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Abstract
Massive high-quality data, both pre-training001
raw texts and post-training annotations, have002
been carefully prepared to incubate advanced003
large language models (LLMs). In contrast, for004
information extraction (IE), pre-training data,005
such as BIO-tagged sequences, are hard to scale006
up. We show that IE models can act as free rid-007
ers on LLM resources by reframing next-token008
prediction into extraction for tokens already009
present in the context. Specifically, our pro-010
posed next tokens extraction (NTE) paradigm011
learns a versatile IE model, Cuckoo1, with012
102.6M extractive data converted from LLM’s013
pre-training and post-training data. Under the014
few-shot setting, Cuckoo adapts effectively to015
traditional and complex instruction-following016
IE with better performance than existing pre-017
trained IE models. As a free rider, Cuckoo018
can naturally evolve with the ongoing advance-019
ments in LLM data preparation, benefiting from020
improvements in LLM training pipelines with-021
out additional manual effort.022

1 Introduction023

The biggest lesson researchers have learned from024

training large language models (LLMs) (Wang025

et al., 2023b; Touvron et al., 2023; Achiam et al.,026

2023; Groeneveld et al., 2024; Dubey et al., 2024;027

Team et al., 2024) is the power of massive and high-028

quality data (Kaplan et al., 2020; Hernandez et al.,029

2021). Although pre-training information extrac-030

tion (IE) models (Huang et al., 2021; Tedeschi and031

Navigli, 2022; Lu et al., 2022; Li et al., 2023; Bog-032

danov et al., 2024; Peng et al., 2024) has once been033

a popular topic before the rise of general LLMs, the034

relative scarcity of automated annotations has lim-035

ited the further development of this domain. Conse-036

quently, more and more researchers have accepted037

LLMs as backbone models for IE tasks (Agrawal038

et al., 2022; Wang et al., 2023a; Xu et al., 2024b).039

1Cuckoo is known for laying its eggs in other birds’ nests,
tricking them into raising its chicks.

The primary reason for the temporary lag in IE 040

pre-training is the stricter format requirements for 041

data collection compared to those for LLMs. The 042

paradigm for learning LLMs, the next token predic- 043

tion (NTP), can utilize every token in the sentence 044

as an annotation. In contrast, IE pre-training al- 045

ways requires spans annotated with label names. 046

While certain platforms provide massive annota- 047

tions, such as Page Links in Wikipedia (Balasuriya 048

et al., 2009; Ding et al., 2021; Han et al., 2018; 049

Tedeschi and Navigli, 2022), they are still much 050

less efficient than NTP. To illustrate the gap, Multi- 051

nerd (Tedeschi and Navigli, 2022) takes multiple 052

processing efforts to collect 164K English named 053

entity recognition (NER) instances from Wikipedia 054

and Wikinews, while NTP can easily gather tril- 055

lions of tokens from raw texts as supervision. 056

This paper proposes a frustratingly simple yet ef- 057

fective way to scale up IE pre-training. We suggest 058

that IE pre-training can simply be a free rider on the 059

LLM’s training resources by learning on exactly 060

the same pre-training and post-training datasets. 061

We modify NTP to next tokens extraction (NTE), 062

using BIO tags for next tokens that can be extracted 063

from the input context as shown in Figure 1. With 064

the instruction-following ability learned in post- 065

training, one can adjust the prompt to instruct NTE- 066

based taggers to perform different IE tasks. 067

Specialized for IE, NTE has three advantages 068

over NTP. 1) Parameter Efficiency, NTP requires 069

extra parameters to store knowledge to generate 070

tokens not in the input context, while NTE concen- 071

trates only on tagging input tokens. Thus, NTE- 072

based IE taggers can have better parameter effi- 073

ciency than NTP-based LLMs, fitting it to smaller 074

models like RoBERTa (Liu et al., 2019). 2) Infer- 075

ence Efficiency, NTE taggers are not only smaller 076

because of the parameter efficiency but can also 077

extract multiple tokens with the BIO scheme in 078

one forward pass. 3) Transferability, NTE taggers 079

can easily adapt to IE tasks, which are typically 080
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User: Can you write a formal letter to introduce Jeff Bezos to a customer?

Assistant: The CEO of Amazon, Jeff Bezos …

The CEO of Amazon , Jeff Bezos

Next Token Prediction (NTP)

Jeff Bezos of Amazon ,introduce to …

B I O O OO O …

…

…

…

Next Tokens Extraction (NTE)

The massive nutrition in datasets collected for LLMs …

… hatches our IE Cuckoo (Predicting next tokens by extracting from previous contexts)

LLM

Cuckoo
(Solve any 

task by NTE)

Assistant: The organization disagreed with shun is

European CommissionThe

B IO

said

O

shun

O

is

O

…

…

Assistant: The date mentioned is

Thursdayon

BO

it

O

mentioned

O

is

O

…

…

date

O

User: The European Commission said on Thursday it disagreed 

with German advice to consumers to shun British lamb. 

<Case 1> Simple Entity Extraction

<Case 2> Extraction with Context Understanding

Pre-training Cuckoo        : Convert next tokens prediction for duplicative spans to extraction Prompting Cuckoo        : Adapt next tokens extraction context to any IE task

(duplicative span)

(duplicative span)

Figure 1: Cuckoo takes a free ride on LLM resources (e.g., C4 and TuluV3 (Lambert et al., 2024)) by formalizing
next token prediction for duplicative spans as extraction in the BIO paradigm. During the inference, the prompts
can be adjusted to different extractive tasks, making Cuckoo a versatile IE model.
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Figure 2: Comparison of scale, cost, and diversity
among different IE pre-training datasets. Our data col-
lection for Cuckoo is free by converting LLM’s learning
resources, which forces the tagger to learn from diverse
contexts. Cuckoo can also evolve with the data collec-
tion for LLM’s post-training.

annotated in the same BIO scheme.081

With NTE, we easily collect 100M pre-training082

instances from C42 (Raffel et al., 2020), a popu-083

lar pre-training dataset, and 2.6M chat-formatted084

instances from TuluV3 post-training dataset (Lam-085

bert et al., 2024) to endow the model with086

instruction-following ability. We continually train087

a RoBERTa tagger on massive NTE data, which088

results in our Cuckoo model, a free rider with a089

training paradigm similar to NTP on training re-090

sources for LLMs. We present the comparison of091

scale, cost and diversity with other IE pre-training092

datasets in Figure 2.093

We follow the few-shot adaptation evaluation in094

previous works (Tedeschi and Navigli, 2022; Bog-095

2We estimate the English part of C4 can be transformed
into 5B instances, we only take 100M (2%) for experiment
efficiency.

danov et al., 2024) to benchmark Cuckoo, which 096

shows that Cuckoo is as versatile as LLMs in ex- 097

tractive tasks. Training with few-shot data, Cuckoo 098

can quickly understand different kinds of NER la- 099

bels, free text questions in machine reading compre- 100

hension, and complex instructions, to perform pre- 101

cise extraction. With overwhelming advantages in 102

data scale, Cuckoo outperforms models pre-trained 103

on massive human-annotated or LLM-synthesized 104

datasets by a large margin. 105

Finally, we analyze to show 1) Cuckoo can 106

evolve with the data collection for LLM’s post- 107

training data; 2) in-context tagging ability emerges 108

in Cuckoo just like in-context learning in LLMs; 109

and 3) Cuckoo scales up by the increasing number 110

of our constructed NTE data.3 111

2 Background 112

Information Extraction Information extraction 113

(IE) is one of the most fundamental applications 114

in natural language processing. IE systems take 115

the user’s requirement (e.g., defined by a label text, 116

a question, or an instruction) and extract spans of 117

several tokens from input texts. The two most fre- 118

quent categories of IE targets are entity and relation, 119

which structure many IE tasks, such as named en- 120

tity recognition (Sang and Meulder, 2003), relation 121

extraction (Carreras and Màrquez, 2004), event ex- 122

traction (Walker et al., 2006), and others (Carreras 123

and Màrquez, 2005; Pontiki et al., 2014; Xu et al., 124

2020). A crucial challenge to modern IE systems 125

is the growing number of IE targets (e.g., various 126

label names) in the open world, which are scarce in 127

annotation and require IE systems for quick trans- 128

fer learning. Thus, many works have collected 129

3Open Cuckoo: Repo link hidden during reviewing.
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massive automated IE annotations to pre-train IE130

models (Ding et al., 2021; Tedeschi and Navigli,131

2022; Li et al., 2023; Bogdanov et al., 2024; Peng132

et al., 2024), which shows benefits in transferring133

to low-resource IE targets.134

Large Language Model The biggest game-135

changer for natural language processing in all do-136

mains is the large language model (LLM) (Wang137

et al., 2023b; Touvron et al., 2023; Achiam et al.,138

2023; Groeneveld et al., 2024; Dubey et al., 2024;139

Team et al., 2024). Learning on trillions of to-140

kens for pre-training and post-training, LLMs have141

shown surprisingly strong performance on all kinds142

of tasks (Achiam et al., 2023). Next token predic-143

tion, the paradigm behind the success of LLMs,144

supports exploiting every token in raw texts as145

the annotation to strengthen the model’s capabil-146

ity. Consequently, many IE researchers have turned147

toward LLMs (Agrawal et al., 2022; Wang et al.,148

2023a; Xu et al., 2024b) to use them as strategic149

information extractors with planning (Huang et al.,150

2024; Kim et al., 2024) and chain-of-thoughts (Wei151

et al., 2022; Ma et al., 2023).152

Pre-training Paradigm: IE v.s. LLM The rise153

of LLMs has challenged the meaningfulness of IE154

pre-training with an overwhelmingly larger number155

of annotations. The lagging of IE pre-training can156

be attributed to the relatively high format require-157

ment for IE annotation like labels in Wikipedia158

links. This paper shows IE pre-training can take a159

free ride on LLM’s NTP paradigm to unleash the160

power of massive pre-training.161

3 Our Cuckoo162

3.1 Next Tokens Extraction163

The learning paradigm for LLMs is next token pre-164

diction (NTP), which calculates the representation165

of a context [x1, x2, · · · , xt] to output a probabil-166

ity distribution pt+1 of the next token xt+1 over167

all potential tokens in the LLM’s vocabulary. The168

prediction pt+1 is optimized by the cross entropy169

loss to maximize its value on xt+1.170

We modify NTP into next tokens extraction171

(NTE) for cases that the span of next n to-172

kens [xt+1, · · · , xt+n] already exist in the context173

[x1, x2, · · · , xt], such that [xk+1, · · · , xk+n] =174

[xt+1, · · · , xt+n](1 ≤ k ≤ t−n). When we detect175

such (t, k, n), we annotate IE tags for the context176

as [l1, l2, · · · , lt] following a BIO scheme. We first177

set all tags l to O. As there can be multiple k for t,178

for each k, we set lk to B and [lk+1, · · · , lk+n] to 179

I. The high-level idea of NTE is to replace predic- 180

tion by extraction for duplicative spans that appear 181

multiple times in the context. 182

NTE thus allows IE pre-training to directly ex- 183

ploit NTP datasets for LLM training, which signifi- 184

cantly broadens the potential training data. During 185

the inference, one can adjust the prompts of an 186

NTE-based tagger to instruct it to perform different 187

kinds of extractive tasks. Recall the strengths men- 188

tioned for NTE in the introduction, NTE special- 189

ized for IE has advantages in parameter efficiency, 190

inference efficiency, and adaptability over NTP. 191

3.2 Massive Nutrition for Cuckoo 192

Pre-training and Post-Training With NTP-to- 193

NTE conversion, we can simply copy the two 194

training stages for LLMs, to perform pre-training 195

and post-training for NTE-based IE taggers. Pre- 196

training learns raw texts while post-training learns 197

instruction-following dialogues between the user 198

and the IE assistant. During pre-training, we anno- 199

tate BIO tag sequences based on all (t, k, n) triplets, 200

assuming the multiple appearances of the same 201

span of tokens indicate a certain level of extractive 202

relation (Gu et al., 2021). For post-training, we 203

suppose the extraction should focus on the texts 204

provided by users so we only keep (t, k, n) triplets 205

that k falls in the user’s request and t falls in the 206

assistant’s response. 207

Then, we select the resources for pre-training 208

and post-training. While the NTE framework al- 209

lows us to exhaust all kinds of resources, we use 210

only one dataset for each stage for experiment 211

efficiency. For pre-training, we select the pop- 212

ular C4 (CommonCrawl) dataset (Raffel et al., 213

2020), which contains 4B passages and is com- 214

monly used to pre-train LLMs. For post-training, 215

we use the most advanced TuluV3 (Lambert et al., 216

2024) dataset with 939K instruction-following in- 217

teractions between the user and the assistant. 218

To further boost the experiment efficiency, we 219

first collect noun phrases parsed by SpaCy4, filter- 220

ing stop words or punctuations. Then we collect 221

5% of the rest spans (no overlapping) that are du- 222

plicative to produce NTE instances. On C4, we 223

keep the first 100M NTE instances transformed 224

from the raw texts. On TuluV3, we transform all 225

post-training interactions into the NTE format, re- 226

sulting in 2.6M instances. We also sample 5% 227

4https://spacy.io/
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spans not existing in their previous contexts, whose228

NTE labels are annotated by all O as negative cases.229

With the 102.6M instances, we continually230

pre-train a roberta-large model (Liu et al.,231

2019) as the BIO tagger for NTE, optimized by232

AdamW (Loshchilov and Hutter, 2019) with learn-233

ing rate initialized to 10−5. The batch size is set to234

64, taking about 1.6M steps for the optimization.235

3.3 Statistics236

Besides the huge scale, we analyze other key statis-237

tics of our massive NTE dataset to investigate its238

efficiency in learning various IE targets. Our inves-239

tigation is respectively done on the two pre-training240

and post-training data splits.241

How “extractive” are the data? An obvious242

concern on the NTE dataset is whether the auto-243

mated annotations reflect real extractive relations.244

We prompt the advanced LLM, gpt-4o (Achiam245

et al., 2023), to identify whether NTE data estab-246

lish real extractive relations. The responses on 20K247

sampled data show 93.39% pre-training data and248

96.20% post-training data contain extractive rela-249

tions, which shows the high data efficiency of the250

annotation strategy.251

How diverse are the data? The data is extremely252

diverse by containing any duplicative spans in a253

broad domain. We find around 28M unique spans254

in C4 and 0.4M in TuluV3, which is combined with255

highly diverse contexts in C4 and TuluV3. Our256

dataset covers various span lengths (maximally 40257

words) and context lengths (maximally 512 words).258

The proportion of span with ≥ 4 tokens is 4.52%,259

which seems small but still contains 4.6M spans260

because of the large scale of our dataset. Our con-261

text length is also more diverse than previous IE262

pre-training resources (Tedeschi and Navigli, 2022;263

Bogdanov et al., 2024; Peng et al., 2024) where264

data only have one or two sentences as context.265

What is the conversion rate? The conversion266

rate from a sentence to an NTE instance is 332% for267

C4 and 235% for TuluV3. This is highly efficient in268

comparison with traditional IE pre-training datasets269

relying on scarce links or expensive synthesis. The270

full C4 dataset can be transformed into 5B NTE271

instances. However, the efficiency is still relatively272

lower than NTP. Only 4.06% tokens in pre-training273

and 4.14% tokens in post-training are used for NTE274

tagger learning, which indicates the supervision275

from LLM resources can be further augmented.276

Level Example

Basic Organization

Query Which organization launched the campaign?

Instruction
Organization (Disambiguation: The organi-
zation entity must be a subject of any active
action in the context.)

Table 1: IE targets of different understanding levels.

4 Experiments 277

Different from previous evaluation procedures that 278

enumerate IE tasks (Lu et al., 2022; Paolini et al., 279

2021; Peng et al., 2024), our evaluation splits IE 280

tasks into different levels of understanding the IE 281

target. Specifically, the three levels are 1) Basic 282

IE, understanding a single label text for an entity 283

or a relation, such as named entity recognition. 2) 284

Query-based IE, understanding a sentence-level 285

query, such as machine reading comprehension 286

(MRC). 3) Instruction-following IE, understanding 287

complex extractive instructions like LLMs. 288

Examples of different understanding level are 289

enumerated in Table 1. We expect that Cuckoo 290

will be comparable to traditional IE pre-training 291

on Basic IE as most popular label texts have been 292

enumerated by LLM synthesis (Bogdanov et al., 293

2024; Peng et al., 2024). Cuckoo’s advantage 294

over traditional IE pre-training is on query-based 295

and instruction-following IE, which requires under- 296

standing more complex IE targets. 297

4.1 Benchmark and Evaluation 298

Following the high-level evaluation objective, we 299

use several traditional benchmarks for each level 300

of IE ability. Method and benchmark details are 301

included in Appendices B and C. 302

Basic IE benchmarks the understanding of sim- 303

ple labels for entity and relation. We include 4 304

named entity recognition datasets (CoNLL03 (Sang 305

and Meulder, 2003), BioNLP2004 (Collier and 306

Kim, 2004), MIT-Restaurant/Moive (Ushio and 307

Camacho-Collados, 2021)) and 2 relation extrac- 308

tion datasets (CoNLL04 (Carreras and Màrquez, 309

2004) and ADE (Gurulingappa et al., 2012)). 310

Query-based IE requires the understanding of 311

more complex sentence-level semantics of the IE 312

target. We thus include 3 machine reading compre- 313

hension datasets (SQuAD (Rajpurkar et al., 2016), 314

SQuAD-V2 (Rajpurkar et al., 2018), DROP (Dua 315

et al., 2019)). We filter out non-extractive questions 316

in DROP. 317
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Instruction-following IE is a feature of LLMs318

when they are applied for IE. Users can include319

detailed requirements for the IE target in the320

prompt, which is hard for traditional IE systems321

that only understand simple label texts. However,322

instruction-following IE currently lacks of bench-323

marks5. Based on the real role of instruction in324

IE, we apply rules and a strong LLM, GPT-4o, to325

synthesize 3 instruction-following IE by modify-326

ing traditional benchmarks. 1) Disambiguation,327

we write a definition instruction for 3 ambiguous328

types, (“Organization” in CoNLL2003, “Protein”329

in BioNLP2004, “Location” in MIT-Restaurant),330

such as “Disambiguation: The organization en-331

tity must be a subject of any active action in the332

context.”. We use GPT-4o to filter out entities333

that no longer meet the IE target, resulting in a334

new instruction-following IE benchmark. 2) Pref-335

erence, there are different ground truth answers336

in machine reading comprehension like “Bruno337

Mars”, “Mars”. However, one might prefer the338

longer or the shorter answer. Thus, we modify the339

SQuAD dataset with 3 instructions with a prefer-340

ence for “Longer answer”, “Shorter answer”, “Con-341

cise answer (Answer with no extra words)”6. This342

filtering modification is automated by functions343

with no LLM involved. 3) Miscellaneous, we write344

3 instructions to define the “Miscellaneous” entity345

type in CoNLL2003, MIT-Restaurant, and MIT-346

Movie. In practice, we clarify the existing miscel-347

laneous type for CoNLL2003 and combine 3 mi-348

nority types as miscellaneous for MIT-Restaurant349

and MIT-Movie. We calculate metrics only on mis-350

cellaneous entities to evaluate whether the model351

can understand the scope definitions.352

The evaluation continues with the model’s few-353

shot adaptability. The model will be fine-tuned on a354

few examples in the training set and then evaluated355

on the test set. For basic IE, we will have 5 shots for356

each entity/relation category. For query-based IE,357

we will have 32 training examples. For instruction-358

following IE, the definition of few-shot follows the359

original dataset. We include more details for the360

construction of instruction-following IE benchmark361

in Appendix C.362

We benchmark IE performance with the tradi-363

5Existing InstructIE benchmarks (Jiao et al., 2023; Gui
et al., 2024) concentrate more on using instruction for tradi-
tional IE than instruction-awareness.

6This means when “Los Angeles”, “the US” and “US” all
exist in the answer candidates, “the US” will be removed but
“Los Angeles” will be kept.

tional F1 score. For Basic IE, it refers to the Micro 364

F1 for labeled entity spans. In Query-based IE, 365

the F1 score refers to the maximal word-level F1 366

between the answer and one of the ground truths. 367

Instruction-following IE benchmarks follow the 368

metric of the original datasets. 369

4.2 Baselines and Variants 370

We incorporate baselines into our experiments to 371

validate our two main claims. 1) NTE is a paradigm 372

that can scale up the data resources for IE pre- 373

training, which learns taggers with better few-shot 374

adaptability, especially in instruction-following. 2) 375

NTE is a more efficient paradigm than NTP for IE, 376

which results in significantly stronger extractive 377

ability of NTE-based taggers than NTP-based LMs. 378

For 1), we include previous IE pre-training re- 379

sources to compare their pre-training effects with 380

our NTE-based dataset. These resources include, 381

• MultiNERD (Tedeschi and Navigli, 2022) is a 382

NER pre-training dataset based on Wikipedia 383

and Wikinews, which contains 164K instances 384

in the English split with 17 label names. The 385

annotations are from community contributors. 386

• NuNER (Bogdanov et al., 2024) is a mas- 387

sive NER pre-training dataset synthesized by 388

ChatGPT-3.5 (OpenAI, 2023) on massive raw 389

texts. NuNER has 4.38M instances with 273K 390

unique label names. 391

• MetaIE (Peng et al., 2024) is a massive IE pre- 392

training dataset synthesized by ChatGPT-3.5 and 393

4 with a broader coverage than simple NER. 394

The LLMs are prompted to enumerate possible 395

important information for entities and relations. 396

MetaIE includes 237K IE instances with 31K 397

unique label names. 398

In addition to resources using annotations for 399

label names, we also consider machine reading 400

comprehension as a pre-training task for IE, as it 401

can be viewed as query-based IE. We thus include, 402

• MRQA (Fisch et al., 2019) is a collection of ma- 403

chine reading comprehension data that extracts 404

an answer from a passage for a question in each 405

instance. We exclude SQuAD as it is used for 406

benchmarking, which remains 488K instances. 407

For 2), we use the same resources for Cuckoo 408

(C4+TuluV3) to continually pre-train an OPT 409

model (Zhang et al., 2022) in the same parame- 410

ter scale (∼ 300M) as the base model RoBERTa 411

of Cuckoo. We select OPT because its NTP 412

pre-training resource has covered the one for 413

RoBERTa (Liu et al., 2019; Zhang et al., 2022), 414
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Method Named Entity Recognition Relation Extraction

CoNLL2003 BioNLP2004 MIT-Restaurant MIT-Movie Avg. CoNLL2004 ADE Avg.

ze
ro Cuckoo 35.38 23.62 8.11 9.06 19.04 48.95 34.67 41.81

Rainbow Cuckoo 38.56 22.07 35.38 29.53 31.39 53.81 62.01 57.91

fe
w

-s
ho

t

OPT-C4-TuluV3 50.24 39.76 58.91 56.33 50.56 47.14 45.66 46.40
RoBERTa 33.75 32.91 62.15 58.32 46.80 34.16 2.15 18.15
MRQA 72.45 55.93 68.68 66.26 65.83 66.23 67.44 66.84
Cuckoo 73.60 57.00 67.63 67.12 66.34 69.57 71.70 70.63

Only Pre-train 72.46 55.87 66.87 67.23 65.61 68.14 69.39 68.77
Only Post-train 72.80 56.10 66.02 67.10 65.51 68.66 69.75 69.21

MultiNERD† 66.78 54.62 64.16 66.30 60.59 57.52 45.10 51.31
NuNER† 74.15 56.36 68.57 64.88 65.99 65.12 63.71 64.42
MetaIE† 71.33 55.63 70.08 65.23 65.57 64.81 64.40 64.61
Rainbow Cuckoo † 79.94 58.39 70.30 67.00 68.91 70.47 76.05 73.26

Table 2: Performance comparison on Basic IE Tasks. †: In-domain Transfer. (Transfer learning on the same task
and format as the pre-training stage.)

which eliminates the attribution of Cuckoo’s advan-415

tage to a better base model (RoBERTa).416

For the ablation study, we include the variants417

of Cuckoo, which only use the LLM’s pre-training418

(C4) or post-training (TuluV3) resource for IE pre-419

training. These two variants aim to demonstrate the420

contributions of both stages to justify the imitation421

of the LLM’s training pipeline.422

Rainbow Cuckoo Finally, we incorporate a423

strong variant combining more post-training re-424

sources, Rainbow Cuckoo. Rainbow Cuckoo ex-425

tends the post-training resource from only TuluV3426

to merging multiple datasets including samples427

from MultiNERD, NuNER, MetaIE, and MRQA,428

which aims to exploit all possible resources to fur-429

ther boost the IE pre-training.430

Zero-shot Performance is also evaluated on431

our Cuckoo and its variant Rainbow Cuckoo to432

demonstrate the direct performance after the IE433

pre-training on LLM’s resources.434

Comparison with LLMs is discussed in Ap-435

pendix A to expand the comparison scope.436

4.3 Basic IE437

The performance on basic IE tasks is presented in438

Table 2. Our two main claims are supported by the439

experiment results,440

1) Cuckoo outperforms all baselines using dif-441

ferent IE pre-training resources on both entity and442

relation extraction. Among the baselines, the best-443

performing ones are NuNER for entity and MRQA444

for relation, which they specialize in. Cuckoo445

overwhelms the baselines with a much larger pre-446

training data scale. As Cuckoo with only the raw447

texts from C4 (pre-training) has already achieved448

Method SQuAD SQuAD-V2 DROP Avg.

ze
ro Cuckoo 48.82 49.16 38.41 45.46

Rainbow Cuckoo 82.79 57.67 61.62 67.36
fe

w
-s

ho
t

OPT-C4-TuluV3 39.80 53.81 31.00 41.54
RoBERTa 31.86 48.55 9.16 29.86
MultiNERD 42.85 50.99 30.12 41.32
NuNER 61.60 52.67 37.37 50.55
MetaIE 74.59 62.54 30.73 55.95
Cuckoo 77.47 64.06 54.25 65.26

Only Pre-train 75.64 63.36 52.81 63.94
Only Post-train 77.05 62.39 54.80 64.75

MRQA† 80.07 66.22 54.46 66.92
Rainbow Cuckoo † 86.57 69.41 64.64 73.54

Table 3: Performance comparison on Query-based IE
Tasks. †: In-domain Transfer.

comparable or better performance than baselines, 449

the conversion to NTE shows strong data efficiency 450

on raw texts. 451

2) The NTE pre-trained RoBERTa (Cuckoo) out- 452

performs the NTP pre-trained OPT, which validates 453

our intuition that language models can be more pa- 454

rameter efficient by focusing on extraction. 455

Besides the validation of our main claims, we 456

also have more discoveries from the performance 457

of variants. The first observation is that both pre- 458

training and post-training datasets contribute to 459

adaptability. In basic IE tasks, the massive raw 460

texts in C4 contribute more than the curated post- 461

training data in TuluV3, which indicates the basic 462

IE tasks are simple enough to be well transferred 463

by learning without annotations. The Rainbow 464

Cuckoo shows Cuckoo can be further enhanced 465

with merging more post-training resources, demon- 466

strating significantly strong IE ability. 467

4.4 Query-based IE 468

We present the performance of models on query- 469

based IE (MRC) in Table 3. Among out-of-domain 470
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Method Disamb. Prefer. Misc.
Base Task NER MRC NER

ze
ro Cuckoo 13.88 35.56 2.93

Rainbow Cuckoo 21.93 60.81 14.62

fe
w

-s
ho

t

OPT-C4-TuluV3 28.56 53.68 37.19
RoBERTa 12.29 6.04 9.71
MultiNERD 31.71† 30.84 44.68†

NuNER 31.40† 51.01 44.32†

MetaIE 29.77† 56.12 47.35†

Cuckoo 34.97 62.53 49.17
Only Pre-train 32.21 59.64 46.05
Only Post-train 34.28 64.37 47.28

MRQA 29.33 66.83† 48.67
Rainbow Cuckoo 37.75† 70.95† 51.86†

Table 4: Performance comparison on Instruction-
following IE tasks for disambiguation (Disamb.), prefer-
ence (Prefer.), and miscellaneous (Misc.). †: In-domain
Transfer.

models, Cuckoo significantly outperforms other471

models pre-trained on basic IE tasks, rivaling the472

model pre-trained on the in-domain MRQA dataset.473

The result exhibits the benefit of NTE to pre-train474

in a wild and diverse raw text distribution, con-475

trasting the fixed templates in basic IE pre-training.476

Post-training resources show a more significant477

contribution to query-based than basic IE tasks as478

queries in MRC require higher instruction aware-479

ness. Merging MRQA into the pre-training, Rain-480

bow Cuckoo shows a significant advantage over481

using only MRQA via unifying all kinds of pre-482

training resources by the NTE paradigm.483

4.5 Instruction-following IE484

Table 4 demonstrates the instruction-following abil-485

ity of different IE models. The zero-shot perfor-486

mance implies that the task requires a higher-level487

understanding of IE instructions. Cuckoo once488

again significantly outperforms other models ex-489

cept for an in-domain case (MRQA on MRC-based490

preference instruction testing) and widens the gap,491

showing its strong adaption to new instructions492

with the following ability learned from LLM pre-493

training resources. Post-training data contribute the494

most to the ability to follow instructions, playing495

the same role as for LLMs. Occasionally, learn-496

ing only post-training data outperforms the full497

Cuckoo. Rainbow Cuckoo, with a large amount of498

post-training supervision, once again significantly499

boosts the performance.500

Cuckoo reacts to instruction. We provide a501

deeper investigation of Cuckoo’s reactions to in-502

Method Long Short AnsSim ↓ DualEM

Cuckoo 57.84 51.39 40.48 11.67
MRQA 62.61 61.05 48.17 12.32
Rainbow Cuckoo 67.20 63.67 44.58 18.95

Table 5: Detailed analysis on the instruction-following
ability of IE models with preference as an example.

structions. Specifically, we test the preference 503

instructions for the longest and shortest answers, 504

which will lead to different answers. We fine-tune 505

pre-trained IE models with few shots for both the 506

longest and the shortest answers and then test their 507

instruction-following ability. For evaluation, we 508

use answer similarity (AnsSim) between outputs 509

from two instructions, where higher similarity indi- 510

cates less instruction-awareness. We also use dual 511

exact matching (DualEM) as a strict metric to eval- 512

uate whether the model correctly reacts to both 513

instructions. AnsSim calculates the word-level 514

F1 score between answers from two instructions 515

and DualEM refers to the model accuracy to pro- 516

duce both answers correctly. Table 5 shows that 517

the MRQA model is no longer significantly better 518

than Cuckoo on DualEM. AnsSim also indicates 519

MRQA model to have less instruction-awareness, 520

restraining its strong MRC ability to be applied 521

with specific instructions. In comparison, the Rain- 522

bow Cuckoo shows a much higher advantage over 523

the MRQA model according to the DualEM metric, 524

demonstrating a better efficiency in applying the 525

MRC ability to the instruction-following scenario. 526

5 Analyses 527

5.1 Evolution with LLMs 528

A feature of our Cuckoo is its evolution with 529

LLM’s training resources, especially for post- 530

training data which are progressively curated by 531

researchers (Groeneveld et al., 2024; Xu et al., 532

2024a; Lambert et al., 2024). In Figure 3, we plot 533

the performance of Cuckoo post-trained by differ- 534

ent versions of Tulu post-training datasets from 535

V1 to V3 (Wang et al., 2023b; Ivison et al., 2023; 536

Lambert et al., 2024) after pre-training on C4. All 537

performances are normalized by a linear mapping 538

from [µ−2σ, µ+2σ]7 to [0, 10] for demonstration. 539

The result illustrates a evolution between Cuckoo 540

and the LLMs. With each evolution in post-training 541

data collection for LLMs, Cuckoo’s performance 542

7µ, σ are based on the performance of 4 Cuckoo models
(before post-training, after post-training with TuluV1 to V3)
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Figure 3: The evolution of Cuckoo with LLM’s post-
training resources. Domain [µ−2σ, µ+2σ] is annotated
under each evaluation dimension.
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Figure 4: In-context tagging ability emerges in Cuckoo
but not in IE models pre-trained by other resources.

can also be expanded in most dimensions. In the543

future, Cuckoo can be further improved together544

with the quality of LLM’s training data with the545

free-riding feature of our NTE paradigm.546

5.2 Emergence of In-context Tagging547

In-context learning is an emerging skill in LLMs548

that adapts LLMs to new tasks with examples in the549

given context. We investigate whether in-context550

learning appears in Cuckoo, which uses a similar551

learning paradigm and resource as LLMs. We ap-552

pend 5 examples for CoNLL2003 and 1 example553

for SQuAD (due to context window limitation) to554

the context and test the in-context tagging perfor-555

mance of different models. In Figure 4, we find556

only Cuckoo able to improve (at least retain) its557

IE ability while other models (even pre-trained on558

similar tasks) show a significant drop. Thus, NTE559

on LLM’s resources is verified to enable in-context560

tagging for Cuckoo. As suggested in Chan et al.561

(2022), the occasional burstiness in raw texts con-562

tributes to the emergence of in-context tagging in563

Cuckoo. While NuNER and MRQA are well for-564

malized, they fail to learn models with in-context565

learning ability because of the lack of burstiness.566

64K 128K 256K 512K 1024K 2048K 4096K
0

2

4

6

B
as

ic
&

Q
ue

ry
-b

as
ed

 IE
 (

F1
)

Data scaling-up from 0 to 4.1M Instances

Basic IE
Query-based IE
Instruction-following IE

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

1

2

3

B
as

ic
&

Q
ue

ry
-b

as
ed

 IE
 (

F1
)

Data scaling-up from 0 to 100M Instances

0

1

2

3

In
st

ru
ct

io
n-

fo
llo

w
in

g 
IE

 (
F1

)

0

1

2

3

In
st

ru
ct

io
n-

fo
llo

w
in

g 
IE

 (
F1

)

Figure 5: The data scaling trend of Cuckoo on the early
4.1M C4 instances and the massive 100M instances.

5.3 Data Scaling Trend 567

Data is an important factor in the scaling law (Ka- 568

plan et al., 2020). Thus, we test the transfer learn- 569

ing ability of checkpoints pre-trained with different 570

data scales to downstream tasks. We focus on the 571

scaling law of raw texts in C4 as they are cheaper 572

to scale up and we have discussed the evolution 573

of Cuckoo with post-training data collection. Our 574

investigation covers both early pre-training stages 575

to 4.1M instances and the scaling-up to 100M. 576

In the two subfigures of Figure 5, we plot the 577

data scaling trend in pre-training Cuckoo. The up- 578

per figure shows a clear performance rising trend 579

together with the increasing data amount, indicat- 580

ing all dimensions of IE ability are scaled-up in the 581

early pre-training stage. In the scaling-up to 100M 582

stage, the macroscopic trend retains its steady in- 583

crease but turbulence emerges. Some intermediate 584

checkpoints like at 50% ∼ 60% data scale show a 585

competitive performance with the fully pre-trained 586

model. This implicates that the capacity of the 587

small RoBERTa might meet its bound, and further 588

improvement requires more parameters. 589

6 Conclusion and Future Work 590

This paper proposes a large-scale IE pre-training 591

paradigm with the LLM’s pre-training and post- 592

training resources. The massive nutrition incubates 593

a versatile Cuckoo model, which outperforms the 594

pre-training with previous IE resources. Cuckoo 595

can evolve with the data preparation for LLMs. 596

Further work on Cuckoo will focus on variants in 597

learning paradigms, datasets, and backbones. 598

8



Limitations599

While Cuckoo validates the strength of NTE to take600

a free ride with LLM resources, our scope can be601

extended to several topics out of the main claims.602

Label Embedding Some IE paradigms (e.g.,603

original NuNER) learns label embeddings to ef-604

ficiently label the extracted spans. As Cuckoo imi-605

tates NTP to perform NTE, its IE process requires606

enumerating the label names similar as the gener-607

ative IE using LLMs. Matching label embedding608

has its efficiency advantage while generative IE609

allows the label texts to interact with the context,610

resulting in potentially better performance. Cuckoo611

follows the generative IE paradigm to pursue better612

performance based on the established success of613

LLMs. However, future efforted can be devoted614

into a label embedding version of Cuckoo, which615

takes the context as the label text to boost the IE616

efficiency.617

Data Source The C4 corpus for raw text fea-618

tures broad coverage. However, recent progress in619

LLMs shows that specific sources of pre-training620

data (e.g., textbooks) benefit certain skills of LLMs,621

such as math. This paper only discusses C4 to avoid622

the IE performance improvement attributed to a623

specific data source. Future works can extend our624

scope to compare the effect of all kinds of resources625

in pre-training, which might find certain resources626

are superior in IE pre-training using NTE.627

Backbone Variants The current scopes is de-628

signed to justify the benefit of NTE in gathering629

massive IE pre-training data. Thus, the compari-630

son is biased to data quality rather than backbone631

models. Further exploration in backbone models632

include the scaling law in model size, multilingual633

backbone, and model architectures.634
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Figure 6: The performance comparison between Cuckoo
and LLMs on few-shot IE performance.

A Cuckoo v.s. LLMs1011

We extend the comparison to Cuckoo versus1012

LLMs. We select LLaMA-3-8B-TuluV3 and1013

GPT-4o to represent the fine-tunable open-source1014

LLMs and API-based close-source LLMs. For1015

LLaMA-3-8B-TuluV3, we fine-tune the LLM with1016

the same templated data as our Cuckoo. For both1017

LLMs, we evaluate their in-context learning IE1018

ability based on the few shots.1019

We present the experiment result in Figure 6,1020

which demonstrate that Cuckoo can outperform1021

even fine-tuned 8B LLMs. This implicates the su-1022

perior learning efficiency of NTE over NTP on IE1023

tasks. The ICL performance of LLM significantly1024

lags behind the fine-tuned one, restraining the per-1025

formance of close-source LLMs. Finally, Rainbow1026

Cuckoo validates itself again as the strongest few-1027

shot IE learner even when LLMs are considered.1028

Efficiency The time efficiency of Cuckoo is sig-1029

nificantly higher than LLMs thanks to the spe-1030

cialized learning paradigm for IE. Taking NER1031

as an example, Cuckoo is around 20× faster1032

than LLaMA-3-8B-TuluV3. When the LLM is us-1033

ing ICL, the efficiency advantage becomes more1034

than 50×, demonstrating the superior efficiency of1035

Cuckoo.1036

B Templates and Hyperparameters1037

Task Templates are included in Table 6, which1038

are used to fine-tune NTE and NTP models like1039

Cuckoo and LLaMA on IE tasks.1040

Hyperparameter All models are fully fine-1041

tuned except for LLaMA-3-8B-TuluV3, which ex-1042

hibits a poor performance without LoRA (Hu1043

et al., 2022). We use a 128-dimension LoRA1044

for LLaMA-3-8B-TuluV3. All fine-tuning uses1045

AdamW (Loshchilov and Hutter, 2019) as the opti-1046

mizer, learning rate initialized as 1× 10−5 to fully1047

Target Template

Entity User: [Context] Question: What is the
[Label] mentioned? Assistant: Answer:
The [Label] is

Relation
(Kill)

User: [Context] Question: Who does [En-
tity] kill? Assistant: Answer: [Entity]
kills

Relation
(Live)

User: [Context] Question: Where does
[Entity] live in? Assistant: Answer: [En-
tity] lives in

Relation
(Work)

User: [Context] Question: Who does [En-
tity] work for? Assistant: Answer: [En-
tity] works for

Relation
(Located)

User: [Context] Question: Where is [En-
tity] located in? Assistant: Answer: [En-
tity] is located in

Relation
(Based)

User: [Context] Question: Where is [En-
tity] based in? Assistant: Answer: [En-
tity] is based in

Relation
(Adverse)

User: [Context] Question: What is the
adverse effect of [Entity]? Assistant: An-
swer: The adverse effect of [Entity] is

Query User: [Context] Question: [Question] As-
sistant: Answer:

Instruction
(Entity)

User: [Context] Question: What is the
[Label] mentioned? ([Instruction]) Assis-
tant: Answer: The [Label] is

Instruction
(Query)

User: [Context] Question: [Question]
([Instruction]) Assistant: Answer:

Table 6: The templates used in our experiments for
different tasks.

fine-tune RoBERTa and OPT, and 2× 10−4 to fine- 1048

tune the LoRA. The batch size is set to 64 for all 1049

fine-tuning. 1050

C Benchmark Details 1051

All results in the main experiments are an average 1052

of 3 runs on different subsets of a few shots. MRC 1053

results are evaluated on the validation split as in 1054

previous works. Instruction-following IE only fo- 1055

cuses on the modified entity types like organization 1056

and miscellaneous. 1057

Relation Extraction gives the ground-truth enti- 1058

ties to extract related entities. We don’t run end-to- 1059

end experiments to avoid mixing entity and relation 1060

extraction abilities. 1061

Duplicates When an entity is extracted as mul- 1062

tiple types in NER, we keep all of them because 1063

modern generative IE models (e.g., LLM) allow 1064

such features to fit into a broader usage. For in- 1065

stance, an LLM would say “Kobe Bryant” to be 1066

both a “person” and a “basketball player”. For 1067

MRC, when multiple answers are extracted, we 1068

will select the answer that appears the most. 1069
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Task Dataset Instruction

Disamb. CoNLL2003 The organization entity must be
a subject of any active action in
the context.

BioBLP2004 The provided context must con-
tain some descriptive informa-
tion about the protein.

Restaurant The rating should describe a
food or drink mentioned in the
sentence.

Prefer. SQuAD Give the longest answer
Give the shortest answer
Give a concise answer

Misc. CoNLL2003 Miscellaneous includes events,
nationalities and products but
not person, location or organi-
zation.

Restaurant Miscellaneous includes amenity,
hours and price but not rating,
dish, or location.

Movie Miscellaneous includes actor,
soundtrack and quote but not di-
rector, opinion, or plot.

Table 7: The specific instructions used for instruction-
following IE.

SQuAD-V2 is a special MRC dataset that con-1070

tains unanswerable questions. We follow the initial1071

evaluation to assign 1.0 F1 score to abstain for1072

these questions and 0.0 F1 score for any answer.1073

Adaptive training for SQuAD-V2 contains extra1074

32-shot unanswerable questions.1075

Disambiguation The 3 instructions used for dis-1076

ambiguation are presented in Table 7. We use the1077

follow template to prompt GPT-4o for filtering.1078

[Instruction] Does “[Entity]” in “[Context]”1079

satisfy the definition above? Answer “yes” or “no”1080

only.1081

We manually check the filtering quality of 501082

random cases for each instruction, and find a high1083

filtering quality of 134/150 = 89.33%.1084

Miscellaneous For CoNLL2003, as there is al-1085

ready a miscellaneous type, we manually write1086

an instruction to define the scope of miscella-1087

neous. For MIT-Restaurant dataset, we combine1088

“amenity”, “hours”, and “price” entity types. For1089

MIT-Movie dataset, we combine “actor”, “sound-1090

track”, and “quote” entity types. Then we simply1091

collect those types of entities to build the miscel-1092

laneous type for the benchmark. In the instruc-1093

tion, we include negations of miscellaneous as1094

distractors to increase the difficulty in instruction-1095

following.1096

The specific instructions used for instruction-1097

following IE are listed in Table 7.1098
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Figure 7: The scaling-up performance on adaptive su-
pervision from CoNLL2003 of pre-trained IE models.

Rephrase New Template/Label

Template User: [Context] Instruction: Extract [Label]
from the text above. Assistant: [Label]:

User: List all [Label] entities: [Context] Assis-
tant: Here are [Label] entities: 1.

Label (CoNLL2003) Person → Name

(BioBLP2004) DNA → Deoxyribonucleic acid

(Restaurant) Rating → Recommendation

(Movie) Genre → Category

Table 8: The template/label variants used for robustness
testing.

D Adaptive Supervision Scaling 1099

In the application for IE, it’s common to scale up 1100

the adaptive supervision (few-shot instances) to 1101

strengthen the model’s IE ability. We plot such an 1102

example for CoNLL2003 in Figure 7 for transfer- 1103

ring learning with different scales of supervision, 1104

from 5-shot to 320-shot. For comparison, we in- 1105

clude the strongest NER baseline, NuNER, from 1106

the main experiment. 1107

The results demonstrate that Cuckoo can scale 1108

up similarly as NuNER, the in-domain transfer of 1109

NuNER shows its advantage under very weak su- 1110

pervision but is surpassed by Cuckoo when the 1111

adaptive supervision is enough for domain under- 1112

standing. Finally, Rainbow Cuckoo consistently 1113

show advantages under different adaptive supervi- 1114

sion scales. 1115

E Robustness to Verbalization 1116

As Cuckoo relies on prompts to perform different 1117

tasks. Its robustness to different verbalization of 1118

tasks and labels needs more emphasis. We select 1119

NER as an example and rephrase templates and la- 1120

bels in our experiments, which are listed in Table 8. 1121

We rerun the experiments with these modifications 1122

and find the NER performance is not significantly 1123

(defined as p < 0.05 in significance testing) differ- 1124

ent from the initial results. This indicates Cuckoo 1125

to be robustness to different verbalization styles. 1126
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