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ABSTRACT

Neural networks with self-attention (a.k.a. Transformers) like ViT and Swin
have emerged as a better alternative to traditional convolutional neural networks
(CNNs) for computer vision tasks. However, our understanding of how the new
architecture works is still limited. In this paper, we focus on the phenomenon that
Transformers show higher robustness against corruptions than CNNs, while not
being overconfident (in fact, we find Transformers are actually underconfident).
This is contrary to the intuition that robustness increases with confidence. We re-
solve this contradiction by investigating how the output of the penultimate layer
moves in the representation space as the input data moves within a small area.
In particular, we show the following. (1) While CNNs exhibit fairly linear rela-
tionship between the input and output movements, Transformers show nonlinear
relationship for some data. For those data, the output of Transformers moves in
a curved trajectory as the input moves linearly. (2) When a data is located in a
curved region, it is hard to move it out of the decision region since the output
moves along a curved trajectory instead of a straight line to the decision boundary,
resulting in high robustness of Transformers. (3) If a data is slightly modified to
jump out of the curved region, the movements afterwards become linear and the
output goes to the decision boundary directly. Thus, Transformers can be attacked
easily after a small random jump and the perturbation in the final attacked data
remains imperceptible. In other words, there does exist a decision boundary near
the data, which is hard to find only because of the curved representation space.
This also explains the underconfident prediction of Transformers. (4) The curved
regions in the representation space start to form at an early training stage and grow
throughout the training course. Some data are trapped in the regions, obstructing
Transformers from reducing the training loss.

1 INTRODUCTION

Self-attention-based neural network architectures, including Vision Transformers (Dosovitskiy et al.,
2021), Swin Transformers (Liu et al., 2021), etc. (hereinafter referred to as Transformers), have
shown to outperform traditional convolutional neural networks (CNNs) in various computer vision
tasks. The success of the new architecture has prompted a question, how Transformers work, es-
pecially compared to CNNs, which would also shed light on the deeper understating of CNNs and
eventually neural networks.

In addition to the improved task performance (e.g., classification accuracy) compared to CNNs,
Transformers also show desirable characteristics in other aspects. It has been shown that Transform-
ers are more robust to adversarial perturbations than CNNs (Bai et al., 2021; Naseer et al., 2021;
Paul & Chen, 2022). In addition, Transformers are reported not overconfident in their predictions
unlike CNNs (Minderer et al., 2021) (and we show that Transformers are actually underconfident in
this paper).

The high robustness, however, does not comport with underconfidence. Intuitively, a data that is
correctly classified by a model with lower confidence is likely to be located closer to the decision
boundary. Then, a smaller amount of perturbation would move the data out of the decision region,
which translates into lower robustness of the model. However, the previous results claim the oppo-
site.
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(a) Input space (b) Representation space (ResNet50) (c) Representation space (Swin-T)

Figure 1: 2D projected movements of (a) the data (black dot) in the input space and corresponding
output features in the representation space for (b) ResNet50 and (c) Swin-T.

To mitigate the contradiction of the robustness and the underconfidence, we explore the representa-
tion space of Transformers and CNNs. We examine the input-output relationship of the models, i.e.,
how the output feature of the penultimate layer (which is simply referred to as output in this paper)
changes with respect to the linear change of the input data. We find that for certain data, Transform-
ers move the output along a nonlinear trajectory within a certain range, whereas CNNs show fairly
linear movements of the output. In other words, the representation space of Transformers is curved.
We show that this curved representation space results in the aforementioned contradiction.

Fig. 1 visualizes the representation spaces of CNNs and Transformers comparatively (see Ap-
pendix A for implementation details). An image data from ImageNet (Russakovsky et al., 2015),
marked with the black dot in Fig. 1a, is gradually modified by a fixed amount along two mutually
orthogonal directions. The corresponding outputs of ResNet50 and Swin-T are obtained, which are
shown after two-dimensional projection in Figs. 1b and 1c, respectively. While the gradual changes
of the input produce almost linear changes in the output of ResNet50, the output trajectory of Swin-
T is curved around the original output (and then becomes linear when the change of the output is
large).

Our research questions and findings can be summarized as follows.
1. How does the representation space of Transformers look like? To answer this, we analyze the
output movement of the penultimate layer with respect to the linear movement of the input. We find
that for some input data, the directions of successive movements of the output significantly change
in the case of Transformers unlike CNNs, indicating that the representation space of Transform-
ers is locally curved.
2. What makes Transformers robust to input perturbation? We find that the curved regions in the
representation space account for the robustness of Transformers. When a data is located in a
curved region, the movement of the output by the perturbation of the input data follows a curved
trajectory. This makes it hard to move the data out of its decision region with a small amount of
perturbation, which explains high robustness of Transformers for the data.
3. Then, why is the prediction of Transformers underconfident? Although it takes many steps to es-
cape from a curved decision region and reach a decision boundary, we find that a decision boundary
is actually located closely to the original output. We demonstrate a simple trick to reach the decision
boundary quickly. I.e., when a small amount of random noise is added to the input data, its output
can jump out of the locally curved region and arrive at a linear region, from which a closely located
decision boundary can be reached by adding only a small amount of perturbation. This reveals that
the decision boundary exits near the original data in the representation space, which explains
the underconfident predictions of Transformers.
4. When are the curved regions created and how do they influence the training process? To answer
this, we examine the curvedness of the representation space during training. Interestingly, curved
regions already start to form at an early training stage. This causes difficulty of training of Trans-
formers, because once a training data is trapped in a curved region, it hardly escapes the region
and its training loss is hardly reduced for the rest of the training process. This explains larger
training loss values observed in training of Transformers in comparison to those of CNNs.
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2 RELATED WORK

Since the first application of the self-attention mechanism to vision tasks (Dosovitskiy et al., 2021),
a number of studies have shown that the models built with traditional convolutional layers are out-
performed by Transformers utilizing self-attention layers in terms of task performance (Liu et al.,
2021; Chu et al., 2021; Huang et al., 2021; Li et al., 2021; Touvron et al., 2021; Wang et al., 2021;
Xiao et al., 2021; Yang et al., 2021; Yuan et al., 2021; Liu et al., 2022). There have been efforts
to compare CNNs and Transformers in various aspects. Empirical studies show that Transformers
have higher adversarial robustness than CNNs (Paul & Chen, 2022; Naseer et al., 2021; Aldahdooh
et al., 2021; Bhojanapalli et al., 2021), which seems to be due to the reliance of Transformers on
lower frequency information than CNNs (Park & Kim, 2022; Benz et al., 2021). Minderer et al.
(2021) conclude that Transformers are calibrated better than CNNs yielding overconfident predic-
tions (Guo et al., 2017; Thulasidasan et al., 2019; Wen et al., 2021). However, there has been no
clear explanation encompassing both higher robustness and lower confidence of Transformers.

Understanding how neural networks work has been an important research topic. A useful way for
this is to investigate the input-output mapping formed by a model. Since models with piecewise
linear activation functions (e.g., ReLU) implement piecewise linear mappings, several studies inves-
tigate the characteristics of linear regions, e.g., counting the number of linear regions as a measure
of model expressivity (or complexity) (Montufar et al., 2014; Hanin & Rolnick, 2019a;b; Telgarsky,
2015; Serra et al., 2018; Raghu et al., 2017) and examining local properties of linear regions (Zhang
& Wu, 2020). Some studies examine the length of the output curve for a given unit-length input
(Raghu et al., 2017; Price & Tanner, 2021; Hanin et al., 2022). There also exist some works that
relate the norm of the input-output Jacobian matrix to generalization performance (Sokolić et al.,
2017; Novak et al., 2018). However, the input-output relationship of Transformers has not been
explored previously, which is focused in this paper.

3 ON THE OSTENSIBLE CONTRADICTION OF HIGH ROBUSTNESS AND
UNDERCONFIDENCE

3.1 MODEL CALIBRATION

It is desirable that a trained classifier is well-calibrated by making prediction with reasonable cer-
tainty, e.g., for data that a classifier predicts with confidence of 80%, its accuracy should also be
80% in average. A common measure to evaluate model calibration is the expected calibration error
(ECE) defined as (Naeini et al., 2015)

ECE =

K∑
i=1

P (i) · |oi − ei|, (1)

where K is the number of bins of confidence, P (i) is the fraction of data falling into bin i, oi is the
accuracy of the data in bin i, and ei is the average confidence of the data in bin i. A limitation of
ECE is that it does not distinguish between overconfidence and underconfidence because the sign of
the difference between the accuracy and the confidence is ignored. Therefore, we define a modified
version of ECE, called signed ECE (sECE), as follows.

sECE =

K∑
i=1

P (i) · (oi − ei). (2)

An overconfident model will have higher confidence than accuracy, resulting in a negative sECE
value. An underconfident model, in contrast, will show a positive value of sECE.

We compare the calibration of CNNs, including ResNets (He et al., 2016), DenseNets (Huang et al.,
2017), MobileNets (Sandler et al., 2018; Howard et al., 2019), and Transformers, including ViT
(Dosovitskiy et al., 2021) and Swin (Liu et al., 2021), on the ImageNet validation set using ECE
and sECE in Table 1 and Fig. 2. CNNs show negative ECE values in Table 1 and bar plots below
the 45◦ line in Fig. 2, indicating overconfidence in prediction, which is consistent with the previous
studies (Guo et al., 2017). On the other hand, Transformers are underconfident, showing positive
sECE and bar plots over the 45◦ line. This comparison result is interesting: Transformers reportedly
show higher classification accuracy than CNNs, but in fact with lower confidence.
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Table 1: ECE and sECE of CNNs (left side) and Transformers (right side) with K = 10.

Models ECE sECE Models ECE sECE
ResNet50 3.67% -3.57% ViT-B/16 5.54% +5.54%

ResNet101 4.91% -4.89% ViT-B/32 6.35% +6.35%
ResNet152 5.01% -5.00% ViT-L/16 4.93% +0.92%

DenseNet121 2.50% -2.30% ViT-L/32 4.15% +2.74%
DenseNet169 5.50% -5.49% Swin-T 7.08% +7.08%
MobileNetV2 2.80% -2.63% Swin-S 4.34% +4.26%
MobileNetV3 2.45% -2.42% Swin-B 4.88% +4.23%
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(a) ResNet50 (b) MobileNetV2 (c) ViT-B/16 (d) Swin-T

Figure 2: Reliability diagrams of CNNs and Transformers. Transparency of bars represent the
number of data in each confidence bin. Results for other models can be found in Appendix B.

(a) ResNet50 (b) MobileNetV2 (c) ViT-B/16 (d) Swin-T

Figure 3: Lengths (ϵ) of the travel to decision boundaries for the ImageNet validation data. Black
lines represent average values. Results for other models can be found in Appendix C.

3.2 PASSAGE TO DECISION BOUNDARY

It is a common intuition that if a model classifies a data with low confidence, the data is likely to
be located near a decision boundary. Based on the above results, therefore, the decision boundaries
of Transformers are assumed to be formed near the data compared to CNNs. To validate this, we
formulate a procedure to examine the distance to a decision boundary from a data through a linear
travel. Concretely, we aim to solve the following optimization problem.

argmin
ϵ

C(x′) ̸= y, x′ = x+ ϵ · d, (3)

where x is an input data, y is the true class label of x, C is the classifier, d is the travel direction, ϵ
is a positive real number, and x′ is the traveled result of x. Here, we want to set the direction d in
such a way that the travel reaches to a closely located decision boundary and ϵ becomes as small as
possible. For this, we adopt the idea of the fast gradient sign method (FGSM) (Goodfellow et al.,
2015) used for adversarial attack. We find the direction to which the classification loss function J
(i.e., cross-entropy) increases, i.e.,

d = sign(∇xJ(C(x), y)). (4)

Note that ∥d∥2 =
√
D, where D is the dimension of x. Refer to Alg. 1 in Appendix C for the

detailed procedure to solve the optimization problem in Eq. 3.

Fig. 3 shows the obtained values of ϵ with respect to the confidence values for the ImageNet vali-
dation data. It is observed that decision boundaries are farther from the data in the input space for
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(a) Input space (b) Representation space

Figure 4: Illustration of the input-output relationship of Transformers in terms of the trajectories in
the input space and the representation space.

Transformers than CNNs, which is the opposite to our expectation. This contradiction is resolved in
the following section.

4 RESOLVING THE CONTRADICTION

4.1 SHAPE OF REPRESENTATION SPACE

As an attempt to resolve the contradiction, we examine the input-output relationship of the models,
i.e., how linear movements in the input space appear in the representation space of a model.

We divide the travel to the decision boundary into N steps as

x(n) = x(0) + n · ϵ

N
dx, (n = 0, 1, · · · , N) (5)

where x(0) = x and x(N) are the initial and final data points, respectively. For each x(n), we obtain
its output feature at the penultimate layer, which is denoted as z(n). Unlike the travel in the input
space, the magnitude and direction of the travel appearing in the representation space may change
at each step. Thus, the movement at step n is defined as

d(n)
z = z(n) − z(n−1) (6)

from which the magnitude (ω(n)) and relative direction (θ(n)) are obtained as

ω(n) = ∥d(n)
z ∥, θ(n) = cos−1

(
d
(n)
z · d(n+1)

z

∥d(n)
z ∥ · ∥d(n+1)

z ∥

)
. (7)

We consider four different ways to determine dx:

• dFGSM (blue-colored trajectory in Fig. 4): FGSM direction for x(0) (as in Sec. 3.2),

• dr: random direction,

• dFGSM⊥ (green-colored trajectory in Fig. 4): random direction that is orthogonal to the FGSM
direction,

• dr+FGSM (yellow-colored trajectory in Fig. 4): FGSM direction for the randomly perturbed data
x
(0)
r = x(0) + ϵr · r, where r is a random vector (∥r∥2 =

√
D) and ϵr controls the amount of the

“random jump.”

Fig. 5 shows the direction changes in early steps of travel (i.e., θ(1), · · · , θ(4)) for ResNet50 and
Swin-T when ϵ/N=.002 and ϵr=.05 (see Appendix D.1 for the magnitude distributions, which shows
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(e) FGSM (f) rand (g) FGSM⊥ (h) rand + FGSM

Figure 5: Direction changes of output features in early steps of travel for ResNet50 (top row) and
Swin-T (bottom row).

a similar trend; the results for the whole travel are shown in Appendix D.2). The following obser-
vations can be made (also illustrated in Fig. 4). 1) For ResNet50, the direction does not change
much, no matter how the travel direction in the input space is set (Figs. 5a, 5b, 5c). This indicates
that the input-output relationship of CNNs is fairly linear around the data. 2) In contrast, Swin-T
shows locally nonlinear input-output relationship; θ(n) is significantly large no matter how the travel
direction in the input space is set (Figs. 5e, 5f, 5g). I.e., the representation space of Transformers
is curved around the data. 3) Fig. 5h shows that the direction does not change much after the ran-
dom jump. By moving x(0) in a random direction r, z(0) can pass over the curved region without
meandering in the early steps and make linear movements afterwards (zr(n) in Fig. 4).

4.2 ROBUSTNESS AND UNDERCONFIDENCE OF TRANSFORMERS

Figs. 6a and 6b show the distribution of the Euclidean distance from the original output to the
decision boundary in the representation space (i.e., ||z(N) − z(0)||) for ResNet50 and Swin-T. Note
that the distance scale is different between the models. Interestingly, the distance distribution for
Swin-T is bimodal, i.e., the data are grouped into those having small distances (around zero) and
those having large distances (around 10).

We examine this phenomenon further in Fig. 6c, which is a scatter plot between the confidence
and the distance for Swin-T, where the colors represent θ(1) of the corresponding data. Note that
θ(1) is highly correlated to the total direction change (

∑N−1
n=1 θ(n)), and thus is used as a measure

of curvedness of the representation space around the data (see Appendix D.3). It is clear that the
curvedness dichotomizes the data: those associated with small values of θ(1) are located in linear
regions (marked with yellowish colors), while those associated with large values of θ(1) are located
in curved regions (marked with greenish colors). In particular, the data in the latter group show larger
distances to the decision boundaries, and thus become more robust against adversarial attacks. In
other words, since they are located in curved regions, an attack on them becomes challenging.

To validate this, we apply the iterative FGSM attack (I-FGSM) (Kurakin et al., 2017), which is
one of the strong attacks, to the correctly classified ImageNet validation data for Swin-T. We set the
maximum amount of perturbation to ϵIFGSM=.001 or .002, the number of iterations to T=10, and the
step size to ϵIFGSM/T . Fig. 7 shows the classification accuracy after attack with respect to θ(1). We
can observe that the data having large values of θ(1) show high robustness (i.e., high accuracy after
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Figure 6: Distance between the original output and the decision boundary in the representation
space. (a) Distribution for ResNet50. (b) Distribution for Swin-T. (c) Distance with respect to
confidence for Swin-T. Colors indicate θ(1). Black lines correspond to average values.
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(a) ϵIFGSM = .001 (b) ϵIFGSM = .002

Figure 7: Accuracy after the I-FGSM attack for Swin-T with respect to θ(1). Transparency of the
bars represents the number of samples in each bin of θ(1). Blue and red dashed lines indicate the
overall accuracy of Swin-T and ResNet50 after the attack, respectively.

the attack), which makes the overall robustness of Swin-T (blue line) higher than that of ResNet50
(red line).

We hypothesize that the curved representation space also causes the underconfident prediction of
Transformers. As shown as the blue-colored trajectory in Fig. 4b, the decision boundary is actually
close to the data point but the curved travel reaches the decision boundary at a farther location. To
validate this hypothesis, we add a small amount of noise to the input data in order to check if the
decision boundary at a closer location can be found if the data jumps out of the curved region (i.e.,
reaching zr

(N) from zr
(0) in Fig. 4b).

Fig. 8 shows the distribution of the distance to the decision boundary in the representation space.
It can be observed that when the FGSM direction is used after random jump (orange line), the
bimodality of the distribution is significantly reduced. As shown in Fig. 5h, the travel becomes less
curved and thus the decision boundary can be reached effectively. The 2D projected movements
after the jump in Fig. 9 also supports this. Furthermore, the random jump can be made even more
effective by setting the jump direction to the FGSM direction found after the random jump (red-
colored trajectory in Fig. 4), resulting in further reduction in the bimodality (red line in Fig. 8).

The reduced distance to the boundary by random jump implies that the jumped input data can be
made misclassified by adding a smaller amount of perturbation than the original input data. Fig. 10
demonstrates that this actually works. The figure shows example images perturbed linearly in the
FGSM direction (i.e., x(N)) and those first undergone random jump (ϵr=.05) and then perturbed
linearly in the FGSM direction (i.e., xr

(N)). It is clear that the images are easily misclassified with
significantly reduced amounts of perturbation (smaller ϵ and higher PSNR) after the random jump
passing over curved regions.
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Figure 8: Distribution of the distance be-
tween the original output and the deci-
sion boundary in the representation space of
Swin-T for different travel directions set in
the input space.

Figure 9: 2D projected movements of the
output in the representation space after ran-
dom jump for Swin-T.

Figure 10: Example images that are perturbed by FGSM and reach decision boundaries. The total
amount of perturbation (ϵ) and the peak signal-to-noise ratio (PSNR) in dB are also shown. Top:
Perturbed images. Bottom: Images perturbed after random jump (ϵr = .05).

5 CURVED SPACE DURING TRAINING

For deeper understanding of the curved regions in the representation space, we look into the training
process of Transformers. Each row of Fig. 11 shows the loss change of each of the 10,000 ImageNet
training data at every 10 epochs during training of Swin-T (see Appendix F for training details). The
rows are sorted in an ascending order of θ(1) after training. It is observed that for the data located in
curved regions (showing large values of θ(1)), the loss does not change much from the early training
stage (bottom rows in the figure). Fig. 12 provides another view of this phenomenon in terms of the
relationship between the loss at a certain epoch and the loss change from the epoch until the end of
training. The loss values for the data residing in curved regions (dark-colored points in the figure)
are hardly reduced already from 30 epochs. In other words, certain training data seem to be trapped
in curved regions, which obstructs the training of the network.

When do curved regions start to form? We check the relationship of θ(1) at a certain training stage
and θ(1) after training in Fig. 13. The data points are mostly above the 45◦ line, indicating that
once a data is trapped in a curved region, it hardly escapes the region. It can be also seen that θ(1)
becomes larger during training, i.e., the curvedness gets severer.

6 CONCLUSION

We studied the input-output relationship of Transformers by examining the trajectory of the output
in the representation space with respect to linear movements in the input space. The experimental
results indicated that the representation space of Transformers is curved around some data, which
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Figure 11: Loss changes of 10,000 training data from ImageNet during training of Swin-T. Each
row represents the loss change at every 10 epochs for each data. The rows are sorted in an ascending
order of θ(1) after training. The loss change value is clipped within [-2,2] for visualization.

Figure 12: Scatter plots showing the loss at a certain training epoch with respect to the loss change
till the end of training for Swin-T. Colors indicate θ(1) after training.

Figure 13: Relationship of θ(1) at a certain training stage and the final θ(1) for Swin-T. Black lines
indicate average values.

explains high robustness and underconfident prediction of Transformers. It was also shown that the
curved regions are formed at the early stage of training and can cause difficulty in training.

Based on our findings, many interesting research questions can follow towards better understand-
ing of the working mechanism of neural networks, such as which architectural components and
optimization techniques promote curved regions, how curved regions can be reduced or intensified
during or after training, how curvedness can be quantified, etc.
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A REPRESENTATION SPACE VISUALIZATION

Fig. 1 is produced as follows. The FGSM direction dx is found for the given data x, and we choose
a random direction d⊥

x orthogonal to dx. Then, we move x in the input space using dx and d⊥
x by

xij = x+
α · i
N

dx +
α · j
N

d⊥
x (8)

where α is a positive real number, N determines the total number of points in the grid of the input
space as (2N + 1)2 (Fig. 1a), and i and j are integers within [−N,N ].

For each xij , we obtain its output at the penultimate layer of a model, zij , i.e., the feature in the
representation space. Then, zij is projected onto the two-dimensional plane determined by two
arbitrary mutually orthogonal vectors dz and d⊥

z , which produces Figs. 1b and 1c.

B MODEL CALIBRATION

Fig. 14 provides reliability diagrams of the models that are listed in Table 1 but not included in
Fig. 2.
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Figure 14: Reliability diagrams of CNNs (top row) and Transformers (bottom row). Transparency
of bars represent the number of data in each bin of confidence.

C PASSAGE TO DECISION BOUNDARY

Algorithm 1 provides the detailed procedure to travel to the decision boundary linearly in the input
space (Sec. 3.2).

Fig. 15 extends Fig. 3 for other Transformer models.

D REPRESENTATION SPACE ANALYSIS

D.1 MAGNITUDE OF TRAVEL

Fig. 16 shows the step-wise magnitudes of in early steps of travel (i.e., ω(1), · · · , ω(4)), which shows
a similar trend to Fig 5.

D.2 WHOLE TRAVEL TRAJECTORY

Fig. 17 shows the step-wise magnitude (ω(n)) and direction change (θ(n)) during the whole travel for
N=50 steps to the decision boundary for Swin-T. The travel direction is determined by FGSM. Each
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Algorithm 1 Travel to decision boundary
Input: A correctly classified image x ∈ [0, 1]D , true class label y, classifier C, travel direction d
Parameters: Initial length of travel ϵi, travel length ϵ, length decay ϵd (0 < ϵd < 1), tolerance ϵt
Output: Traveled image x′

1: ϵ← ϵi
2: while ϵ < ϵt do
3: Generate perturbation p = ϵ · d.
4: x′ ← clip0,1(x+ p) where clipa,b(z) = min(max(z, a), b).
5: if C(x′) ̸= y then
5: ϵ← ϵ× ϵd
6: else
6: ϵ← ϵ+ ϵ
7: end if
8: end while
9: Return traveled image x′.

(a) ViT-B/32 (b) ViT-L/16 (c) ViT-L/32 (d) Swin-S (e) Swin-B

Figure 15: Lengths (ϵ) of the travel to decision boundaries for the ImageNet validation data. Black
lines represent average values.
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Figure 16: Magnitude distributions of ImageNet features in early steps of travel for ResNet50 (top
row) and Swin-T (bottom row).

row in Figs. 17a and 17b corresponds to each of 50 images from ImageNet. Note that Figs. 17a
depicts the sum-normalized magnitudes (i.e., ω(n)/

∑N
n=1 ω

(n)); the sum values are shown on the
left side. Largely nonlinear movements mostly appear in early steps of the travel. Afterwards, the
trajectory becomes fairly linear.
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Figure 17: ω(n) and θ(n) during the whole travel of 50 ImageNet data to decision boundaries for
Swin-T.

Figure 18: Relationship of θ(1) in two different random travel directions.

Figure 19: Relationship of the length of travel (ϵ) to decision boundaries for original images (x-axis)
and randomly jumped images (y-axis). Colors indicate θ(1).

D.3 MEASURE OF CURVEDNESS

Table 2 shows the correlation coefficients between θ(1) (the first direction change) and
∑N−1

n=1 θ(n)

(the total direction change). While the latter is a measure of curvedness of the representation space
in an overall sense, the two values are highly correlated. Thus, we use θ(1) instead; in addition, it
can provide the information about the local curvedness near z0.

Table 2: Correlation coefficients between θ(1) and
∑N−1

n=1 θ(n) for four different types of travel.

Model FGSM rand FGSM⊥ rand + FGSM
ResNet50 .8983 .7833 .7877 .8827

Swin-T .7397 .7978 .7941 .7698

D.4 CURVEDNESS IN DIFFERENT DIRECTIONS

Fig. 18 shows the relationship of θ(1) in two different random directions, implying that no matter
which random direction is chosen, the result remains consistent.
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Figure 20: Distance between the output of the ImageNet training data and the decision boundary
in the representation space for Swin-T. (a) Distribution of distance. (b) Distance with respect to
confidence. Colors indicate θ(1).

E DISTANCE TO DECISION BOUNDARIES AFTER JUMP

Fig. 19 shows the relationship of the length of travel (ϵ) to decision boundaries for original images
(x-axis) and random jumped images (y-axis) for Swin-T. The dark-colored points on the bottom part
of the figure correspond to the images that escape curved regions with random jump and then can
reach nearby located decision boundaries with imperceptible noise (Fig. 10).

F MODEL TRAINING

We follow the original training implementation code of the Swin-T Transformer for model training
in Sec. 5, e.g., 300 training epochs, batch size of 128, learning rate of 5 × 10−4, weight decay
parameter of .05, and AdamW (Loshchilov & Hutter, 2019) as the optimizer.

Fig. 20 examines the distance from the original output to the decision boundary in the representation
space for the ImageNet training data in the case of Swin-T. The observed trend is similar to that for
the validation data (Figs. 6b and 6c).
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