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ABSTRACT

Optical scattering causes light rays to deviate from their trajectory, posing chal-
lenges for imaging through scattering media such as fog and biological tissues.
Although diffusion models have been extensively studied for various inverse
problems in recent years, its extension to video recovery, especially through
highly scattering media, has been an open problem due to the lack of a closed-
form forward model and the difficulty of exploiting the spatio-temporal corre-
lation. To address this, here we present a novel inverse scattering solver us-
ing a video diffusion model. In particular, by deriving a closed-form forward
model from the shower-curtain effect in a dynamic scattering medium, we de-
velop a video diffusion posterior sampling scheme using a diffusion model with
temporal attention that maximally exploits the statistical correlation between a
series of frames and a series of scattered signals. Unlike previous end-to-end
approaches only relied on spatial correlation between a scene and a scattered
signal at specific settings, the adaptability of the proposed method is highly
extendable to various types of scenes, various thicknesses of scattering me-
dia, and varying distances between a target scene and a medium. In partic-
ular, the use of temporal correlation is shown to be critical to faithfully re-
trieve high-frequency components which are often missed by inverse operations
only in spatial domain. Simulation and real experimental results using various
video datasets and real optical setup verify the effectiveness of the proposed
method. To the best of our knowledge, this is the first video diffusion model
to jointly utilize the correlations in both spatial and temporal domains in solving
the inverse scattering problem. Code is available at https://github.com/
video-through-scattering2023/video-through-scattering.

1 INTRODUCTION

Optical scattering is the phenomenon where light rays deviate from their original trajectory due to
interactions with particles or irregularities in an inhomogeneous medium. This phenomenon arises in
many real-world applications such as de-hazing (Berman et al., 2016; Satat et al., 2018), underwater
imaging (Akkaynak & Treibitz, 2019), compressed sensing (Antipa et al., 2018), and fluorescent
imaging (Alterman et al., 2021).

Recently, considerable success has been realized in the field of wavefront shaping, based on the
deterministic measurement and manipulation of scattered optical waves through a static scatter-
ing medium (Mosk et al. (2012)). Inspired by the earlier works on deterministic approaches, sev-
eral computational strategies have been proposed to use the statistical correlation (i.e. ensemble-
averaged property) in scattered optical waves (Feng et al., 1988). For instance, the short-range
correlation of scattered waves (i.e. memory effect) results in the translation invariance for the input
and output planes positioned far from scattering media (Freund et al., 1988). Therefore, the spatial
auto-correlation function of the object becomes identical to that of the scattered pattern within the
memory effect range, resulting in the formulation of the inverse scattering problem into a phase-
retrieval problem (Bertolotti et al., 2012; Katz et al., 2014). Furthermore, transmission matrix ap-
proach (Popoff et al., 2011), guidestar-assisted imaging (Xu et al., 2011; Horstmeyer et al., 2015),
guidestar-free imaging (Yeminy & Katz, 2021; Feng et al., 2023), dynamic scatter imaging correl-
ography (Edrei & Scarcelli, 2016), and end-to-end deep learning approaches (Li et al., 2019; Shi
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Figure 1: Solving the video inverse problem through a dynamic scattering medium. (a) Illustration of
light propagation through a scattering medium, (b) designed optical setup, and (c) our reconstruction
results (bottom) from the measurements (top) are shown.

et al., 2022) have also shown promising results, all of which address the imaging through scattering
problem.

While successful in many cases, most of the previous approaches cannot faithfully recover high-
frequency information beyond the range of memory effect (i.e. their reconstruction capability is
limited to simple patterns, such as a single digit and letter) and also lack of adaptability to various
types of scenes, various thicknesses of scattering media, and varying distances between a target
scene and a medium. Also, considering the time scale of temporal decorrelation of scattering media
in nature (e.g. shorter than 1 ms for mm-thick mouse skin slab), such approaches have limited
capability in real-world applications (Jang et al., 2015). In this work, we aim to address those
challenges using spatio-temporal diffusion models.

Specifically, diffusion models (Ho et al., 2020; Song et al., 2020; Nichol & Dhariwal, 2021) learn
the prior distribution of the data x by learning the score function, which is the gradient to the log
density ∇xlog p(x). Thanks to their superior generative capabilities and ease of integrating into
iterative reconstruction, diffusion models have recently emerged as a trending class of inverse prob-
lem solvers (Choi et al., 2021; Song et al., 2020; Chung et al., 2022c;b; 2023; Song et al., 2022).
While some of these prior methods require complex computations (e.g. singular value decomposi-
tion, transpose, pseudo-inverse of the forward operator), the recent proposal of diffusion posterior
sampling (DPS) (Chung et al., 2022a) presents a simple yet general framework for solving inverse
problems without the complex computations.

To incorporate the DPS into video reconstruction through a scattering medium, the forward oper-
ator should be derived into a closed form. In general, the physics of imaging through a scattering
medium is almost impossible to express in closed form due to its randomness, which produces a
random interference effect known as a speckle pattern. Unlike previous approaches, we therefore
construct an optical setup to directly image the output surface of a scattering medium that allows us
to formulate a scattering process as a sequence of wave propagator and convolution operation with a
Gaussian kernel. With this form, we can parameterize the object-to-medium distance and the thick-
ness of a medium as a propagator distance and a kernel width. Then, we develop a video diffusion
model architecture that uses the temporal attention mechanism to exploit the temporal correlations
of time-sequential frames. With the combined constraints of the data prior and the forward model
in a spatio-temporal domain, we can adaptively deal with inverse scattering problems in different
scene types and different imaging configurations with a single trained model.
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Through extensive numerical and real experiments on various video datasets, we establish that our
approach exhibits superior reconstruction quality compared to previous methods. In particular, we
demonstrate that the approximation error of the 2D diffusion-based prior inverse problem solver can
easily lead to temporally incoherent solutions, whereas the proposed method effectively mitigates
this issue. Notably, our approach is the first to tackle the reconstruction of videos through a dynamic
scattering medium.

2 RELATED WORKS

Imaging Through Scatter. In many imaging scenarios, recent advances demonstrate imaging
through scattering based on their working thickness and scattering strength. As thick and weak
scattering exponentially decays the magnitude of the ballistic light by Beer-Lambert Law, the real-
world applications such as de-hazing (Berman et al., 2016; Satat et al., 2018) and underwater imag-
ing (Akkaynak & Treibitz, 2019) reconstruct attenuation of ballistic light according to depth, color,
or gamma information. As strong scattering disturbs light propagation in a random fashion result-
ing in a completely distorted input-output relationship, it has long been considered impossible to
acquire well-resolved images through a scattering medium. Recently, considerable success has been
realized in the field of wavefront shaping (Mosk et al., 2012; Katz et al., 2014), transmission matrix
approach (Popoff et al., 2011), and guidestar-assisted imaging (Xu et al., 2011; Horstmeyer et al.,
2015) through thick and strong scattering. In thin and strong scattering, the scattered waves result in
the translation invariance(i.e. memory effect). Thus, guidestar-free imaging (Yeminy & Katz, 2021;
Feng et al., 2023), dynamic scatter imaging correlography (Edrei & Scarcelli, 2016), and end-to-end
deep learning approaches (Li et al., 2019; Shi et al., 2022) based on the imaging through scattering
problem boil down to the traditional phase retrieval problem in far-field configuration.

Notably, there have been a few attempts to take account of imaging configurations and the effect
of finite thickness of scattering media based on thorough considerations on scattering models and
the range of correlation effects including non far-field configuration and thicker scattering medium
using a single scattering model (Bar et al., 2021) and local support to enhance the effect of local
correlation (Alterman et al., 2021).

Unlike previous approaches, our model is the first to combine a wave propagation model and a
convolution with a blur kernel in the context of seeing through dynamic scattering media. With
these modifications, one may deal with the problem of an object positioned at an arbitrary distance
from the scattering medium and the medium’s thickness. There is potential for its application in
situations where rapid speckle decorrelation occurs due to blood flow and biological activities in
scattering media within living tissues.

Video Diffusion Models. Diffusion models (Ho et al., 2020) attempt to model the data distribution
pdata(x) by the Markovian forward conditional densities

p(xt|xt−1) = N (xt|
√

βtxt−1, (1− βt)I), p(xt|x0) = N (xt|
√
ᾱtx0, (1− ᾱt)I). (1)

Here, the noise schedule βt is an increasing sequence of t, with ᾱt :=
∏t

i=1 αt, αt := 1 − βt.
Training of diffusion models amounts to training a multi-noise level residual denoiser:

min
θ

Ext∼q(xt|x0),x0∼pdata(x0),ϵ∼N (0,I)

[
∥ϵ(t)θ (xt)− ϵ∥22

]
. (2)

Video Diffusion Models (VDM) (Ho et al., 2022b) extend the 2D diffusion models to video data
X = [x1, . . . ,xf ] where f denotes the number of the temporal frames. The main change comes
from the training step Eq. (2), which now reads

min
θ

EXt∼q(Xt|X0),X0∼pdata(X0),E∼N (0,I)

[
∥E(t)

θ (Xt)− E∥22
]
, (3)

where E(t)
θ (Xt) denotes the 3D diffusion model by introducing a particular type of 3D U-Net that

contains temporal attention layers. Specifically, 3D U-Net (Ho et al., 2022b) replaces 2D convolu-
tion layers with 3D convolution layers and additional temporal attention layers with relative posi-
tional encoding. Recent high-fidelity video generation diffusion models (Ho et al., 2022a; Singer
et al., 2022) also match the score function to the same neural network architecture due to its high
generative quality of temporally coherent data (i.e., video data).
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Inverse Problem Solvers Using Diffusion Models. In many physical situations, we encounter a
scenario where we have measurements y derived from the original signal x:

y = A(x) + n, n ∈ Rn, x ∈ Rd, (4)

where A(·) represents the general forward measurement process, and n represents the measurement
noise. The inverse problems are in general ill-posed problems, as the mapping from y to x exhibits
a one-to-many relationship and it is not straightforward to fully recover the original signal x from
the measurements y.

In diffusion-based inversion approaches, one line of works (Ho et al., 2022a; Saharia et al., 2022) at-
tempt to directly learn the conditional distribution p(x|y) by learning the conditional score function
∇x log p(x|y). However, these methods require retraining the conditional score function whenever
the conditions or physical settings change. Recent advances in conditional diffusion models (Kad-
khodaie & Simoncelli, 2021; Song et al., 2020; Choi et al., 2021; Chung et al., 2022c;b) address this
problem by incorporating projection-based measurement constraints while utilizing the uncondi-
tional score function ∇xt

log p(xt). However, the projection-based approach is not straightforward
and fails when the measurement process A is nonlinear or noisy (Chung et al., 2022a).

On the other hand, diffusion Posterior Sampling (DPS) (Chung et al., 2022a) is so general that it
can explore noisy or nonlinear image inverse problems within conditional diffusion models that use
the unconditional score function ∇xt

log p(xt). Specifically, applying Bayes’ rule, the conditional
score function ∇xt

log p(xt|y) unfolds as follows:

∇xt
log p(xt|y) = ∇xt

log p(xt) +∇xt
log p(y|xt). (5)

where the first part is the unconditional score function. For the latter part, which is intractable to
compute, DPS derives the approximated gradient of the log-likelihood using the posterior mean via
Tweedie’s formula:

∇xt log p(y|xt) ≃ ∇xt∥y −A(E[x0|xt])∥22, E[x0|xt] =
1√
ᾱt

(
xt −

√
1− ᾱtϵ

(t)
θ (xt)

)
, (6)

As (6) can be easily implemented for any degradation operator A using automatic differentiation,
we can easily incorporate DPS for video diffusion-based recovery through a scattering medium as
long as the forward operator A is differentiable.

3 SEE VIDEO THROUGH OPTICAL DIFFUSERS

3.1 CLOSED-FORM FORWARD OPERATOR FORMULATION

To achieve a closed-form description of the forward operation A for posterior sampling, we create
an optical setup. This setup images the output surface of a dynamic scattering medium, minimizing
perturbation from scattering. In this section, we detail how direct imaging of a scattering medium’s
output surface results in a closed-form forward model.

Existing studies about the memory effect from first principles (Feng et al., 1988) have modeled
scattering as an infinitesimally thin phase mask. This assumption breaks down in the real world,
limiting the field of view in the memory effect scheme.

We modeled the scattering medium as a dynamic thin scatter which does not have to be infinitesi-
mally thin. If the scattering medium is not infinitesimally thin, the memory effect range is limited
within θMmax as shown in Fig. 2 (bottom). Due to the memory effect range being limited, the beam
projected to range θ > θMmax results in random scattering fields. If the scattering property of the
medium changes during the measurement duration (e.g. dynamic scatter), the effect of the random
scattering field washed out as shown in Fig. 2, and the bell-shaped (Gaussian) average amplitude
profile remains (Judkewitz et al., 2015). It summarizes the sequence of physical phenomena to
arrive at the shower curtain effect on dynamic scatter.

In our imaging scheme, the wave propagation with distance z = d1 of the given image is described

as xz=d1
=

∣∣∣F−1
[
F [x]e−id1

√
k2−k2

x−k2
y

]∣∣∣2 using the angular spectrum method (Goodman, 2005).
After wave propagation with distance d1, as described above, the propagated image xz=d1 is blurred
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Figure 2: (Top) Forward propagation z0 = d1 of object light transmit through scattering medium
and shower curtain effect appears when d2 goes to 0. (bottom) Due to the memory effect, identical
speckle summation in memory effect range for dynamic scattering medium results in Gaussian blur.

with a spatial kernel following the Gaussian profile. Therefore, the forward operator A of the optical
setup focusing on the surface (i.e. d2 = 0) of the dynamic scattering medium can be described

as A(x) =
∣∣∣F−1

[
F [x]e−id1

√
k2−k2

x−k2
y

]∣∣∣2 ∗ hσ , where F [·] represents 2-dimensional Fourier

transform, F−1[·] represents 2-dimensional inverse Fourier transform, and hσ denotes the spatial
Gaussian kernel with σ.

3.2 VIDEO DIFFUSION POSTERIOR SAMPLING

Given the closed-form expression of the forward operator, we aim to extend the DPS algorithm for
video data. Since the optical forward operator A is defined as a 2-dimensional forward operator, one
could use the DPS algorithm for each frame without considering the temporal correlation. However,
for video inverse problems, if 2-dimensional posterior sampling (DPS) is applied frame-by-frame,
each sampled frame can be seen as the desirable solution in image space, but it can easily lead
to temporally incoherent solutions due to the approximation error of each sampled frame. This
phenomenon can be understood from the geometric interpretation of DPS (Chung et al., 2022a).
Specifically, a single denoising step in reverse diffusion sampling corresponds to the orthogonal
projection of the data manifold, whereas the gradient step of DPS, i.e. ζi∇xt

∥y − A(x̂0)∥22, takes
a step tangent to the manifold (see Fig. 3(a)). Therefore, DPS tries to constrain the intermediate
samples in the correct noisy data manifold while approaching the intersection between the clean
manifold and the data consistency plane. Unfortunately, temporal correlation is not considered
during the DPS, so there is no guarantee that resulting frame-by-frame solutions retain the desired
temporal information.

To address this issue, we develop an extension to the video inverse problem, called Video Diffusion
Posterior Sampling (VDPS). Specifically, instead of using 2D diffusion model as in Eq. (2), we
employ 3D U-Net (Ho et al., 2022b) that contains temporal attention as a 3-D diffusion model
E(t)
θ (Xt). The 3D diffusion model is then trained by solving Eq. (3). Then, temporally coherent

sampling can be implemented by ancestral sampling, which iteratively performs

X ′
t−1 =

1
√
αt

(
Xt −

1− αt√
1− ᾱt

E(t)
θ (Xt)

)
+ β̃tE (7)

Xt−1 =X ′
t−1 − ζi∇Xt

∥Y −A(X̂0,t)∥22 (8)

where β̃t :=
1−ᾱt−1

1−ᾱt
βt and X̂0,t denotes the posterior mean from Xt by Tweedie’s formula:

X̂0,t =
1√
ᾱt

(
Xt −

√
1− ᾱtE(t)

θ (Xt)
)
, (9)
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Figure 3: Illustration of the geometry of the diffusion posterior sampling methods (a) DPS, (b)
VDPS for video inverse problems.

Note that E(t)
θ is trained using the clean data sample from p(X), so that the trained diffusion model

learns the temporal correlation between the frames, so the denoising procedure using Eq. (9) be-
comes a projection to the clean manifold with temporal correlation. Therefore, the VDPS efficiently
constraines the sampling path by supporting each individual frame to be temporally coherent (see
Fig. 3(b)).

4 EXPERIMENTS

Experimental Setup. We have selected two datasets, UCF101 (Soomro et al., 2012) and VISEM-
Tracking (Thambawita et al., 2023), to validate the performance of our method across diverse scenar-
ios, including natural and biological scenes. We compared reconstruction performance on various
physical settings, (σ, d1) = (0.5, 2.5), (1, 5), (2, 10), where σ, d1 are defined in Section 3.1.

As baselines for comparison, we use the following methods: traditional convex optimization algo-
rithm, Supervised, 2D DPS (Chung et al., 2022a), and VDPS (Ours). A traditional convex optimiza-
tion algorithm was conducted by iterative optimizing the initial field x by minimizing the following
loss ∥|ASM(x)| − y∥22 + TVloss(x), where ASM is the angular spectrum method and TVloss is
the total variation loss. The supervised method requires a paired dataset, which is not needed in our
method and 2D DPS, suggesting another important advantages of diffusion models. We trained the
supervised method by minimizing L2 loss by taking measurements with physical setting (σ, d1) =
(1, 5). For a fair comparison, every network architecture details of comparative methods and our
method are identical except for convolution kernel shape (2D or 3D) and the existence of temporal
attention layers. All comparative methods were trained in the same training implementations, in-
cluding learning rate, training steps, and other relevant parameters. We validate our method works
in real-world scattering measurements and shows the real measurements have strong correlations
with in silico measurements. The validated results can be found in Appendix A. Also, to validate
every method, the forward model was required by python implementation of closed-form forward
physics which can be found in Appendix B. Further details, such as optical setup, datasets, hyper-
parameters, and network architectures can be found in Appendix C. Additional information on the
experimental results in video format is described in Appendix D.

For a comprehensive quantitative comparison, we employ the standard video reconstruction per-
formance metrics, including Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) (Wang et al., 2004). Additionally, we utilized video-based metrics, such as Fréchet Video
Distance (FVD) (Unterthiner et al., 2019), and image-based metrics, such as LPIPS (Zhang et al.,
2018) calculated by averaging across frames, to evaluate perceptual qualities.

4.1 RESULTS

UCF101 We first test our method on UCF101 (Soomro et al., 2012) containing natural scenes.
We show the quantitative results of video reconstruction in Table 1. Also, representative results
are illustrated in Fig. 4. We first observe that the proposed method shows highly accurate spatial
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Figure 4: Results on solving video inverse problem for UCF101 with the following physical envi-
ronments (a) σ = 1, d1 = 5 and (b) σ = 2, d1 = 10.

σ = 1, d1 = 5 σ = 2, d1 = 10 σ = 0.5, d1 = 2.5

Method PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓
VDPS (ours) 26.218 0.841 0.039 227.06 22.712 0.712 0.083 332.02 30.168 0.913 0.019 164.48

VDPS w/o TA 24.121 0.760 0.078 557.90 22.631 0.697 0.087 613.62 26.205 0.820 0.060 488.62

DPS 23.044 0.725 0.081 704.17 19.806 0.563 0.159 781.39 27.734 0.864 0.029 513.51
Supervised 26.218 0.842 0.049 418.44 16.422 0.215 0.530 1514.2 14.844 0.190 0.299 1033.3

Convex optimization 9.6236 0.291 0.499 11920 10.744 0.247 0.590 2538.5 8.3335 0.343 0.4235 7879.8

Table 1: Quantitative evaluation (PSNR, SSIM, LPIPS, FVD) of solving video inverse problems on
UCF101 test dataset. Bold: best, underline: second best.

reconstruction and temporal coherence, which consistently captures the high-frequency details along
the given video measurement frames. Previous works mostly adopted supervised learning on UNet,
thus we also compared the results of supervised learning. The supervised method mostly failed
to reconstruct the high-frequency details and it led to producing blurry samples. Also, as shown
in Table 1, the supervised method shows poor performance when the physical setting changes and
the traditional convex optimization method mostly fails to reconstruct due to its high ill-posedness.
DPS (Chung et al., 2022a) reconstructs realistic samples from given video measurement frames,
however, the approximation error from each sampling trial easily leads to temporal inconsistency
as shown in FVD metrics of Table 1. As shown in Fig. 4, we see that the proposed method not
only produces temporally coherent solutions but also captures high-frequency details that were not
captured from other comparative methods. Additionally, we observe that the proposed method is
capable of generalization on various different video datasets. Note that we used the same score
function which is trained on UCF101. As shown in Fig. 5, our method perfectly reconstructs high-
frequency detailed samples from various degraded video measurements, while the score function
never accessed a different dataset.

VISEM We test our method on VISEM-Tracking (Thambawita et al., 2023) containing biological
scenes. We show the quantitative results of video reconstruction in Table 2. Also, representative
results are illustrated in Fig. 6. As shown in Fig. 6, the proposed method captures high-frequency

7



Under review as a conference paper at ICLR 2024

Figure 5: Results on generalization test on different datasets which never seen to the score function
sθ. (a) Sky Timelapse dataset (Xiong et al., 2018) and (b) Moving MNIST dataset (Srivastava et al.,
2015).

Figure 6: Results on solving video inverse problem for VISEM-Tracking with the following physical
environments (a) σ = 1, d1 = 5 and (b) σ = 2, d1 = 10.

details of the tail of Spermatozoa, while the comparative methods fail to reconstruct the corre-
sponding details. Again, the supervised method produced blurry samples which are worse than the
UCF101 reconstruction. The reason is the overfitting problem due to the relatively small training set.
On the other hand, diffusion-based reconstruction consistently reconstructs high-frequency details
well even though the training set is relatively small. Also, the supervised method shows poor perfor-
mance when the physical setting changes, and the traditional method fails to reconstruct as shown
in Table 2. DPS reconstructs realistic samples from given video measurement frames, however, the
approximation error from each sampling trial easily leads to temporal inconsistency as shown in
FVD metrics of Table 2.

We additionally observe the temporal attention layers in 3D UNet are the key component for recon-
structing video measurements. We manually removed temporal attention layers from 3D UNet to
train the score function (dubbed as ‘VDPS w/o TA’ in Table 1 and 2). The remaining network archi-
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σ = 1, d1 = 5 σ = 2, d1 = 10 σ = 0.5, d1 = 2.5

Method PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓
VDPS (ours) 31.415 0.852 0.046 141.61 28.148 0.755 0.083 204.32 33.209 0.882 0.033 130.79

VDPS w/o TA 28.277 0.755 0.103 767.01 26.708 0.707 0.122 841.74 29.389 0.778 0.094 748.87

DPS 29.720 0.799 0.070 751.59 27.052 0.718 0.102 801.07 31.347 0.830 0.056 724.47
Supervised 26.217 0.755 0.257 1973.0 22.902 0.599 0.409 1663.1 24.858 0.712 0.310 1727.1

Convex optimization 9.8328 0.241 0.685 1984.5 10.159 0.247 0.793 2096.7 9.5659 0.229 0.600 1902.0

Table 2: Quantitative evaluation (PSNR, SSIM, LPIPS, FVD) of solving video inverse problems on
VISEM-Tracking test dataset. Bold: best, underline: second best.

tectures and implementation details are identical to the original work. As shown in Table 1 and 2, we
observe temporal attention layer plays a key role in improving video reconstruction performance.

5 CONCLUSION

Navigating the challenges of optical scattering, our work innovatively leveraged spatio-temporal
correlations alongside the previous spatial approach to solve the inverse scattering problem. By in-
tegrating DPS with the video diffusion model and the closed-form forward physics, we’ve enhanced
the exploitation of correlations across varied scenes and scattering conditions. This holistic ap-
proach, distinct from prior spatial-only methods, successfully captures high-frequency components,
as validated by our tests on sperm cell video datasets. Our study pioneers the combined use of both
spatial and temporal correlations in this domain.

ETHICS STATEMENT

The ability to restore temporally coherent signals beyond windows or opaque objects can be ex-
ploited for privacy or personal data leakage. As described in Thambawita et al. (2023), the original
study for the VISEM-Tracking dataset was approved by the Regional Committee for Medical and
Health Research Ethics, South East, Norway (REK number: 2008/3957), and the original project
was finished in December 2017, and all data was fully anonymized.

REPRODUCIBILITY STATEMENT

A link to an anonymous downloadable source code is available with a provided anony-
mous GitHub page https://github.com/video-through-scattering2023/
video-through-scattering. A complete proof of the closed-form forward physics is
provided in Section 3.1 and its implementation code is provided in Appendix B. A complete
description of the details of hyperparameters, training details, and compute resources used for each
model are provided in Appendix C. A complete description of data processing steps is provided in
Section 4.
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A RESULTS IN REAL EXPERIMENTS

A.1 OPTICAL SETUP DETAILS

Laser (Cobolt samba, 532nm) was spatially filtered by single-mode fiber and collimated with a lens
(fL1=150mm). We use a digital micromirror device (DMD) (Vialux V-7001, 13.68µm pixel size,
1024x768) to display amplitude video object. The object is conjugated to the object plane with 1x
magnification by relaying optics (fL2=100mm, fL3=100mm). Departing from the object plane by
a curtain distance, frontside of a turbid medium is placed. A digital camera was constructed by a
CMOS sensor (BFS-U3-200S6M-C, 4.5µm pixel pitch) and a commercial imaging lens (Nikkon).
The imaging plane was focused on the backside of the turbid medium. A turbid medium was realized
by a scattering medium and DC motor stage. Displaying on a frame on the DMD was synchronized
with the CMOS image acquisition. The overall illustration of the optical setup is shown in Fig. 7.

Figure 7: Experimental setup photograph. We create amplitude objects in the DMD setting and we
create phase objects in the SLM setting. To show the both objects work on the forward physics, we
reconstruct video from the DMD setting and demonstrate a strong correlation between real and in
silico measurements in the SLM setting.

A.2 PSF OF VARIOUS SCATTERING CONFIGURATION

Figure 8: Measured PSFs of various scattering configurations (a) with 1 scotch tape, (b)-(e) with 2
scotch tapes with various inter-layer distances.

We acquire the PSF of the dynamic scattering medium by focusing the point source through a lens
and placing it right behind the scattering medium. Point response is then measured beyond the
scattering medium. As shown in Fig. 8, the resulting PSF of the dynamic scatter with amplitude
object was a 2d Gaussian function. It shows that in the real experiment setting, the forward model
of dynamic scattering medium focused on the backside results in Gaussian blur as we described in
Section 3.1.
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Figure 9: Results for the reconstruction of moving MNIST real measurements with the various
settings in terms of propagation distance and the sigma of the Gaussian blur. (a) 10mm, 17.36µm,
(b) 6mm, 10.01µm. And (c) the reconstruction of a Pac-Man video sourced from YouTube for 6mm,
17.36µm. A(output) represents a forwarded output.

Here, we provide a detailed experimental setting to acquire the PSFs. A point source with a size
of 1 µm was focused in front of the scattering medium using a 0.2 NA plano-convex lens, and
the imaging from the backside was captured using a 0.28 NA 10x objective lens. The scattering
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medium used was 3M Scotch Magic Tape (previously used in the paper: Malone, Joseph D., et al.
”DiffuserSpec: spectroscopy with Scotch tape.” Optics Letters 48.2 (2023): 323-326). One or two
layers of this tape were stacked, and a 50 µm thick Kapton tape was used as a spacer between the
two layers to adjust the distance.

A.3 RESULTS IN REAL EXPERIMENTS

From the real optical setting, we position the actual amplitude target at a distance 6/10mm from 2
different scattering mediums(1 scotch tape / 3 scotch tapes) and get the image in the real measure-
ment.

Also, as shown in Fig. 9, our method is still effective while shot noise and camera dark noise are
added. The result shows the tolerance of our method for model mismatches in real-world settings.
Our method is effective in various settings in terms of propagation distance and the sigma of the
Gaussian blur using a single pre-trained diffusion prior. Also, forwarded outputs show the same
pattern as the measurements. The reason why the resulting PSF may not seem not perfectly Gaussian
in Fig. 8 is that the lateral movement axis of the DC stage may not perfectly perpendicular to the
incident light. The result shows that our method can cover the corresponding error to reconstruct
the object. Additionally, we reconstruct more complex scenes from a Pac-Man video sourced from
YouTube(https://youtu.be/jicSDEL2hZU). We crop the scene into 128×128 resolution, resize the
scene into 64×64 resolution, and display the sequence of frames on the DMD. The acquisition
process of the real measurement is identical to the moving MNIST dataset case. We reconstruct
the real measurement using a diffusion prior trained from randomly sampled video sequences of the
Pac-Man video that do not overlap with the test set. The result shows that the method can handle
more complex scenes including a video sourced from YouTube.

A.4 CORRELATION BETWEEN REAL MEASUREMENTS AND IN SILICO MEASUREMENTS OF
PHASE OBJECT

Figure 10: Demonstration on our forward physics model in real experiment. (a) Designed optical
setup with SLM, (b) Resulting PSF of the dynamic scattering medium was 2d Gaussian, and the
correlations between real measurement and simulated output from our forward physics were strong.

We also demonstrate how well our forward model models the imaging of a complex phase object
located at a distance d behind a dynamic scattering medium. First, according to our forward model,
we propagate a phase object by 6/12mm using the angular spectrum method. We take the intensity
and convolve it with the Gaussian PSF of the scattering medium, resulting in the image in the
simulated column. Then, we position the actual phase target at a distance of 6/12mm from the
scattering medium and get the image in the real measurement as shown in Fig 10 (a). A two-layer
stack of opaque Scotch tape, separated by 50 microns, was used as the scattering medium. To
introduce turbidity, this medium was temporally vibrated along the lateral plane. The correlation
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between the two images is calculated using the following formula, with a maximum value of 1:

r(A,B) =

∑
m

∑
n
(Amn − Ā)(Bmn − B̄)√

(
∑
m

∑
n
(Amn − Ā)2)(

∑
m

∑
n
(Bmn − B̄)2)

(10)

where, X̄ is the mean value of image X .

The resulting PSF of this turbid medium was a 2d Gaussian function with a standard deviation
13.4µm. The 2D spatial correlations between the real measured intensity and the simulated intensity,
as predicted by our forward model, exceeded 0.8 in both the 6mm and 12mm propagation cases as
shown in Fig. 10.

A.5 SOURCES FOR MODEL MISS MATCH

Several aspects were neglected from our forward model.

Stochastic Noise: Shot noise, camera dark noise, and other noises can be inserted into the mea-
surement. However, in the case of shot noise(Poissonian), DPS (Chung et al., 2022a) has already
shown that the posterior sampling method is effective in reconstructing noisy measurements includ-
ing Poisson noise. Therefore, we neglect it from our model.

Scattering Kernel: Scattering kernel that describes the ensemble-averaged intensity response of a
scattering medium (i.e. the intensity response on the output plane for a point source on the input
plane) varies depending on the properties of a scattering medium, such as scatterers’ shape and size,
and refractive indices of scatterers and an embedding medium. Here, based on the assumption that
the kernel function is smoothly and slowly decaying, we simply assumed it as a Gaussian function.
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B PYTHON IMPLEMENTATION OF CLOSED-FORM FORWARD PHYSICS

input video_frame

## physical parameters
pix = 8e-6 # pixel size of DMD
lamb = 532e-9 # wavelength of laser
dist = 2.5 or 5 or 10 # forward propagation distance
sigma = 2 or 1 # Gaussian blur sigma
image_length = 128 or 64
FOV = 128 or 64
pad = 64 or 32

## define propagation
fx, fy = torch.meshgrid(torch.linspace(0, FOV + 2 * pad - 1, FOV + 2 *

pad), torch.linspace(0, FOV + 2 *
pad - 1, FOV + 2 * pad))

fx = (fx - np.fix((FOV + 2 * pad) / 2)) / ((FOV + 2 * pad) * pix)
fy = (fy - np.fix((FOV + 2 * pad) / 2)) / ((FOV + 2 * pad) * pix)

quad_pha = 1 / (lamb ** 2) - fx ** 2 - fy ** 2

prop = torch.exp(1j * 2 * torch.pi * dist * 1e-3 * torch.sqrt(quad_pha)).
cuda()

## forward propagation
amp = video_frame
pha = torch.zeros((image_length,image_length))

field_full = amp * torch.exp(1j * pha)
field_pad = torch.nn.ReplicationPad2d(pad)(field_full)
field_fourier = torch.fft.fftshift(torch.fft.fft2(field_pad))

ASM = field_fourier * prop

diff_field = torch.fft.ifft2(torch.fft.ifftshift(ASM))
diff_field = diff_field[pad:-pad, pad:-pad]

inten = abs(diff_field) ** 2

## Shower-curtain effect
measurement = T.GaussianBlur(int(3*sigma)*2+1, sigma=sigma)(inten)

return measurement
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C DETAILS AND HYPERPARAMETERS

C.1 EXPERIMENTAL DETAILS

For UCF101, we divide a total of 13,320 videos into Train(9,437)/Test(3,783) splits based on offi-
cial descriptions1 of Train/Test video list 1 for action recognition on UCF101 data. The 3D diffusion
model was taken from Ho et al. (2022b) and trained for UCF101 data from scratch using randomly
selected 10 adjacent frames of the UCF101 training set for 1M steps. The 2D diffusion model
was taken from Ho et al. (2022b) by eliminating temporal attention layers and modifying the 3D
convolution kernels into 2D convolution kernels. The 2D diffusion models for UCF101 data was
trained from scratch using randomly selected frames of UCF101 training set for 1M steps. We val-
idate their performance using the UCF101 test set. To express the UCF101 dataset to amplitude
object, we converted all videos to grayscale and normalized them within the range [0,1]. Addi-
tionally, we resized the UCF101 dataset to 64×64 pixels. VISEM-Tracking dataset divided 502 30
s video clips into 166 annotated videos and 336 unlabeled videos. Similarly, we divide a total of
502 videos into Train(166)/Test(336) splits based on official descriptions (Thambawita et al. (2023))
of annotated/unlabeled video sets. The 2D diffusion model for VISEM-Tracking data was trained
from scratch using randomly selected frames of VISEM-Tracking training set for 1M steps. The
3D diffusion model for VISEM-Tracking data was trained from scratch using randomly selected 10
adjacent frames of VISEM-Tracking training set for 1M steps. We validate their performance using
the VISEM-Tracking test set. To express the VISEM dataset to amplitude object, we converted all
videos to grayscale and normalized them within the range [0,1]. Additionally, we downsampled by
a factor of 2, randomly cropped to 128×128 pixels.

Here, we list the hyperparameters, training details, and compute resources used for each model. The
following expression style was provided by Ho et al. (2022b). Every diffusion model and supervised
method was trained with the following details.

C.2 UCF101

Base channels: 128

Channel multipliers: 1, 2, 3, 4

Blocks per resolution: 2

Attention resolutions: 8, 16, 32

Attention head dimension: 32

Conditioning embedding dimension: 512

Conditioning embedding MLP layers: 2

Diffusion noise schedule: cosine

Noise schedule log SNR range: [-20, 20]

Video resolution: 10x64x64 frameskip 1

Weight decay: 0.0

Optimizer: Adam (β1 = 0.9, β2 = 0.99)

Learning rate: 0.0001

Batch size: 8

EMA: 0.995

Dropout: 0.0

Training hardware: 1 RTX 3090 GPU

Training steps: 1,000,000

Joint training independent images per video: 0

Sampling timesteps: 1000

Sampling log-variance interpolation: γ = 0.0

Prediction target: ϵ

C.3 VISEM-TRACKING

Base channels: 128

Channel multipliers: 1, 2, 3, 4

Blocks per resolution: 2

Attention resolutions: 8, 16, 32

Attention head dimension: 16

Conditioning embedding dimension: 512

Conditioning embedding MLP layers: 2

Diffusion noise schedule: cosine

Noise schedule log SNR range: [-20, 20]

Video resolution: 10x128x128 frameskip 1

1https://www.crcv.ucf.edu/data/UCF101.php
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Weight decay: 0.0

Optimizer: Adam (β1 = 0.9, β2 = 0.99)

Learning rate: 0.0001

Batch size: 2

EMA: 0.995

Dropout: 0.0

Training hardware: 1 RTX 3090 GPU

Training steps: 1,000,000

Joint training independent images per video: 0

Sampling timesteps: 1000

Sampling log-variance interpolation: γ = 0.0

Prediction target: ϵ

3D diffusion model was trained on the same neural network architecture from Ho et al. (2022b). We
modify 3D convolution kernels to 2D convolution kernels and eliminate temporal attention layers
to make the neural network for the 2D diffusion model and supervised method. The step sizes in
(8) are defined as ζi = sin(iπ/1000)2/||Y ||. For the traditional convex optimization method, we
optimize the initial field for 700 iterations using Adam optimizer with learning rate 10−3, and TV
loss weight is 3× 10−5.

D ADDITIONAL EXPERIMENTAL VIDEO RESULTS

We recommend seeing the experimental results in video format (e.g. gif format) to observe the
temporal correlation of reconstructed output compared with the comparative methods. We provide
5 randomly (non-cherry-picked) reconstructed results for supervised, 2D DPS, and VDPS (ours) in
Supplementary materials, please check to validate the superior performance of our method.
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