paths of length K142

over the state-action space. In other words, the simulation process of the Hamiltonian term does not143

rely on any policy. Therefore, the Hamiltonian term is a suitable regularizer for both on-policy and144

off-policy algorithms.145

This fundamental difference is due to the Ising model in (5), which combinatorially enumerates all146

paths and separates the environment and the policy.147

5

Physical interpretation: Analogy to a quantum K-spin system, H(θ) in (7) measures the energy of148

policy π. We hypothesize that the energy of a policy is a favorable criteria, since a stationary policy149

with minimum energy: 1). achieves a relative high reward independent of the initialization; and 2). is150

robust to interference/noise in the inference stage.151

K-step truncation in practice. Minimizing (7) is NP-hard [11]. Since γ ∈ (0, 1), γK monotonically152

decreased with look-ahead steps K, therefore, we truncate (7) to finite K terms. One can show153

that these K terms in (7) is a geometric sequence with a truncation error ratio 1− γK . Assuming154

1− γK ≤ 1− ϵ, where ϵ > 0 is small, thus we have the look-ahead steps satisfies K ≥ logγ ϵ.155

3.3 Revisiting Examples in Fig. 1156

We elaborate how adding the energy measured by (7) onto each state can help drive to the terminal157

state (a stationary policy), which fixes the foundational issue of multiple fixed points in Fig. 1 where158

γ = 1. We have H(0) = 0 for the terminal state 0.159

• (a) Shortest path problem (deterministic): H(1) = −
∑∞

k=1 b = −∞. At state 1, the Bellman’s160

optimality equation becomes V (1) = max{V (1) + λH(1), b}. Independent of the initial value161

V0(1), an agent obtains a policy that always transits back to terminal state 0.162

• (b) Blackmailer’s problem (stochastic): H(1) = −∞. The Bellman’s optimality equation163

becomes V (1) = maxa{a+(1−a)(V (1)+λH(1))} for state 1. For any V0(1) <∞, the optimal164

policy becomes a = 1 that drives to the terminal state 0.165

• (c) Optimal stopping problem (terminating policies): any policy that takes infinite steps will166

have H(x) = −∞, since at each step number k, there are always trajectories that jump to point 0167

with reward −c; and a direct jumping policy will have H(x) = −c. Therefore, adding H(x) to168

each point x ̸= 0 will lead to a policy of jumping back to point 0.169

4 Actor-Critic Algorithm with Quantum K-spin Hamiltonian Regularization170

We propose a generic actor-critic algorithm with a H-term, derive two Hamiltonian’s policy gradient171

theorems for both deterministic and stochastic cases, and present the Monte Carlo gradient estimation.172

4.1 Stationary Actor-Critic Algorithm with H-term173

Actor-critic algorithms in reinforcement learning perform a bilevel optimization, namely alternating174

between approximating a value function and optimizing a policy. In practice, a critic network with175

parameter ϕ approximates the Q-value function, and an actor network with parameter θ approximates176

the policy π, details given in Appx. F. However, since the critic’s update is governed by the Bellman’s177

optimality equation, actor-critic algorithms suffer the multiple fixed points problem.178

Motivated by Section 3.3, we propose a novel H-term for both deterministic and stochastic actor-critic179

algorithms. Similar to the entropy term in [23], the proposed H-term is an add-on term to regularize180

the actor network and help it converge to a stationary policy. Specifically, the objective functions of181

actor and critic networks become:182 
Actor : max

θ
Jπ(θ, ϕ) ≜ (1− γ)ES0∼d0,A0∼πθ(S0,·) [Qϕ (S0, A0)]−λH(θ),

Critic : min
ϕ

JQ(θ, ϕ) ≜
1

2
ES∼dθ(·),A∼πθ(S,·)

[
(Qϕ(S,A)− y(S,A))

2
]
,

(14)

where a target Q-value is y(Sk, Ak) = R(Sk, Ak) + γQϕ(Sk+1, Ak+1), and λ > 0 is a temperature183

parameter. As an interpretation, the second term −λH(θ) in the maximization objective function of184

actor network aims to find a minimum energy configuration for the MDP problem, namely, a policy185

π that will add a minimum amount of energy to each state’s value function (as in Section 3.3).186

New algorithm. In Alg. 1, an agent interacts with an environment and alternatively updates its actor187

network and critic network. The algorithm has M episodes and each episode consists of a (Monte188

Carlo) simulation process and a learning process (gradient estimation) as follows:189

• During the (Monte Carlo) simulation process (lines 5-10 of Alg. 1), an agent takes action at ac-190

cording to a policy πθ(·|st), t = 0, · · · , T − 1, generating a trajectory of T steps/transitions.191

6

Algorithm 1 Stationary Actor-Critic Algorithm with H-term
1: Input: learning rate α, temperature λ, look-ahead step K, and parameters M,T,G,B,B′

2: Initialize actor network π and critic network Q with parameters θ, ϕ, and replay buffers D1, D2

3: for episode = 1, · · · ,M do
4: Initialize state s0
5: for t = 0, · · · , T − 1 do
6: Select action at ∼ πθ(·|st)
7: Execute action at, receive reward rt, and observe new state st+1

8: Store a transition (st, at, rt, st+1) in D1

9: end
10: Store a trajectory τ of length T in D2

11: for g = 1, · · · , G do
12: Randomly sample a mini-batch of B transitions {(si, ai, ri, si+1)}Bi=1 from D1

13: Randomly sample a mini-batch of B′ trajectories (of length K) {τj}B
′

j=1 from D2

14: Update critic network using a conventional method
15: Update actor network as θ ← θ + α

(
∇θĴ(θ)−λ ∇θĤ(θ)

)
.

16: end
17: end

Then, these T transitions are stored into a replay buffer D1, while the full trajectory τ =192

(s0, a0, r0, s1, · · · , sT−1, aT−1, rT−1, sT) is stored in replay buffer D2.193

• During the learning process (G ≥ 1 updates in one episode) (lines 11-16 of Alg. 1), a mini-194

batch of B transitions {(si, ai, ri, si+1)}Bi=1 and a mini-batch of B′ trajectories (of length K)195

{τj = (sj0, a
j
0, r

j
0, s

j
1, · · · , s

j
K−1, a

j
K−1, r

j
K−1, s

j
K)}B′

j=1 are sampled fromD1 andD2, respectively.196

The critic network is updated by a conventional method, e.g., minimizing the mean squared error197

(MSE) between an estimated Q-value and a target value. The actor is updated by a Monte Carlo198

gradient estimator over B transitions and B′ trajectories.199

Two new hyperparameters. We introduce two hyperparameters: a temperature λ > 0 that is a200

relative weight of the H-term, and a look-ahead step K ≤ T that defines the horizon of the H-term.201

Implementation of replay buffer D2. After a full trajectory τ of length T is generated, it is202

partitioned into T −K+1 trajectories of length K. We rank them according to the cumulative reward203

and store the top portion, say 80%, into a new replay buffer D2 (line 10 of Alg. 1). We randomly204

sample a mini-batch of B′ trajectories from D2 (line 13 of Alg. 1) to compute the H-term.205

4.2 Hamiltonian Policy Gradient and Monte Carlo-based Gradient Estimator206

We provide the policy gradient of the quantum K-spin Hamiltonian equation in (7), which are variants207

of the well-known policy gradient theorem [36]. We provide detailed derivations in Appx. D.208

Stochastic version. The Hamiltonian stochastic gradient of (7) w.r.t. parameter θ is209

∇θH(θ) = −Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log (πθ(µ0) · πθ(µ1) · · ·πθ(µk))

]
. (15)

Deterministic version. Let ηθ(·) : S → A denote a deterministic policy, while we use π̃θ,δ(µ) to210

represent that a Gaussian noise (a.k.a, an exploration noise) with standard deviation δ > 0 is added in211

the exploration process. The Hamiltonian deterministic gradient of (7) w.r.t. parameter θ is212

∇θH
′(θ) = −Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log (π̃θ,δ(µ0) · π̃θ,δ(µ1) · · · π̃θ,δ(µk))

]
. (16)

The quantum K-spin Hamiltonian equation in (7) is a reformulation of (2). We verify the gradient213

calculation by showing that: when K → ∞, the Hamiltonian stochastic and deterministic policy214

gradient ∇θH(θ) and ∇θH
′(θ) are equal to the stochastic policy gradient ∇θJ(θ) in [37] and215

deterministic policy gradient∇θJ
′(θ) in [35], respectively.216

7

Figure 3: Comparison of REINFORCE’s (left) and Hamiltonian’s policy gradient (right).

Note that the gradient ∇θH(θ) in (15) and ∇θH
′(θ) in (16) w.r.t. a distributional parameter θ takes217

an expectation form. Thus, a Monte Carlo gradient estimator is practically useful. We obtain the218

Monte Carlo gradient estimator of∇θH(θ), illustrated in Fig. 3 (right), as follows219

∇θĤ(θ) = − 1

N ′

N ′∑
i=1

[
K−1∑
k=0

γk ·R(µi
k) · ∇θ log

[
πθ(µ

i
0) · · ·πθ(µ

i
k)
]]

. (17)

As a contrast, we provide the Monte Carlo gradient estimator of REINFORCE’s [37] policy gradient,220

as illustrated in Fig. 3 (left), as follows221

∇θĴ(θ) =
1

NT

N∑
i=1

[
T−1∑
t=0

Gi
t · ∇θ log πθ(µ

i
t)

]
, where Gi

t =
T∑

t′=t+1

γt′−t−1R(µi
t′). (18)

An interesting observation is that both gradient calculations follow a similar pattern as shown in Fig.222

3. REINFORCE’s policy gradient [37] in Fig. 3 (left) employs an estimate of future rewards, while223

Hamiltonian policy gradient in Fig. 3 (right) uses trajectories in replay buffer D2.224

Computational complexity: we measure the computation complexity by the times of computing one225

∇θ log πθ(µ). Assume N = B and N ′ = B′, since most DRL algorithms use a mini-batch stochastic226

gradient decent methods. REINFORCE’s [37] policy gradient in (18) takes O(BT) computations,227

while Alg. 1 adds O(B′K(K + 1)/2) computations in each gradient update step, thus a total228

complexity of O(BT +B′K(K + 1)/2).229

5 Performance Evaluation230

We evaluate the proposed H-term from four aspects: 1) increasing cumulative reward, 2) reducing231

variance, 3) driving to physically stationary policy, and 4) the impact of trajectory length K. All232

experiments were executed on an NVIDIA DGX-2 server [10]. The server contains 8 A100 GPUs,233

320 GB GPU memory, and 128 CPU cores running at 2.25 GHz.234

5.1 Experimental Settings235

Environments (tasks). We consider six challenging MuJoCo tasks [39] as in Section 2.2. The agent236

learns to control the locomotion of a robot and aims to move forward as quickly as possible. These237

tasks have high-dimensional continuous state and action spaces, in which there exists multiple locally238

optimal polices as revealed in Section 2.2.239

Compared algorithms. To evaluate deterministic and stochastic algorithms, we choose Deep240

Deterministic Policy Gradient (DDPG) [27] and Proximal Policy Optimization (PPO) [34]. Since the241

H-term is compatible with existing variance reduction techniques, we implement the PPO algorithm242

with GAE [33]. For a fair comparison, we keep the hyperparameters (listed in Appx. H) the same243

and make sure that the obtained results reproduce existing benchmark tests [13].244

Performance metrics. We employ two performance metrics, the cumulative rewards and variance,245

while in Section 5.4, we further consider different policies and report the number of convergence. We246

run each experiment with 20 random seeds and in each run we test 100 episodes.247

5.2 H-term Increases Cumulative Reward248

Experience replay is crucial in improving performance in terms of cumulative reward. The proposed249

H-term in (17) can be viewed as a novel experience replay technique for an actor network. Here, we250

8

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah
DDPG
DDPG_H
DDPG_PER

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Ant
DDPG
DDPG_H
DDPG_PER

0.0 0.5 1.0 1.5 2.0
#samples 1e7

 2k

 4k

 6k

 8k

10k

12k

Cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid
DDPG
DDPG_H
DDPG_PER

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Hopper
DDPG
DDPG_H
DDPG_PER

0 2 4 6 8
#samples 1e6

40

80

120

160

200

Cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer
DDPG
DDPG_H
DDPG_PER

0.0 0.5 1.0 1.5 2.0
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Walker2D
DDPG
DDPG_H
DDPG_PER

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah
PPO
PPO_H

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Ant
PPO
PPO_H

0.0 0.5 1.0 1.5 2.0
#samples 1e7

 2k

 4k

 6k

 8k

10k

12k

Cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid
PPO
PPO_H

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Hopper
PPO
PPO_H

0 2 4 6 8
#samples 1e6

40

80

120

160

200

Cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer
PPO
PPO_H

0.0 0.5 1.0 1.5 2.0
#samples 1e6

 1k

 2k

 3k

 4k

 5k
Cu

m
ul

at
iv

e
re

wa
rd

s
Walker2D

PPO
PPO_H

Figure 4: Cumulative rewards vs. #samples for compared DRL algorithms on six MuJoCo tasks.

add a compared algorithm, DDPG with Prioritized Experience Replay [32] (DDPG+PER), where251

PER prioritizes experience by the TD error to update a critic network.252

In Fig. 4, both DDPG+PER and DDPG+H achieve a substantial improvement of cumulative reward. In253

particular, DDPG+H achieves the highest cumulative rewards in all six tasks, which are comparable to254

PPO’s performance in Fig. 4. It is worthwhile to discuss the advantage of DDPG+H over DDPG+PER.255

DDPG+PER utilizes a prioritized replay strategy to obtain a more accurate critic network, however,256

it is updated via the Bellman equation with the trouble of multiple fixed points. In contrast, the257

H-term in DDPG+H is performed on the actor network. Our results indicate that an experience replay258

technique on actor network may be much more powerful.259

5.3 H-term Reduces Variance260

The PPO algorithm with GAE is regarded as the state-of-the-art algorithm in MuJoCo environments.261

However, it still has a very high variance (the shaded area) after the policies have converged, as262

shown in Fig. 4. We observe that, at the end of training, the PPO algorithm has a variance of 969.2,263

1563.4, 2513.5, 905.3, 60.7, 1290.1 in the six tasks, respectively. Such a high variance is mainly due264

to the fact that the agent may converge to a random one of multiple policies.265

9

Table 2: Experimental results on six challenging MuJoCo tasks.

Tasks Policies PPO PPO+H (K = 8) PPO+H (K = 16) PPO+H (K = 24)
running 13 19 20 20
flipping 5 0 0 0
diving 1 1 0 0

HalfCheetah

balancing 1

4720.8
±969.2

0

5028.4
±211.3

0

5104.3
±228.4

0

4995.1
±383.3

running 17 20 20 20
Ant jumping 0 0 0 0

flipping 3

4164
±1563.4

0

4505.3
±253.6

0

4645.6
±225.4

0

4662.5
±277.5

two-legs 7 17 16 17
one-leg 12 3 4 3Humanoid

backward 1

9433.4
±2513.5

0

9670.3
±497.2

0

10189.1
±683.7

0

9942.2
±538.4

hopping 10 18 20 20
diving 8 2 0 0Hopper balancing 2

2659.3
±905.3

0

3116.5
±289.4

0

3300.1
±184.2

0

3340.7
±191.5

moving 14 20 20 19Swimmer balancing 6
110.7
±60.7 0

130.6
±33.5 0

132.5
±31.6 1

132.2
±36.2

walking 5 16 16 15
Walker diving 8 2 4 5

balancing 7

5461.7
±1290.1

2

5819.9
±315.6

0

5927.2
±296.8

0

6089.3
±314.7

In Fig. 4, the shaded areas of PPO+H (K = 16) are dramatically smaller, i.e., a variance of 228.4,266

225.4, 683.7, 184.2, 31.6, and 296.8, respectively. The variance has been reduced by 65.2% ∼ 85.6%,267

which verifies the effectiveness of the proposed H-term. In Fig. 4, we also observe that the H-term268

can help the DDPG algorithm reduce variances, namely, the variances of DDPG+H are much smaller269

than those of vanilla DDPG and DDPG+PER. Therefore, we may conclude that the H-term guides270

the agent to search for a stationary policy among multiple feasible ones.271

More experimental results are given in Appx. H due to the space limit, including the cases of K = 8272

and K = 24, and the curves of the H-term value during the training process. One may verify that the273

stationary policies have relative lower H-values.274

5.4 H-term Drives to Physically Stationary Policy275

A key question needs to be answered: is H-term really guiding the agent converge to a physically276

stationary policy? Similar to Section 2.2, we perform observational experiments on the six MuJoCo277

tasks and measure the number of convergence to the different policies over 20 runs. As shown in278

Table 2, the vanilla PPO algorithm converges to the physically stationary policy (bold) with 13, 17, 7,279

10, 14, and 5 times for the six tasks, while the PPO+H (K = 16) converges to the stationary policy280

with 20, 20, 16, 20, 20, and 16 times, respectively. From the empirical observation, we find that the281

PPO gets stuck in locally optimal policies, failing to find a consistent one. As expected, PPO+H can282

converge to the stationary policy with a substantially higher ratio, which verifies the effectiveness of283

the proposed H-term in finding a physically stationary policy.284

5.5 Impact of Trajectory Length K285

We investigate the impact of trajectory length K that defines the horizon of the H-term. Based on (17),286

we foresee that a large K means a more accurate estimation of∇θH(θ) but at a price of computations.287

Here, we evaluate the PPO+H with K = 8, 16 and set the size of replay buffer D2 to 1, 000. In Table288

2, we observe that the cumulative reward increases and the variance decreases as K increases from 8289

to 16. However, for the case K = 24, both metrics get worse due to the out-of-memory issue. For290

K = 24, we reduce the replay buffer size to 800 to meet the memory limit. The smaller replay buffer291

size hurts the diversity of the trajectories and may lead to a small performance drop. This hypothesize292

is verified in Appx. H.2, where all trials use a consistent replay buffer size 800.293

10

6 Conclusions294

In this paper, we have addressed a foundational issue of existing deep reinforcement learning295

algorithms that Bellman’s optimality equation has multiple fixed points. This issue leads to the296

instability of DRL algorithms, puts a challenge on their reliability and reproducibility, and thus297

limits the wider adoption in real-world tasks. As a fix of the problem, we propose a novel H-term, a298

physically inspired regularizer, by making a novel analogy between a MDP and a quantum K-spin299

Ising model. Experimentally, we show that the H-term helps DRL algorithms find a stationary300

policy that has the lowest energy in a system and reduces the variance of cumulative rewards by301

65.2% ∼ 85.6% compared with those of existing algorithms.302

For future works, we will explore the potential of directly training a policy network using (7) as in303

Appx. I, quantum simulator [25] and quantum reinforcement learning [5][16]. It is interesting to304

apply Monte Carlo estimator for unbiased policy gradient calculations. We would like to show that305

the proposed H-term can help distributional RL algorithms [3] find a stationary policy, since the306

distributional Bellman optimality operator is not a contraction and thus there is also no unique policy.307

11

Broader Impact Statement308

In the field of DRL research, this paper points out the issue of multiple fixed points and may attract309

more attention from various perspectives. In terms of applications, this paper moves toward the310

reliable and reproducible research by improving the stability of existing DRL algorithms. On the other311

hand, the obtained stationary policy may have broad practical impact in many real-world application312

areas, including but not limited to robotics, transportation, and finance.313

From an interdisciplinary perspective, our approach lies at the intersection of (quantum) Hamiltonian314

mechanics and DRL, espcially the explicit analogy between an MDP and a quantum K-spin Ising315

model. We hope that our study will attract more attention to bring together the strengths of both316

approaches and yield new insights in both fields.317

In terms of broader societal impact of this work, we do not see any foreseeable strongly negative318

impacts. However, this work essentially makes a tradeoff between the computational resource and319

stability, which may lead to future works with higher computational cost.320

References321

[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-322

mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural323

Information Processing Systems, 2021.324

[2] Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-DQN: Variance reduction and325

stabilization for deep reinforcement learning. In International Conference on Machine Learning,326

pages 176–185. PMLR, 2017.327

[3] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-328

ment learning. In International Conference on Machine Learning, pages 449–458. PMLR,329

2017.330

[4] Dimitri Bertsekas. Reinforcement Learning and Optimal Control. Athena Scientific, 2019.331

[5] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth332

Lloyd. Quantum machine learning. Nature, 549(7671):195–202, 2017.333

[6] Stephanie CY Chan, Samuel Fishman, Anoop Korattikara, John Canny, and Sergio Guadarrama.334

Measuring the reliability of reinforcement learning algorithms. 2019.335

[7] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating336

stochastic gradient methods for bilevel problems. Advances in Neural Information Processing337

Systems, 34, 2021.338

[8] Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-339

learning: Learning fast without a model. ICLR, 2021.340

[9] Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and Joel Burdick.341

Control regularization for reduced variance reinforcement learning. In International Conference342

on Machine Learning, pages 1141–1150. PMLR, 2019.343

[10] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky. NVIDIA344

A100 Tensor Core GPU: Performance and innovation. IEEE Micro, 41(2):29–35, 2021.345

[11] Barry A Cipra. The ising model is np-complete. SIAM News, 33(6):1–3, 2000.346

[12] Vasil S Denchev, Sergio Boixo, Sergei V Isakov, Nan Ding, Ryan Babbush, Vadim Smelyanskiy,347

John Martinis, and Hartmut Neven. What is the computational value of finite-range tunneling?348

Physical Review X, 6(3):031015, 2016.349

[13] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking350

deep reinforcement learning for continuous control. In International Conference on Machine351

Learning, pages 1329–1338. PMLR, 2016.352

12

[14] Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,353

and Todd Hester. An empirical investigation of the challenges of real-world reinforcement354

learning. arXiv preprint arXiv:2003.11881, 2020.355

[15] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-356

ment learning. 2019.357

[16] Vedran Dunjko, Jacob M Taylor, and Hans J Briegel. Quantum-enhanced machine learning.358

Physical review letters, 117(13):130501, 2016.359

[17] Eliot Kapit Wesley Jones Eric B. Jones, Peter Graf. K-spin Hamiltonian for quantum-resolvable360

markov decision processes. ArXiv, abs/2003.11881, 2020.361

[18] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you362

need: Learning skills without a reward function. ICLR, 2019.363

[19] Evan Greensmith, Peter Bartlett, and Jonathan Baxter. Variance reduction techniques for364

gradient estimates in reinforcement learning. Advances in Neural Information Processing365

Systems, 14, 2001.366

[20] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for367

gradient estimates in reinforcement learning. Journal of Machine Learning Research, 5(9),368

2004.369

[21] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances370

in Neural Information Processing Systems, 32, 2019.371

[22] Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. Embodied intelligence via372

learning and evolution. Nature Communications, 12(1):1–12, 2021.373

[23] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-374

policy maximum entropy deep reinforcement learning with a stochastic actor. In International375

Conference on Machine Learning, pages 1861–1870. PMLR, 2018.376

[24] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David377

Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference on378

artificial intelligence, volume 32, 2018.379

[25] Eric B Jones, Peter Graf, Eliot Kapit, and Wesley Jones. K-spin Hamiltonian for quantum-380

resolvable markov decision processes. Quantum Machine Intelligence, 2(2):1–11, 2020.381

[26] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.382

Science, 220(4598):671–680, 1983.383

[27] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval384

Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.385

ICLR, 2016.386

[28] Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-387

Julien, and Ioannis Mitliagkas. Stochastic Hamiltonian gradient methods for smooth games. In388

International Conference on Machine Learning, pages 6370–6381. PMLR, 2020.389

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan390

Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. ICLR, 2013.391

[30] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient392

estimation in machine learning. J. Mach. Learn. Res., 21(132):1–62, 2020.393

[31] Alexey B Piunovskiy. Examples in Markov Decision Processes, volume 2. World Scientific,394

2013.395

[32] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.396

ICLR, 2016.397

13

[33] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-398

dimensional continuous control using generalized advantage estimation. ICLR, 2016.399

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal400

policy optimization algorithms. CoRR, abs/1707.06347, 2017.401

[35] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.402

Deterministic policy gradient algorithms. In International Conference on Machine Learning,403

pages 387–395. PMLR, 2014.404

[36] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press,405

2018.406

[37] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-407

ods for reinforcement learning with function approximation. Advances in Neural Information408

Processing Systems, 12, 1999.409

[38] Pierre Thodoroff, Audrey Durand, Joelle Pineau, and Doina Precup. Temporal regularization410

for markov decision process. Advances in Neural Information Processing Systems, 31, 2018.411

[39] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based412

control. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages413

5026–5033. IEEE, 2012.414

[40] Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev,415

and Irina Higgins. Hamiltonian generative networks. ICLR, 2019.416

[41] Junfeng Wen, Saurabh Kumar, Ramki Gummadi, and Dale Schuurmans. Characterizing the gap417

between actor-critic and policy gradient. In International Conference on Machine Learning,418

pages 11101–11111. PMLR, 2021.419

[42] Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade,420

Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent421

factorized baselines. ICLR, 2018.422

[43] Duo Xu and Faramarz Fekri. Improving actor-critic reinforcement learning via Hamiltonian423

Monte Carlo method. Deep Reinforcement Learning Workshop at NeurIPS, 2021.424

Checklist425

1. For all authors...426

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s427

contributions and scope? [Yes]428

(b) Did you describe the limitations of your work? [Yes] More computational cost.429

(c) Did you discuss any potential negative societal impacts of your work? [Yes] May lead430

to future works with higher computational cost.431

(d) Have you read the ethics review guidelines and ensured that your paper conforms to432

them?433

2. If you are including theoretical results...434

(a) Did you state the full set of assumptions of all theoretical results? [Yes]435

(b) Did you include complete proofs of all theoretical results? [Yes] In the appendix.436

3. If you ran experiments...437

(a) Did you include the code, data, and instructions needed to reproduce the main experi-438

mental results (either in the supplemental material or as a URL)? [Yes]439

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they440

were chosen)? [Yes]441

(c) Did you report error bars (e.g., with respect to the random seed after running experi-442

ments multiple times)? [Yes] We reported the variance over 20 random seeds as shaded443

area in the figures, and also list it in a table.444

14

(d) Did you include the total amount of compute and the type of resources used (e.g., type445

of GPUs, internal cluster, or cloud provider)? [N/A]446

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...447

(a) If your work uses existing assets, did you cite the creators? [Yes]448

(b) Did you mention the license of the assets? [N/A]449

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]450

(d) Did you discuss whether and how consent was obtained from people whose data you’re451

using/curating? [N/A]452

(e) Did you discuss whether the data you are using/curating contains personally identifiable453

information or offensive content? [N/A]454

5. If you used crowdsourcing or conducted research with human subjects...455

(a) Did you include the full text of instructions given to participants and screenshots, if456

applicable? [N/A]457

(b) Did you describe any potential participant risks, with links to Institutional Review458

Board (IRB) approvals, if applicable? [N/A]459

(c) Did you include the estimated hourly wage paid to participants and the total amount460

spent on participant compensation? [N/A]461

15

(a) Shortest path problem (b) Blackmailer’s problem (c) Optimal stopping problem

Figure 5: Revisiting Fig. 1 for the discounted cases where γ ∈ (0, 1).

A More Examples with Multiple Fixed Points462

First, we consider the discounted formulations of the three examples (shown in Fig. 1), as shown in463

Fig. 5 where γ ∈ (0, 1). The differences are marked in red.464

• (a) Shortest path problem (deterministic, discounted case): Given two states 1 and 0, an agent465

at state 1 transits to either state 1 or 0 with rewards r = c or r = b, respectively. c > (1− γ) · b.466

At state 0, the value function is V (0) = 0. At state 1, the Bellman’s optimality equation is467

V (1) = max{c+ γ · V (1), b}, where any V (1) ≥ (b− c)/γ is a solution. If initialize V0(1) ≥ b,468

an agent obtains a policy that always transits back to state 1; otherwise, a result policy drives to469

terminal state 0.470

• (b) Blackmailer’s problem (stochastic, discounted case): Different from (a), a profit maximizing471

blackmailer/agent at 1 demands a cash amount a ∈ (0, 1] (an action), while a victim transits to state472

1 with probability a or to state 0 with probability 1− a, respectively. At state 0, a victim always473

refuses to yield to the blackmailer’s demand, i.e., V (0) = 0. The Bellman’s optimality equation474

is V (1) = maxa{a+ γ · (1− a)V (1)} for state 1, where any V (1) ≥ 1 is a feasible solution. If475

initialize V0(1) = c > 1, the blackmailer’s policy is demanding a → 0 at the k-th step to keep476

the victim stay at state 1, for any k ≤ K0 = −⌊logγ c⌋; and taking a = 1 to transit to terminal477

state 0 at the k-th step, for any k ≥ K0 + 1; otherwise initialize V0(1) = c ≤ 1, the result policy is478

demanding the maximum a = 1 that drives the victim to a refusal state 0 (a terminal state).479

• (c) Optimal stopping problem (terminating policies, discounted case): In a space R2 with480

terminating state at point 0, at point x ̸= 0 an agent moves to either point 0 with negative reward−c481

or point αx with reward −||x||, respectively, where α ∈ (0, 1). The Bellman’s optimality equation482

is V (x) = max{−c,−||x||+ γ · V (αx)} and the optimal policy is to continue inside the sphere of483

radius (1− α)c and to stop outside. If add a cone region C within which an agent always receives484

a reward −c, a second policy is jumping to point 0 at any point in region C.485

Then, we elaborate how the proposed H-term fixes the problems in Fig. 5.486

(a) Shortest path problem (deterministic, discounted case)487

Assume V0(1) ≥ b and c > (1− γ)b, we have488

V1(1) = c+ γ · V0(1) ≥ c+ γ · b > b

V2(1) = c+ γ · c+ γ2 · V0(1) ≥ (1 + γ)c+ γ2b > b

V3(1) = c+ γ · c+ γ2c+ γ3 · V0(1) ≥ (1 + γ + γ2)c+ γ3b > b

· · ·

Vk(1) =

k−1∑
i=0

γi · c+ γk · V0(1) ≥
k−1∑
i=0

γi · c+ γkb > b

· · ·

V ∗(1) =

∞∑
i=0

γi · c = 1

1− γ
c > b

(19)

16

The values of H(0) and H(1) are as follows:489

H(0) = 0, H(1) = −b−
∞∑
k=2

(

k−1∑
i=1

γi−1 · c+ γkb) = −∞. (20)

Adding the above H-values to state 1 and 0, respectively, we have490

V ∗(1) +H(1) =

∞∑
i=0

γi · c−∞ = −∞

V ∗(0) +H(0) = b.

(21)

Therefore, V ∗(1) +H(1) < V ∗(0) +H(0), independent of the initial value V0(1). That is, an agent491

always obtains a policy that drives to terminal state 0 at step 1.492

(b) Blackmailer’s problem (stochastic, discounted case)493

If initialize V0(1) = c > 1, the blackmailer’s policy is demanding a→ 0 at the k-th step to keep the494

victim stay at state 1, for any k ≤ K0 = −⌊logγ c⌋; and taking a = 1 to transit to terminal state 0 at495

the k-th step, for any k ≥ K0 + 1; otherwise initialize V0(1) = c ≤ 1, the result policy is demanding496

the maximum a = 1 that drives the victim to a refusal state 0 (a terminal state).497

The values of H(0) and H(1) are as follows:498

H(0) = 0, H(1) = −
∞∑
k=1

k−1∑
i=1

γi−1 · a = −∞. (22)

For arbitrary initial value of V0(1), V1(1) = a+(1−a) ·γ(V0(1)+H(1)) take maximum V1(1) = 1499

when a = 1. Therefore, the policy always drives to terminal state 0 at step 1.500

(c) Optimal stopping problem (terminating policies, discounted case)501

Any policy that takes infinite steps will have502

H(x) = −c−
∞∑
k=2

[
k−1∑
i=1

γi · αi · ∥x∥+ γk · (−c)

]
= −∞ (23)

and a direct jumping policy will have H(x) = −c. Therefore, the H-term drives to a terminating503

policy.504

17

B MuJoCo Tasks with Multiple Policies505

B.1 Description of MuJoCo Taks506

We selected six challenging robotic locomotion tasks from MuJoCo, namely, Swimmer-v3, Hopper-507

v3, Walker2D-v3, HalfCheetah-v3, Ant-v3, Humanoid-v3. Table 3 lists the action space and state508

space of each task.509

Table 3: The state and action spaces of six challenging MuJoCo tasks.

Tasks Agent Action Space State Space
Swimmer-v3 Three-link swimming robot 2 8
Hopper-v3 Two-dimensional one-legged robot 3 11

Walker2d-v3 Two-dimensional bipedal robot 6 17
HalfCheetah-v3 Two-dimensional robot 6 17

Ant-v3 Four-legged creature 8 111
Humanoid-v3 Three-dimensional bipedal robot 17 376

B.2 Multiple policies in MuJoCo tasks510

In the supplementary files, we includes rendered videos of different policies, as given in Table 4.511

• Different policies are obtained over 20 runs of the PPO algorithm. We rendered theses polices and512

classified them by physical gaits.513

• The policies in bold texts are physically stationary.514

Table 4: List of video files for different policies.

Task Different Policies Video Name
hopping hopper_hopping.mp4
diving hopper_diving.mp4Hopper

standing hopper_standing.mp4
running ant_running.mp4
standing ant_standing.mp4Ant
flipping ant_flipping.mp4
walking walker_walking.mp4
diving walker_diving.mp4Walker

standing walker_standing.mp4
two-legs humanoid_two_legs.mp4
one-leg humanoid_one_leg.mp4Humanoid

backward humanoid_backward.mp4
running halfcheetah_running.mp4
diving halfcheetah_diving.mp4

flipping halfcheetah_flipping.mp4HalfCheetah

standing halfcheetah_standing.mp4
moving swimmer_moving.mp4Swimmer standing swimmer_standing.mp4

18

C Quantum K-Spin Hamiltonian Formulation of Reinforcement Learning515

We provide the detailed steps of reformulating (1) into a K-spin Hamiltonian equation516

H(θ) ≜ −ES0,A0
[Qπθ (S0, A0)]

= −ES0,Ak∼πθ(Sk,·),Sk+1∼P(·|Sk,Ak)

[∞∑
k=0

γk ·R(Sk, Ak)

]

= −
K−1∑
k=0

ES0,A0,··· ,Sk∼P(·|Sk−1,Ak−1),Ak∼πθ(Sk,·)
[
γk ·R(Sk, Ak)

]
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

γk ·R(µk) · d0(S0) · πθ(µ0)

k−1∏
i=0

[P(Si+1|µi) · πθ(µi+1)]

= −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

[
γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi)

]
· πθ(µ0) · · ·πθ(µk)

= −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
· πθ(µ0) · · ·πθ(µk),

(24)

where K →∞, and the density function is517

Lµ0,...,µk
= γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi). (25)

Table 5: Revisiting the analogy between MDP and quantum K-spin Ising model.

MDP (Our formulation in (7)) Quantum K-spin Ising Model [26, 12] in (5)
State-action pairs µ0, ..., µK−1 Spins j0, · · · , jK−1

Optimal policy π∗
µ0
× π∗

µ1
× · · · × π∗

µK−1
Quantum field σj0 × σj1 × · · · × σjK−1

Cumulative rewards Lµ0...µK−1
Density function Lj0···jK−1

Functional of policy H(πµ0 , ..., πµK−1
) Functional of spins H(σj0 , · · · , σjK−1

)

Stationary condition
δH(πµ0

,··· ,πµK−1
)

δπµ
= 0 Stationary condition

δH(σj0
,··· ,σjK−1

)

δσj
= 0

19

D Derivation Steps for Section 4.2: Hamiltonian’s Policy Gradients518

We provide the policy gradient of the quantum K-spin Hamiltonian equation in (7) for both stochastic519

and deterministic cases, which are variants of the well-known policy gradient theorem [36].520

Theorem 1. (Hamiltonian’s stochastic policy gradient) The stochastic gradient of the K-spin521

Hamiltonian equation (7) w.r.t. parameter θ is522

∇θH(θ) = −Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log (πθ(µ0) · πθ(µ1) · · ·πθ(µk))

]
. (26)

Corollary 1. When K →∞, the Hamiltonian’s stochastic policy gradient ∇θH(θ) in (26) is equal523

to the stochastic policy gradient∇θJ(θ) in [37],524

lim
K→∞

∇θH(θ) = −∇θJ(θ) = −Es∼dθ,a∼πθ
[Qπθ (s, a)∇θ log πθ(s, a)] . (27)

Let ηθ(·) : S → A denote a deterministic policy, while we use π̃θ,δ(µ) to represent that a Gaussian525

noise (a.k.a, an exploration noise) with standard deviation δ > 0 is added in the exploration process.526

Theorem 2. (Hamiltonian’s deterministic policy gradient) The deterministic gradient of the K-spin527

Hamiltonian equation (7) w.r.t. parameter θ is528

∇θH
′(θ) = −Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log (π̃θ,δ(µ0) · π̃θ,δ(µ1) · · · π̃θ,δ(µk))

]
. (28)

Corollary 2. When K →∞, the Hamiltonian’s deterministic policy gradient ∇θH
′(θ) in (28) is529

equal to the deterministic policy gradient∇θJ
′(θ) in [35],530

lim
K→∞

∇θH
′(θ) = −∇θJ

′(θ) = −Es∼dθ

[
∇aQ

π̃θ,δ(s, a)|a=ηθ
∇θηθ(s)

]
. (29)

Corollary 3. When the variance of the exploration noise approaches zero, i.e., δ → 0, the determin-531

istic policy gradient∇θH
′(θ) is the limiting case of the stochastic policy gradient∇θH(θ),532

∇θH
′(θ) = lim

δ→0
∇θH(θ). (30)

D.1 Proof of Theorem 1: Hamiltonian’s Stochastic Policy Gradient533

Proof.

∇θH(θ) = −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
∇θ [πθ(µ0) · · ·πθ(µk)]

= −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
[πθ(µ0) · · ·πθ(µk)]∇θ log [πθ(µ0) · · ·πθ(µk)]

= −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

γk ·R(µk) · d0(S0) · πθ(µ0)

k−1∏
i=0

[P(Si+1|µi) · πθ(µi+1)] · ∇θ log [πθ(µ0) · · ·πθ(µk)]

= −Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log [πθ(µ0) · · ·πθ(µk)]

]
,

(31)

where µk = (Sk, Ak), S0 ∼ d0(·), Ak ∼ πθ(Sk, ·), Sk+1 ∼ P(· | Sk, Ak) for k = 0 · · ·K.534

20

D.2 Proof of Corollary 1535

Proof.

∇θH(θ)
(a)
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
∇θ [πθ(µ0) · · ·πθ(µk)]

(b)
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk

k∑
i=0

πθ(µ0) · · ·πθ(µi−1)πθ(µi+1) · · ·πθ(µk)∇θπθ(µi)

(c)
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

γk ·R(µk) · d0(S0)

k−1∏
i=0

P(Si+1|µi)

k∑
i=0

i−1∏
j=0

πθ(µj) · ∇θπθ(µi) ·
k∏

j=i+1

πθ(µj)


(d)
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

k∑
i=0

d0(S0)

γi
i−1∏
j=0

πθ(µj)P(Sj+1|µj)

∇θπθ(µi)

 k−1∏
j=i+1

πθ(µj)P(Sj+1|µj)πθ(µk)γ
k−iR(µk)


(e)
= −

K−1∑
k=0

k∑
i=0

S∑
S0

d0(S0)

S∑
Si

ρ(S0, Si, i)

A∑
Ai

∇θπθ(Si, Ai) ·
S×A∑
µk

ρ(Si, Sk, k − i) · πθ(µk) ·R(µk)

(f)
= −

S∑
S0

d0(S0)

S∑
S

K−1∑
i=0

ρ(S0, S, i)

A∑
A

∇θπθ(S,A) ·

[S∑
S′

K−1∑
k=i

ρ(S, S′, k − i) ·
A∑
A′

πθ(S
′, A′) ·R(S′, A′)

]

(g)
= −

S∑
S0

d0(S0)

S∑
S

∞∑
i=0

ρ(S0, S, i)

A∑
A

∇θπθ(S,A) ·Qπθ (S,A)

(h)
= −

[S∑
S

S∑
S0

d0(S0)

∞∑
i=0

ρ(S0, S, i)

]
·

S∑
S

∑S
S0

d0(S0)
∑∞

i=0 ρ(S0, S, i)∑S
s

∑S
S0

d0(S0)
∑∞

i=0 ρ(S0, S, i)

A∑
A

∇θπθ(S,A) ·Qθ(S,A)

(i)
∝ −

S∑
S

dπθ
(S)

A∑
A

∇θπθ(S,A) ·Qπθ (S,A)

(j)
= −ES∼dθ,A∼πθ(S,·)[Q

πθ (S,A)∇θ log πθ(S,A)],
(32)

where ρ(S, S′, i) denotes the probability of state S transfer to S′ in i steps.536

We provide detailed explanations step-by-step:537

• Equality (a) holds by definition.538

• In equality (b), using the chain rule, we take derivative of∇θ[πθ(µ0) · · ·πθ(µk)] with respect to539

πθ(µi), i = 1, ..., k.540

• In equality (c), we plug in Lµ0,··· ,µk
in (6).541

• In equality (d), we insert P(Si+1|µi) P(Si+1|µi) between πθ(µi) and πθ(µi+1), i = 1, ..., k.542

• In equality (e), we split trajectory µ0, · · · , µi, · · · , µk into two trajectories µ0, · · · , µi and543

µi, · · · , µk. Therefore, we can classify all trajectories µ0, · · · , µk by µ0, µi, µk, and i.544

• In equality (f), we reorganize
∑K−1

k=0

∑k
i=0 into

∑K−1
i=0

∑K−1
k=i . The former one first traverses the545

length k of a trajeoctory, and then traverses the i-th step on it.The latter one first traverses the i-th546

step of a trajectory, and then traverses the length k of it.547

• In equality (g), we calculate the limit of (f) when K approaches∞.548

• In equality (h), we normalize
∑S

S0
d0(S0)

∑∞
i=0 ρ(S0, S, i) to be a probability distribution.549

21

• In equality (i), we remove the constant
∑S

S

∑S
S0

d0(S0)
∑∞

i=0 ρ(S0, S, i) and replace the fraction550

with dπθ
(S), the stationary distribution of state S under policy πθ.551

• In equality (j), we reformulate (i) as expectation.552

553

D.3 Proof of Theorem 2: Hamiltonian’s Deterministic Policy Gradient554

Proof. Let ηθ(·) : S → A denote a deterministic policy, while we use π̃θ,δ(µ) to represent that a555

Gaussian noise (a.k.a, an exploration noise) with standard deviation δ > 0 is added in the exploration556

process. In the inference stage, there is no exploration noise, the policy is deterministic, i.e., δ = 0557

and Ak = ηθ(Sk).558

H ′(θ) ≜ −ES0∼d0,A0∼π̃θ,δ

[
Qπ̃θ,δ(S0, A0)

]
= −ES0,Ak∼π̃θ,δ(Sk,·),Sk+1∼P(·|Sk,Ak)

[∞∑
k=0

γk ·R(Sk, Ak)

]

= −
K∑

k=0

ES0,Ak∼π̃θ,δ(Sk,·),Sk+1∼P(·|Sk,Ak)

[
γk ·R(Sk, Ak)

]
= −

K∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

γk ·R(µk) · d0(S0) · π̃θ,δ(µ0)

k−1∏
i=0

[P(Si+1|µi) · π̃θ,δ(µi+1)]

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

[
γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi)

]
· π̃θ,δ(µ0) · · · π̃θ,δ(µk)

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
· π̃θ,δ(µ0) · · · π̃θ,δ(µk),

(33)

where K →∞, and559

Lµ0,...,µk
= γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi). (34)

560

22

D.4 Proof of Corollary 2561

Proof.

∇θH
′(πθ) = −

K∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

(Lµ0,...,µk
· ∇θ [π̃θ(µ0) · · · π̃θ(µk)] +∇θLµ0,··· ,µk

· π̃θ(µ0) · · · π̃θ(µk))

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

[π̃θ(µ0) · · · π̃θ(µk)] · ∇θLµ0,...,µk

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

∇θ

[
γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi))

]

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

∇A

[
γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi))

]
∇θηθ(S)

= −
S∑
S0

d0(S0)∇AESt+1∼P(·|St,At)

[∞∑
t=0

γkR(St, At)

]
· ∇θηθ(S)

= −
S∑
S0

d0(S0)∇AQ(S0, A0) · ∇θηθ(S)

= −ES0∼d0(·) [∇AQ(S0, A0) · ∇θηθ(S)]
(35)

where µk = (Sk, Ak), S0 ∼ d0(·), Ak ∼ πθ(Sk, ·), Sk+1 ∼ P(· | Sk, Ak), for k = 0 · · ·K.562

D.5 Proof of Corollary 3563

Proof. In Corollary 2 and Corollary 1, we have564

∇θH
′(θ) = −∇θJ

′(θ),

∇θH(θ) = −∇θJ(θ),
(36)

when K →∞.565

[35] proved that566

∇θJ
′(θ) = lim

δ→0
∇θJ(θ), (37)

where δ is the standard deviation of the Gaussian noise of stochastic policy πθ.567

Therefore,568

∇θH
′(θ) = lim

δ→0
∇θH(θ) (38)

569

23

E Variance Reduction (Newly Added)570

For the general function in (8), one simple but effective variance reduction technique is to subtract a571

baseline term as follows:572

Ep(x;θ) [(f(x)− β)∇θ log p(x; θ)] , (39)
where β is the baseline term.573

Our reasoning logic:574

1). We first briefly describe a high-level idea [19] that adding a baseline term, like the proposed575

H-term, will help reduce the gradient variance.576

2). We sketch the steps to show how the proposed H-term will mathematically reduce the gradient577

variance, following the framework in Section 5.2 of [20].578

High-level IDEA. One generic approach to reduce the variance of Monte Carlo estimates is to use an579

additive control variate. Suppose we wish to estimate the integral of the function f : X → R, and we580

know the value of the integral of another function on the same space ϕ : X → R.581

We have582 ∫
X
f(x) =

∫
X
(f(x)− ϕ(x)) +

∫
X
ϕ(x), (40)

583

and the integral of f(x) − ϕ(x) can be estimated. If ϕ(x) = f(x), meaning that , then we have584

managed to reduce our variance to zero [19]. More generally,585

Var(f − ϕ) = Var(f)− 2Cov(f, ϕ) + Var(ϕ). (41)

If ϕ and f are strongly correlated, so that the covariance term on the right hand side is greater than586

the variance of ϕ, i.e., −2Cov(f, ϕ) + Var(ϕ) ≤ 0. then a variance reduction has been made over the587

original estimation problem [19], i.e., Var(f − ϕ) ≤ Var(f).588

Our reasoning. Then, we present our reasoning.589

Note that the gradient of the new objective function of the actor network in (14) consists of two590

components, namely ∇θJ(θ) and ∇θH(θ). Here, we consider591

∇θJ(θ)−λ ∇θH(θ), where λ > 0 is a temperature parameter, (42)

where ∇θJ(θ) in (27) is the above function f(·) and λ ∇θH(θ) in (15) is the above function ϕ(·).592

The Hamiltonian stochastic gradient in (15) has the optimal value593

∇θH
∗(θ) = − lim

K→∞
Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log (πθ(µ0) · πθ(µ1) · · ·πθ(µk))

]
. (43)

According to Theorem 8 of [19] that is proved via (41), we have594

Var [∇θJ(θ)− λ ∇θH
∗(θ)] = Var[∇θJ(θ)]−

1

λ
Es∼dθ,a∼πθ

[(
Es∼dθ,a∼πθ

[
(∇θ log πθ(s, a))

2∇θJ(θ)
])2

Es∼dθ,a∼πθ
[(∇θ log πθ(s, a))2]

]
≤ Var[∇θJ(θ)],

(44)

where the second term is positive, and595

∇θH
∗(θ) =

Es∼dθ,a∼πθ
(
[
∇θ log πθ(s, a))

2∇θJ(θ)
]

Es∼dθ,a∼πθ
[(∇θ log πθ(s, a))2]

. (45)

In Alg. 1 and Alg. 2, we used a general H-term ∇θH(θ), not the optimal one in (43). Next, we596

provide a general characterization for this case..597

According to Theorem 10 of [19], we have598

Var [∇θJ(θ)−λ ∇θH(θ)]− Var [∇θJ(θ)−λ ∇θH
∗(θ)]

= λ2 Es∼dθ,a∼πθ

[
(∇θ log πθ(s, a))

2(∇θH(θ)−∇θH
∗(θ))2

] (46)

24

Assume Lipschiz continuity of the graident∇θH(θ) such that599

||∇θH(θ)−∇θH
∗(θ)||2 ≤ 2L(H(θ)−H∗(θ)) ≤ 2Lϵ, (47)

given K ≥ logγ ϵ with L > 0, ϵ > 0, as pointed out in the end of Section 3.2.600

Therefore, combining (46), (48) with (48), we obtain that601

Var [∇θJ(θ)− λ ∇θH(θ)] = Var[∇θJ(θ)]−
1

λ
Es∼dθ,a∼πθ

[(
Es∼dθ,a∼πθ

[
(∇θ log πθ(s, a))

2∇θJ(θ)
])2

Es∼dθ,a∼πθ
[(∇θ log πθ(s, a))2]

]
+ λ2(2Lϵ)2 Es∼dθ,a∼πθ

[
(∇θ log πθ(s, a))

2
]

≤ Var[∇θJ(θ)],
(48)

when both |∇θ log πθ(s, a)| and |∇θJ(θ)| are upper bounded, e.g., |∇θ log πθ(s, a)| < C1 and602

|∇θJ(θ)| < C2; and we set ϵ, λ properly such that603

− 1

λ
C2

2 + 4λ2L2ϵ2C2
1 < 0

λ3ϵ2 <
C2

2

4L2C2
1

,
(49)

which can be easily satisfied by properly selecting λ and K ≥ logγ ϵ.604

Conclusion:605

To sum up, we show that it is easy to achieve Var [∇θJ(θ)− λ ∇θH(θ)] ≤ Var[∇θJ(θ)], which606

means adding the H-term can lead to smaller variance than that of the conventional gradient.607

25

F Conventional Actor-Critic Algorithms for Deep Reinforcement Learning608

The gradient of (2) is [36]609

∇θJ(θ) ≜
S∑
S

dS,θ(S)

A∑
A

Qθ(S,A)∇θπθ(S,A). (50)

Since Qθ in (50) is unknown [41] (the stationary distribution dθ is unknown), one can plug in a critic610

network with parameter ϕ as an estimator of Qθ and obtain611

∇ϕ
θJ(θ, ϕ) =

S∑
S

dS,θ(S)

A∑
A

Qϕ(S,A)∇θπθ(S,A), (51)

where dS,θ ∈ R|S||A|×1
+ denotes the stationary distribution over the states instead of state-action612

pairs.613

(51) is a bi-level optimization problem [7], and a natural solution is an iterative algorithm that614

alternates between estimating Qϕ with parameter ϕ and improving policy πθ with parameter θ.615

Therefore, a family of actor-critic algorithms are proposed with following objective functions:616 
Actor : max

θ
Jπ(θ, ϕ) = (1− γ)ES0∼d0,A0∼πθ(S0,·) [Qϕ(S0, A0)]

Critic : max
ϕ

JQ(θ, ϕ) =
1

2
ES∼dθ(·),A∼πθ(S,·)

[
(Qϕ(S,A)− y(S,A))2

]
.

(52)

The gradient of (52) can be estimated as follows617

∇θĴπ(θ, ϕ) =
1

N

N∑
i=1

Qϕ(µ) · ∇θ log πθ(µ)

∇ϕĴQ(θ, ϕ) =
1

N

N∑
i=1

[Qϕ(S,A)− y(S,A)] · ∇ϕQϕ(S,A)

(53)

The parameters ϕ and θ are updated as follows:618 {
Actor : θ ← θ + α ∇ϕ

θ Ĵπ,

Critic : ϕ← ϕ− α ∇ϕĴQ.
(54)

26

G Stationary Deterministic Policy Gradient Algorithm with H-term619

For completeness, we present the details of the deterministic actor-critic algorithm with H-term.620

Algorithm 2 Stationary Actor-Critic Algorithm with H-term
1: Input: learning rate α, temperature λ, look-ahead step K, and parameters δ,M, T,G,B,B′

2: Initialize actor network η and critic network Q with parameters θ, ϕ, and replay buffers D1, D2

3: for episode = 1, · · · ,M do
4: Initialize state s0
5: for t = 0, · · · , T − 1 do
6: Take action at = ηθ(st) + ϵ, where ϵ ∼ N (0, δ2)
7: Execute action at, receive reward rt, and observe new state st+1

8: Store a transition (st, at, rt, st+1) in D1

9: end
10: Store a trajectory τ of length T in D2

11: for g = 1, · · · , G do
12: Randomly sample a mini-batch of B transitions {(si, ai, ri, si+1)}Bi=1 from D1

13: Randomly sample a mini-batch of B′ trajectories (of length K) {τj}B
′

j=1 from D2

14: Update critic network using a conventional method
15: Update actor network as θ ← θ + α

(
∇θĴ

′(θ)−λ ∇θĤ
′(θ)

)
.

16: end
17: end

We apply the proposed Hamiltonian equation (7) to regularize the actor network. Specifically, H ′(θ)621

in (7) is added to the actor’s objective with weight λ > 0. The objective functions of actor and critic622

networks become:623 
Actor : max

θ
J ′
π(θ, ϕ) = (1− γ)ES0∼d0,A0=ηθ(S0) [Qϕ (S0, A0)]−λH ′(θ),

Critic : min
ϕ

JQ(θ, ϕ) =
1

2
ES∼dθ(·),A=ηθ(S)

[
(Qϕ(S,A)− y(S,A))

2
]
.

(55)

The gradient of (55) is624

∇θJ
′
π(θ, ϕ) =(1− γ)

S∑
S

dS,θ(S)∇AQϕ(S,A) · ∇θηθ(S)−λ∇θH
′(θ), (56)

625

∇ϕJQ(θ, ϕ) =

S∑
S

dS,θ(S) · [Qϕ(S,A)− y(S,A)] · ∇ϕQϕ(S,A)|A=ηθ(S). (57)

To estimate ∇θH
′(θ), the Monte Carlo gradient estimator in (17) is used. Therefore, (56) and (57)626

can be estimated as follows:627

∇θĴ
′
π(θ, ϕ) =

1

N

N∑
i=1

[
∇AQϕ(S,A)|A=ηθ(S)∇θηθ(S)

]
− 1

N ′

N ′∑
i=1

[
λ

K∑
k=0

γkR(µk)∇θ log [π̃θ(µ0) · · · π̃θ(µk)]

]
,

(58)
628

∇ϕĴQ(θ, ϕ) =
1

N

N∑
i=1

[Qϕ(S,A)− y(S,A)] · ∇ϕQϕ(S,A)|A=ηθ(S). (59)

27

H Experiments: Hyperparameters and More Results629

H.1 Hyperparameters in Experiments630

Table 6: Hyperparameters used for the PPO and PPO + H in MuJoCo tasks

Parameters Values
Optimizer Adam
Learning rate 3 · 10−4

Discount (γ) 0.99
GAE parameter 0.95
Number of hidden layers for all networks 3
Number of hidden units per layer 256
Mini-batch size 32
Importance rate of H-term (λ) 2−3

Truncation step of H-term (K) 16

Table 7: Hyperparameters used for the DDPG and DDPG + H in MuJoCo tasks

Parameters Values
Optimizer Adam
Learning rate 5 · 10−4

Target Update Rate (τ) 10−3

Discount (γ) 0.995
Replay buffer size 106

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Batch size 64
Importance rate of H-term (λ) 2−3

Truncation step of H-term (K) 16

H.2 More Results631

Fig. 6 shows the H-value (average over 20 runs) during the training process, which verified that the632

trained agents have converged to policies with small H-values.633

0 1 2 3 4

#samples 1e6

4

2

0

H
va

lu
es

HalfCheetah

0.0 0.5 1.0 1.5 2.0

#samples 1e7

6

4

2

0

H
va

lu
es

Ant

0.0 0.5 1.0 1.5 2.0

#samples 1e7

1.0

0.5

0.0

H
va

lu
es

Humanoid

0 1 2 3

#samples 1e6

2

1

0

H
va

lu
es

Hopper

0 2 4 6 8

#samples 1e7

0.3

0.2

0.1

0.0

H
va

lu
es

Swimmer

0.0 0.5 1.0 1.5 2.0

#samples 1e6

4

2

0

H
va

lu
es

Walker2D

PPO PPO + H, K = 8 PPO + H, K = 16 PPO + H, K = 24

Figure 6: H values during the training process.

28

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah
K = 8
K = 16
K = 24

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Ant
K = 8
K = 16
K = 24

0.0 0.5 1.0 1.5 2.0
#samples 1e7

 2k

 4k

 6k

 8k

10k

12k

Cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid
K = 8
K = 16
K = 24

0 1 2 3
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Hopper
K = 8
K = 16
K = 24

0 2 4 6 8
#samples 1e6

40

80

120

160

200

Cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer
K = 8
K = 16
K = 24

0.0 0.5 1.0 1.5 2.0
#samples 1e6

 1.5k

 3k

 4.5k

 6k

7.5k

9k

Cu
m

ul
at

iv
e

re
wa

rd
s

Walker2D
K = 8
K = 16
K = 24

Figure 7: For the proposed PPO+H algorithm, the performance with different K values.

Tasks Policies PPO PPO+H (K = 8) PPO+H (K = 16) PPO+H (K = 24)
running 13 17 20 20
flipping 5 0 0 0
diving 1 3 0 0

HalfCheetah

balancing 1

4720.8
±969.2

0

4839.5
±392.5

0

5001.8
±321.5

0

4995.1
±383.3

running 17 20 20 20
Ant jumping 0 0 0 0

flipping 3

4164
±1563.4

0

4351.6
±294.5

0

4553.1
±276.4

0

4662.5
±277.5

two-legs 7 15 15 17
one-leg 12 5 5 3Humanoid

backward 1

9433.4
±2513.5

0

9583.4
±753.4

0

9873.2
±653.7

0

9942.2
±538.4

hopping 10 18 20 20
diving 8 2 0 0Hopper balancing 2

2659.3
±905.3

0

3014.9
±304.7

0

3254.2
±246.1

0

3340.7
±191.5

moving 14 19 20 19Swimmer balancing 6
110.7
±60.7 1

121.5
±42.1 0

142.3
±36.9 1

132.2
±36.2

walking 5 16 16 15
Walker diving 8 2 3 5

balancing 7

5461.7
±1290.1

2

5794.4
±341.8

1

5921.8
±304.5

0

6089.3
±314.7

Table 8: Experimental results on six challenging MuJoCo tasks.

Fig. 7 shows more performance of the PPO+H algorithm, for K = 8, 16, 24. We run each experiment634

with 20 random seeds and each run we test 100 episodes.635

To verify the hypothesize that smaller replay buffer hurts the performance, we rerun the trials of636

K = 8, 16 with a replay buffer size 800.637

29

I Hamiltonian Policy Network638

I.1 Hamiltonian Policy Network639

Since Hamiltonian equation in (7) is a functional of policy πθ, a natural question would be: can640

we use the Hamiltonian equation replace existing Bellman’s equation (3) or the policy gradient’s641

objective function (2)?642

As a verification, we test the capability of Hamiltonian equation in (7) as a loss function to train a643

policy network. The algorithm is first given as follows.644

Algorithm 3 Hamiltonian Policy Network
1: Input: learning rate α, look-ahead step K, and parameters M,T,G,B
2: Initialize policy network with parameters θ, and replay buffer D
3: for episode = 1, · · · ,M do
4: Initialize state s0
5: for t = 0, · · · , T − 1 do
6: Select action at ∼ πθ(·|st)
7: Execute action at, receive reward rt, and observe new state st+1

8: end
9: Store a trajectory τ of length T in D

10: for g = 1, · · · , G do
11: Randomly sample a mini-batch of B trajectories (of length K) {τj}Bj=1 from D
12: Update pocliy network as θ ← θ − α ∇θĤ(θ).
13: end
14: end

In Alg. 3, an agent interacts with an environment and updates its policy network. The algorithm has645

M episodes and each episode consists of a (Monte Carlo) simulation process and a learning process646

(gradient estimation) as follows:647

• During the (Monte Carlo) simulation process (lines 5-9 of Alg. 3), an agent takes action at648

according to a policy πθ(·|st), t = 0, · · · , T − 1, generating a trajectory of T steps/transitions.649

Then, the full trajectory τ = (s0, a0, r0, s1, · · · , sT−1, aT−1, rT−1, sT) is stored in replay buffer650

D.651

• During the learning process (G ≥ 1 updates in one episode) (lines 10-12 of Alg. 1), a mini-batch of652

B trajectories (of length K) {τj = (sj0, a
j
0, r

j
0, s

j
1, · · · , s

j
K−1, a

j
K−1, r

j
K−1, s

j
K)}Bj=1 are sampled653

from D, respectively. The policy network is updated by a Monte Carlo gradient estimator over B654

trajectories.655

Implementation of replay bufferD. After a full trajectory τ of length T is generated, it is partitioned656

into T − K + 1 trajectories of length K. We rank them according to the cumulative reward and657

store the top portion, say 80%, into a new replay buffer D (line 9 of Alg. 3). We randomly sample a658

mini-batch of B trajectories from D (line 11 of Alg. 3) to compute the H-term.659

I.2 Frozenlake Task660

Environment: Frozenlake 8× 8, a game in OpenAI Gym.661

Rules: As shown in Fig. 8 (left), the Frozenlake task has 8× 8 states with 4 optional actions to move662

around. The agent needs to go from the start point and find the way to the destination in limited steps.663

There are 8 holes which can cause the agent to fail the game.664

Experiment settings: We take Deep Q-learning (DQN) [29] as our baseline and use the implementa-665

tion from the ElegantRL library. We use a 4-layer fully connected neural network as the deep policy666

network both in DQN and DHN. We use the Adam optimizer with a learning rate 1× 10−3 and a667

batch size 100.668

Evaluation: We evaluate the performance of policy by computing the success rate, in which we use669

50 agents to walk 100 steps and compute the rates of agents who successfully arrive the destination.670

30

Results for the Frozenlake task: Fig. 9 (left) shows the success rate of agents with increasing the671

number of transitions learned by the network. compared with DQN, DHN has a more stable training672

process. It is easy for DQN to quickly obtain a good policy to win the game. But with increasing the673

number of transitions fed to the network, the performance of DQN shows a large and frequent shock674

while the performance of DHN shows the strong stability.675

Figure 8: The Frozenlake task (left) and Gridworld task (right).

I.3 Gridworld Task676

Environment: a Gridworld of size 10× 10, a game available in our code.677

Rules: As shown in the Fig. 8 (right), the Gridworld has 10× 10 states with 4 optional actions to678

move around. The agent will initialize at a random locations and it needs to find the smiley as many679

as possible which has 10 reward in turn. It should be noted that there are some endpoints which may680

cause the agent game over and some transfer-points which transfer the agent to certain location.681

Experiment settings and evaluation: Both the experiment settings and evaluation method are the682

same with that on Frozenlake 8× 8 game.683

Results for the Gridworld task: Fig. 9 (rigt) shows the mean reward obtained by the agents with684

increasing the training time. Compared with DQN, DHN has a faster training process. It only needs685

massive random parallel samples of trajectories and do not need any policy for guided sampling while686

DQN needs guided exploration in the training process which costs a large time consumption.687

Figure 9: Comparison between the DQN and DHN algorithms. The Frozenlake task (left) and
Gridworld task (right).

31

	Introduction
	Bellman's Optimality Equation and Multiple Fixed Points
	Bellman's Optimality Equation
	Observational Experiments for Multiple Policies and Physically Stationary Policy

	Reinforcement Learning as Quantum K-spin Hamiltonian Equation
	Motivation through Analogy with Quantum K-spin Ising Model
	Reformulation into Quantum K-spin Hamiltonian Equation
	Revisiting Examples in Fig. 1

	Actor-Critic Algorithm with Quantum K-spin Hamiltonian Regularization
	Stationary Actor-Critic Algorithm with H-term
	Hamiltonian Policy Gradient and Monte Carlo-based Gradient Estimator

	Performance Evaluation
	Experimental Settings
	H-term Increases Cumulative Reward
	H-term Reduces Variance
	H-term Drives to Physically Stationary Policy
	Impact of Trajectory Length K

	Conclusions
	More Examples with Multiple Fixed Points
	MuJoCo Tasks with Multiple Policies
	Description of MuJoCo Taks
	Multiple policies in MuJoCo tasks

	Quantum K-Spin Hamiltonian Formulation of Reinforcement Learning
	Derivation Steps for Section 4.2: Hamiltonian's Policy Gradients
	Proof of Theorem 1: Hamiltonian's Stochastic Policy Gradient
	Proof of Corollary 1
	Proof of Theorem 2: Hamiltonian's Deterministic Policy Gradient
	Proof of Corollary 2
	Proof of Corollary 3

	Variance Reduction (Newly Added)
	Conventional Actor-Critic Algorithms for Deep Reinforcement Learning
	Stationary Deterministic Policy Gradient Algorithm with H-term
	Experiments: Hyperparameters and More Results
	Hyperparameters in Experiments
	More Results

	Hamiltonian Policy Network
	Hamiltonian Policy Network
	Frozenlake Task
	Gridworld Task

