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Abstract

Recent studies have shown that reinforcement learning with verifiable rewards
(RLVR) enhances overall accuracy (pass@1) but often fails to improve capabil-
ity (pass@k) in mathematical reasoning of LLMs, while distillation can improve
both. In this paper, we investigate the mechanisms behind these phenomena. First,
we demonstrate that RLVR struggles to improve capability because it focuses
on improving the accuracy of the less-difficult questions to the detriment of the
accuracy of the most difficult questions, thereby leading to no improvement in ca-
pability. Second, from the experiment distilling teacher responses to in-distribution
problems, we find that capability does not always improve with distillation. We con-
jecture that capability improves only when new knowledge is introduced, whereas
distilling reasoning patterns only improves accuracy but not capability, sacrificing
performance on the most difficult questions, similar to RLVR. Together, these find-
ings offer a clearer understanding of how RLVR and distillation shape reasoning
behavior in language models. 3

1 Introduction

Reinforcement learning with verifiable rewards (RLVR) [2, 12] and distillation of long chain-of-
thought (CoT) responses [2, 15, 16, 34] are two central techniques driving recent advances in
reasoning LLMs, enabling strong performance on mathematical tasks.

It is well established that RLVR improves accuracy—the probability of generating a correct answer,
but whether it also improves capability—the probability that a correct answer exists in the model’s
output distribution—remains debated. Some studies suggest that, with sufficient compute and
carefully matched training and test sets in skills and difficulty, RLVR can solve tasks that were
previously unsolvable in certain domains [13, 22, 26]. Others, however, report that in more typical
settings—where training and test sets contain heterogeneous problems with uncontrolled knowledge
and difficulty—RLVR primarily amplifies existing reasoning rather than expanding capability [1, 29,
38, 42]. By contrast, it has been observed that distillation improves both accuracy and capability
[38]. In this paper, we take a closer look at how RLVR and distillation shape mathematical reasoning
in LLMs under typical settings, where training and test sets involve diverse problems with varying
knowledge and difficulty.

Carrying out experiments with two models, Qwen2.5-1.5B-Math [33] and Qwen2.5-3B [10], we
demonstrate that RLVR usually fails to improve capability because RLVR focuses on improving the
accuracy of the less-difficult questions to the detriment of the accuracy of the hardest ones, explaining
why capability may stagnate or even decline.
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We next examine distillation. A teacher model’s responses convey two main elements: (1) reasoning
patterns and (2) domain knowledge. To disentangle their effects, we compare three models: the base
model, the publicly released DeepSeek reasoning model, which is distilled on 800k responses from
DeepSeek-R1 and likely incorporates substantial new knowledge, and our own reasoning-only model,
trained only on teacher responses for questions where the base model is already able to produce
correct answers. We find that both distilled models yield substantial accuracy gains, but only the
DeepSeek model shows clear capability improvement. These results indicate that distillation does not
always expand capability, even when accuracy meaningfully improves. While further investigation
is needed to confirm, we conjecture that this difference stems from whether new knowledge is
introduced during distillation: introducing new knowledge may expand capability, whereas distilling
only reasoning patterns improves accuracy but not capability. Interestingly, for the reasoning-only
model, we also find that accuracy of the less-difficult questions improves to the detriment of the most
difficult questions, mirroring the RLVR.

Taken together, our findings provide a clearer picture of different dynamics in the model behavior
during RLVR training and distillation, and offer insights into strategies for enhancing the fundamental
abilities of LLMs.

2 Related Work

Training reasoning models. RLVR has emerged as a key method for training LLMs to tackle
complex reasoning tasks by generating long CoTs [2, 12, 17]. It has shown strong performance
across model sizes [4, 7, 14, 32, 35, 40] and domains [19, 25, 31, 41]. Numerous RLVR variants
have also been proposed to improve performance, data efficiency, and computational cost [3, 14, 23,
24, 27, 28, 37, 43]. Distilling high-quality CoT data is another effective approach for enhancing LLM
reasoning. Such data are obtained either by prompting large models [36, 39] or by human annotation
of complex reasoning traces [20, 30, 34]. A widely used strategy now involves distilling long CoT
responses from RLVR-trained models into student models, often yielding substantial performance
gains [9, 15, 16, 25]. Our work examines both RLVR and distillation, and evaluates how these two
approaches differentially shape reasoning behavior in LLMs.

Capability expansion in RLVR. There is ongoing debate about whether RLVR develops genuinely
new capabilities originally absent in a model. Several works [1, 38, 42] argue that RLVR merely
amplifies correct reasoning already latent in the model. By contrast, ProRL demonstrates empiri-
cally that, given sufficient compute and diverse data, RLVR can enable models to solve previously
unsolvable tasks in some domains-such as logic puzzles—suggesting the possibility of capability
expansion [13]. OMEGA provides a more controlled analysis by carefully adjusting the knowledge
and difficulty requirements of training and test math problems. Their results show that models can
generalize to harder problems when the required knowledge is the same, but remain weak at chaining
compositional skills or adopting novel strategies [26] . Similarly, e3 finds that only problems with a
sufficiently large verification–generation gap benefit from test-time scaling, through experimenting
under settings where the problem types of training and test sets are strictly controlled [22]. However,
outside such carefully constrained conditions—in typical scenarios where both training and test sets
consist of heterogeneous problems with uncontrolled knowledge and difficulty—studies consistently
find that RLVR does not substantially expand capability. Theoretical analysis conducted by Wu
et al. further argues that, in general, the shrinkage of empirical support outweighs its expansion in
such scenarios [29]. In this work, we analyze RLVR under such general, uncontrolled math problem
settings. By examining how accuracy shifts across difficulty levels, we show that RLVR tends to
deliver gains on easier problems at the expense of performance on harder ones.

Reasoning pattern and knowledge in distillation. Several studies have examined the respective
roles of domain knowledge and reasoning patterns in improving accuracy through distillation. For
instance, Shrestha et al. distill teacher responses from logic puzzles—where domain knowledge is
minimal—and show that transferring reasoning patterns alone can yield substantial performance gains
across domains such as mathematics and coding [25]. Likewise, Huan et al. demonstrate that distilling
ath problems responses produces notable improvements in other domains [8]. However, work on
capability remains limited. Yue et al. suggested that distillation can drive capability expansion,
but their analysis does not disentangle the effects of reasoning patterns and knowledge injection
[38]. In contrast, our study explicitly controls for this distinction and investigates how each factor
differentially influences model capability.
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3 Why Doesn’t RLVR Improve Capability?
Prior work has shown across multiple models that RLVR yields substantial gains in accuracy but
often fails to improve capability, as measured by pass@k with sufficiently large k [38]. In this section,
we extend this observation and analyze the phenomenon in greater depth. Specifically, we aim to
answer: Why does RLVR raise accuracy while leaving capability unchanged or even degraded?

3.1 Capability Analysis

We first replicated the pass@k experiments of Yue et al., confirming that RLVR increases accuracy
but not capability (Fig. 5). Our evaluation covered 2 base models (Qwen2.5-1.5B-Math [33] and
Qwen2.5-3B[10]) along with their RLVR-trained counterparts. Training was conducted on the MATH
train set, with evaluation on the MATH 500 test set [5]; these datasets are used throughout this section.
Training details and full pass@k results are provided in Appendix A.10 and A.5, respectively.

We report here results on the 1.5B model evaluated on the test set due to space constraints. However,
the same pattern holds consistently across both the train and test sets, and across both model sizes
(1.5B and 3B). Full results are provided in Appendix A.6. For clarity, we refer to the original 1.5B
model as the base model and the RLVR-trained version as the RL model.

3.2 A Deeper-Dive: Analysis Based on Question Difficulty
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Figure 1: Analysis of success rate changes and transi-
tions after RLVR training on MATH 500 test set. Left:
absolute difference in success rates across bins. Right:
success rate transition matrix.

To better understand the accuracy–capability
dynamics of RLVR, we conduct a fine-
grained analysis at the question difficulty
level. For each question in the training and
test sets, we generate 256 responses from
the base model and compute its per-question
success rate. Questions are then grouped
into bins according to these rates: [0], [1–4],
[5–16], [17–64], [65–128], and [129–256].
Within each bin, we collect the corresponding
questions, retrieve the RL model’s responses
to the same questions, and compute average
success rates for both models. We then calcu-
late the average success rate of the base and
RL models in each bin and plot their absolute difference (Fig. 1 (left)).

We find two clear patterns. (1) When the base model already achieves a moderate success rate, the
RL model yields large gains. For example, the [65–128] bin improves by an absolute 36.6 percentage
points, and the [17–64] bin by 24.7 points. (2) When the base model has zero or near-zero success,
the gains are negligible: the [0] bin increases by only 0.5 points and the [1–4] bin by 0.6.

To further understand the pattern observed in success rate improvements, we visualize how individual
questions move across success rate bins before and after RLVR training. Figure 1 (right) presents
this transition in test set as a matrix. Here, each row corresponds to a success-rate bin based on the
base model’s performance, and each column corresponds to the same bin based on the RL model’s
performance. Each cell shows the percentage (and count) of questions that started in a specific base
model bin and ended up in a particular RL model bin after training.

Notably, we observe two clear trends. (1) Questions already in high-success bins tend to stay there
or shift upward after RLVR. For example, in the [65–128] bin, 15.4% remain in place while 83.3%
move to the top [129–256] bin; only 1.3% (1 question out of 78) drop lower. A similar upward shift
appears in the [17–64] bin. (2) In contrast, questions in low-success bins—especially those near
zero—tend to stagnate or regress. In the [1–4] bin, 61.1% remain and 16.7% fall to [0]; likewise, in
the [5–16] bin, 44.2% stay or drop lower. This pattern shows a clearer picture of how RLVR fails to
help previously unsolved questions and can even increase their number, as many with a small chance
of being answered correctly end up never being solved after training.

To understand this behavior, we can consider the internal dynamics of RLVR training using GRPO as
an example. With only a limited number of generations per question, difficult questions often fail to
produce a single correct answer, resulting in no parameter update. Consequently, updates are driven
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almost entirely by relatively easier questions. Over time, this imbalance shifts training toward easier
cases, while harder ones remain unsolved or even become less likely to be solved. To test this, we
increase the number of generations and observe that the sacrifice-of-hard-problems issue is slightly
alleviated (see Appendix A.7). Nevertheless, because difficult questions still rarely contribute to
updates, the problem remains an inherent limitation of RLVR.

To summarize, these results suggest the following insight: RLVR improves accuracy but not capability
as RLVR focuses on improving the accuracy of the less-difficult questions to the detriment of the
accuracy of the most difficult questions.

4 Under What Conditions Does Distillation Increase Capability?
Distillation from teacher reasoning models is another effective approach for improving accuracy [15,
16, 34]. Here, we ask: Can distillation also improve capability, and under what conditions?

4.1 Capability Analysis

[38] briefly explored this issue by comparing two models: Qwen-2.5-Math-7B [33] and DeepSeek-R1-
Distill-Qwen-7B [2]. The latter is a publicly available model obtained by distilling 800K DeepSeek-R1
responses into the Qwen-2.5-Math-7B student model. Their experiments showed that the distilled
model demonstrates improved capability, as evidenced by higher pass@k scores.
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Figure 2: Pass@k results for AIME25
and MATH500 (hardest 50 questions under
base model), comparing the 1.5B model
with its distillation-trained variants.

However, the source of this improvement remains un-
certain. Teacher responses contain two key elements:
(1) the model’s reasoning patterns, and (2) its domain
knowledge. In the case of DeepSeek-R1-Distill-Qwen-
7B, the large volume of teacher responses almost cer-
tainly injected new mathematical knowledge that was
absent from the student model’s pre-training data. This
makes it unclear whether the observed capability gains
stem from adopting more effective reasoning pattern or
from learning new knowledge. To disentangle these
effects, we design a comparative study across three
models: (1) Qwen2.5-Math-1.5B, a non-reasoning base
model; (2) DeepSeek-R1-Distill-Qwen-1.5B, which,
like its 7B counterpart, was trained on 800K responses

from DeepSeek-R1 [2] and likely benefits from both new knowledge and improved reasoning; (3) our
own distilled model, designed to isolate the effect of reasoning-pattern transfer without introducing
any new domain knowledge beyond that of base model. For simplicity, we refer to these as the base
model, the DeepSeek model, and the reasoning-only model.
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Figure 3: Absolute success-rate differ-
ences of DeepSeek and reasoning-only
models, grouped by base-model bins.

We train our reasoning-only model as follows. From
the base model, we sample 256 responses for each of
the 7,500 MATH training questions and discard those
with zero success rate. The remaining questions, each
answered correctly at least once, are treated as in-
distribution. As the teacher, we use QwQ-32B [21],
which we confirm has higher capability than the student
(see Appendix A.8). For each in-distribution question,
QwQ-32B generates 8 candidate responses; we randomly
select up to 4 correct ones (using all if fewer exist) for
supervised fine-tuning of the base model. Because all
questions are ones the base model already solves, this
procedure avoids introducing new knowledge. The dis-
tilled model reaches 70% accuracy on MATH 500, out-
performing the base model’s 60%, indicating a successful
distillation.

We assess the three models’ capability by conducting pass@k experiments on AIME25 [18] and
MATH500 (Fig. 2). Two consistent patterns emerge. (1) The DeepSeek model outperforms the
base model across all k. On AIME25, it reaches 70.0% at pass@256 versus 56.7% for the base
model. To ensure this gap does not close at higher k, we extend evaluation of the base model up
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to pass@512 and confirm that its performance plateaus, remaining at 56.7%. A similar trend holds
for MATH500, showing that DeepSeek improves both accuracy and capability, consistent with [38].
(2) The reasoning-only model outperforms the base model at small k, but the curves converge and
even cross as k increases. Replicating the experiment with Qwen2.5-3B yields the same pattern
(Appendix A.9). These results show that the reasoning-only model improves accuracy but does not
expand capability, similar to the case of RLVR discussed in Section 3.

These results show that distillation does not always lead to capability expansion, even when it yields
significant accuracy gains. We conjecture that the difference arises from whether new knowledge is
introduced during distillation. Specifically, Distillation may improve capability when it introduces
new knowledge, whereas learning reasoning patterns alone boosts accuracy but not capability.

4.2 In-Depth Analysis Based on Question Difficulty 129-256
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Figure 4: Success rate transition
matrix in two distillation settings
on MATH 500 test set.

To better understand the dynamics of the two distillation set-
tings, we perform a bin-based analysis similar to Section 3.2,
comparing model performance across question bins grouped
by base model success rates, based on 256 sampled responses.
As shown in Figure 3, two contrasting patterns emerge: (1)
The DeepSeek model shows substantial improvement across
all bins, including those with zero or near-zero success rates.
(2) In contrast, the reasoning-only model shows improvement
primarily in bins with moderately high success rates, but little
gain in the zero or near-zero bins, mirroring the behavior of
RLVR discussed in Section 3.

As in Section 3.2, We further examine per-question transitions
before and after distillation (Figure 4). We observe: (1) For
the DeepSeek model, questions consistently move to higher
success-rate bins, even those that started in low-success bins.
For instance, in the [1–4] bin, only 11.1% (2 out of 18) drop to
the [0] bin, and in the [5–16] bin, no question moves downward.
(2) In contrast, for the reasoning-only model, we interestingly observe the same "sacrificing difficult
problems" effect seen in RLVR. In the [1–4] bin, 38.9% (7 out of 18) drop to the [0] bin, and in the
[5–16] bin, 29.4% (10 out of 34) move to lower bins.

We again conjecture that the key factor underlying this difference is whether new knowledge is
introduced during distillation. Specifically, distillation with new knowledge improves both accuracy
and capability because it enables the model to solve questions across all difficulty levels, including
the most difficult ones. In contrast, reasoning-only distillation improves accuracy but not capability
because, like RLVR, it focuses on easier questions—often at the cost of performance on the hardest
ones. We hope this result motivates further empirical study to validate this conjecture and clarify the
role of new knowledge in capability expansion.

5 Conclusions

Recent work has shown that RLVR improves accuracy but not capability of LLMs in mathematical
reasoning tasks, while distillation from a strong teacher often improves both. In this paper, we
conduct extensive experiments to understand these dynamics in greater depth. Our contributions
can be summarized as follows: (1) We explain why RLVR improves accuracy but not capability by
showing that it disproportionately favors easier questions to the detriment of harder ones—often
degrading performance for difficult questions. (2) While distillation consistently improves accuracy,
its effect on capability is less clear. We conjecture that capability improves only when new knowledge
is introduced, whereas distilling reasoning patterns only improves accuracy but not capability,
sacrificing performance on the most difficult questions, similar to RLVR. Taken together, our findings
provide a clearer picture of different dynamics in the model behavior during RLVR training and
distillation, and offer insights into strategies for enhancing the fundamental abilities of LLMs.
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A.2 Limitations

While our study provides an in-depth analysis of RLVR and distillation, it also has limitations that
suggest directions for future work.

First, due to resource constraints, our experiments are restricted to a single domain, mathematics, and
different patterns may emerge in other tasks. There remains an ongoing debate about whether RLVR
truly improves capability. As discussed in Section 2, some studies argue that RLVR does not enhance
capability in general mathematical settings where both training and test sets contain heterogeneous
problems with uncontrolled knowledge and difficulty. Others, however, show that RLVR can indeed
expand capability when sufficient training compute is available and when training and test sets are
carefully controlled in terms of problem type and difficulty. Therefore, follow-up work is needed to
unify these perspectives and develop a more comprehensive understanding of the phenomenon.

Second, our experiments are limited to relatively small models (1.5B and 3B) and a single RL
algorithm family (GRPO & Dr. GRPO). Larger models or different RL algorithms may exhibit
different dynamics. A more comprehensive study across model scales and training methods is needed
to test the generality of our findings.

Third, our distillation experiments are limited in both scale and control. The DeepSeek model used
for comparison is distilled on approximately 800k teacher responses and trained from a different base
model, whereas our reasoning-only distillation relies on roughly 30k responses from the same model.
In addition, when we extend the setup to include teacher responses to out-of-distribution (OOD)
questions, we do not observe measurable capability improvement, possibly due to the small number
of OOD samples or limited coverage of new knowledge. Consequently, we cannot conclusively
determine whether capability gains depend on the introduction of new knowledge. Future work
should validate this conjecture under more controlled settings.

A.3 Accuracy and Capability

A.3.1 Formal Definitions

We evaluate models along two dimensions: accuracy and capability. Informally, accuracy measures
how likely a model is to generate a correct answer in a single attempt, while capability measures
whether a correct answer exists within the distribution of responses the model can generate.

Formally, we define accuracy and capability with respect to given model M and evaluation dataset
D = {1, . . . , N} of N questions. Let pMi denote the probability that model M successfully solves
question i in a single attempt. Note that this can be obtained by sampling model M for n times on
question i, computing the fraction of correct responses, and taking the limit as n → ∞. In theory, an
LLM using softmax sampling assigns non-zero probability to all valid outputs, so any answer could
eventually be produced. To make capability practically meaningful, we consider a question i to be
in-distribution for model M if pMi > ϵ, where ϵ is a small threshold (typically 10−2 to 10−3).

To evaluate performance under multiple attempts, let pMi,k denote the probability that model M solves
question i at least once across k independent attempts. This probability satisfies

pMi,k = 1− (1− pMi )k.

With these definitions in place, we define the model’s accuracy as the average success rate over the
entire dataset:

Acc(M) =
1

N

∑
i∈D

pMi .
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We define the model’s pass@k capability as the average success probability over D given k passes
per question:

Capk(M) =
1

N

∑
i∈D

pMi,k =
1

N

∑
i∈D

(
1− (1− pMi )k

)
It is important to note that if model M ′ has higher accuracy than model M (pM

′

i > pMi ) for a specific
question, then it will also have higher pass@k capability for that question. However, this relationship
does not always hold taking into account the entire dataset. In fact, as shown in Appendix A.4, it is
possible for Acc(M ′) > Acc(M) while Capk(M

′) < Capk(M).

A.3.2 Estimating Accuracy and Capability

In practice, it is infeasible to compute the exact accuracy and capability of a model, as this would
require a prohibitively large number of samples per question. Instead, we estimate these quantities
empirically using a finite number of samples k. Let Xi,k be the number of correct responses among
k samples for question i.

We estimate accuracy as:

Acc(M) ≈ 1

N

∑
i∈D

Xi,k

k

We estimate pass@k capability as:

Capk(M) ≈ 1

N

∑
i∈D

1(Xi,k > 0)

These estimators are unbiased. Throughout this work, we report results using these estimators,
typically with k = 256. We also consider a question i to be out-of-distribution if Xi,256 = 0, that
is, none of the 256 responses to question i are correct. Under this definition, we can say with 95%
confidence that pMi < 1− (0.05)1/256 ≈ 0.012, that is, question i is truly out-of-distribution under
the threshold ϵ = 0.012.

A.4 Accuracy vs. Capability Example

As discussed in A.3, we provide an example to illustrate that a model can have higher accuracy but
lower capability on an evaluation dataset with more than one question.

Recall the definitions:

Acc(M) =
1

N

N∑
i=1

pMi ,

Capk(M) =
1

N

N∑
i=1

(
1− (1− pMi )k

)
.

We compare two models, M1 and M2, on a toy dataset of N = 3 questions. Their single-attempt
success probabilities pMi are shown below:

Question pM1
i pM2

i

1 0.9 0.5
2 0.9 0.5
3 0.003 0.5

Table 1: Single-pass success probabilities for models M1 and M2.

We first compute the accuracy of two models on this toy dataset.

Acc(M1) =
1

3
(0.9 + 0.9 + 0.003) = 0.601,

Acc(M2) =
1

3
(0.5 + 0.5 + 0.5) = 0.5.
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Thus, M1 has higher accuracy.

We now compute capability with k = 256, which is large enough to expose the low success probability
on Question 3 for M1:

Using the formula:
pMi,k = 1− (1− pMi )k,

we compute:

Model M1:

pM1
1,256 = 1− (1− 0.9)256 ≈ 1,

pM1
2,256 = 1− (1− 0.9)256 ≈ 1,

pM1
3,256 = 1− (1− 0.003)256 ≈ 0.537.

Cap256(M1) =
1

3
(1 + 1 + 0.537) ≈ 0.845.

Model M2:

pM2
i,256 = 1− (1− 0.5)256 = 1− 2−256 ≈ 1 for all i,

Cap256(M2) =
1

3
(1 + 1 + 1) = 1.0.

As shown, although M1 has significantly higher probabilities to the first two questions—resulting in
higher overall accuracy—its probability on the third question is extremely low. As a result, even with
many sampling attempts, M1 is unlikely to solve all questions. In contrast, M2 maintains moderate
but consistent success probabilities across all three questions, which leads to a higher chance of
solving every question at least once when given sufficient attempts.
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A.5 Pass@k Experiments Results Before & After RLVR

In this paper, we used two models to evaluate the effect of RLVR training: Qwen2.5-1.5B-Math, and
Qwen2.5-3B. For corresponding RL model of 1.5B model, we used the Qwen2.5-Math-1.5B-Oat-
Zero, a publicly available model trained with MATH train dataset by Liu et al.. For Qwen2.5-3B, we
conducted the RLVR training ourselves, also with MATH train dataset. Further details for training
can be found at Appendix A.10 and A.11, respectively.

Split Model Qwen2.5-1.5B-Math Qwen2.5-3B
Accuracy Maj@256 Pass@256 Accuracy Maj@256 Pass@256

Train
Base 64.0% 76.8% 97.2% 59.3% 80.9% 92.7%
RL 80.9% 82.1% 97.1% 67.9% 82.2% 92.1%
Difference +16.9% +5.3% -0.1% +8.6% +1.3% -0.6%

Test
Base 60.6% 72.0% 97.2% 54.9% 76.5% 95.8%
RL 74.2% 80.8% 97.0% 63.6% 79.5% 95.8%
Difference +13.9% +8.8% -0.2% +8.7% +3.0% +0.0%

Table 2: Performance comparison of base and RL models for Qwen2.5-1.5B-Math and Qwen2.5-3B
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Figure 5: Pass@k comparison between base and RLVR-trained models on train and test sets.

Similar to the work done by Yue et al., we conducted the pass@k experiments with these models.
For both the base and RL models, we generated 256 responses per question on the MATH train set
and MATH500 test set. Using these responses, we estimated accuracy and pass@k capability for
k = 1 to 256, following the metric defined in Section A.3.2. Additionally, we computed majority
vote accuracy (maj@256), which is the percentage of questions where the most frequent answer
among the 256 responses is correct.

As expected, we observed that RLVR significantly improved both accuracy and majority vote
performance across training and test sets. As shown in Table 2, these gains appeared consistently in
both the 3B and 1.5B models, indicating that RLVR leads to generalizable improvement in accuracy
without signs of overfitting. In contrast, we observed no meaningful improvement in capability. For
both the 1.5B and the 3B models, pass@k either remained stable or slightly declined across the
training and test sets. As shown in Figure 5, the RL model outperformed the base model at small k,
but their curves converged as k increases—a pattern consistent with prior work [24, 38].

A.6 Question-Difficulty-Based Analysis Results

As discussed in Sections 3, we performed detailed analyses based on question difficulty across
different training settings. The results are presented below. Figure 6 shows success rate improve-
ments across difficulty bins for both 1.5B and 3B models on train and test. Figure 7 presents the
corresponding transition matrices that illustrate how questions move between success rate bins before
and after training.
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Figure 6: Change in success rates (absolute %) across difficulty bins for Qwen2.5-1.5B-Math and
Qwen2.5-3B on the MATH training and test sets. In both models, RLVR significantly improves
questions in the mid-success bins (e.g., [17–64], [65–128]), but yields minimal gains in the lowest
bins ([0], [1–4]).
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Figure 7: Transition matrices comparing base and RLVR success-rate bins for Qwen2.5-1.5B-Math
and Qwen2.5-3B. Each cell shows the percentage and count of questions moving between success
bins. Most upward transitions occur from mid-success bins; questions in low-success bins are more
likely to remain unchanged or regress.
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A.7 RLVR with different numbers of generations per question
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(b) 10 generations: transition matrix
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(c) 24 generations: success-rate changes across bins
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Figure 8: Comparison of success-rate changes and transition matrices on MATH 500 for Qwen2.5-3B
RLVR models trained with 10 vs. 24 generations per question.

In Section 3, we discussed how increasing the number of generations per question in GRPO training
can mitigate the sacrifice-of-hard-problems issue. To test this, we trained two Qwen2.5-3B models
under the same conditions: one with 10 generations per question (as used in the main experiments)
and another with 24. As shown in Figure 8, the model trained with 24 generations exhibited less
regression and more improvement on hard questions compared to the model trained with 10.
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A.8 QwQ-32B Capability Experiment
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Figure 9: Pass@k results of QwQ-32B, Qwen2.5-3B-Math, and Qwen2.5-1.5B-Math on AIME 25

In Section 4, we selected QwQ-32B as the teacher model for our reasoning-only distillation ex-
periment. To ensure a fair test of whether distillation can improve capability without introducing
new knowledge, the teacher must have higher capability than the student models—Qwen2.5-3B and
Qwen2.5-1.5B-Math.

To validate this, we conducted a pass@k evaluation on AIME 25 using 64 responses per question from
QwQ-32B, and compared the results with the two student models. As shown in Figure 9, QwQ-32B
consistently outperforms both students across all k values, with no sign of convergence. Notably, its
pass@64 score reached 76.7%, compared to just 43.3% and 56.7% at pass@256 for Qwen2.5-3B
and Qwen2.5-1.5B-Math, respectively. These results confirm that QwQ-32B has substantially higher
capability, making it a suitable teacher model for our distillation setup.
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A.9 Distillation Pass@k results

As discussed in Section 4, we conducted the pass@k on AIME 25 and MATH 500 for both Qwen2.5-
1.5B-Math and Qwen2.5-3B and each their 2 distilled variants. The results are shown below in Figure
10.
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Figure 10: Pass@k comparisons across AIME25 and MATH500 datasets for both 1.5B (top) and
3B (bottom) models and their distillation-trained variants. For the MATH500 results of the 1.5B
models, we show performance on the 50 questions with the lowest base-model success rates to better
highlight the differences.
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A.10 Qwen2.5-Math-1.5B Training Details

In this paper, we used two models as base models: Qwen2.5-1.5B-Math and Qwen2.5-3B. For
the RLVR-trained version of the 1.5B model, we used Qwen2.5-Math-1.5B-Oat-Zero4, a publicly
available model trained by Liu et al.. According to their report, the model was trained with Dr.GRPO
[14], a variant of the GRPO algorithm [24] designed to remove response length and question difficulty
biases. The model was trained on questions from level 3 to 5 from the MATH training set. For the 3B
model, we performed RLVR training ourselves. Training details are shown right below in Appendix
A.11

A.11 Qwen2.5-3B RLVR Training Details

For RLVR training of Qwen2.5-3B, we used the GRPOTrainer from the TRL5 library, which
implements the standard GRPO algorithm. The model was trained on the full MATH training set,
consisting of 7,500 questions.

A.11.1 Prompt Setting

Prior work has shown that the performance of smaller models can be sensitive to prompt design
[6, 14]. Following Liu et al., we evaluated three prompt formats, as listed below. We ultimately
adopted Template 3 (question only), which yielded the best performance.

Prompt Templates

Template 1 (R1 template) A conversation between User and Assistant. The User asks a
question, and the Assistant solves it. The Assistant first thinks about the reasoning pro-
cess in the mind and then provides the User with the answer. The reasoning process is
enclosed within <think> </think> and the answer is enclosed within <answer>
</answer> tags. User: {question} Assistant: <think> reasoning
here </think> <answer> answer here </answer>

Template 2 (Qwen-Math template) <|im start|>system Please reason step by step,
and put your final answer within \boxed{}. <|im end|> <|im start|>user {ques-
tion} <|im end|> <|im start|>assistant

Template 3 (Question only) {question}

A.11.2 Reward Function

We adopted a minimalistic reward setting. A response received a reward of 1 if it contained the
correct final answer, and -1 otherwise. Answer verification was performed using the math_verify6

package.

R(q, a, r) =

{
1 if the response r to question q matches the ground truth answer a
−1 otherwise

A.11.3 RLVR Training Hyperparameters

Table 3 summarizes the key hyperparameters used in RLVR training for the Qwen2.5-3B model.

4https://huggingface.co/sail/Qwen2.5-Math-1.5B-Oat-Zero
5https://github.com/huggingface/trl
6https://github.com/huggingface/Math-Verify
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Hyperparameter Value
Optimizer AdamW
Learning rate scheduler Constant
Maximum token length 4000
Temperature 0.9
Top-p 1.0
Top-k 50
Number of generations (per question) 10
Global batch size 4 (per device) × 7 (GPUs) × 10 (accumulation) = 280
Learning rate 1× 10−6

Gradient clipping (max grad norm) 0.1
Number of gradient steps 225
Warmup steps 20
Mixed precision bf16

Table 3: Key hyperparameters used for RLVR training of Qwen2.5-3B.

A.11.4 Training Progress and Evaluation
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Figure 11: Change in response length (token counts) over training and accuracy on MATH 500 across
checkpoints.

During RLVR training, we evaluated the model every 25 gradient steps. To ensure statistical
robustness, we followed the recommendation of Hochlehnert et al. [6] and sampled responses 10
times per checkpoint, reporting the mean accuracy. For each evaluation, we used a temperature of 0.8
and a top-p of 0.9.

As shown in Figure 11, accuracy peaked at step 150, reaching 63.6%, and then plateaued. We selected
this checkpoint as the RL model used throughout our experiments. The figure also shows the average
response length over training.
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A.12 Distillation Training Hyperparameters

For all the distillation experiments in Section 4, we used the supervised fine-tuning (SFT) hyperpa-
rameters listed in Table 4.

Hyperparameter Value
Optimizer AdamW
Learning rate scheduler Constant
Weight decay 1× 10−4

Warmup steps 25
Max sequence length 32,768
Global batch size 4
Mixed precision bf16

Table 4: Key hyperparameters used for supervised fine-tuning in distillation experiments.

A.13 Response Generation Details

We used vLLM7 library [11] for response generation and math_verify8 package for response
grading.

We used temperature 0.9, top-p of 1.0, and top-k of 50 for all models, except where noted below.
These settings were chosen to ensure response diversity. Unless otherwise specified, we used the
question-only template (Template 3).

For Qwen2.5-Math-1.5B-Oat-Zero, we used the same sampling hyperparameters but followed the
Qwen prompt format (Template 2), as recommended in the user guideline.9

For QwQ-32B, we used temperature 0.6, top-p 0.95, and top-k 50. We followed the R1 prompt
template (Template 1), as recommended in the user guideline.10

For DeepSeek-R1-Distill-Qwen-1.5B, we used temperature 0.6, top-p 0.95, and top-k 50. We
followed the R1 prompt template (Template 1), as recommended in the user guideline.11

7https://docs.vllm.ai
8https://github.com/huggingface/Math-Verify
9https://huggingface.co/sail/Qwen2.5-Math-1.5B-Oat-Zero

10https://huggingface.co/Qwen/QwQ-32B#usage-guidelines
11https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B#

usage-recommendations

19

https://docs.vllm.ai
https://github.com/huggingface/Math-Verify
https://huggingface.co/sail/Qwen2.5-Math-1.5B-Oat-Zero
https://huggingface.co/Qwen/QwQ-32B#usage-guidelines
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B#usage-recommendations
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B#usage-recommendations

	Introduction
	Related Work
	Why Doesn't RLVR Improve Capability?
	Capability Analysis
	A Deeper-Dive: Analysis Based on Question Difficulty

	Under What Conditions Does Distillation Increase Capability?
	Capability Analysis
	In-Depth Analysis Based on Question Difficulty

	Conclusions
	Appendix
	Acknowledgement
	Limitations
	Accuracy and Capability
	Formal Definitions
	Estimating Accuracy and Capability

	Accuracy vs. Capability Example
	Pass@k Experiments Results Before & After RLVR
	Question-Difficulty-Based Analysis Results
	RLVR with different numbers of generations per question
	QwQ-32B Capability Experiment
	Distillation Pass@k results
	Qwen2.5-Math-1.5B Training Details
	Qwen2.5-3B RLVR Training Details
	Prompt Setting
	Reward Function
	RLVR Training Hyperparameters
	Training Progress and Evaluation

	Distillation Training Hyperparameters
	Response Generation Details


