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Abstract
PyG (PyTorch Geometric) has evolved significantly since its initial

release, establishing itself as a leading framework for Graph Neural

Networks. In this paper, we present PyG 2.0, a comprehen-

sive update that introduces substantial improvements in scalability

and real-world application capabilities. We detail the framework’s

enhanced architecture, including support for heterogeneous and

temporal graphs, scalable feature/graph stores, and various opti-

mizations, enabling researchers and practitioners to tackle large-

scale graph learning problems efficiently. Over the recent years,

PyG has been supporting graph learning in a large variety of ap-

plication areas, which we will summarize, while providing a deep

dive into the important areas of relational deep learning and large

language modeling.

CCS Concepts
• Computing methodologies → Machine learning; • Informa-
tion systems;
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1 Introduction
Graph Neural Networks (GNNs) have emerged as powerful tools for

learning on ubiquitous graph-structured data. From social networks,

knowledge bases, relational databases, to spatial graphs describing

molecular structures, 3D scenes or objects, graphs are used to store

most of the world’s data. Since 2019, PyG (PyTorch Geometric) [28]
has been an important cornerstone in advancing deep learning on

all these different types of graphs (cf. Sec. 3 for a summary). PyG

introduced a general message passing scheme that allows for a
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flexible formulation of Graph Neural Networks. This is achieved

by decomposing neural message passing [34] into message, aggre-

gation, and update functions that can be customized to create

various types of graph-based operators, thus supporting a broad

range of models in a unified framework, which can automatically

be mapped onto GPUs.

In the early years, most applied research around Graph Neural

Networks revolved around finding the best operators to solve small-

scale benchmark tasks, such as node classification on the Cora cita-

tion graph [49, 77, 86], the graph-based equivalent to MNIST [22].

Since then, the field of graph learning has rapidly evolved, strongly

supported and driven by advancements in infrastructure provided

by PyG. GNNs can now be trained efficiently on web-scale, hetero-

geneous, temporal and multi-modal graphs, are explainable, and

easily deployable for a wide range of practical applications. PyG has

evolved into a comprehensive blueprint for end-to-end graph-based

machine learning, enabling these functionalities.

In this work, we present the design principles and architectural

decisions behind PyG, beginning with the foundational changes

introduced in PyG 2.0 and extending through its continuous evolu-

tion to the current state of the library. PyG 2.0 marked a significant

milestone in the library’s development over three years ago, this

paper encompasses the full trajectory of improvements and inno-

vations that have been integrated into PyG up to its most recent

version. We focus on the following three core aspects that have

been refined and expanded throughout this evolution:

• Heterogeneity. Real world graphs have diverse node and edge

types. PyG natively supports heterogeneous graph data types

and message passing, as well as functionality for learning on

temporal graphs.

• Scaling and Efficiency. Many use cases of graph learning have

massive graphs (∼ 10 billion nodes), which need to be supported

through optimized loading and training APIs. To this end, we

present novel distributed processing capabilities, efficient data

formats, loaders, and samplers, accelerated message passing, and

compilation mechanisms.

• Explainability. Understanding how a model arrives at its de-

cision is crucial in several domains and often required for trust

in deep learning models deployed in practice. We discuss ex-

plainability in the heterogeneous graph learning setting and

describe our plug-and-play method to make any GNN within

PyG explainable out-of-the-box.

Graph learning powered by PyG has made an impact in a wide

range of practical fields. To showcase its generality, we also provide

an overview of applications in chemistry, material design, computer

vision, weather, and traffic forecasting. Moreover, we deep-dive into

two specific application areas: GNN (and PyG) integration in Large

Language Models [40] and Relational Deep Learning [27].
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2 PyG 2.0: End-to-End Graph Learning
In this section, we describe the building blocks that assemble the

blueprint for end-to-end graph learning with PyG. We begin by

providing an overview of all discussions in Sec. 2.1. Then, the sub-

sequent sections outline the individual components in more de-

tail, such as implementation aspects of our heterogeneous neural

framework in Sec. 2.2, scaling to real world graphs in Sec. 2.3, and

post-processing capabilities, e.g., via explainability, in Sec. 2.4.

2.1 Framework Overview
PyG is a library built upon PyTorch [68] to easily write and train

Graph Neural Networks for a wide range of applications related to

structured data. It utilizes a tensor-centric API, i.e. it exclusively
operates on tensor-like data to define feature representations, graph

structures and neural building blocks, and thus offers an intuitive

experience which facilitates straightforward integration within

the broader PyTorch ecosystem. This design principle allows PyG

to keep up-to-date with advances of its core, e.g., nested tensors
1

for handling heterogeneous data of varying size, TorchScript2

for model serialization and deployment, torch.fx [71] for model

transformations, or torch.compile3 for model optimization via

Just-In-Time (JIT) compilation. PyG leverages vectorized opera-

tions throughout its pipeline to maximize efficiency. In cases where

vectorization is not feasible—such as during graph sampling—we

provide specialized C++ and CUDA kernels via our external (but

optional) low-level pyg-lib package.
Figure 1 illustrates the comprehensive architecture of PyG, high-

lighting itsmodular and plug-and-play design. The system is broadly

organized into three main components: (1) graph infrastructure, (2)
a neural framework, and (3) post-processing routines. The graph
infrastructure (cf. Sec. 2.3) manages the lifecycle of (heterogeneous

and temporal) graph data, supporting multi-modal feature pro-

cessing, graph conversions, multi-threaded graph samplers, and

distributed training. The neural framework (cf. Sec. 2.2) builds upon
this data pipeline to define core interfaces and implementations for

graph learning. It offers efficient support for (heterogeneous) mes-

sage passing, sparse aggregation operations, GPU acceleration, and

model compilation. Finally, post-processing (cf. Sec. 2.4) routines
operate on the output of graph-based models to generate explana-

tions, compute evaluation metrics, or perform 𝑘-nearest neighbor

searches.

PyG’s design offers flexibility via standardized interfaces through-

out the full end-to-end pipeline. One can easily swap components

independently—transitioning from in-memory storage to databases,

changing sampling strategies, or updating model architectures—all

without disrupting other parts of the system. The same interfaces

work consistently whether we are handling small graphs or mas-

sive networks. This architecture makes PyG particularly research-

friendly, as it enables easy experimentation with novel techniques

at any stage of the pipeline.

1torch.nested: https://pytorch.org/tutorials/prototype/nestedtensor
2TorchScript: https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial
3torch.compile: https://pytorch.org/tutorials/intermediate/torch_compile_tutorial

2.2 Neural Framework
Message Passing Graph Neural Networks (MP-GNNs) [28, 34] are
a generic framework to define a wide range of graph-based deep

learning architectures. Given a graph 𝐺 = (V, E) with input node

embeddings {h(0)𝑣 }𝑣∈V and edge embeddings {e(𝑣,𝑤 ) } (𝑣,𝑤 ) ∈E , a
single neural message passing step updates the node features by

h(ℓ+1)𝑣 = 𝑓

(
h(ℓ )𝑣 ,

{{
𝑔

(
h(ℓ )𝑤 , e(𝑤,𝑣) , h

(ℓ )
𝑣

)
| 𝑤 ∈ N (𝑣)

}})
, (1)

where 𝑓 and 𝑔 are differentiable, optimizable functions and {{·}}
a permutation invariant set aggregator, such as mean, max, sum.

PyG automatically maps all implementations of the framework effi-

ciently to GPUs by alternating between parallelization over edges

(function 𝑔) and nodes (function 𝑓 ). Almost all recently proposed

GNN operators can be mapped to this interface, including (but not

limited to) the methods already integrated into PyG [21, 34, 37, 49,

86, and many others].

Accelerated Message Passing. As the primary operation in GNNs,

message passing becomes a performance bottleneck, making its

efficiency essential. Within the first iteration of PyG, message pass-

ing was implemented by explicitly materializing (h(ℓ )𝑤 , e(𝑤,𝑣) , h
(ℓ )
𝑣 )

into edge-level space, followed by an aggregation into node-level

space using atomic operations [28]. While easy to implement and

effective to parallelize, memory requirements can become a bottle-

neck on denser graphs.

With PyG 2.0, we introduce a new and unified way to acceler-

ate message passing, leading to less memory-bottlenecked GNN

workflows while preserving full backward compatibility. In order

to achieve this, we introduce the EdgeIndex tensor, which holds

pair-wise source and destination node indices in sparse Coordinate

Format (COO) of shape {1, . . . , |V|}2×|E |
. EdgeIndex sub-classes

a general torch.Tensor, and thus preserves the ease-of-use of reg-
ular COO-based PyG workflows. However, it can hold additional

(meta)data, e.g., its sort order (if present) or whether edges are
undirected. Furthermore, it introduces a caching mechanism for

fast conversion to Compressed Sparse Row (CSR) or Compressed

Sparse Column (CSC) sparse formats. Caches are filled based on

demand, and are maintained and adjusted over its lifespan. As a

result, message passing in PyG can now rely on this (meta)data

information to choose the optimal message passing computation

path: First, if the EdgeIndex is sorted by row or column, we can

efficiently leverage sparse matrix multiplications (SpMMs) [94] and

segmented aggregations in GNN layers. This ordering enhances

data locality, reduces memory requirements, and enables greater

parallelism on GPUs. Second, for repeated GNN layer execution,

caching the graph’s CSC and CSR formats significantly reduces

overhead during the backward pass. Without this cache, computing

the transposed adjacency matrix A⊤
—derived from the edge set

E—would be repeatedly required. Finally, for undirected graphs

where A = A⊤
, caching the CSR format becomes unnecessary,

further saving memory and computation.

Aggregations as a First-Class Principle. One of the most critical

components of GNNs is the choice of the aggregation function. It

may account for symmetry, invariance [7, 10], and the expressive

power [19, 93] of GNNs to capture different types of properties of

graphs. Other works [37, 55, 99] empirically show that the choice

2
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Figure 1: Architectural overview of PyG 2.0: The system’s modular design allows to swap out any component without affecting
other parts of the pipeline. For example, one can seamlessly change the FeatureStore from in-memory to distributed key-value
storage without modifying the DataLoader or model parts. This plug-and-play approach extends throughout the framework—
from storage implementations to sampling strategies and explainers. The core neural framework incorporates multiple
performance optimizations includingGPU accelerations, heterogeneous processing andmodel compilation techniques, ensuring
efficient GNN training even on large-scale, heterogeneous and temporal graphs.

of aggregation function is crucial to the performance of GNNs, and

even utilize multiple aggregations [19, 83] or learnable aggrega-

tions [55] to obtain substantial improvements.

Inspired by this work, we made the concept of aggregation a

first-class principle in PyG 2.0, which allows users to easily plug-

and-play with all kinds of aggregations—from simple ones (e.g.,
mean, max, sum) to advanced ones (e.g., median, variance, stan-

dard deviation), learnable ones [55], and unconventional ones (e.g.,
via LSTMs [37] or equilibrium [6])—which can be also seamlessly

stacked together [19, 83]. Unifying the concept of aggregation helps

us to perform optimization and specialized implementations in a

single place, which can be utilized within both message passing

and global readouts.

Heterogeneous Message Passing. PyG 2.0 introduces enhanced

support for heterogeneous graphs, allowing seamless handling of

multiple node and edge types. This capability is essential for real-

world applications where graphs naturally contain different types

of entities and relationships.

Formally, a heterogeneous graph is a graph G = (V, E, 𝜙,𝜓 ),
where each node 𝑣 ∈ V and edge 𝑒 ∈ E corresponds to a type

𝜙 (𝑣) : V → T and 𝜓 (𝑒) : E → R, respectively. Then, heteroge-
neous message passing [42, 74] is a nested version of Eq. (1), adding

an aggregation over all incoming edge types to learn distinct mes-

sages for each node type. Heterogeneity is natively supported by

PyG 2.0. It provides heterogeneous data types, transformations,

graph samplers, and can automatically turn any message passing

GNN into a heterogeneous variant. This is achieved via a custom

torch.fx [71] transformation, which takes in a homogeneous GNN,

replicates its GNN layers for every edge type in R, and then trans-

forms its computation graph to perform bipartite message passing

over every edge type, followed by a custom aggregation to bundle

messages pointing to the same destination node type.

Themain challenge to efficiently implement heterogeneous GNNs

lies in the varying number of nodes that belong to each node type

𝑇 ∈ T , i.e. node features can be understood as a set {H(ℓ )
𝑇

}𝑇 ∈T ,

H(ℓ )
𝑇

∈ R𝑁𝑇 ×𝐹
, where the number of nodes 𝑁𝑇 may vary for each

node type. In cases of dedicated heterogeneous GNN instantia-

tions [42, 62, 89], PyG leverages grouped and segmented matrix

multiplications to implement parallel projections across node/edge

types efficiently. Such re-occurring operation in heterogeneous

message passing is defined as {H(ℓ )
𝑇

W(ℓ )
𝑇

}𝑇 ∈T based on the three-

dimensional weight tensor W(ℓ ) ∈ R |𝑇 |×𝐹×𝐹 ′
, and requires both

backward implementations w.r.t H(ℓ )
𝑇

and W(ℓ )
. Internally, we im-

plement both forward and backward passes using high-performance

libraries such as CUTLASS [85].

Model Compilation. PyTorch’s eager mode excels during the de-

velopment and debugging phase of model design. However, in

production, performance—both in terms of speed and memory effi-

ciency—becomes a top priority. PyG 2.0 supports kernel fusion via

torch.compile, enabling end-to-end compilation without graph

breaks. This allows multiple operations—including sparse com-

putations and feature transformations—to be fused into a single,

highly optimized kernel. As a result, memory access and kernel

launch overheads are minimized, making message passing signif-

icantly faster, especially for deeper or wider GNNs. In order to

support torch.compile within the irregular input workflows of

PyG to full efficiency, we have revisited our entire code base to (1)
avoid graph breaks and (2) remove any device synchronizations.

Our MessagePassing interface supports torch.compile out-of-

the-box, without any user adjustments required. On average, we

observe 2-3x speedup in runtime while maintaining predictive ac-

curacy, cf. Table 1.

Graph Transformers. Aligned with recent advances in graph ma-

chine learning, PyG 2.0 integrates state-of-the-art Graph Trans-
former architectures [17, 48, 70, 79, 92] into its package, applicable

for learning on both many small graphs and single large graphs. Po-

sitional encodings, which capture graph topology, can be computed

3
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Optimization GIN GraphSAGE EdgeCNN GCN GAT

Eager (baseline) 9.56 9.45 98.51 19.73 29.72

compile 2.86 2.79 58.12 4.62 8.32

compile + Trim 1.98 1.96 23.11 5.86 7.93

Table 1: Forward and backward pass runtime (milliseconds)
across different GNN architectures. The baseline uses default
eager mode without compilation. Compilation provides 2–
3× speedup. Compilation+trimming achieves 4–5× speedup.
Benchmarks generated using this script

either during pre-processing or dynamically at runtime. These

models are built on unified interfaces and seamlessly incorporate

components from traditional GNN workflows.

2.3 Scalable Graph Infrastructure
Real-world graphs come in various shapes and sizes, and there is a

growing interest in scaling GNNs to graphs with billions of nodes

and multi-thousand-dimensional features. Such large-scale data is

typically stored in external systems, e.g., embedded databases—with

growing interest in using frameworks like PyG to support mini-

batch GNN training directly on top of these storage platforms.

To meet this need, PyG 2.0 introduces new FeatureStore and
GraphStore remote backend interfaces that enable seamless inter-

operability with custom storage, all while maintaining the familiar-

ity of the PyG training loop and core PyTorch abstractions.

For large or distributed graphs, in which node features and edge

indices are stored in custom locations, users are only required to

implement the relevant methods within the remote backend inter-

face; the rest of the training loop looks identical to an in-memory

implementation, and any distributed communication required is

handled transparently by PyG.

Support for custom feature and graph storages in PyG 2.0 is en-

abled by defining a clear separation of concerns within the library.

Concretely, the data loading loop is segmented into three compo-

nents: a feature store, a graph store, and a graph sampler, cf. Figure 1.
The data loader calls the graph sampler with a set of seed nodes,

which performs graph sampling on the graph store and returns a

set of subgraph structures. The data loader subsequently requests

the features of sampled nodes and edges from the feature store,

and joins the features with the sampled subgraph to construct a

PyG mini-batch object that can be directly used within its neural

framework. Users that define custom feature handling are only re-

quired to specify the implementation of the get operation on their

feature backend, and users that define custom graph handling are

required to specify how sampling is performed against their graph

representation. As a result, while the graph and feature stores can

be independently partitioned, replicated, and stored in optimized

formats, the training loop can operate oblivious to these details.

These abstractions are also foundational to the in-memory stor-

age formats used in PyG. Specifically, both Data and HeteroData
classes in PyG inherit from the FeatureStore and GraphStore in-

terfaces, providing a unified mechanism for retrieving mini-batches

from any type of data storage throughout the whole code base.

Efficient Subgraph Sampling. Subgraph sampling [1, 12, 14, 18,

30, 37, 42, 44, 59, 102, 103, 106] is a common technique used to

scale graph learning to large graphs. Instead of aggregating mes-

sages from all neighbors, only a subset of neighbors up to 𝑘-hops

are sampled for each node of interest. This reduces memory and

computational cost, making mini-batch training feasible even on

billion-scale graphs.

Despite its advantages, subgraph sampling can be inefficient if

implemented naively. Pure Python-based implementations suffer

from interpreter overhead and are constrained by the Global In-

terpreter Lock (GIL). To mitigate these issues, PyG introduces a

high-performance custom C++ homogeneous and heterogeneous

subgraph sampling pipeline that supports multi-threading both

across edge types and across data loader workers. The underlying

implementation is highly flexible to support different needs: Users

can seamlessly move between disjoint or intersecting subgraphs

within a mini-batch, and can tune the output to be either directional

or bi-directional (e.g., in order to implement deep GNNs on shallow

subgraphs [1, 102]).

Unlike other GNN libraries that return layer-wise 1-hop sub-

graphs for neighbor sampling [87], PyG produces a single multi-hop

subgraph. This design enables seamless transitions between full-

batch and mini-batch training, supports interchangeable graph sam-

pling strategies, and promotes a clean separation between model

architecture and data loading, making the overall workflow more

modular and flexible.

Trim. However, in some scenarios, this flexibility comes at the

cost of performance, as the model cannot exploit special character-

istics of the underlying data loading routine. One such limitation

is that a GNN trained on a Breadth First Search (BFS)-generated

subgraph learns representations for all nodes at all depths of the
network, although nodes sampled in later hops do not contribute

to the representations of seed nodes in later GNN layers anymore,

thus performing redundant computation. To maximize efficiency,

we introduce a layer-wise pruning mechanism which progressively

trims the adjacency matrix of the returned subgraph. This progres-

sive trimming is done by simply slicing the adjacency and feature

matrices according to the BFS ordering on-the-fly, ensuring zero-

copying throughout the process. This approach combined with

model compilation leads to a 4-5x speed up, cf. Table 1.

Temporal Subgraph Sampling. PyG 2.0 supports both temporal
homogeneous and heterogeneous graphs as part of its subsampling

routines [27, 90]. Temporal subgraph sampling in PyG enables

seamless traversal of dynamic graphs over time, allowing to extract

(sub)graph snapshots at any point in time.

Given a seed node 𝑣 and a seed timestamp 𝑡 , the resulting 𝑘-

hop subgraph 𝐺≤𝑡
𝑘

[𝑣] around node 𝑣 is constructed such that all

included nodes and edges respect temporal constraints—specifically,

they must have appeared at or before timestamp 𝑡 . This ensures

the subgraph contains no future information, thereby preventing

temporal leakage. For node and edge types lacking timestamps (e.g.,
institutions or locations), sampling is performed without applying

temporal constraints.

A variety of temporal sampling strategies are supported, includ-

ing uniform sampling, sampling the most recent 𝑘 nodes or edges,

and annealing-based strategies that gradually bias sampling to-

ward more recent elements. Within each mini-batch, the sampled

4
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subgraphs are guaranteed to be disjoint, permitting different seed

timestamps across samples while maintaining temporal consistency.

cuGraph Integration. Based on our FeatureStore and Graph-
Store abstractions, we enabled end-to-end GPU-accelerated PyG

workflows via cuGraph integration. The cuGraph<>PyG exten-

sion, part of the NVIDIA RAPIDS [64] framework, is built upon

cuGraph [63] for GPU-accelerated graph analytics and sampling,

and WholeGraph [95, 96] for GPU-accelerated distributed tensor

and embedding storage. This enables 2x-8x data loading speed-

ups with minimal code change, even for single-GPU workflows,

and can be easily extended to multi-node multi-GPU setups. All

workflows benefit from a fast bulk sampling process on the GPU,

which generates samples for as many batches as possible in parallel.

Then, during the feature fetching stage, WholeGraph allows fea-

tures to be distributed across workers efficiently, which minimizes

synchronization overhead, reduces memory transfers, and removes

redundant data copies. Through cuGraph<>PyG, it is possible to

achieve linear scaling when stacking additional GPUs.

2.4 Explainability
Explainability of machine learning models has become increas-

ingly important for a range of reasons, including trust, regulatory

compliance, security, and ease of debugging. Unlike traditional ma-

chine learning models, GNNs operate over irregular and relational

data structures, making their decision-making processes inherently

more difficult to interpret—particularly when it comes to under-

standing both feature and structural influence.

PyG 2.0 provides comprehensive support for explaining (hetero-

geneous) GNNs through its universal Explainer interface (cf. Fig-
ure 2). The Explainer class acts as a bridge between user-defined

GNNs, explanation algorithms, and graph data, to generate attribu-

tions that signify the importance of nodes, edges, and features in the

model’s decision-making process. Formally, given a GNN : G → Y,

mapping an input graph to a prediction, we seek to find attributions

AV ∈ R |V |×𝐹
and aE ∈ R | E |

that identify the contribution of an

individual input feature in H(0)
and E, respectively.

To generate structural explanations aE of non-differentiable in-

puts E, the Explainer module temporarily alters the internal mes-

sage passing process of Eq. (1) in PyG GNNs by enabling customiza-

tion of messages through a callback mechanism 𝑐 : R | E |×𝐹 →
R | E |×𝐹

, i.e.

h(ℓ+1)𝑣 = 𝑓

(
h(ℓ )𝑣 ,

{{
𝑐

(
𝑔

(
h(ℓ )𝑤 , e(𝑤,𝑣) , h

(ℓ )
𝑣

))
| 𝑤 ∈ N (𝑣)

}})
.

This callback allows, e.g., to introduce perturbations, to apply edge-

level masks that weight incoming messages, or to capture internal

attention coefficients. Afterwards, the explanation algorithm as-

sesses how these modifications affect the model’s predictions or

align with ground-truth data [3]. Such callback mechanism is appli-

cable both in homogeneous and heterogeneous GNNs. In explana-

tion mode, message passing falls back to edge-level materialization

(c.f. Sec. 2.2) in order to uniformly inject 𝑐 across all edges.

With this modular design, researchers only need to focus on the

real challenge of building new and improved explainer algorithms,

while the data flow, visualizations and evaluation protocols [2, 3]

(e.g., fidelity or unfaithfulness) are handled by the PyG framework.

Input
Features

Adjacency
Matrix

Mask
Generation
Algorithm

Feature Mask
0.70.9 0.3

Edge Mask

0.6

0.9
0.4

0.3

Node Mask
0.6 0.9 0.1 0.2

× GNN

Prediction
Objective Function

Figure 2: Exemplary illustration of a GNN explainer in PyG:
The explainer generates node-level and edge-level masks,
which are multiplied within the GNN to weigh node features
and message passing edges. The masks are optimized via an
objective function to preserve only necessary information.

Captum Integration. While PyG supports a variety of proposed

graph-specific explainer modules [58, 75, 98], it also provides a di-

rect connection to Captum [51], a general-purpose explainability

library for PyTorch. Captum offers a wide range of out-of-the-box

explainers, such as saliency [80], integrated gradients [82], guided

backpropagation [81], or deconvolution [101]. While Captum is

effective for various data modalities like vision and text, its direct

application to GNNs presents challenges due to non-differentiable

inputs E. As a consequence, our CaptumExplainermodule builds a

wrapper around any (heterogeneous) PyG GNN such that only the

node features and an edge-level soft mask (initialized with ones) are

required as input arguments. Internally, the edge-level soft mask

is then attached to reweigh messages in every GNN layer via the

callback mechanism 𝑐 . This effectively makes all inputs to the GNN

differentiable, which can now be utilized by Captum to explain

both feature information and structural properties via its large set

of gradient-based explainer modules.

3 Applications: PyG 2.0 in Action
We now provide an overview of applications powered by PyG,

with a special focus on Relational Deep Learning (Sec. 3.1) and

integration in Large Language Models (Sec. 3.2). Last, we provide a

wider overview of further applications and the ecosystem (Sec. 3.3).

3.1 Relational Deep Learning
PyG’s support for heterogeneous temporal graphs enables its use

for Relational Deep Learning (RDL) [27], offering a modern deep

learning alternative to traditional feature-based approaches for

learning on raw relational databases. In RDL, relational data is

represented as a graph, where each entity denotes a node, and the

primary-foreign key links between entities define the edges.

PyG supports the full end-to-end RDL blueprint, which covers

(1) handling of multi-modal data, (2) querying historical subgraphs
based on the contents of a training table, and (3) recommender sys-
tem support. For handling multi-modal data, we integrated support

for PyTorch Frame [41] into feature fetching capabilities of our
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FeatureStore. That is, we allow nodes to hold multi-modal data ac-

cording to their semantic type (e.g., numericals, (multi-)categoricals,

timestamps, free text), stored in a TensorFrame [41]. Afterwards,
we can combine existing table-encoding algorithms [4, 13, 15, 35, 45]

from deep tabular learning jointly with GNN message passing al-

gorithms for cross-table information exchange (cf. Figure 3).
Furthermore, RDL requires flexibility as part of data loading

routines, where seed nodes, their timestamps, and corresponding

labels are defined externally via a training table. To accommodate

this, PyG 2.0 enables subgraph samplers to iterate over externally

specified seed nodes and timestamps, extracting subgraphs cen-

tered around the appropriate node types. Ground-truth labels and

other training table metadata can be dynamically attached to these

subgraphs through the concept of transforms, which allow cus-

tomization into the feature fetching pipeline.

Finally, PyG 2.0 offers full support for GNN-based recommender

systems, including efficient Maximum Inner Product Search (MIPS)
via the FAISS library [24], as well as mini-batch-compatible re-

trieval metrics (e.g., map@k or ndcg@k), implemented according to

torchmetrics [23] standards. This elevates link prediction GNNs

beyond the conventional binary classification paradigm—restricted

to pre-defined candidate pairs—into realistic recommendation sce-

narios where candidate items are not known a priori.

3.2 Integration in Large Language Models
PyG contributes to the LLM domain in two different ways: (1)
it provides examples how to utilize LLM embeddings as part of

text-attributed graphs [16, 39, 88] in graph learning, and (2) by
supporting various techniques for Retrieval Augmented Generation
(RAG) [54], as detailed in the following.

RAG enables LLMs to incorporate document databases as con-

textual knowledge sources. To capture the underlying structure of

these databases, models such as GNNs and Graph Transformers

are used to enhance the LLMs’ ability to reason over relational

and topological information—a technique commonly referred to as

GraphRAG [25].

GraphRAG starts with a natural language query, which is used

to retrieve a relevant contextual subgraph from a larger knowledge

graph database. This subgraph is then encoded using a GNN, and

the resulting node embeddings are aggregated and projected into

the LLM’s embedding space. PyG supports this retrieval workflow

through extensions to its FeatureStore and GraphStore abstrac-
tions. The interface is fully customizable and can be adapted to

domain-specific retrieval strategies, cf. Figure 4.
The full GNN+LLM generator pipeline in PyG is enabled via the

G-Retriever model [40] which allows any combination of a PyG

GNN with a HuggingFace LLM [91]. Notably, the addition of GNNs

provides a 2x increase in accuracy over pure LLM baselines [78],

improving from 16% (LLM-based Agentic RAG) to 32% (GNN+LLM-

based Graph RAG) accuracy.

Furthermore, PyG provides the TXT2KG class, an easy-to-use

interface to convert unstructured text datasets into a knowledge

graph via parsing and prompt engineering.

Users Data Frame Items Data Frame

Tensor Frame Dict
dict[table, dict[stype, Tensor]]

Numerical Categorical Numerical Categorical

Semantic Type Encodings

Cell Encodings

Row Encodings

GNN Encodings

t1

t2

t3

Figure 3: End-to-end Relational Deep Learning on multi-
modal and multi-table data with PyTorch Frame and PyG:
Every row in each table is encoded individually using tabu-
lar deep learning algorithms. Afterwards, message passing
GNNs can be applied to exchange cross-table information.

3.3 Others Application Areas
In recent years, PyG has been applied in a large variety of further

application areas. In the following, we highlight a few important

examples that showcase the wide range of applicability.

Chemistry. Graph neural networks and efficient GPU imple-

mentations such as PyG have been largely successful in chem-

istry [33, 67]. PyG has been used for drug discovery by combining

GNN models with chemical foundation models [5]. Research in-

frastructure for material discovery with GNNs has been built on

top of PyG [32] opening applications of GNNs for surface material

property prediction [60].

Large Spatial Graphs. Due to a large amount of data on connected

nodes, PyG enables data-driven weather forecasting, as demon-

strated by research in probabilistic weather forecasting [65, 66]. It

was adopted by researchers from the European Centre for Medium-

Range Weather Forecasts (ECMWF) to built a data-driven weather
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Natural
Language

Query

Retrieve
Subgraph
Context

GNN
Encoder

LLM
Encoder

LLM
Decoder

Natural
Language
ResponseTextify

Figure 4: The general GraphRAG pipeline in PyG: A natu-
ral language query is used to retrieve relevant contextual
subgraphs from a larger knowledge graph, which are then
encoded via a GNN. The resulting node embeddings are used
to enhance the conventional LLM encoder<>decoder flow.

forecasting system [52]. Similarly, PyG was applied to analyze and

predict behavior in traffic scenarios [46, 50].

Optimization. More recently, GNNs have become a dominant

paradigm to solve combinatorical optimization problems [11, 76].

Multiple solvers have been developed on top of PyG [47, 69]. The

field has been identified as one of the future fields with much

potential GNNs development [8].

Social Network Analysis. PyG has been used for a wide arrange

of social network analysis tasks, such as bot detection [26, 97],

community detection [20], and fake news detection [61].

Computer Vision. In the area of computer vision, PyG has been

applied to process irregularly structured data, such as unstruc-

tured point clouds [53, 105], meshes [31], and scene graphs [104].

It found application to solve tasks like matching [29], autonomous

driving [100], and grasp analysis [9].

Ecosystem. PyG sparked the creation of a vibrant ecosystem of

open-source software built on top and around it. Examples include

Quiver [84], a library for distributed training, AutoGL [36], an

AutoML framework, DIG [57] with higher level extensions, and Py-

torch Geometric Temporal [73] for temporal graphs. Additionally,

PyGOD [56] adds functionality for outlier and anomaly detection,

FedGraphNN [38] provides federated learning capabilities, and Py-

torch Frame [41] adds encoders for tabular data. In addition to

functionality, benchmarks, such as Relbench [72] for relational data

and temporal graphs [43] have completed the package.

4 Conclusion
PyG 2.0 represents a significant advancement in graph learning

frameworks, offering scalable solutions for real-world applications

while maintaining ease of use and flexibility. We presented ad-

vances in three different categories, scalable graph infrastructure,

the neural framework, and post-processing techniques such as ex-

plainability, showcasing the highly modular framework design.

PyG has been applied in a wide range of applied fields, including

the very recent areas of relational deep learning and RAG systems

in large language models, in which we expect further significant

developments in the near future.
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