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Abstract

Learning reward functions from human demonstrations is critical for scalable robot1

learning, yet most approaches either require impractical ground-truth state access,2

costly online retraining, or yield domain-specific models with poor transferability.3

We propose SPUR, a unified reward modeling framework that features a large4

pre-trained vision-language model (VLM) backbone fine-tuned to encode robot5

image sequences and language instructions, a progress-based reward objective6

trained on successful demonstrations augmented with rewound videos to simulate7

failures, and a preference-based learning objective over mismatched and rewound8

trajectories to enable training on failed executions without explicit progress labels.9

This design leverages the generalization of VLMs while integrating complemen-10

tary progress and preference signals for improved robustness and generalization.11

Experiments on out-of-distribution tasks in simulation show that each component12

contributes to performance gains across a set of reward metrics, and their combina-13

tion achieves state-of-the-art results compared to recent baselines, demonstrating14

scalable training of reward models.15

1 Introduction16

An important problem in robot learning is that of learning rewards from human demonstrations [33]17

to guide policy learning. When deploying robots in the real world, it is important that reward models18

generalize to new tasks so that humans will not need to provide additional demonstrations, which is19

expensive to scale, or train the reward models in tandem with the robot policies, which is sample-20

inefficient and time-consuming. In this work, we investigate how to train reward functions that can21

effectively generalize to new tasks without online training or additional demonstrations.22

Prior works have attempted to develop generalizable reward functions, but they often assume access23

to ground-truth states, which may be difficult to provide in the real world [22, 17, 43, 28, 29, 24] or24

the ability to train reward models from scratch in tandem with the policy [33, 38, 41], limiting their25

practical applicability.26

Some recent works instead proposed reward models that can be directly used at test time, conditioned27

solely on image observations and language instructions. One common approach is to leverage28

the generalization capabilities of large vision-language models (VLMs) by querying them for task29

progress to be used as reward [36, 27, 2, 13, 30], but these models have been shown to predict30

noisy rewards, making them difficult to be directly used for training robot policies [2, 13, 44].31

Another is to directly train a smaller reward model on human demonstrations. These methods use32

either a task-progress-based training objective [26, 18, 44], or a preference-based or contrastive33

objective [40, 3, 19], but they result in domain-specific reward models that are unlikely to generalize34

well to new domains. Instead, we aim to train a generalizable reward model that can provide useful35

rewards, even on significantly out-of-distribution tasks and settings. We hypothesize that ideas from36
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all three threads of work are useful, and unifying them into a single framework can lead to a reward37

model with greater generalization capability.38

To this end, we investigate how to blend together large-scale VLM backbones, progress-based rewards,39

and preference-based rewards into one scalable, unified reward model we call SPUR (Scalable40

Progress and Preference Unified Reward). Firstly, we investigate the use of a large-scale pre-trained41

VLM backbone, not for zero-shot robot reward queries, but instead as a trainable backbone for42

encoding robot image sequences and language instruction tokens. SPUR then directly predicts task43

progress coming from successful demonstration trajectories, along with simulating failed trajectories44

with video rewind augmentation [44], to produce useful per-timestep rewards for robots. Finally, to45

help the model scale, SPUR also trains to predict binary preferences over mismatched and rewound46

video sequences. This preference objective complements the reward prediction objective while also47

allowing for training with trajectories with failed execution, which progress-based methods cannot48

train on without explicit progress labels for each failed trajectory.49

Through reward analysis experiments on new tasks in LIBERO [25] and Meta-World [42], we50

demonstrate how each component complements the others for scalable training of generalizable51

reward models. SPUR outperforms recent, state-of-the-art baselines across metrics in both domains.52

2 Related Works53

2.1 Learning Reward Functions54

Several prior works explored learning reward functions from various forms of supervision. One line55

of research leverages direct human feedback, such as comparisons [7, 35, 6, 23, 15], rankings [32],56

language annotations [41], and trajectory corrections [21, 5], to infer rewards. While these methods57

can align reward functions with human intent, they typically require substantial human supervision58

and are often sample-inefficient.59

Another major direction is inverse RL (IRL), where reward functions are inferred from demonstrations60

[33, 1, 45, 10] or implicitly from expert and goal-state distributions [16, 11, 12]. However, IRL meth-61

ods struggle to scale to high-dimensional state-action spaces and usually require new demonstrations62

for every new task. In general, both human-feedback-based and IRL-based approaches lack effective63

transfer mechanisms: when faced with a novel task, they often need to be retrained from scratch. In64

contrast, SPUR leverages the semantic representations in VLM backbone to transfer learned reward65

functions to unseen tasks without requiring additional human supervision.66

2.2 Large Vision and Language Models as Reward Functions67

Recently, LLMs and VLMs have been applied to reward design through code generation [28, 43, 39],68

embedding-based reward estimation [31, 36], and preference-based feedback [38, 22]. However, most69

of these methods assume access to privileged state information that is rarely available in real-world70

settings. Another line of work employs VLMs as zero-shot success detectors, treating them as sparse71

reward models [34, 9, 14]. While promising, this approach provides only episodic feedback and72

misses the dense supervision signals present throughout the trajectory.73

Some prior work explores task progress as a proxy reward, either by using VLMs as progress74

estimators [36, 27, 2, 13, 30] or by training task-specific models with progress-prediction objec-75

tives [26, 18, 44]. VLM-based estimators, however, often yield noisy outputs, while smaller per-task76

models tend to overfit to domain-specific dynamics, limiting their generalization to new domains. In77

this work, we combine progress prediction with preference feedback over video sequences to improve78

the reward learning objective. We further show that incorporating failure trajectory pairs improves79

generalization across tasks.80

3 Method81

We introduce SPUR, a generalizable reward model, as illustrated in Figure 1. We start with a dataset82

D = {τ1, τ2, τ3, ...} consisting of robot demonstration trajectories τ = {o1:T , l,success} with83

image observations o, language instructions l, and a success label success ∈ {0, 1}. To enable84

generalization to unseen tasks, environments, and domains, we first instantiate the reward model85
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Figure 1: SPUR. Given two video trajectories, we train our VLM-based reward model, SPUR,
to predict progress-based and preference-based rewards. We use four strategies (left) for curating
training examples from our given datasets, which are further detailed in Section 3.2.

with a large-scale, pre-trained vision-language model (VLM) backbone. Then, we fine-tune it on two86

objectives that complement each other: predicting preferences over pairs of video trajectories and87

predicting continuous task progress as rewards.88

3.1 VLM Base Model89

Our base model is QWEN2.5-VL-INSTRUCT-3B [4], a 3B parameter, open-source, image and video-90

input VLM which demonstrates strong zero-shot performance across various vision and language91

tasks. SPUR can incorporate any base VLM model which supports language and video input, but we92

found QWEN to be easy to tune and performant. SPUR uses this model to take as input a natural93

language task description l and up to two different video sequences, o11:T and o21:T of arbitrary length.94

SPUR encodes both the language and videos as a single sequence of tokens with the base model’s95

tokenizer to construct its inputs as depicted below:96

(l, o1, o2) → Token(l) ⟨|video_start|⟩ Token(o1) ⟨|split_token|⟩ Token(o2) ⟨|pref_token|⟩,
(1)

where ⟨|split_token|⟩ is a special token that delinates the two video sequences. The VLM then97

produces a sequence of hidden states, which we use for preference and progress prediction, as98

detailed next.99

3.2 Preference Prediction100

To predict preferences, we attach an MLP head to the final hidden state corresponding to the special101

token ⟨|pref_token|⟩ from Equation (1) to produce preference logits. The model is trained to discern102

which of the two video sequences, o11:T or o21:T , is better aligned with the given natural language task103

description, l. We denote the preference label as y, where y = 1 if o1 is preferred over o2, and y = 0104

otherwise. Formally, the learned preference head MLPpref produces a probability:105

P (o1 ≻ o2 | l) = σ
(
MLPpref

(
h⟨|pref_token|⟩

))
.

where σ is the sigmoid function and h⟨|pref_token|⟩ is the hidden state corresponding to the location of106

the ⟨|pref_token|⟩ in the input from Equation (1). The preference objective is optimized using the107

binary cross-entropy loss and backpropagated through MLPpref and the VLM through h⟨|pref_token|⟩:108

Lpreference = −
[
y logP (o1 ≻ o2 | l) + (1− y) log(1− P (o1 ≻ o2 | l))

]
.
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Preference Sample Construction. Large-scale preference datasets comparing robot trajectories are109

not widely available, especially for training generalizable reward models. Given the scarcity of such110

data, we instead propose a suite of strategies for scalably curating a larger set of preference samples111

from existing trajectories without needing manual human annotations.112

We construct preference pairs (l, ochosen, orejected, y) for training by sampling trajectories from D,113

always assigning ochosen as the preferred observation sequence (y = 1). Given sampled trajecto-114

ries τ = {o1:T , l,success}, we create batches of preference tuples sampled uniformly over the115

following four strategies:116

1. Different expertise. Given a task instruction l, sample two trajectories τ1, τ2 ∼ D with the117

same instruction where τ1 has success == 1 and τ2 has success == 0. We extract118

ochosen from the observation sequence from τ1.119

2. Different tasks. Sample a trajectory ochosen ∼ D corresponding to the task instruction l120

and a trajectory orejected with a different instruction. These samples encourage the model to121

ground correct video and language pairs.122

3. Trajectory rewind. Following the idea proposed by ReWiND [44] that generated failed123

trajectories for reward progress prediction by rewinding videos, we propose to rewind124

successful videos to generate negative preference pairs. For a given trajectory ochosen = o1:T125

with success == 1, we first sample a random contiguous subsegment:126

osub = o1:tend , 1 ≤ tend ≤ T.

We then generate a rewound trajectory orejected by reversing the last k frames of the osub127

where k ∼ U(1, tend − tstart):128

orejected = [o1:tend , otend−1:tend−k+1
],

where [·] denotes concatenating the videos. This procedure ensures that ochosen represents129

the full progress along the subsegment, while orejected exhibits backward progress at the end.130

4. Subsequence progress. For the same trajectory τ with success == 1, sample two131

subsequences o1:t1 , o1:t2 with t1 < t2. We assign ochosen = o1:t2 as it is further along in the132

task.133

In practice, for all of these samples, we also sample the first frame randomly from the first half of134

the trajectory so that in datasets where the robot’s starting position is consistent across trajectories,135

SPUR does not overfit to the robot’s starting position.136

3.3 Task Progress Prediction137

In addition to preference prediction, SPUR also predicts the per-frame progress for each video as it138

can more directly be used for rewarding policies downstream [44]. Given a video o1:T with language139

instruction l, SPUR predicts a continuous progress value p ∈ [0, 1] indicating the fraction of the task140

completed at each frame. The tokenized prompt is the same as in Equation (1) except without the141

second video o2.142

Specifically, a progress prediction MLP head, MLPprogress, is attached to the hidden states h⟨|oi|⟩143

corresponding to each frame i, thereby producing per-frame progress predictions. We train SPUR on144

the same data as in Section 3.2, with the exception of “Different expertise” where failed trajectories145

are not used for progress training as they do not have a ground truth progress to use. For a given146

video from a sampled trajectory o1:T (which can also be a subsequence), the progress prediction loss147

is computed as the Mean Squared Error (MSE) between predicted and ground-truth progress values:148
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Lprogress =



T∑
t=1

MLPprogress(h⟨|ot|⟩)− t/T︸︷︷︸
ground truth progress


2

, if not rewound

T∑
t=1

MLPprogress(h⟨|ot|⟩)− 0︸ ︷︷ ︸
0 progress for mismatched tasks


2

if wrong task

tend∑
t=1

(
MLPprogress(h⟨|ot|⟩)−

t

T

)2

︸ ︷︷ ︸
Loss for original trajectory until tend

+
k∑

t=1

(
MLPprogress(h⟨|ot|⟩)−

tend − t

T

)2

︸ ︷︷ ︸
Rewound video for k frames from tend−1

, if rewound.

(2)

We compute progress losses only for success trajectories, ensuring that the model learns meaningful149

temporal progress where the task is at least partially completed.150

Overall, our final pretraining objective for SPUR is: Lpreference + Lprogress.151

4 Experiments152

Our experiments aim to study the efficacy of each component of SPUR and compare it against153

baselines across a wide array of reward metrics. To this end, we organize our experiments to answer154

the following experimental questions, in order:155

(Q1) Which components of SPUR contribute the most to generalizable reward prediction?156

(Q2) How does SPUR compare against baselines across a variety of reward metrics in unseen157

tasks?158

Setup: We conduct experiments using the LIBERO-90 dataset from the Lifelong Robot Learning159

Suite [25]. This dataset provides a diverse set of household manipulation tasks with various levels of160

distribution shift. Models are trained on demonstrations for 90 tasks in LIBERO-90 and evaluated161

on four benchmark splits: LIBERO-10, Object, Spatial, and Goal, which measure generalization162

across different dimensions such as goal, object, and spatial configurations. The original benchmark163

includes 4500 trajectories (50 per task) rendered at 128x128; following Kim et al. [20], we replay and164

re-render them at 256x256 and discard trajectories that did not replay successfully. We also include165

a corresponding set of failed trajectories constructed by replaying demonstration trajectories with166

added Gaussian noise on the actions.167

We additionally compare on MetaWorld [42], specifically the 20-task training split consisting of168

5 demonstrations each from Zhang et al. [44]. Correspondingly, we evaluate on the corresponding169

17-task evaluation dataset across a variety of metrics proposed by Zhang et al. [44] that were shown170

to be reflective of downstream policy performance.171

We list all dataset sizes in Table 4.172

Baselines: We compare SPUR against several strong reward learning baselines:173

• ReWiND [44] trains a transformer-based network with a direct progress prediction objective using174

frozen language and image encoders along with video rewinding to simulate failed policy rollouts.175

• Generative Value Learning (GVL) [30] prompts a pre-trained Gemini LLM [37] with shuffled176

video frames to predict task progress for subsampled frames across the video sequence. We also177

convert its progress predictions to preference predictions by comparing last-frame predicted task178

progress between queried trajectories.179

• RL-VLM-F [38] prompts a pre-trained LLM to obtain preference-based feedback predictions. We180

query Gemini for these preference predictions.181

4.1 Q1: Which Components of SPUR Contribute the Most?182

First, we ablate individual components of SPUR to measure the effect of each. For these experiments,183

we train exclusively on LIBERO-90 data (both success and failure) and evaluate on the unseen184

LIBERO-10, Object, Spatial, and Goal datasets.185
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Table 1: LIBERO Ablation Analysis. Comparison of ablations across preference and progress
accuracy metrics across unseen tasks in LIBERO-10, Object, Spatial, and Goal after training on
LIBERO-90. – indicates metrics that are not applicable to the given model.
Category Metric Base Model w/o Pref. w/o Progress w/o Fail. Traj. SPUR
Preference Accuracy Failed Trajs. ↑ 0.5 0.64 0.82 0.69 0.91

Progress Accuracy MSE ↓ – 0.04 – 0.04 0.03
Reward Alignment ρ ↑ – 0.73 – 0.73 0.81

• Base Model: Uses the pre-trained QWEN-2.5-VL-INSTRUCT-3B model to produce preference186

and progress predictions via direct text prompting.187

• w/o Preference: Removes preference losses from the training objective. Preference accuracy is188

computed by using final-frame progress comparisons instead.189

• w/o Progress: Removes progress losses from the training objective.190

• w/o Failure Data: Removes unsuccessful trajectories from the training objective.191

Reward Metrics. We compute: preference accuracy when comparing paired successful and failed192

trajectories, and progress prediction accuracy in terms of mean-squared-error (MSE) against the193

ground-truth progress target of successful trajectories and in terms of reward alignment in terms of194

spearman correlation (ρ), measuring how well the predicted progress is ordered with respect to the195

ground truth progress ordering of successful demonstrations.196

Results averaged across our 4 unseen task distributions are displayed in Table 1, where the base197

model performs at random chance on predicting preferences. We found it almost always produced198

deterministically increasing progress predictions, so we do not include progress accuracy metrics.199

Meanwhile, removing preference predictions hurts the progress accuracy and reward alignment200

compared to SPUR, and removing progress predictions hurts the preference accuracy relative201

to SPUR. Removing failed trajectories also predictably hurts unseen failed trajectory preference202

accuracy. Overall, we demonstrate that SPUR performs the best across all comparisons and that each203

component we ablate complements each other to increase overall performance.204

4.2 Q2: Reward Function Analysis in Unseen Tasks205

Table 2: LIBERO Metrics. Baseline comparison across preference and progress accuracy metrics
across unseen tasks in LIBERO-10, Object, Spatial, and Goal after training on LIBERO-90.

Category Metric RL-VLM-F GVL SPUR
Preference Accuracy Failed Trajs. 0.39 0.65 0.91

Progress Accuracy MSE ↓ – 0.07 0.03
Reward Alignment ρ ↑ – 0.68 0.81

Now, we compare SPUR against reward model baselines across unseen tasks in both LIBERO and206

Metaworld. We first list LIBERO comparisons in Table 2 to GVL and Rl-VLM-F. All methods are207

trained on the same LIBERO-90 datasets where applicable (GVL and RL-VLM-F instead prompt208

pre-trained, closed-source generative models). We can see that SPUR outperforms RL-VLM-F by209

2.9x and GVL by 1.4x on preference accuracy. Additionally, it outperforms GVL with less than half210

the progress prediction MSE and 1.19x improvement on reward alignment correlation.211

Table 3: Meta-World Reward Metrics. Comparison of reward models in terms of reward alignment
(ρ) on Meta-World. Baseline results taken from ReWiND [44].
Category Metric LIV-FT RoboCLIP VLC GVL ReWiND w/o OXE ReWiND w/ OXE SPUR
Reward Alignment ρ ↑ 0.55 -0.01 0.62 0.57 0.64 0.79 0.83

Next we compare Meta-World performance against an additional set of baselines on the Meta-World212

evaluation dataset from ReWiND [44]. For a more comprehensive comparison, we also include213

additional baselines listed in Zhang et al. [44], namely LIV-FT [26], VLC [3], and RoboCLIP [36],214
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along with ReWiND trained with and without the Open X-Embodiment (OXE) Dataset [8] as proposed215

by Zhang et al. [44]. Results in Table 3 indicate that SPUR outperforms the best-performing model,216

beating ReWiND even when it is trained with additional data from OXE, and beating ReWiND’s217

performance by 1.29x when both models are trained on the same data (w/o OXE).218

5 Conclusion219

We studied the problem of learning reward functions that generalize to unseen tasks without relying220

on additional demonstrations or online training. To address these challenges, we introduced SPUR, a221

unified reward learning framework that leverages a large-scale VLM backbone together with both222

progress-based and preference-based objectives. By combining per-timestep progress prediction with223

preference supervision over mismatched and rewound trajectories, SPUR learns from both successful224

and failed executions while producing denser and more transferable rewards. Our experiments on225

LIBERO and Meta-World show that each component of SPUR contributes to improved generalization,226

and that the full model consistently outperforms recent state-of-the-art baselines across diverse reward227

metrics.228

Looking forward, we believe that scalable reward learning frameworks such as SPUR offer a229

promising path toward reducing reliance on costly demonstrations and enabling more robust robot230

policy training in real-world settings. Future directions include extending our framework to longer-231

horizon tasks, enabling cross-embodiment reward transfer including human videos, and evaluating232

deployment in real-robot experiments.233
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A Impact Statement384

This paper introduces a unified framework for learning generalizable reward functions by combining385

vision–language model backbones with progress- and preference-based objectives. Our approach386

reduces reliance on costly demonstrations and improves transfer to unseen tasks, making robot387

learning more scalable. Nonetheless, it inherits limitations of large pretrained models, including388

potential bias and limited interpretability, and thus requires additional safeguards for safe real-world389

deployment.390

B Dataset Specs and Training Configuration391

Table 4: Dataset
Dataset Splits

Dataset Num Trajectories
LIBERO90 3950
LIBERO10 388
LIBERO-Goal 432
LIBERO-Spatial 433
LIBERO-Object 456
LIBERO90 Failure 4312
LIBERO10 Failure 498
MetaWorld Train 100
MetaWorld Eval 85

Table 5: Configuration Parameters for SPUR Training
Training Configuration for RFM

Parameter Value
Base Model Qwen/Qwen2.5-VL-3B-Instruct
Max frames (downsampled) 16
Per device training batch size 16
Learning rate 2e-5
Training steps 5000
Max sequence length 1024
LR scheduler Cosine
Warmup ratio 0.1
Expertise / Task / Rewind / Subsequence ratio [0.3, 0.3, 0.4, 0.0]
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NeurIPS Paper Checklist392

1. Claims393

Question: Do the main claims made in the abstract and introduction accurately reflect the394

paper’s contributions and scope?395

Answer: [Yes]396

Justification: Paper’s contributions and scope are summarized in detail in the abstract and397

the introduction.398

Guidelines:399

• The answer NA means that the abstract and introduction do not include the claims400

made in the paper.401

• The abstract and/or introduction should clearly state the claims made, including the402

contributions made in the paper and important assumptions and limitations. A No or403

NA answer to this question will not be perceived well by the reviewers.404

• The claims made should match theoretical and experimental results, and reflect how405

much the results can be expected to generalize to other settings.406

• It is fine to include aspirational goals as motivation as long as it is clear that these goals407

are not attained by the paper.408

2. Limitations409

Question: Does the paper discuss the limitations of the work performed by the authors?410

Answer: [Yes]411

Justification: The authors explain the limitations of the proposed work at the end of the412

paper, in the conclusion section.413

Guidelines:414

• The answer NA means that the paper has no limitation while the answer No means that415

the paper has limitations, but those are not discussed in the paper.416

• The authors are encouraged to create a separate "Limitations" section in their paper.417

• The paper should point out any strong assumptions and how robust the results are to418

violations of these assumptions (e.g., independence assumptions, noiseless settings,419

model well-specification, asymptotic approximations only holding locally). The authors420

should reflect on how these assumptions might be violated in practice and what the421

implications would be.422

• The authors should reflect on the scope of the claims made, e.g., if the approach was423

only tested on a few datasets or with a few runs. In general, empirical results often424

depend on implicit assumptions, which should be articulated.425

• The authors should reflect on the factors that influence the performance of the approach.426

For example, a facial recognition algorithm may perform poorly when image resolution427

is low or images are taken in low lighting. Or a speech-to-text system might not be428

used reliably to provide closed captions for online lectures because it fails to handle429

technical jargon.430

• The authors should discuss the computational efficiency of the proposed algorithms431

and how they scale with dataset size.432

• If applicable, the authors should discuss possible limitations of their approach to433

address problems of privacy and fairness.434

• While the authors might fear that complete honesty about limitations might be used by435

reviewers as grounds for rejection, a worse outcome might be that reviewers discover436

limitations that aren’t acknowledged in the paper. The authors should use their best437

judgment and recognize that individual actions in favor of transparency play an impor-438

tant role in developing norms that preserve the integrity of the community. Reviewers439

will be specifically instructed to not penalize honesty concerning limitations.440

3. Theory assumptions and proofs441

Question: For each theoretical result, does the paper provide the full set of assumptions and442

a complete (and correct) proof?443
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Answer: [NA]444

Justification: The paper does not include theoretical results.445

Guidelines:446

• The answer NA means that the paper does not include theoretical results.447

• All the theorems, formulas, and proofs in the paper should be numbered and cross-448

referenced.449

• All assumptions should be clearly stated or referenced in the statement of any theorems.450

• The proofs can either appear in the main paper or the supplemental material, but if451

they appear in the supplemental material, the authors are encouraged to provide a short452

proof sketch to provide intuition.453

• Inversely, any informal proof provided in the core of the paper should be complemented454

by formal proofs provided in appendix or supplemental material.455

• Theorems and Lemmas that the proof relies upon should be properly referenced.456

4. Experimental result reproducibility457

Question: Does the paper fully disclose all the information needed to reproduce the main ex-458

perimental results of the paper to the extent that it affects the main claims and/or conclusions459

of the paper (regardless of whether the code and data are provided or not)?460

Answer: [Yes]461

Justification: All the details required to reproduce the results are provided in the main paper462

and the supplementary materials.463

Guidelines:464

• The answer NA means that the paper does not include experiments.465

• If the paper includes experiments, a No answer to this question will not be perceived466

well by the reviewers: Making the paper reproducible is important, regardless of467

whether the code and data are provided or not.468

• If the contribution is a dataset and/or model, the authors should describe the steps taken469

to make their results reproducible or verifiable.470

• Depending on the contribution, reproducibility can be accomplished in various ways.471

For example, if the contribution is a novel architecture, describing the architecture fully472

might suffice, or if the contribution is a specific model and empirical evaluation, it may473

be necessary to either make it possible for others to replicate the model with the same474

dataset, or provide access to the model. In general. releasing code and data is often475

one good way to accomplish this, but reproducibility can also be provided via detailed476

instructions for how to replicate the results, access to a hosted model (e.g., in the case477

of a large language model), releasing of a model checkpoint, or other means that are478

appropriate to the research performed.479

• While NeurIPS does not require releasing code, the conference does require all submis-480

sions to provide some reasonable avenue for reproducibility, which may depend on the481

nature of the contribution. For example482

(a) If the contribution is primarily a new algorithm, the paper should make it clear how483

to reproduce that algorithm.484

(b) If the contribution is primarily a new model architecture, the paper should describe485

the architecture clearly and fully.486

(c) If the contribution is a new model (e.g., a large language model), then there should487

either be a way to access this model for reproducing the results or a way to reproduce488

the model (e.g., with an open-source dataset or instructions for how to construct489

the dataset).490

(d) We recognize that reproducibility may be tricky in some cases, in which case491

authors are welcome to describe the particular way they provide for reproducibility.492

In the case of closed-source models, it may be that access to the model is limited in493

some way (e.g., to registered users), but it should be possible for other researchers494

to have some path to reproducing or verifying the results.495

5. Open access to data and code496
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Question: Does the paper provide open access to the data and code, with sufficient instruc-497

tions to faithfully reproduce the main experimental results, as described in supplemental498

material?499

Answer: [Yes]500

Justification: The authors will release their code with sufficient instructions reproduce the501

experiments.502

Guidelines:503

• The answer NA means that paper does not include experiments requiring code.504

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/505

public/guides/CodeSubmissionPolicy) for more details.506

• While we encourage the release of code and data, we understand that this might not be507

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not508

including code, unless this is central to the contribution (e.g., for a new open-source509

benchmark).510

• The instructions should contain the exact command and environment needed to run to511

reproduce the results. See the NeurIPS code and data submission guidelines (https:512

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.513

• The authors should provide instructions on data access and preparation, including how514

to access the raw data, preprocessed data, intermediate data, and generated data, etc.515

• The authors should provide scripts to reproduce all experimental results for the new516

proposed method and baselines. If only a subset of experiments are reproducible, they517

should state which ones are omitted from the script and why.518

• At submission time, to preserve anonymity, the authors should release anonymized519

versions (if applicable).520

• Providing as much information as possible in supplemental material (appended to the521

paper) is recommended, but including URLs to data and code is permitted.522

6. Experimental setting/details523

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-524

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the525

results?526

Answer: [Yes]527

Justification: The training and test details to understand and reproduce the results are528

provided in the main paper and in the appendix.529

Guidelines:530

• The answer NA means that the paper does not include experiments.531

• The experimental setting should be presented in the core of the paper to a level of detail532

that is necessary to appreciate the results and make sense of them.533

• The full details can be provided either with the code, in appendix, or as supplemental534

material.535

7. Experiment statistical significance536

Question: Does the paper report error bars suitably and correctly defined or other appropriate537

information about the statistical significance of the experiments?538

Answer: [Yes]539

Justification: All of the results presented in the paper provide information about the statistical540

significance of the experiments with plots including standard deviation across runs.541

Guidelines:542

• The answer NA means that the paper does not include experiments.543

• The authors should answer "Yes" if the results are accompanied by error bars, confi-544

dence intervals, or statistical significance tests, at least for the experiments that support545

the main claims of the paper.546
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• The factors of variability that the error bars are capturing should be clearly stated (for547

example, train/test split, initialization, random drawing of some parameter, or overall548

run with given experimental conditions).549

• The method for calculating the error bars should be explained (closed form formula,550

call to a library function, bootstrap, etc.)551

• The assumptions made should be given (e.g., Normally distributed errors).552

• It should be clear whether the error bar is the standard deviation or the standard error553

of the mean.554

• It is OK to report 1-sigma error bars, but one should state it. The authors should555

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis556

of Normality of errors is not verified.557

• For asymmetric distributions, the authors should be careful not to show in tables or558

figures symmetric error bars that would yield results that are out of range (e.g. negative559

error rates).560

• If error bars are reported in tables or plots, The authors should explain in the text how561

they were calculated and reference the corresponding figures or tables in the text.562

8. Experiments compute resources563

Question: For each experiment, does the paper provide sufficient information on the com-564

puter resources (type of compute workers, memory, time of execution) needed to reproduce565

the experiments?566

Answer: [Yes]567

Justification: The provides information about the type of compute workers CPU or GPU,568

internal cluster used for running the experiments in the appendix.569

Guidelines:570

• The answer NA means that the paper does not include experiments.571

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,572

or cloud provider, including relevant memory and storage.573

• The paper should provide the amount of compute required for each of the individual574

experimental runs as well as estimate the total compute.575

• The paper should disclose whether the full research project required more compute576

than the experiments reported in the paper (e.g., preliminary or failed experiments that577

didn’t make it into the paper).578

9. Code of ethics579

Question: Does the research conducted in the paper conform, in every respect, with the580

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?581

Answer: [Yes]582

Justification: The paper conform, in every respect, with the NeurIPS Code of Ethics.583

Guidelines:584

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.585

• If the authors answer No, they should explain the special circumstances that require a586

deviation from the Code of Ethics.587

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-588

eration due to laws or regulations in their jurisdiction).589

10. Broader impacts590

Question: Does the paper discuss both potential positive societal impacts and negative591

societal impacts of the work performed?592

Answer: [Yes]593

Justification: In the supplementary.594

Guidelines:595

• The answer NA means that there is no societal impact of the work performed.596
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• If the authors answer NA or No, they should explain why their work has no societal597

impact or why the paper does not address societal impact.598

• Examples of negative societal impacts include potential malicious or unintended uses599

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations600

(e.g., deployment of technologies that could make decisions that unfairly impact specific601

groups), privacy considerations, and security considerations.602

• The conference expects that many papers will be foundational research and not tied603

to particular applications, let alone deployments. However, if there is a direct path to604

any negative applications, the authors should point it out. For example, it is legitimate605

to point out that an improvement in the quality of generative models could be used to606

generate deepfakes for disinformation. On the other hand, it is not needed to point out607

that a generic algorithm for optimizing neural networks could enable people to train608

models that generate Deepfakes faster.609

• The authors should consider possible harms that could arise when the technology is610

being used as intended and functioning correctly, harms that could arise when the611

technology is being used as intended but gives incorrect results, and harms following612

from (intentional or unintentional) misuse of the technology.613

• If there are negative societal impacts, the authors could also discuss possible mitigation614

strategies (e.g., gated release of models, providing defenses in addition to attacks,615

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from616

feedback over time, improving the efficiency and accessibility of ML).617

11. Safeguards618

Question: Does the paper describe safeguards that have been put in place for responsible619

release of data or models that have a high risk for misuse (e.g., pretrained language models,620

image generators, or scraped datasets)?621

Answer: [NA]622

Justification: The paper poses no such risks.623

Guidelines:624

• The answer NA means that the paper poses no such risks.625

• Released models that have a high risk for misuse or dual-use should be released with626

necessary safeguards to allow for controlled use of the model, for example by requiring627

that users adhere to usage guidelines or restrictions to access the model or implementing628

safety filters.629

• Datasets that have been scraped from the Internet could pose safety risks. The authors630

should describe how they avoided releasing unsafe images.631

• We recognize that providing effective safeguards is challenging, and many papers do632

not require this, but we encourage authors to take this into account and make a best633

faith effort.634

12. Licenses for existing assets635

Question: Are the creators or original owners of assets (e.g., code, data, models), used in636

the paper, properly credited and are the license and terms of use explicitly mentioned and637

properly respected?638

Answer: [Yes]639

Justification: The authors stated which version of the asset is used and cited the original640

papers that produced the code package.641

Guidelines:642

• The answer NA means that the paper does not use existing assets.643

• The authors should cite the original paper that produced the code package or dataset.644

• The authors should state which version of the asset is used and, if possible, include a645

URL.646

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.647

• For scraped data from a particular source (e.g., website), the copyright and terms of648

service of that source should be provided.649

16



• If assets are released, the license, copyright information, and terms of use in the package650

should be provided. For popular datasets, paperswithcode.com/datasets has651

curated licenses for some datasets. Their licensing guide can help determine the license652

of a dataset.653

• For existing datasets that are re-packaged, both the original license and the license of654

the derived asset (if it has changed) should be provided.655

• If this information is not available online, the authors are encouraged to reach out to656

the asset’s creators.657

13. New assets658

Question: Are new assets introduced in the paper well documented and is the documentation659

provided alongside the assets?660

Answer: [No]661

Justification: NA662

Guidelines:663

• The answer NA means that the paper does not release new assets.664

• Researchers should communicate the details of the dataset/code/model as part of their665

submissions via structured templates. This includes details about training, license,666

limitations, etc.667

• The paper should discuss whether and how consent was obtained from people whose668

asset is used.669

• At submission time, remember to anonymize your assets (if applicable). You can either670

create an anonymized URL or include an anonymized zip file.671

14. Crowdsourcing and research with human subjects672

Question: For crowdsourcing experiments and research with human subjects, does the paper673

include the full text of instructions given to participants and screenshots, if applicable, as674

well as details about compensation (if any)?675

Answer: [NA]676

Justification: The paper does not involve crowdsourcing nor research with human subjects.677

Guidelines:678

• The answer NA means that the paper does not involve crowdsourcing nor research with679

human subjects.680

• Including this information in the supplemental material is fine, but if the main contribu-681

tion of the paper involves human subjects, then as much detail as possible should be682

included in the main paper.683

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,684

or other labor should be paid at least the minimum wage in the country of the data685

collector.686

15. Institutional review board (IRB) approvals or equivalent for research with human687

subjects688

Question: Does the paper describe potential risks incurred by study participants, whether689

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)690

approvals (or an equivalent approval/review based on the requirements of your country or691

institution) were obtained?692

Answer: [NA]693

Justification: The paper does not involve crowdsourcing nor research with human subjects.694

Guidelines:695

• The answer NA means that the paper does not involve crowdsourcing nor research with696

human subjects.697

• Depending on the country in which research is conducted, IRB approval (or equivalent)698

may be required for any human subjects research. If you obtained IRB approval, you699

should clearly state this in the paper.700
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• We recognize that the procedures for this may vary significantly between institutions701

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the702

guidelines for their institution.703

• For initial submissions, do not include any information that would break anonymity (if704

applicable), such as the institution conducting the review.705

16. Declaration of LLM usage706

Question: Does the paper describe the usage of LLMs if it is an important, original, or707

non-standard component of the core methods in this research? Note that if the LLM is used708

only for writing, editing, or formatting purposes and does not impact the core methodology,709

scientific rigorousness, or originality of the research, declaration is not required.710

Answer: [NA]711

Justification: The core method development in this research does not involve LLMs as any712

important, original, or non-standard components.713

Guidelines:714

• The answer NA means that the core method development in this research does not715

involve LLMs as any important, original, or non-standard components.716

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/717

LLM) for what should or should not be described.718
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