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Abstract

Hamiltonian mechanics is one of the cornerstones of the natural sciences. Recently there
has been significant interest in learning Hamiltonian systems in a free-form way directly
from trajectory data. Previous methods have tackled the problem of learning from many
short, low-noise trajectories, but learning from a small number of long, noisy trajectories,
whilst accounting for model uncertainty has not been addressed. In this work, we present a
Gaussian process model for Hamiltonian systems with efficient decoupled parameterisation,
and introduce an energy-conserving shooting method that allows robust inference from both
short and long trajectories. We demonstrate the method’s success in learning Hamiltonian
systems in various data settings.

1 Introduction

Hamiltonian mechanics represent one of the most important classes of dynamical systems, describing wide
variety of natural phenomena from electromagnetism to the motion of planets (Salmon) 1988 Taylor, [2005)).
In this work we consider time-invariant systems characterised by a Hamiltonian H(q,p) € R over position
q(t) € RP and momenta p(t) € R” over time t € R, which can be thought of as the total energy of the
system’s configuration. The rules of evolution of a Hamiltonian system are defined by Hamilton’s equations
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We consider problem of learning free-form Hamiltonian () entirely from observed system trajectories. The
conventional mechanistic approach involves manually deriving the Hamiltonian H and its evolution equations
for a system of interest, and possibly estimating system coeflicients from data (Seinfeld, [1970; [Hernandez &
Poznyak, 2020). However, for many systems the Hamiltonian is either unknown or too complex to derive from
first principles (Schmidt & Lipson! [2009; [Battaglia et al.l |2018). Recently, numerous data-driven approaches
have been introduced to learn Hamiltonian systems with neural networks (Greydanus et al., |2019; |Cranmer
et al., 2020; |Zhong et al.l |2019; Finzi et al., 2020). These methods return point solutions, and are not able to
characterise the uncertainty of the solution, which is important when data are limited.

Bayesian approaches, such as Gaussian processes (GPs), can be used to place a prior distribution over the
derivative function of a dynamical system, allowing the posterior distribution over the system dynamics to be
computed in light of observations (Ridderbusch et al., [2021} Hegde et al., |2022)). In this paper we place a
GP prior over the Hamiltonian and infer its posterior directly from noisy trajectory data, shown in Figure
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Figure 1: The proposed model. We place a GP prior over the Hamiltonian H(x) and, using a set of
inducing points which lie on H, map function samples through Hamilton’s equations to obtain system
derivative f(x) samples, to which we apply ODE solver to obtain sample trajectories x(¢). Shading represents
model uncertainty.

We develop an energy conserving variational multiple shooting scheme, which allows for efficient inference
over long trajectories, which usually present a challenge for dynamical models due to the problem vanishing
or exploding gradients (Ribeiro et al.| 2020; [Metz et al., 2021). Recently, two studies have introduced GP
models that also aim to learn the Hamiltonian directly from trajectory data: the symplectic spectrum GP
(SSGP) learns the system in a Fourier domain (Tanaka et al., 2022)), while the structure preserving GP
(SPGP) embeds the model within a numerical symplectic integrator (Ensinger et al.l [2022)). Both models
attempt to skirt the problem of trajectory length by using heuristic methods based on learning from short
sub-sequences of the full data, which we find works poorly for systems with complex behaviour.

In this work we present a number of contributions, to both the inference methodology, and the experimental
evaluation, of GP models for Hamiltonian systems. Together they can be summarised as follows:

e« We propose a Hamiltonian Gaussian process parameterised by inducing variables with efficient
functional sampling.

o We adapt the variational multiple shooting method of [Hegde et al. (2022) to energy conserving
Hamiltonian systems, for highly accelerated optimisation and increased performance.

e We provide an extensive experimental evaluation, and find that our method shows strong performance
in a number of settings, whilst discussing the areas in which GP based methods are limited.

2 Primer on Hamiltonian mechanics

We consider a Hamiltonian dynamical system over the 2D-dimensional phase space of canonical positions
q € RP (for example, coordinates or angles) and their associated canonical momenta p € RP. The system is
characterised by the Hamiltonian energy function H(q, p,t) € R (Thornton & Marion| 2004). In this work
we will restrict the discussion to the common case of time-invariant Hamiltonian, i.e. H(q, p,t) := H(q, p),
in which case, the Hamiltonian energy is conserved over the system trajectories. The temporal evolution of
the system is described by a set of coupled first order differential equations, known as Hamilton’s equations,
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The structure of Hamilton’s equations ensures that various constants of motion are conserved over the system
trajectories. Chief among these constants of motion is the energy of the system, but they can also include
linear momentum, angular momentum, and other quantities. The energy conservation is shown by
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By using Hamilton’s equations we obtain a system of 2D first order differential equations,
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where we have concatenated q and p into the 2D dimensional phase space state vector x, and f : R?P — R2P
is the system time differential. We obtain system trajectories by forward integration

x(£) = x(t; %0) = X0 + / £ (x(r))dr, (5)

where x(t) is the state of the system at time ¢, X is the initial state of the system, and 7 € [0,¢] is an
integration time variable. Typically for mechanical systems the Hamiltonian is determined by identifying
the kinetic and potential energies of the constituent parts, which form the total energy H, with the process
becoming increasingly difficult for more complex systems. In the this work, we aim to forgo this process and
to learn the Hamiltonian directly from trajectory data, with no assumptions on its functional form.

3 Hamiltonian Gaussian processes

In order to infer the Hamiltonian of the system, we assume it follows a Gaussian process (GP) prior (For
review, see [Williams & Rasmussen| (2000]))

H(x) ~ GP(0, ky(x,x)), (6)

which models a distribution over energy surfaces with zero mean E[#H(x)] = 0 and kernelised covariance,
cov[H(x), H(x")] = kyu(x,x), ky : R?P x R?P s R. (7)

In a GP the probability of a function at any finite subset of evaluations follows a multivariate Gaussian
(H(x1), .. Hlxn)) ~ N0, b (X, X)), (8)

where kz,(X,X) € RV*Y is a positive definite kernel matrix with elements [ky (X, X)];; = ku(xi,%;). In
order to perform inference whilst using a GP representation of the Hamiltonian, we adapt the method
described by Hegde et al.| (2022), which allows for inference of ODE systems with a GP based derivative
function. This is possible because a GP prior over the Hamiltonian implies a GP prior over the derivative
function, as we will see in the following section.

3.1 The time derivative

Given the prior over H it is necessary to define the system time derivative %X, in order to compute trajectories
for inference and sampling. Equation can be rewritten (Rath et al., 2021)) as

%= f(x) = £H(x), with £= (O I}y wv.=(%). )
10 —d,
——
Poisson tensor

Gaussian processes are closed under linear operators (Williams & Rasmussen), |2006; Agrell, [2019)), and hence
the Hamiltonian and its vector field follow a zero-mean joint GP

(60) ~ 97 (0 (et o)) (10)

with covariances induced by the Hamilton’s equation,

cov [’H(x), f(x’)] =kyr(x,x) = (_agq) by (x,x") € R2Px1 (11)
cov [£(x), £(x')] = Kr(x,x') = (85% Eff) Frlox) € REED, (12)
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3.2 Inducing points

In order to allow tractable inference and sampling, we introduce a set of inducing points (Snelson & Ghahra;
mani, 2006) to obtain a finite, parametric representation of the infinite joint GP (H, f). We condition the Hamil-
tonian with M inducing energies u = (u1,...,ups) € RM at phase space locations Z = (z1, . ..,zy) € RM*2P
that encode energy pseudo-observations u = #H(z). The vector field conditioned on these pseudo-observations
is again a Gaussian process,

£60)|(H(Z) = w) ~ GP (ke (x, D)kn(Z,Z) ", Ke(x,X) = Ken(x, D)hn(Z,2) 'kne(Z,X) ), (13)

mean covariance

where the set inputs refer to expanding the corresponding function over them. By varying the inducing
parameters (u,Z), we can represent approximately arbitrary Hamiltonians and their unique vector fields,
which can then be forward integrated to obtain simulated trajectory solutions. In later sections these
parameters are the main variables to be learnt. Our approach differs from [Hegde et al.| (2022) by placing the
inducing points on the Hamiltonian, not the derivative function. We then require a set of scalar inducing
points, instead of vector-valued 2D-dimensional inducing points.

3.3 Sampling

In order to simulate trajectories x(0),...,x(T") we must be able to sample a persistent derivative function or
vector field x = f ~ GP from the GP (I3)), and evaluate it along the trajectory x(t). Standard methods for
sampling functions from a GP are based on kernel matrix decompositions, which have prohibitive complexity
of O(N?) for N evaluation points. We follow [Hegde et al| (2022), and bypass this problem by a ‘decoupled’
parameterisation (Wilson et al., [2020), sampling from the Hamiltonian instead of the derivative function,

S M
Heuz(x) = > widi(x) + Y vk(x,2;), (14)
i=1 =1

where w; ~ N(0,1) are random weights of the S Fourier basis functions ¢;(x) = cos(e, x + ;) with
frequencies «; sampled from the spectral density of k, and 8; ~ U(0,27) (Rahimi & Recht, 2007), and
v =k(Z,Z)"(u— ®w) where & = ¢(Z) € RM*5 represents the evaluation of bases over inducing inputs. We
denote all Fourier-related parameters by w = {w, a, 8}. By sampling and fixing W, we obtain a deterministic
function sample that can be evaluated anywhere. Finally, we transform the energy surface H to a derivative
vector field via fg 4 z(x) = LHw u,z(x), which allows trajectory rollout using numerical integration.

3.4 The probabilistic model

We aim to infer H from one or more noisy realisations of trajectories from the true system, with arbitrary
length and time irregularity, each of which have different unknown initial conditions. We present simplified
notation for a single observed trajectory (See Appendix for multiple trajectory derivations).

Let the trajectory observation be denoted Y = (y1,...yn)? € RV*2P where y; = Xyrue(t:) + €; € R?P is
the ¢’th noisy state of the system at time t; € (¢1,...,ty), and N is the number of time steps observed. We
begin by assuming a Gaussian prior on the inducing energies and on the initial state xg,

p(u) = N(ul0,k(Z, Z)) (15)
N(XO‘()?I)ﬂ (16)

=
%

e
I

where k(Z,Z) € RM*M ig covariance matrix for the inducing states, with [k(Z,Z)];; = kw(zi,z;). We
follow the convention in sparse Gaussian processes to treat the inducing locations Z as hyperparameters
that are merely optimised, instead of inferring their posterior distribution (Hensman et al., 2015a) (For
in-depth discussion, see Hensman et al.| (2015Db); [Rossi et al.| (2021)). We omit all hyperparameters from the
probabilistic model notation below for simplicity.
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Figure 2: Plate diagram over the model (blue) and ODE system (red). We denote observations {y;} with
shaded nodes, random variables (W, u, X) as white nodes, hyperparameters (Z) with rectangles, and functions
(H,f,x) without shapes. Both sides contain the same f.

The joint distribution over data Y, sampling parameters w, energy variables u and initial state xq is

P(Y, W, u,x0) = p(Y|W, u,X0)p(W)p(u)p(xo) (17)
- ﬁ [Pyl 0, x0) [ p(W)p(u)p(x0), (18)

where the likelihood is
Pyl x0) = N (yilx(0), 0%l ). X(8) 1= Xeumo (1) (19)

where we first compute the Hamiltonian ‘H with Equation , then its derivative f using Equation @D, and

finally integrate forward xq LN x(t) with Equation . The form of the joint distribution here mirrors [Hegde
et al.| (2022)). Our goal is to infer the intractable posterior

p(u,x0Y) = / p(u, %0 Y, W)p(W)dw, (20)

over initial state x¢ and inducing variables u, where we assume the tractable sampling variables to be W
marginalised. Figure [2] shows the dependency structure between the variables in the model in graphical form.
We turn to variational inference to approximate the posterior.

3.5 Variational inference

We follow Hegde et al|(2022) and use the framework of stochastic VI (Hoffman et al., |2013; [Hensman et al.,
2013)) to infer the posterior of Equation . We assume a factorised posterior approximation

q(u,x0) = q(u)q(xo) (21)

q(u) = N(ujm,Q) (22)

q(x0) = N (x0|mg, Qo), (23)

with variational free parameters 6 = (m,Q,mg, Qo). Variational inference seeks to find

argming KL [go(u,x0) || p(u,%0[Y)], the Kullback-Leibler divergence between the approximate posterior
g and the true posterior, which is equivalent to maximising the evidence lower bound (Blei et al., [2017)

N
F(0,2) = Eqtuyq(xops) | P 10gp(yilW,u,xo) | — KL [g(u)[|p(u)] — KL [q(x0)||p(x0)] (24)

i=1
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The expectations integrate the inducing energies u, initial state xq estimates, and Fourier function sampling
determined by w. The likelihood requires solving the trajectory Xw u,x,(t) numerically. The expectations are
Monte Carlo averaged, while the KL terms have closed-form solutions. The bound is maximised by gradient
ascent wrt 6 and Z. See appendix [A7]] for details.

4 Energy-conserving shooting parallelisation

Optimisation of the variational bound for long sequences is challenging in practice due to the problem of
unstable gradients (Ribeiro et al., 2020; [Metz et al., [2021]). For long trajectories, small perturbations at early
times can compound into large effects at later times, resulting in gradients of the bound vanishing or exploding
(Haber & Ruthotto, 2017). Although this problem has primarily been discussed in the context of neural
networks (Kim et al., 2021} |Choromanski et al.| [2020), Hegde et al.| (2022) introduces a probabilistic shooting
solution for GP-ODEs. Shooting is an ODE optimisation technique where the ‘long’ solution x(0) — x(T') is
split into consecutive segments [x(¢;), x(¢;4+1)) that are solved in parallel, while ensuring that the neighboring
segments match (Hemker| [1974; Bock & Plittl [1984) (For review, see Diehl & Gros| (2020))).

4.1 Energy-conserving shooting model

We adapt the shooting formulation of [Hegde et al.| (2022)) to Hamiltonian GP ODEs, in order to stabilise
gradients and allow learning over longer sequences. We begin by augmenting the system with a set of L < NV
shooting variables S = {s;}£, € RL*2P | which represent the state of the system at times t; € {t;}L,
and split the continuous state solution x(¢;x¢) into L distinct segments from initial states s; with segment
solutions
tiy1
x(t;8;) =81 + / f(x(7))dr, for ¢ € [t;, ti1]. (25)
t

That is, to solve a particular time ¢, we need to find its interval [t;,¢;+1] and solve from s;. The splitting
leads to more stable gradients since each segment has less non-linear solution map (Diehl & Gros| [2020)).
Furthermore, the segments can be solved in parallel. The key problem of shooting is to ensure continuity
x(t;; 81—1) = s; at segment boundaries t;, otherwise the combined solution will be discontinuous.

We formulate this with an error model

s = x(tisi1) + &, ¢ N/\/(O,agI) (26) X(t1:i(1)) p X(ti(1):ic2) ) X(Li(2):i(3))
£ £ £
where & € R?P is the between-segment tolerance of posi- é' o
tion and momenta. To conserve energy, we also introduce

an energy tolerances x to encode the permissible energy Shooting ODE
change between segments,

Figure 3: The shooting system.

H(s)) = H(x(tl;slfl)) + X1, X1~ N(0,0‘i). (27)

Together these constraints lead us to a product prior
p(si|si—1, W,u) = N (s[x(t;;81-1), U?I)N(H(Sl”}[(x(ti; sl,l))mi), H() == Heuu(") (28)

where #H is the Hamiltonian function conditioned by the w,u, and x(#;;s;—1) depends on LH via Equations
and (). We place a Gaussian prior on the initial state, p(sg) = N (so|0,I). Let s;;) denote the last
shooting variable before time ¢;. The joint distribution of the shooting-augmented model is

p(Y,“NI, u7 S) =

N L
[[r(yilw,u, Sl(i))] lH p(silsi—1, W, u)] p(W)p(u)p(so). (29)

i=1 =1

shooting likelihood tolerance prior
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4.2 Variational shooting inference

The inference of the posterior p(u, S|Y) is again intractable. We define a variational posterior approximation
q(u,S) = ¢q(u) Hf:o q(s;) with independent Gaussians ¢(s;) = N (s;|a;, X;) on the shooting states. This results
in new evidence lower bound

N L
F(0,Z) = Equ)p(w) Z]Eq(sl(i)) [log p(y:|W,u, 1)) ] + ZEq(sl)q(sl,l) [log p(si[si—1, W, u)] (30)
1=1 =1
L

— Y “Hiq(s:)] — KL[g(so) || p(so)] — KL[g(u) || p(w)],
=1

where 0 = (m, Q, {a;, X;}). The first expectation is the ‘short’ likelihood of each observation solved only from
previous shooting state. The second term ensures the quality of the match between the shooting segments.
The remaining terms regularise the model. This bound is similar to that of [Hegde et al.| (2022)), but places
the inducing points on the Hamiltonian, not the derivative function, and includes an additional energy based
matching term for the shooting states. See appendix for details.

5 Related work

Methodologically our work is founded on [Hegde et al.| (2022)), who present learning of non-Hamiltonian
ODEs with GPs using variational multiple shooting for efficient long trajectory inference. We extend with
Hamiltonian structure on both the system and the shooting method to control energy conservation.

Hamiltonian Gaussian processes. The most similar existing work to ours are the symplectic spectrum
GP (SSGP) model of [Tanaka et al.| (2022), published concurrently, and the structure-preserving GP (SPGP)
model of [Ensinger et al.| (2022), both of which place a GP prior over the Hamiltonian function H. The SSGP
model is closely related to ours, but differs in inference. They use standard RFFs for sampling, which suffers
from variance starvation and poor uncertainty representation (Wilson et al., 2020), and place a variational
distribution on the RFF weights instead of inducing energies. The SPGP proposes to embed a Hamiltonian
GP specifically within a symplectic integrator to ensure numerical volume preservation. Neither model
supports initial state estimation and neither use shooting approximations, but instead resort to heuristic
minibatching of subsequences of the trajectories.

Hamiltonian maps with Gaussian processes. A number of works aim to learn the Hamiltonian flow
map X(tinit) — X(tfina1), or related mappings, from initial and final conditions. These methods typically
require large number of low-noise trajectories (10s or 100s). [Rath et al.| (2021]) use GPs to learn the flow
map of Hamiltonian systems, providing an implicit learning scheme for non-separable systems, and an more
efficient explicit scheme for separable systems. |Offen & Ober-Blobaum| (2022) develop a scheme known
as shadow symplectic integration (SSI), which allows for compensation for the error incurred by forward
numerical integration, leading to more accurate preservation of symplectic structure. Bertalan et al.| (2019)
learn the Hamiltonian directly in phase space, which requires an approximation of the time derivatives of the
coordinates using first differences, introducing additional error, especially for noisy data.

Hamiltonian neural networks. There has been a significant amount of interest in learning Hamiltonian
dynamics with neural networks (NNs). |Greydanus et al.| (2019) introduce the Hamiltonian NN (HNN), which
trains an NN to predict the dynamics with an auxiliary loss based on Hamilton’s equations. The original
formulation of the HNN requires computation of the time derivatives of the coordinates, and cannot learn
directly from trajectory data. [Zhong et al.| (2019)) introduce a version of the HNN which computes trajectory
rollouts using an ODE solver and can learn directly from trajectories, in addition to incorporating control
signals. [Finzi et al.| (2020) introduce constrained HNNs for mechanical systems, in which the structure of
the system is encoded as constraints, and the Hamiltonian is learned in Cartesian coordinates. |Gruver et al.
(2021)) investigate the effect of the inductive biases in Hamiltonian and Lagrangian NNs, and find that for
realistic systems, baseline models without energy conservation often perform better.
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6 Experiments

In this section we provide an experimental evaluation of our method for a variety of Hamiltonian systems.
The code for our implementation of the model is available at https://github.com/magnusross/hgp.

6.1 Experimental Setup

Tasks. Aside from an initial illustrative example, we study two distinct tasks:

o Task 1: Trajectory forecasting. In this task, the model is provided with a single noisy trajectory
of length T" with unknown initial condition. The model learns the system from [0, T] interval, and is
tasked to forecast the trajectory forward for [T, 27.

e Task 2: Initial condition extrapolation. In this task, the model is provided with K noisy
trajectories of fixed length from different, unknown initial conditions. The model is evaluated on its
ability to forecast trajectories from a new set of noise-free initial conditions.

Most prior work learning Hamiltonians deal with variations of task 2, for example [Tanaka et al.| (2022)); [Rath
et al.| (2021)). Experiments for task 1 are provided by [Ensinger et al.| (2022)) and [Hegde et al.| (2022) among
others, but no prior work has provided a joint evaluation of both tasks. For both tasks we report the trajectory
and Hamiltonian energy root mean square error (RMSE), and the mean negative log likelihood (MNLL). We
repeat each experiment 10 times with different initial conditions, and report median and interquartile range
on all tables and plots due to the high variability of the results for all models. We give tables of means and
standard errors in appendix [C}

Systems. We evaluate our model on three true Hamiltonian systems: the fixed pendulum (FP), the spring
pendulum (SP) (Lynchl [2000), and the Henon-Heiles (HH) system (Henon & Heiles, [1964). The FP is
two-dimensional with predictable periodic dynamics, and serves as a simple test case. The SP and HH are
both four-dimensional, and exhibit more complex, chaotic dynamics. The system definitions are

(fixed pendulum) Hep(q,p) = mgr(1 — cos q) + o e
(S . dul H _ L 2 p% lk 2
pring pendu um) SP (Q17 q2,P1,p2) = om pi+ 7((11 mn r)2 + 2 Qi — mgr cos ¢z

(Henon-Heiles) Huu(q1, g2, p1,p2) =

N =
—

@+ + 5+ )+ (- 32

where m is the pendulum mass, r is its resting length, g is the gravitational field strength, k is the spring
constant, and p is a parameter controlling the magnitude of the HH potential. For more details on each
system, see the appendix We add Gaussian noise to the training data for each task, with variance set to
5% of signal variance, unless otherwise mentioned. For each experiment we sample different initial conditions
from the phase space of the system to generate data for each repeat, using the same data across each model
we test.

Our HGP setup. We use M = 48 inducing points for task 1, and M = 128 for task 2. Throughout we
use S = 256 basis functions, and run optimisation for 2500 iterations using the Adam optimiser (Kingma
& Bal, 2015) with learning rate 3e~3. During training we use a single sample from the model to estimate
the intractable expectations, when making predictions we use 32 samples. Unless otherwise stated, we use
the shooting approximation with a single shooting state per 4 data points, i.e. L = |N/4]. We use the
torchdiffeq package (Chenl 2018) with implicit dopri5 solver. For more details on the setup of the HGP
and all the baseline models see appendix [B23]

Hamiltonian aware initialisation. We optimise the bounds in Equations and using gradient
ascent on the variational parameters, and the set of model hyperparameters. This optimisation problem is


https://github.com/magnusross/hgp
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Figure 4: The HGP can accurately model energy-preserving Hamiltonians. Top row: the true
pendulum system (FP) followed by learnt vector field of HGP ( ) and non-Hamiltonian GPODE baseline
(green) from half a cycle of data, followed by sample trajectories and the error in predicted energy along the
trajectory. Bottom row: full cycle estimates, where the baseline is able to fit the vector field, but is oblivious
to the energy.

challenging, as such good initialisations are very important, particularly for the variational parameters of
the Hamiltonian GP. We can obtain a good initialisation by observing that the derivative function f and
‘H are jointly a GP. Using the approximate numerical derivatives of the trajectory data, we can form some
data for f, which can then be conditioned on, using equations to , to obtain an estimate for the
mean function of the Hamiltonian. We use this estimate as the initial value for the variational mean m. See

appendix for details.

NN baselines. We compare against two NN models: a standard (non-Hamiltonian) Neural ODE (NODE)
(Chen et al. |2018)) with a neural time derivative fg(x), and a HNN, based on the Unstructured SymODEN
model of|Zhong et al.| (2019) with a neural Hamiltonian Hg(x). Both methods perform poorly when trained on
raw trajectories due to vanishing/exploding gradients. To allow for a fair comparison, we split the trajectories
into smaller sub-trajectories by running a sliding window of fixed length over the data, and form these into
batches of training data.

GP baselines. In order to evaluate the effect of our Hamiltonian prior, we compare against the non-
Hamiltonian shooting GPODE baseline of [Hegde et al.| (2022]). We use the same hyperparameter settings
and initialisations as in the HGP model, where applicable. To initialise the inducing variable distribution
means, we follow the same procedure described by [Hegde et al.| (2022)). We are unable to provide results for
the SPGP (Ensinger et al, 2022) as the authors did not release their code publicly, and would not make an
implementation available on request. A public code exists for the SSGP, however it does not support systems
with D > 1. In order to provide some comparison we re-implement one of the key points of difference between
the models, the sub-sequence training method, and test its performance. We also provide a comparison with
the SSGP for the toy FP system in Appendix [C.3]

6.2 Toy task

As an initial test of the effect of the Hamiltonian prior we train both HGP and GPODE, without shooting,
on the FP system with both half a cycle and a full cycle of data. Figure [f] shows the inferred vector fields,



Published in Transactions on Machine Learning Research (03/2023)

the posterior trajectory samples, and the error in the energy of these trajectories. We see the HGP producing
plausible trajectories and appropriate vector field estimate even far from the observations when given half
a cycle of training data, whilst the GPODE does not, and produces samples with a large energy violation.
With full cycle of data both models fit the data well, however the GPODE still has high energy violations.
This toy task illustrates the ability of the HGP to learn accurate dynamics from a relatively small amount of
data by its Hamiltonian inductive bias.

6.3 Task 1: trajectory forecasting

State RMSE ({) State MNLL ({) Energy RMSE ({)

Method

FP HH Sp FP HH SP FP HH SpP
NODE  0.12 (0.12) 042 (0.25) 1.13 (0.82) - - - 0.30 (0.28)  0.02 (0.01)  1.02 (0.41)
HNN 0.20 (0.16)  1.56 (0.26)  1.41 (0.30) - - - 0.34 (0.33)  0.04 (0.10)  1.12 (0.25)
GPODE  0.23 (0.26)  0.54 (0.71)  0.91 (0.36) -0.03 (1.21)  1.20 (4.19)  2.77 (2.77) 0.38 (0.34) 0.02 (0.02) 0.78 (0.50)
HGP 0.18 (0.19)  0.32 (0.30) 0.64 (0.50) -0.21 (0.67) 0.31 (1.89) 1.39 (2.20) 0.25 (0.42) 0.01 (0.01) 0.81 (0.36)
Table 1: Performance comparison of different methods on each system on the trajectory forecasting task.

Table [I] compares the performance of HGP to baseline methods for each of system on the forecasting task.
We use train trajectory lengths of 40, 8 and 16 seconds for the HH, FP and SP systems respectivelyﬂ For
the more complex systems (SP, HH) the HGP provides strong performance particularly when compared to
the equivalent GP baseline, the GPODE, providing significantly better point predictions and uncertainty
quantification. For the simple FP system the NODE provides a similar result to the HGP, for the SP and
HH systems the HGP provides the best performance. In this and subsequent experiments, we found that
the NODE unexpectedly outperformed the HNN, this issue is discussed in Section [7] Table [I] additionally
shows the energy RMSE, computed by applying the true Hamiltonian to the predicted trajectories, showing
that the HGP is able to recover the energy conserving dynamics well. Figure [§] shows the cumulative errors
accrued over the test period. Appendix [C] contains plots of the model predictions for a sample trajectory from
each systemﬂ These animations are illuminating because they show that, in addition to providing strong

predictive performance, the GP models produce trajectories that are more physically plausible than the NN
models.

Pendulum Spring Pedulum Henon-Heiles
250 300
NODE
40 HNN 200 4 250 1
“ GPODE w 200 4
2 30 HGP-ES 2 150+ a
4 4 @ 150
Z 207 Z 1001 2 100
5 ] 5
o |9 o
10 4 50 50 1
0 B
01 0
T T T T T T T T T T T T T T T
1.00 125 150 175 200 1.00 125 150 175  2.00 1.00 125 150 175  2.00
T (rel.) T (rel.) T (rel.)

Figure 5: The HGP with energy shooting has lowest cumulative trajectory error for the complex
systems. Cumulative error over test period [T, 27| for each system in the forecasting task. The horizontal
axis shows the time relative to the start of the training period.

Effect of trajectory length. Figure[6a)shows the effect of increasing trajectory length on model performance
for task 1 on the HH system. The point-wise predictive performance of each model stays approximately
constant with increasing trajectory length, with performances degrading slightly for the longest trajectories,

IWe aim to give trajectory lengths that cover a similar amount of phase space for each system for fair comparison, with the
different times reflecting the different properties of each system.
2 Animations of the trajectories can be found at https://magnusross.github.io/HamiltonianGPs/.
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Figure 6: The HGP performance is robust to observation length and noise. Analysis of effect of
data for the HH system on task 1.

due to the difficulty of the optimisation problem. The HGP gives consistently good performance over each
trajectory length relative to the baseline models.

Effect of noise. Figure [6D] shows the effect of increasing
noise on performance, with the horizontal axis showing the  Initialisation ~RMSE (})  MNLL ({)
noise variance as a percentage of total signal variance. The  R.1dqom 1.03 (0.06)  1.49 (0.09)
results show that, in terms of RMSE, both the NODE and Hamiltonian ~ 0.36 (0.19)  0.42 (0.83)
HGP are largely robust to increasing noise, although the is - -
some drop, with the GPODE degrading more severely.

Table 2: Effect of inducing initialisation.

Effect of initialisation. Table Plillustrates the effect of the

Hamiltonian aware initialisation scheme discussed in section [6.1] We ran HGP on task 1 for the HH system,
with randomly initialised inducing mean, and our proposed initialisation. The models initialised randomly
fail to fit the data well, and produce solutions that extrapolate poorly.

Comparing inference schemes. Figure|7a]provides a comparison between different inference methods for
task 1 on the HH system with varying trajectory lengths. We compare the HGP with: energy conserving
shooting (HGP-ES), standard shooting with no additional energy constraint (HGP-S), no shooting (HGP),
and with inference on sub-sequences formed into batches (HGP-Batched). With the HGP-Batched model,
we aim to emulate the inference method used for the SSGP and SPGP, see appendix for details. The
results show that the HGP-ES provides the best or equivalent performance over each trajectory length, with

1.75 14 [~ HGP-ES 1.09 % HGP-ES
HGP-S .
1.50 1
1] et = 05 HGP

1.25 104 HGP-Batched 7
w 4! I - D 0.6
w 100 1ERy E :
& .75 ! ’ = =

I 6 £ 044,

0.50 - I } o] &

0.25 & 5] 1 f : 021

0.00 1 o1& i | { - - - -

18 30 a2 54 18 30 a2 54 18 30 42 54
T(s) T(9) T (s)
(a) Model performance (b) Runtime

Figure 7: Energy shooting inference performs best across trajectory lengths, whilst speeding up
inference 15x for long trajectories. Comparison of inference methods for task 1 on the HH system, [73]
shows performance whist varying trajectory lengths, [7b] compares the time taken to compute the evidence
lower bound for the shooting and standard methods for varying trajectory lengths.
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performance relative to alternative methods improving with increased trajectory length. The HGP-Batched
method performs poorly for all trajectory lengths, with performance degrading for longer trajectories. Figure
[7H] shows the difference in runtimes for a single computation of the evidence lower for different trajectory
lengths for the shooting and non-shooting models. The shooting approximation provides a 15x speedup for
the longest (54s) trajectory and 6.5x speedup for the shortest (18s) trajectory, whilst matching or improving
on the standard HGP in terms of RMSE and MNLL.

6.4 Task 2: Initial condition extrapolation

State RMSE ({) State MNLL ({) Energy RMSE ()
Method FP HH SP FP HH SP FP HH SP
NODE 0.48 (0.15) 1.15 (0.19) 0.92 (0.38) - - - 0.26 (0.06) 0.03 (0.00) 1.35 (0.31)
HNN 0.91 (0.47)  1.35 (0.18) 1.13 (0.26) - - - 0.25 (0.15) 0.05 (0.03) 0.96 (1.79)
GPODE  2.41 (2.28)  3.58 (0.79) 3.53 (1.14) 7.11 (8.22)  19.11 (10.51) 11.48 (10.73) 6.17 (10.30) 1.52 (0.95) 1.9x107(2.5 % 107)
HGP 1.41 (0.46)  1.30 (0.28) 1.29 (0.59) 4.68 (2.95) 7.60 (3.03) 6.13 (0.81) 0.55 (0.60)  0.03 (0.01) 3.32 (8.86)

Table 3: Performance comparison of different methods on the initial condition extrapolation task, with K = 8
trajectories.

Table [3] shows the results for each model on each systems for task 2. For this task each model was given a set
of K = 8 noisy trajectories, of lengths 12, 4 and 6 seconds for the HH, FP and SP systems respectively, with
initial conditions sampled randomly in phase space. The test set consists of 25 trajectories sampled from
phase space using the same procedure, with length triple that of the training trajectories. In terms of state
RMSE, the best performing model is the NODE, which provides significantly better predictions than the
HGP for the simplest system (FP) and marginally better predictions for the more complex systems. The
HGP performs better than the GPODE on all metrics, again illustrating advantages of the energy conserving
prior. The HNN and NODE perform best in terms of energy RMSE, with HGP performing slightly worse,
and the GPODE performing poorly.

40 A =
Number of trajectories Figure [§shows the per- z: | o Hopes
formance of each model on the HH system for task 2 sol S I E e
as the number of training trajectories K is increased. w 25 .
We can see that whilst the HGP performs better than 2 | : £ 2
the GPODE on both metrics for all K, for large K sl & T |
the NN models provide better point predictions. We 104 ' bo¥g . m| ] 3
believe the poor relative performance of the GP based '

05

models in task 2 can be attributed to the choice of 2 4 8 16 % 2 4 8 16 %
prior, which we discuss in section [7]

. . L. Figure 8: The HGP outperforms GPODE for
7 Discussion and limitations all K, but NNs are best for large K.

Performance of HNN vs NODE. We found that

in both tasks 1 and 2, the HNN model performed

significantly worse than the NODE, which is unexpected and differs from previous results in the literature.
We offer two possible explanations for this, both of which likely play a role. Firstly we use data that is
both noisier, and use longer, more sparsely sampled trajectories than previous studies. Additionally in order
to provide a fair comparison across methods, we learn Hg(x), so that there is no restrictions on the set of
Hamiltonians. For mechanical systems, the Hamiltonian can be rewritten in terms of the potential and kinetic
energies, and a NN can be used to represent each term. [Zhong et al. (2019) find that learning the mechanical
Hamiltonian in this way leads to improved performance. We believe it should be possible to modify our
framework to learn the potential and kinetic terms separately using a HGP, and this is an avenue we would
like to pursue in future work.

Suitability of the prior. The performance of the HGP on task 2, is somewhat underwhelming especially
for larger K, relative to NODE. We believe some of this effect can be attributed to our choice of GP prior.
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We use a stationary GP prior, which is likely non-optimal for most Hamiltonian systems, which are typically
nonstationary. The assumption of non-stationarity likely leads to the poor generalisation at new phase space
points, since the GP prior will revert to zero mean functions there, which is not the case for the NN models.
One option to improve the suitability of the GP prior is via the use of specifically designed kernels to represent
symmetries in the system (Ridderbusch et al., [2021)), or kernel structure learning (Kim & Teh, [2018). Another
is to extend our framework and instead represent H with a deep GP prior (Damianou & Lawrence, [2013).
Deep GPs are adept at modelling complex, nonstationary functions, and so would be well suited to the task.
Using the SVI scheme proposed by |Salimbeni & Deisenroth| (2017)) would make integration of deep GPs into
our framework relatively straight forward, and would be interesting to undertake as part of future work.

Control. The present method has significant potential at improving Bayesian online (Deisenroth &
Rasmussen), [2011)) or policy-based RL (Yildiz et al. |2021)) by incorporating Hamiltonian inductive biases.
This requires expanding the model towards Hamiltonian systems with external forces, which relax the energy
conservation assumption.

8 Conclusion

In this work we presented a Gaussian process model to learn Hamiltonian dynamical systems from trajectory
observations. We proposed a parameterisation that combines inducing points and Fourier bases, and introduced
a novel energy-conserving shooting method to allow reliable inference from long data. Our experiments show
strong and stable performance under various learning settings.
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A Variational bound derivations

A.1 Standard bound derivation

We wish to minimise the KL argming KL [gg(u,x0) || p(u,%0[Y)] which corresponds to maximising the
evidence lower bound log p(Y) > F(0,Z), with

p(Y,u,x0)
F(0,2) // (u, %0 log o(,%0) dudxg (31)
bl plso)
// u,xg) log p(Y|u, Xo) () (xo)d dxg (32)
= // q(u, %) log p(Y|u,x¢)dudxg + [ ¢q(u)log Iq)EE; du+/q(x0)log zgzz;du. (33)
Fy Fu Fxq

The ELBO decomposes into three terms,
F=Fy + Fu+ Fx,- (34)
The latter terms are KL divergences,

Fu = —KL[g(u)|[p(u)]
Fxo = — KL[q(x0)|[p(x0)]

which can be computed in closed form, since we use Gaussian priors p and variational approximations ¢ for
both variables. Using the fact that

p(¥hxo) = [ (Y1 0.30) (%) s (35)
= Epw) [p(Y[W, 1, x0)] (36)
we can write

Py = [ [ atwxo) (Y xo)dudxy (37)
= //q(u,xo)long(W) [p(Y|W,u,x0)] dudxg (38)
> Epw) {// q(u,x9) log p(Y|W, u, xq)dudxg (39)
= Ep(W)Eq(u)q(xo) IOg p(Y|€V7 u, XO) (40)

N
= Epwa(uatxo) ) 108 P(¥il W, 1, X0), (41)

i=1
where we applied Jensen’s inequality in line . We can compute this term using Monte Carlo averaging.
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A.2 Shooting bound derivation

We wish to minimise the KL arg ming KL [gq(u, S) || p(u, S|Y)] which corresponds to maximising the evidence

lower bound log p(Y) > F(0,Z), with

F(0,Z) // uSlog ( ))ddS

L
= // q(u,S)log Ep,w) H (yilWw,u,s;) Hp sl|sll,v~v,u)1 dudS
i= 1=1
]:Ys

L
—/q(S) logll:llq(sl)dS—F/Q(SO)lOg Zgzg;dswr/q(u) log Z)Ez;du,

Feo Fu

‘FS

where in the second line we have used the fact that,

p(Y,u,S) = /p(Y,u,S,vV)de
N L
— [ TLptss ) T plsiisicr, . wp(w)asip(wpp(so)
=1 =1

N L
=Epw) |[[p(yilW, u,s10) [ [ psilsi—1, W, w) | p(w)p(so)-
=1 =1

The latter terms in the bound are given by,

.7: ZH Sl

Foo = _KL[q( 0) |[p(s0)]
Fu = —KLg(u) [ p(u)]

(42)

(43)

where H represents the entropy, and each can be computed in closed form, since we again use Gaussian priors

p and variational approximations q. We can decompose the term Fvyy further,

Fyvs = // q(u,S) log Epw)

N L
> Epw) l// q(u,S) long(yi|v~V, u,s;(;)) Hp(sl|sl,1,v~v, u)dudS]
i=1 =1
N
=E,w) [Z // Q(U,S)logp(yz'W,U,Sz(i))dUdSz(i)]
i=1
L
+ Epw) [Z // log p(si|s;—1, W, u)dUdSldSz1]
1=1

L

N L
Hp(yi|v~v, u,s;(;)) Hp(sl|sl_1, W, u)] dudS
i=1 1=1

Ep#)q(u)

i=1 =1

ZE(I(SZU)) [logp(y”vv’ u, Sl(i))} + ZEQ(SZ)Q(SL—l) [Ing(sl‘sl—lv w, u)}

(55)

where we applied Jensen’s inequality in line . We can compute this term using Monte Carlo averaging.

Together the bound is given by,
F =Fvs + Fs + Fsy + Fu.
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A.3 Multiple trajectory variational bounds

To extend the bounds given in Equations and we consider a set of K trajectories;, Y = {Y1,..., Yk},
for ease of notation we assume each trajectory has the same number of points N, and the same observation
times t; € (t1,...,tn), but this is not a limitation of the model itself. Each trajectory will have distinct
initial conditions, so we aim to infer the set Xo = {X1,0,...,XK,0}. We assume the variational posterior over
each initial state factorises, so

K
9(Xo) = [ a(xx.0) HN Xp,0[m,0, Q,0)-
k=1 k=1
Given this factorisation, for the standard HGP model without the shooting approximation, we obtain the
bound
K N K

F(0,2) = Equ)gxo)p(w) | D > 108 p(yhilW, u,x0) | — KL [g(w)[[p(u)] — > KL [q(xx.0)|Ip(xx.0)]. (57)
k=11i=1 k=1

where 6 = (m, Q, {my, 0, Qx,0}). To extented the the shooting HGP to multiple trajectories, we require a
set of shooting states for each trajectory, and aim to infer S = {Sy,...,Sk}, where we assume that each
trajectory has the same number of shooting states L. We again assume that the variational posterior over
the shooting states factorises, so

-

~Tluso- 11

N (skilar, Xk,),

k=1 k=11=0
which leads to the bound
K N
F(0,Z) = Eqg(u)pw) {ZZE (skaey) o8 P(yilW, u,sp133))] (58)
k=1 1i=1
K L
+ Z Z Eq(si.)atsei—1) 108 D(Sk,1|Sk1—1, W, 1)] } (59)
k=1 1=0
K L K
*ZZH[Q(SM ZKL sk,0) || (sk,0)] — KL[g(u) || p(0)],
=1 1=1 =1

where § = (m, Q, {ax;, X, }), and sy ;) represents the last shooting state before time ¢; for trajectory k.

A.4 Model Complexities

The dominant complexity comes from the sampling of inducing points, which is O(M?) due to the requirement
to compute the Cholesky decomposition of the covariance matrix. The number of evaluations of the derivative
function is approximately proportional to the length of the training period 7', meaning that for a D dimensional
system the complexity is O(DT), due to the decoupled sampling of GPs being linear with respect to the
number of inputs. For the shooting model, integration over 7' can be parallelised, leading to a lower runtime.
Large systems are likely to be more complex, and require more inducing points. Therefore, the complexity
with respect to the number of inducing points provides some upper limit on the system size for which we
can obtain good performance, although it is typically possible to use 1000s of inducing points, which would
correspond to very complex Hamiltonians.

B Experiments

B.1 Hamiltonian systems

This section gives further details on the systems used for the experiments. For all systems, we scale the data
so the training points have zero mean and unit variance, and compute metrics on the scaled data, so they are
comparable across systems.
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Fixed Pendulum The fixed pendulum Hamiltonian represents the motion of a frictionless pendulum
rotating about a single axis, under the influence of gravity, with the coordinate ¢ representing the angle of
the pendulum to the vertical, and the coordinate p representing the corresponding angular momentum. We
set m = lkg, r = 1lm and g = 9.81m/s. We sample initial conditions by drawing p,q ~ U(—1,1), and discard
those with energy E > mgr to avoid the pendulum swinging over its pivot. We use a sampling rate of 8Hz
for the training data and 15Hz for the test data.

Spring pendulum The spring pendulum system (Lynchl [2000) is similar to the fixed pendulum, but
additionally models the pendulum shaft as a Hookian spring, which can extend and contract as forces act
upon it. In this system, g; represents the angle of the pendulum to the vertical, g; the extension of the
shaft relative to its resting position, and p; and py are the corresponding angular and linear momentum
respectively. We set m = lkg, r = 3m and g = 9.81m/s, we set the spring constant to k¥ = 10N/m. We
sample initial conditions as q1, g2, p1,p2 ~ U(—0.25,0.25). We use a sampling rate of 6Hz for the training
data, and 10Hz for the test data.

Henon-Heiles system The Henon-Heiles Hamiltonian represents the motion of a star around a galactic
centre, with ¢; and ¢o representing spatial coordinates in the plane and p; and py the corresponding linear
momenta (Henon & Heiles| [1964). We set u = 0.8m~!. We sample initial conditions by first sampling
q1,q2,p1,p2 ~ U(—1,1) and then discarding initial conditions with E > 6% to ensure trajectories stay in the
region of phase space with connected level sets, that is to say the trajectories stay localised after long times,
and do not tend to infinity (Offen & Ober-Blobaum| 2022). We use a sampling rate of 4Hz for the training
data, and 10Hz for the test data.

B.2 Hamiltonian aware initialisation

We form approximate data for the system’s derivative function by computing the numerical deriva-
tives of the trajectory data. For example using the first differences approximation we obtain Y =

(2= ’;23’; - %x:f]\’;’:) € RVX2D e treat Y as observed data for the derivative function f at input

locations Y € RV*2P_ We wish to obtain the mean of the Hamiltonian implied by this data, at the inducing
input locations Z, which we can use to initialise the variational distributions for the inducing variables. Let
vec(Y) € R?VD denote a ‘flattened’ Y, then this mean is given by

m = kyr(Z,Y)Ke(Y,Y) vec(Y) (60)
where ky(Z,Y) € RM*2ND g the matrix from by evaluating the covariance in equation for each pair

of input points, and similarly K¢(Y,Y) € R2VPX2ND jg the covariance in equation evaluated at each
pair of input points.

B.3 Models

This section provides further details on the model setup.

HGP For the HGP model we use the ARD kernel. We use a whitened representation of the inducing
variables u for optimisation. We optimise the variational bound with respect to the variational parameters 6,
and the various hyperparameters of the model: o2 _ the noise variance, the kernel lengthscales and signal
variance, and the inducing input locations. We fix the shooting constraint variance as ag =1x1075, and the
energy constraint variance to O'i =25x1073.

GPODE For the GPODE we mirror the setup of the HGP where possible. We follow Hegde et al.| (2022])
and place independent GP priors over the each component of the derivative function, each with an ARD
kernel and a distinct set of inducing variables. We optimise the variational bound with respect to the same
set of variational parameters and model hyperparameters. We use the same initialisation process for the
inducing variational means as described by Hegde et al.| (2022))

31n practice we estimate derivatives using the gradient function, from the numpy package(Harris et al., 2020)).
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NN models For both the HNN and the NODE we use 3 hidden layers of size 256, with tanh activation.
To train the NN models we form a set of sub-sequences by sliding a window of length 6 samples over the
data, moving the window 1 sample at a time over the training range, e.g. for a single trajectory of length
100, we obtain 100 — 6 = 94 sub-sequences. We take these sub-sequences, shuffle them, and form them into
batches. We train the model by rolling out the NN parameterised derivative function over each sub-sequence
in the batch, using the first value as the initial condition, and optimising the L1 loss with respect to the
training data. We use the Adam optimiser with learning rate 3 x 1073. Because the model is trained on
short sub-sequences, and is unaware that continuity is required between sub-sequences, it is liable to overfit
and produce a solution that performs poorly when integrated over the entire long trajectory. To avoid this,
every 10 epochs we integrate over the entire trajectory from the first point in the training data and compute
the loss, we select the model with the best full trajectory loss after training has proceeded for a fixed number
of iterations. For the experiments on task 1 we use a batch size of 16 and for those on task 2 we use a batch
size of 32.

HGP-Batched in relation to SSGP/SPGP To compare the our energy conserving shooting method
with the training method used in the SSGP and SPGP we re-implement the training method based on short
sub-sequences for our HGP model. The SSGP and SPGP use slightly different schemes, but both use a
method similar to that described in the proceeding paragraph. Short sub-sequences are formed from the full,
long trajectories by sliding a fixed size window over the data. We again shuffle the sub-sequences and form
them into batches. In training, we roll out the model and compute the bound over the short sub sequences
in each batch. This avoids the problem of vanishing/exploding gradients, but means we are optimising the
model on a related but different task. A model can perform well on the short sub trajectories, but poorly
when rolled out over the full trajectory. To avoid overfitting we roll out the model over the full trajectory
after a set number of epochs, and compute the MNLL, selecting the model with the lowest value after a
fixed number of training iterations. For the HGP-Batched model we used a sub sequence size of 6, and a
batch size of 16 for all experiments. Additionally we follow (Ensinger et al., |2022)) and do not learn initial
conditions, but instead use the first data point in each sequence as its initial condition. It should be noted
that [Ensinger et al. (2022)) use a batch size of 1 and different sequence lengths (10-50) for each problem under
consideration. We found that a larger batch size and a shorter sequence length performed better for our
experiments. The procedure for the SSGP differs slightly because [Tanaka et al.| (2022)) only consider task 2,
that is to say learning from multiple trajectories. Instead of rolling out over the full training trajectory for
validation, the authors keep a set of hold out trajectories, which the use to avoid overfitting, this is of course
not applicable in the case of task 1. Additionally [Tanaka et al.| (2022]) a sub sequence length equivalent to
1s of data, which means a different number of points for different systems depending on the sampling rate.
For our implementation of the HGP-Batched model, we attempted to capture the key components of the
methods proposed in the SSGP and the SPGP, and in order to make the comparison as fair as possible chose
settings that provided the best performance on our experiments.

Symplectic integration Symplectic integrators specifically designed for Hamiltonian systems respect the
conservation of the Hamiltonian during forward integration (Ensinger et al.| [2022; [Rath et al., 2021)). This
can lead to improved integration accuracy over long time scales. In our experiments we chose to use the
non-symplectic Runge-Kutta 4/5 method (Dormand & Princel [1980), due to the implementation being easily
available in PyTorch. Our framework does not make any restrictions on the type of solver, and one could
chose to use a symplectic solver if an implementation were available. It should be noted that for the HGP
with shooting the choice of solver has very little effect on the solution learned in training, since integration
is only happening over the very short shooting segments, which means the energy loss within a segment is
negligible, and so a symplectic solver would be of little benefit to the learning algorithm.

B.4 Implementation and hardware
All experiments were run on a MacBook Pro (14-inch, 2021) laptop with M1 Pro chip and 32 GB memory,

using the CPU. We implement the HGP, and baseline models in Python, with the PyTorch framework
(Paszke et al., 2019)). We base our implementation on that of [Hegde et al.| (2022), which is available at
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Figure 9: A sample trajectory showing training and test data, and model predictions for each model for a
single repeat of task 1 on the FP system. For the GPODE and HGP, 32 samples from the model are shown.

https://github.com/hegdepashupati/gaussian-process-odes. We will on releasing the code along with
the camera ready version of the paper if accepted.

C

Additional results

C.1 Trajectory plots

Figures [9] [[0] and [TT] show the data and model predictions for the FP, SP and HH systems respectively, for
one repeat of the results shown in Table [l These plots are additionally shown in animation form in the
supplementary material. Note that the animations show the noise free data for the training period, not the
noisy data shown in the plots.

C.2 Mean results tables

Tables [4] and [5] show the equivalent of tables [I] and [3] but with means and standard errors, as opposed to the
median and interquartile range shown in the main text.

State RMSE ({) State MNLL ({) Energy RMSE ({)
Method FP HH SP FP HH SP FP HH SP
NODE 0.16 (0.03) 0.48 (0.08) 1.04 (0.19) - - - 0.33 (0.08) 0.02 (0.00) 1.67 (0.72)
HNN 0.38 (0.14)  1.49 (0.11) 1.40 (0.06) - - - 0.39 (0.09) 0.07 (0.02) 1.05 (0.11)
GPODE  0.32 (0.08) 0.65 (0.13) 1.06 (0.22) 0.77 (0.69) 2.86 (1.11) 4.31 (1.54) 0.37 (0.09) 0.02 (0.00) 3.34 (1.78)
HGP 0.23 (0.04) 0.50 (0.11) 0.56 (0.09) 0.04 (0.20) 1.63 (0.89) 1.64 (0.55) 0.31 (0.08) 0.01 (0.00) 0.80 (0.08)

Table 4: Performance comparison of different methods on each system on the trajectory forecasting task.

Table shows mean and standard error over 10 repeats, for the same data as in Table

State RMSE ({)

State MNLL ({)

Energy RMSE ({)

Method FP HH SP FP HH Sp FP HH SP
NODE 047 (0.03) 118 (0.04) 1.05 (0.13) - - - 0.27 (0.03)  0.03 (0.00) 1.26 (0.18)
HNN 0.88 (0.12) 1.42 (0.12) 1.20 (0.07) - - - 0.43 (0.19)  0.02 (0.01) 1.53 (0.73)
GPODE 248 (0.41) 3.50 (0.26) 3.38 (0.27) 856 (1.76) 18.38 (2.55) 11.07 (1.89) 4.67 (2.21) 1.42 (0.44) 3.1x107 (3.0x107)
HGP 1.33 (0.13) 1.39 (0.13) 149 (0.11) 583 (1.23) 7.96 (0.69)  6.15 (0.31)  0.80 (0.41) 0.02 (0.00) 6.06 (2.52)

Table 5: Performance comparison of different methods on the initial condition extrapolation task, with K =
trajectories. Table shows mean and standard error over 10 repeats, for the same data as in Table E}
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Figure 10: A sample trajectory showing training and test data, and model predictions for each model for a
single repeat of task 1 on the SP system. For the GPODE and HGP, 32 samples from the model are shown.
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Figure 11: A sample trajectory showing training and test data, and model predictions for each model for a
single repeat of task 1 on the HH system. For the GPODE and HGP, 32 samples from the model are shown.
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C.3 Comparison with SSGP

In this section we provide a comparsion with the SSGP model of [Tanaka et al.|(2022). The implementation
of the SSGP provide by the authors only works for systems with D = 1, and is non-trivial to reimplement, so
we are only able to obtain comparisons on the toy FP system. For the SSGP we used the same settings as
Tanaka et al.| (2022]) throughout.

Method  State RMSE (|) State MNLL (|) Energy RMSE ()

NODE 0.12 (0.12) - 0.30 (0.28)
HNN 0.20 (0. )) 0.34 (0.33)
GPODE 0.23 (0.26) -0. 03 1 21) 0.38 (0.34)
HGP-ES 0.18 (0.19) -0.21 (0.67) 0.25 (0.42)
SSGP 1.49 (0.39) 1.50 (0. ’ll 0.23 (0.32)

Table 6: Performance comparison with the SSGP on the trajectory forecasting task for the FP system.

Table [6] shows the results of the SSGP on task 1. As expected, the SSGP model performs poorly on the
trajectory forecasting task, which mirrors our findings in our comparison with the HGP-Batched model,
discussed in section [6.3] In terms of both RMSE and MNLL performance the HGP produces considerable
better results. On this task the best model is the NODE, which gives slightly better results than the HGP.

Method State RMSE (}) State MNLL () Energy RMSE (|)
NODE 0.48 (0.15) - 0.26 (0.06)
HNN 0.91 (0.47) - 0,25w1b.\31
GPODE 2.41 (2.28) 7.11 (8.22) 6.17 | l
HGP-ES 1.41 (0.46) 4.68 (2.95) 0.55 (0.60)
HGP-Batched 0.54 (0.31) 0.66 (0.51) 0.10 (0.03)
SSGP 0.75 (0.50) 0.89 (0.37) 0.13 (0.03)

Table 7: Performance comparison with the SSGP on the initial condition extrapolation task with K = 8
trajectories for the FP system.

Table [7] shows the results of the SSGP on task 2. The SSGP model performs well for task 2 in comparison
to the HGP-ES, which is perhaps not surprising given that this is the task that SSGP focused on (D =1,
multiple trajectories). The SSGP performs considerably worse than NODE in terms of state RMSE, although
in terms of energy RMSE it provides a good result. In order to determine the cause of the performance
difference between SSGP and HGP-ES we also ran the HGP model with batching. We found the HGP-Batched
provided better performance than the SSGP and HGP-ES on this task. This indicates that the performance
difference between the HGP-ES and the SSGP on task 2 can be attributed to the use of batching as opposed
to shooting inference, and implies that the other differences between the models (inference via inducing
points vs RFFs, inferring the initial conditions, Hamiltonian aware initialisation) have a positive effect on
performance, since the HGP-batched provides better results than the SSGP

Overall these results show that for systems with D = 1, the HGP with shooting provides significantly better
trajectory forecasting performance, whereas the batching-based inference provides better extrapolation to
new initial conditions, from a given set of initial conditions. The results for task 2 show that shooting
based inference is likely non-optimal for the problem of trajectory extrapolation with multiple trajectories.
Fitting multiple trajectories jointly is a more difficult optimisation problem, since the inducing points must
be effectively distributed over a larger area of phase space. Adding the shooting objectives for this problem
narrows down the space of feasible solutions and makes the optimisation problem more difficult, making it
harder to find a good solution. We plan to investigate this effect further as part of future work.

C.4 Investigating FP performance

On the FP system the HGP performs worse than the neural network baseline on both tasks 1 and 2, while
this does not hold for systems HH and SP. To investigate this phenomenon, we run extended experiments of
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Figure 12: Effect of different variables on model performance for the FP system on task 1.

the FP system to see if the performance of the HGP is improved. We vary (i) data density, (ii) number of
inducing points, and (iii) number of random Fourier basis functions.

The results for task 1 are shown in Figure We can see that increasing the data density provides
a small improvement in the results for both the NODE and HGP, and seems to have a little effect on
performance for the HNN and GPODE. Increasing the number of inducing points and basis functions
does not effect performance significantly for the HGP.

The results for task 2 are shown in Figure [[3] Figure [[3a] shows that increasing the data density for task 2
has a small positive effect on RMSE performance for the GP based models, and no significant effect for the
NN based models. The effect on MNLL performance is not significant. Increasing the number of inducing
points and basis functions again does not have a noticeable effect on the performance for the HGP.

These results do not suggest the density, number of basis functions, or number of inducing points is the cause
for the poor relative performance of the GP models on task 2. We believe that the poor performance on task

2 is caused by the shooting bound being non optimal in the case of multiple trajectory inference as discussed
in Section
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