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ABSTRACT

Mixed-Integer Linear Programs (MILPs) underpin a wide range of combinato-
rial optimization applications, and there has been many works in the field of
MILPs based on machine learning. However, existing learning-based approaches
often struggle to generalize beyond narrow training distributions or specific tasks.
In this paper, we introduce GLIM (Generalizable Learning Representation for
MILPs), a general-purpose embedding model designed to unify learning across
diverse MILP classes and downstream tasks. GLIM is trained on a large corpus
of roughly 78,000 instances spanning 2,000 problem classes. Motivated by the
observation that problem type and problem scale are orthogonal factors whose
interaction drives empirical difficulty, GLIM learns a joint representation that dis-
entangles type, scale, and solving complexity. Each instance is encoded as a bipar-
tite graph and processed by a hybrid architecture that couples GNN modules with
Perceiver-like blocks. We evaluate GLIM on two representative MILP tasks to
probe representation quality: (i) MILP Instance Retrieval and (ii) MILP Solver Hy-
perparameter Prediction. Across in-distribution and distribution-shifted settings,
including real-world MIPLIB benchmarks, GLIM outperforms strong baselines in
most cases and exhibits robust transfer to new classes and sizes. These results in-
dicate that a single, disentangled embedding can serve as a reusable backbone for
MILP tasks, enabling broader generalization than task- or class-specific learned
components.

1 INTRODUCTION

Mixed-Integer Linear Programs (MILPs) are a central modeling tool for combinatorial optimization,
with applications spanning logistics (Song et al., 2018), scheduling (Bradac et al., 2014), planning
(Ren & Gao, 2010), and supply chain management (Soylu et al., 2006). Despite decades of progress
in exact and heuristic algorithms, large-scale MILPs remain computationally challenging due to their
NP-hardness. Beyond exact solvers such as Gurobi (Gurobi Optimization, LLC, 2024), CPLEX
(Holmström et al., 2009), and SCIP (Bolusani et al., 2024), recent studies have explored machine
learning (ML) techniques to accelerate MILP solving. Learning-based methods have been proposed
for branching (Gupta et al., 2022; 2020), cutting-plane selection (Tang et al., 2020; Wang et al.,
2023), and large neighborhood search (Wu et al., 2021; Ye et al., 2025), showing that ML can
exploit structural patterns in MILPs and improve over purely hand-crafted heuristics. However, these
approaches often face limited generalization. On the data level, models trained on one distribution
(e.g., Set Cover) typically transfer poorly to related variants or to other classes such as Facility
Location. On the task level, many learned components are tied to specific solver subroutines, making
them brittle under distribution shift and hard to reuse across tasks.

These limitations highlight a broader challenge: while task-specific learning can yield improve-
ments, it does not scale to the diversity of MILP problems encountered in practice. A natural next
step is to seek unified models that can capture common structure across heterogeneous problem
classes and provide reusable representations for multiple tasks. Recent efforts in this direction (Zong
et al., 2025; Drakulic et al., 2024; Pan et al., 2025; Cai et al., 2025) are promising, as they aim to
train a single model across multiple problem classes for solving tasks. However, these approaches
are typically trained and evaluated only on a few predefined problem types (e.g., graph decision
problems or variants of the Traveling Salesman Problem), making it difficult to extend them to other
problem types. Consequently, they cannot directly generalize to broader settings, which limits their
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applicability in real-world scenarios where both instance distributions and task requirements are
highly diverse.

This motivates a central research question: Can we train a unified model that generalizes across
diverse MILP distributions and supports multiple downstream tasks? Embedding models offer a
practical path toward such unification. In other modalities such as natural language (Devlin et al.,
2019; Zhang et al., 2025), vision (Dosovitskiy et al., 2020; Radford et al., 2021), and audio (Baevski
et al., 2020), embedding models achieve broad generalization by mapping heterogeneous inputs into
a shared representation space that is reusable across tasks. By analogy, an appropriately designed
MILP embedding model could serve as a reusable backbone for diverse data regimes and down-
stream objectives.

In this work, we introduce GLIM (Generalizable Learning Representation for MILPs), an embed-
ding model tailored to the multifaceted nature of MILP instances. Compared to existing work, GLIM
incorporates three novel yet complementary strategies. (i) We construct a large-scale, highly diverse
training corpus of approximately 70,000 instances spanning 2,000 problem classes, extended from
existing MILP generation pipelines. (ii) We encode each MILP as a bipartite graph and process it
with a hybrid architecture that integrates GNN modules with Perceiver-like blocks, adapted to ac-
commodate large input sizes. (iii) We train the model to learn a joint representation of disentangles
type, scale, and complexity, reflecting the orthogonal yet interacting aspects of MILP instances.

We evaluate GLIM on two MILP downstream tasks designed to probe embedding quality: (1)
MILP Instance Retrieval, which retrieves similar instances for a given unseen query instance; and
(2) MILP Solver Hyperparameter Prediction, which predicts solver hyperparameters for unseen
instances. Across in-distribution, distribution-shifted settings, and standard benchmark MIPLIB
(Gleixner et al., 2021), GLIM achieves strong performance and outperforms competitive baselines.

Our contributions can be summarized as follows:

• We introduce GLIM: a large-scale general-purpose MILP embedding model, trained on a
diverse dataset spanning thousands of problem classes. Three key components of GLIM
are the extended large-scale training dataset, the hybrid model architecture of GNN and
Perceiver-like block, and the novel joint representation that disentangling type, scale, and
complexity.

• We demonstrate that it is possible to learn an embedding model that generalizes across both
data and tasks, while the model exhibits measurable generalization to out-of-distribution
instances.

• We design and conduct comprehensive evaluation across two downstream tasks (instance
retrieval and MILP Solver Hyperparameter Prediction) of MILP embedding model, demon-
strating both effectiveness and generalization in real-world scenarios. These two down-
stream tasks also create benchmarks for future works.

2 RELATED WORKS

Machine Learning for MILP Our work falls into the category of ML-based approaches for
MILPs. The predominant paradigm of ML-based solvers leverages neural networks to capture the
structure of optimization problems, thereby learning heuristics that accelerate traditional solvers.
Representative examples include predict-and-search (Han et al., 2023; Huang et al., 2024), learning
to branch (Khalil et al., 2016; Labassi et al., 2022), learning to cut (Tang et al., 2020; Paulus et al.,
2022), large neighborhood search (Wu et al., 2021; Ye et al., 2025) or even instance generation for
data augmentation (Guo et al., 2024; Yang et al., 2024). Despite these advances, a key limitation
is specialization: most models are tailored to a single problem class and task, leading to dramatic
performance drops under distribution shift (Manchanda et al., 2022), and restricting transferability
across tasks (e.g., a branching model cannot be applied to large neighborhood search). This naturally
raises the question of whether a unified model can be trained across data distributions or tasks.

Generalizable Learning Approaches for MILP Early attempts at enhancing generalization in
combinatorial optimization adopted diverse strategies. Some work introduced problem-specific
adapters with a shared backbone to solve the problem (Drakulic et al., 2024), others convert multi-
class combinatorial optimization problems into TSP problems and train a unified TSP solver (Pan
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et al., 2025), while still others tokenized problem instances and solver trajectories to enable next-
token prediction (Zong et al., 2025). Although these approaches demonstrated promising results,
they remain limited to a small set of combinatorial problems and do not extend naturally to general
MILPs. Further progress has been made with multi-task training, such as jointly learning tasks such
as branching and predict-and-search (Cai et al., 2025), and with the use of large language models to
synthesize large-scale MILP datasets, which were then used to train task-specific models for integral
gap prediction, branching, and others (Li et al., 2025). Unlike existing work that is only applicable to
a single task or a single class of problems, our work introduces a general-purpose MILP embedding
model trained on a highly diverse dataset.

3 PRELIMINARY: MILP PROBLEM AND ITS DATA FORMS

The standard form of a Mixed-Integer Linear Programming (MILP) problem is:

min
x∈Rn

c⊤x,

s.t. Ax ≤ b,
l ≤ x ≤ u,
xi ∈ Z, i ∈ I.

(1)

In this formulation, the coefficient matrix A ∈ Rm×n represents the constraints structure, b ∈ Rm

denotes the constraints’ right-hand side vector, and c ∈ Rn is the objective coefficient. Variable
bounds are given by l ∈ (R ∪ {−∞})n and u ∈ (R ∪ {+∞})n. The index set I ⊆ {1, 2, . . . , n}
identifies variables restricted to integer values.

Bipartite Graph Representation The bipartite graph representation encodes MILP instances in
a lossless manner (Gasse et al., 2019). Variables V = {v1, v2, . . . , vn} and constraints C =
{c1, c2, . . . , cm} are modeled as disjoint node sets. An edge eij = (vi, cj) ∈ E is added when-
ever variable vi participates in constraint cj . The resulting bipartite graph G = (V, C, E) captures
structural relations between variables and constraints. Feature details are provided in Appendix B.1.

Formulation Code Formulation code provides a generative specification of MILP problem
classes, written as Python programs using the PySCIPOpt library (Bolusani et al., 2024). Each
code file encapsulates the procedural logic for constructing instances. Running the formulation code
can directly generate the corresponding MILP instance.

The upper part of Figure 1 illustrates the GLIM pipeline for synthesizing training corpus starting
from the formulation code. For examples of these data forms, please refer to Appendix A.1.3.

4 GLIM: PROPOSED APPROACH

In this section, we first present the key design of GLIM: disentangling MILP problems into separate
representations of type, scale, and solving difficulty. We then introduce the corresponding model
architecture, which incorporates Perceiver-style attention blocks together with tailored training ob-
jectives.

4.1 DISENTANGLED REPRESENTATION LEARNING OF MILP

Our central hypothesis is that the empirical difficulty and structural characteristics of a Mixed-
Integer Linear Program (MILP) instance are driven by the interplay of three fundamental, quasi-
orthogonal factors: instance type, instance scale, and solving complexity.

• Instance Type refers to the underlying combinatorial structure of the instance (e.g., Set
Cover, Facility Location, Traveling Salesperson Problem). Instances of the same type share
a common algebraic formulation and structural properties, regardless of their size.

• Instance Scale captures the dimensions of the instance, such as the number of variables,
constraints, and non-zero coefficients. Scale directly influences the size of the search space.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

  �1  �1 +   �2  �2 +…+   ��  ��
�11  �1 +  �12 �2 +…+ �1� �� ≤ �1

⋮
��1 �1 + ��2 �2 +…+ ����� ≤ ��

max
�

 

MILP Instances

Graph Representation

Data cost = random.rand(..) 
model = Model(“MyMILP") 
model.addVar(..) 
model.addCons(..) 
model.setObjective(..)
params = {‘n_items’: 100, 

'density': 0.05, ...}

Formulation Code
The MPS file represents a 
mixed integer programming 
problem focused on xxx task. 
Its objective is to minimize 
the total cost associated 
with the selected columns ...

Type Description

Learnable Tokens with
Random Initialization

Training Corpus Synthetizing Pipeline

Scale Statistics
{"num_vars": 500, 
 "num_constrs": 2000,
 "var_degree_mean": 7.848,
 "cons_degree_mean": 2.007,
 "num_nonzeros": 3924, ...}

Complexity Metric
{"Total Solving Time": 13.29}

�1

�2

�3

�4

�1

�2

�3

�푖�

Use LLM to generate description

GLIM Backbone Model

Loss Calculation

MLPtype

QWen3
Embedding

Variable/Constraint Nodes                    Model Parameters of GLIM

qcomp

qscale

qtype

x2

x1

b2

b1

. . .

GNN
Layers

C
ro

ss
-
A
tt

en
ti
o
n 

L
ay

er

Q

S
el

f-
A
tt

en
ti
o
n 

L
ay

er

MLPscaleMLPcomp

M
L
P
 L

ay
er

Perceiver-like Mix-Attention Blocks * N 

K

V

Output 
embedding

zcomp

zscale

ztype

Figure 1: An overview of the proposed GLIM framework, which disentangles the representation
of type, scale, and complexity of MILP instances. Regarding datasets, GLIM synthesizes the cor-
responding textual description, scale statics, and complexity metric for each instance as training
labels. For model architecture, GLIM uses a GNN with Perceiver-like mix-attention blocks as a
hybrid layer, making it adaptable to larger instance inputs.

• Solving Complexity is an emergent property reflecting the computational resources re-
quired by a solver to find the optimal solution. It is influenced by both type and scale
but is not fully determined by them, as subtle structural variations can lead to dramatic
differences in solving time.

Existing machine learning models for MILP often implicitly entangle these factors into a single,
monolithic representation. This entanglement hinders generalization. For instance, a model trained
on small-scale Set Cover instances may fail to recognize the “Set Cover” structure in a large-scale
instance because the features related to scale dominate the representation.

To overcome this limitation, GLIM is designed to learn a disentangled representation that explicitly
separates these three core factors. We define the final embedding z of an MILP instance I as the
concatenation of three distinct sub-embeddings:

GLIM(I) = z = [ztype, zscale, zcomp] (2)

Each sub-embedding is trained to exclusively capture the information corresponding to its desig-
nated factor. ztype aims to be invariant to changes in scale and complexity while encoding the
problem’s structural class. Conversely, zscale should capture dimensional statistics irrespective of
the problem type. Finally, zcomp serves as a proxy for the instance’s intrinsic difficulty.

4.2 MODEL ARCHITECTURE

To effectively process large, variable-sized MILP instances and produce a disentangled represen-
tation, we design a hybrid architecture that combines a bipartite Graph Neural Network (GNN)
encoder with a Perceiver-like readout mechanism.

Bipartite GNN Encoder Each MILP instance is first represented as a bipartite graph. The raw
feature vectors for variable nodes, constraint nodes, and edges are projected into an embedding space
using separate linear layers. The core of the encoder consists of several layers of bipartite graph
convolution Kipf (2016). Specifically, an updated constraint embedding is computed by aggregating
features from its neighboring variable nodes and the corresponding edges, and vice versa for variable
embeddings. This GNN encoder produces a set of context-aware node-level embeddings for every
variable and constraint in the MILP instance.
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Perceiver-like Mix-Attention Block A key challenge is to aggregate the variable number of node
embeddings (which can be in the tens of thousands) into a fixed-size, disentangled graph-level repre-
sentation. Simple global pooling methods risk losing critical information. Inspired by the Perceiver
architecture (Jaegle et al., 2021), we introduce an attention-based readout mechanism to distill in-
formation into our three target factors.

We first initialize three learnable latent vectors, which we term the type token qtype, scale token qscale
and complexity token qcomp. These tokens act as queries. The full set of variable and constraint
embeddings produced by the GNN encoder serves as the key and value context. The three latent
tokens then perform cross-attention over all node embeddings in the graph. This allows each token
to selectively aggregate information relevant to its specific purpose. For instance, the type token
learns to focus on structural patterns indicative of the problem class, while the scale token focuses
on features related to the graph’s size.

This cross-attention block is followed by a self-attention layer over the three latent tokens and a feed-
forward network, allowing the distilled representations to be further refined. This entire Perceiver
block can be stacked for multiple iterations. To handle extremely large graphs, we incorporate a top-
K selection mechanism on the node embeddings based on their L2-norm before the attention step,
ensuring computational tractability. The output of this stage is three distinct latent embeddings,
ztype, zscale and zcomp, which form our disentangled representation.

Projection Heads Finally, the three disentangled latent embeddings are passed to separate Multi-
Layer Perceptron (MLP) heads. Each head is tailored to a specific prediction task aligned with our
training objectives. The type head projects ztype into an embedding space for contrastive learning,
while the scale and complexity heads regress from zscale and zcomp to their respective target values.

4.3 TRAINING OBJECTIVES

To encourage disentanglement, GLIM is trained with a composite multi-task loss that jointly super-
vises type, scale, and complexity factors:

L = λtypeLtype + λscaleLscale + λcompLcomp.

Here, λtype, λscale, λcomp balance the contributions of the three components. Each sub-objective su-
pervises a distinct embedding head:

• The type loss adopts a contrastive formulation similar to CLIP (Radford et al., 2021), align-
ing each MILP instance with its textual formulation while pushing apart mismatched pairs.

• The scale loss is a regression task predicting structural statistics (e.g., number of variables
and constraints) from the scale embedding, encouraging sensitivity to problem size.

• The complexity loss regresses the solver time from the complexity embedding, providing a
signal that captures computational hardness.

Together, these objectives force the model to encode complementary and interpretable factors within
its embedding. Full mathematical definitions are provided in Appendix B.2.

5 DATASETS

For an embedding model, the diversity and quality of training data are critical. In this section, we
describe how we construct the dataset used by GLIM and the corresponding training labels.

5.1 IMPROVING DATA QUALITY

Improving Scale Diversity We begin with the largest publicly available dataset of MILPs (Li
et al., 2025), which provides formulation codes for 2,000 problem classes. While this dataset offers
rich problem-type diversity, each formulation typically generates instances at a fixed scale. To enrich
scale diversity, we prompt LLM with each formulation code to produce multiple parameter sets,
which we then inject back into the code to obtain new formulation variants capable of generating
larger or smaller instances. Finally, by varying random seeds within each formulation, we obtain a
wide set of distinct MILP instances.
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Figure 2: Distribution of training data used by GLIM.

Data Filtering The procedure above inevitably produces some infeasible or unbounded instances.
To address this, we solve every candidate instance and filter out those that are infeasible or un-
bounded. We further prune the dataset to remove instances with (i) solving time is greater than 1000
seconds or less than 0.1 seconds, (ii) the sum of variables and constraints larger than 100,000, or (iii)
more than 150,000 nonzero entries in the coefficient matrix. After filtering, we obtain a high-quality
dataset containing 77,286 MILP instances.

5.2 DATA LABEL CONSTRUCTION

To align with GLIM’s objective of disentangling type, scale, and complexity in its embeddings,
we construct labels along these three dimensions: (1) Type label. For each instance, we input its
formulation code into an LLM and explicitly prompt for descriptive characteristics. We then pass
this textual description through a text embedding model, and the resulting vector is used as the type
label. (2) Scale label. We extract eight standard statistics (e.g., number of variables) as the scale
label. (3) Complexity label. We directly use the solving time of the instance as its complexity label.
In order to unify the solving environment, all solving times in the paper are obtained by Gurobi
12.0.2 (Gurobi Optimization, LLC, 2024), which is limited to single-threaded solving.

Since both instance statistics and solving times are heavy-tailed, we take the logarithm of raw values
for scale and complexity labels. This log transformation better aligns with empirical distributions
and stabilizes training.

5.3 DATASET SPLITS

From the filtered dataset, we randomly split 90% for training and 10% for validation. The validation
set serves as in-distribution data for evaluating GLIM under matched conditions, namely “GLIM-
valid”. To further probe out-of-distribution generalization, we construct two additional datasets. The
first one includes 4 benchmark problems (Multi-Item Lot Sizing, Graph Coloring, Bin Packing, Job
Scheduling) that have not appeared in the training data. The second one is a dataset derived from
the MIPLIB collection set (Gleixner et al., 2021), where we apply the same filtering rules. Out of
1,065 instances, 413 remain after filtering and are used for testing.

We visualize the distribution of the number of variables/constraints and solution time for the training
split in Figure 2. For detailed description and statistics, please refer to Appendix A.1.

6 EVALUATION

Our experiments aim to address the following research questions: (i) Can GLIM effectively represent
MILP instances belonging to the problem types seen during training? (ii) How well does GLIM
perform when applied to unseen or out-of-distribution MILP instances? (iii) To what extent do the
scale of the training data and model architecture contribute to GLIM’s overall performance? We
begin by describing the experimental setup, including the baselines and evaluation tasks.

Baselines To the best of our knowledge, no general-purpose MILP embedding models exist to
serve as direct baselines. Consequently, we structure our comparative analysis in two parts. First, we
conduct a series of ablation studies to isolate the contributions of GLIM’s key components. Specif-
ically, we used data of different sizes to train GLIM-S, GLIM-M, and GLIM-L. We also conducted
ablation experiments on GLIM’s Perceiver-like attention block (results are in Appendix D.1). Sec-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: MEE (Mean Excess Error) results of instance retrieval, with retrieval target set as problem
scale. Lower is better.

In-Distribution Out-Of-DistributionModel GLIM-valid Multi-Item Lot Sizing Graph Coloring Bin Packing Job Scheduling MIPLIB
Linq-Embed-Mistral 0.093 0.871 3.304 3.224 2.215 1.601
Qwen-3-Embed 0.096 1.534 1.409 1.706 1.316 1.681
GLIM-S 0.038 2.314 1.397 0.898 1.491 1.442
GLIM-M 0.026 0.759 1.021 0.575 2.055 1.255
GLIM-L 0.024 0.315 1.151 0.561 1.194 1.203

Table 2: MEE (Mean Excess Error) results of instance retrieval, with retrieval target set as problem
complexity. Lower is better.

Model In-Distribution Out-Of-Distribution
GLIM-valid Multi-Item Lot Sizing Graph Coloring Bin Packing Job Scheduling MIPLIB

Linq-Embed-Mistral 0.914 4.801 3.170 1.886 2.295 3.474
Qwen-3-Embed 0.904 3.603 2.241 3.072 4.643 3.483
GLIM-S 0.671 2.485 3.399 3.503 2.815 4.053
GLIM-M 0.678 2.266 2.508 3.389 2.603 3.494
GLIM-L 0.645 2.077 2.180 2.846 1.678 3.357

ond, we establish baselines using SOTA text embedding models Qwen-3-Embedding (Zhang et al.,
2025) and Linq-Mistral-Embed (Choi et al., 2024). For this, we convert each MILP instance into
its human-readable textual format and encode this representation. Detailed implementation of all
baselines is provided in Appendix A.2.

Evaluation Tasks Unlike established domains like text (Muennighoff et al., 2022) or image (Xiao
et al., 2025), which benefit from standard embedding model benchmarks, the evaluation of general-
purpose MILP representations requires the design of suitable downstream tasks. To this end, we
propose two practical tasks MILP Instance Retrieval and MILP Solver Hyperparameter Pre-
diction to probe the quality and utility of the learned embeddings. We evaluate the generalization
ability of the GLIM model by testing on out-of-distribution data.

6.1 TASK: MILP INSTANCE RETRIEVAL

To assess the quality of the learned embeddings for instance retrieval, we evaluate their ability to
identify instances with similar characteristics from a large library, which is analogous to retrieval
tasks in other modalities. This task is crucial as it directly tests the model’s capacity to encode
salient features into a discriminative latent space. We define similarity based on two practical tar-
get attributes: scale-based features (e.g., number of variables) and complexity-based features (e.g.,
solution time), which are critical for applications like data augmentation for ML-based solvers and
heuristic generation.

6.1.1 INSTANCE RETRIEVAL ACCURACY

For a given query instance, we embed it into a token representation corresponding to the chosen
attribute (either scale or complexity). We then compute the cosine similarity between this query
token and the corresponding tokens of all instances in a predefined library, and the instance with the
highest similarity is retrieved.

Here we define an indicator Excess Error, which indicates how much the error between the current
retrieved question and the target question is worse than the minimum error between the target ques-
tion and the retrieval database (i.e., the ideal retrieval result). The retrieval quality is quantitatively
measured using the Mean Excess Error (MEE), which averages the instance-level Excess Error.
For a single query, Excess Error is defined as:

EE =

N−1∑
i=0

|log(yretrieved,i)− log(ytrue,i)| , (3)

where yretrieved,i is the i-th attribute value of the retrieved instance and ytrue is the i-th attribute value
of the most similar instance in the library under the target metric, and N is the number of attribute
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Figure 4: Results on instance re-
trieval task, target=complexity.

values. The final result MEE is calculated by averaging the EE values over all instances in the evalu-
ation set. This metric effectively quantifies the discrepancy in the target numerical attribute between
the retrieved instances and the ideal match, providing a robust measure of retrieval precision.

Leveraging the disentangled embeddings produced by GLIM, we can evaluate retrieval tasks based
on different instance attributes, specifically by scale and by complexity. For scale-targeted retrieval,
we use the output embedding token zscale to retrieve instances. The attribute values used for eval-
uation include the instance’s number of variables, constraints, and non-zero elements in coefficient
matrix. For complexity-targeted retrieval, we utilize the output embedding token zcomp to retrieve
instances. The instance’s solution time is used as the attribute value for evaluation.

Tables 1 and 2 present the results of retrieval based on scale and complexity, respectively. We
fixed the GLIM training dataset as the retrieval library and tested it on various datasets. We can
see that GLIM outperforms the baseline on in-distribution datasets, unseen standard problems, and
even MIPLIB in most cases. Furthermore, GLIM trained on larger datasets achieves even better
performance, demonstrating the effectiveness of increasing the size of its training data.

6.1.2 PROBING THE GENERALIZATION ABILITY OF THE MODEL

Our evaluation so far has omitted the ztype embedding because out-of-distribution test sets such as
MIPLIB lack ground-truth type labels. To address this, we assess ztype from a different perspective:
as a measure of an instance’s deviation from the training distribution. The intuition is that for an
unseen instance, a larger distance in the ztype space indicates greater dissimilarity from the training
data. Formally, we define the deviation score for an instance k as dk = max

c∈S
ztype,k · ztype,c, where S

denotes the set of training instances used by GLIM, and ztype,k is the type embedding token obtained
by encoding instance k with GLIM. A higher dk indicates greater similarity between the type of
instance k and the training distribution of GLIM.

We evaluate the correlation between the deviation score of each test instance and its Excess Error
(EE) value. Specifically, we partition the instances in each dataset into five equally sized groups
based on their deviation scores and compute the mean EE value within each group. In addition,
we compute the Spearman correlation coefficient between the deviation scores and the EE values.
Experimental results targeting instance scale and complexity are reported in Table 3 and Table 4,
respectively. These results quantify the generalization performance of our GLIM model.

6.2 TASK: MILP SOLVER HYPERPARAMETER PREDICTION

It is well-known that solver hyperparameters can significantly impact the solution time for MILP
instances. Therefore, a key research objective is to directly predict a near-optimal set of solver
hyperparameters for a given unseen MILP instance to accelerate its solving process. This task
evaluates the embedding’s ability to generalize to a practical, unseen task: predicting effective solver
hyperparameter.

6.2.1 EVALUATION PROTOCOL

We begin by constructing a dataset where each input is a MILP instance and each label corresponds
to a near-optimal set of solver hyperparameters for solving that instance. Using this dataset, we train

8
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Table 3: Win rate results for the MILP Solver Hyperparameter Prediction task.

Model Out-Of-Distribution
Multi-Item Lot Sizing Graph Coloring Bin Packing Job Scheduling MIPLIB

Linq-Embed-Mistral 30/49 23/28 40/45 45/50 196/413
Qwen-3-Embed 45/49 27/28 28/45 42/50 153/413
GLIM-S 46/49 18/28 43/45 30/50 175/413
GLIM-M 21/49 26/28 45/45 47/50 210/413
GLIM-L 31/49 24/28 40/45 49/50 199/413

Table 4: Average moderated solving time results for the MILP Solver Hyperparameter Prediction
task. The ratio in parentheses is the average speedup ratio.

Model Out-Of-Distribution
Multi-Item Lot Sizing Graph Coloring Bin Packing Job Scheduling MIPLIB

Default 1.073 85.020 2.306 4.791 91.155
Linq-Embed-Mistral 1.057 (1.53) 25.954 (10.15) 0.808 (2.76) 3.496 (5.04) 78.438 (4.19)
Qwen-3-Embed 0.855 (2.69) 14.189 (6.96) 2.029 (1.78) 3.593 (5.83) 81.956 (4.36)
GLIM-S 0.679 (2.40) 74.039 (4.75) 0.678 (3.41) 4.338 (2.49) 80.292 (4.19)
GLIM-M 1.054 (1.71) 16.557 (7.28) 0.475 (5.52) 3.744 (4.84) 73.570 (4.84)
GLIM-L 1.053 (1.83) 17.862 (7.82) 1.133 (2.46) 0.761 (8.62) 73.161 (5.46)

a lightweight MLP head on top of the GLIM backbone. The MLP takes the concatenated embedding
[ztype, zscale, zcomp] of a MILP instance as input and predicts the associated hyperparameter settings.

For this task, we evaluate different variants of GLIM as well as text embedding models as baselines.
All instances are solved using Gurobi with a single-thread setting. The evaluation metric is the
solving time, compared against the default hyperparameter. For more details about the evaluation
protocol, please refer to Appendix C.

6.2.2 RESULTS IN SOLVER HYPERPARAMETER PREDICTION

We evaluate on four out-of-distribution benchmark classes as well as MIPLIB to assess performance.
We firstly report Win Rate, defined as the proportion of instances where solving with the predicted
hyperparameter achieves better runtime than using the solver’s default hyperparameter. Results are
summarized in Table 3, showing that GLIM variants predict hyperparameter superior to the default
hyperparameter for most problems across both the four benchmarks and MIPLIB.

It is important to note that in some cases, the predicted hyperparameter achieves a high win rate
to default hyperparameter, but yield worse average solving time. This occurs because in a small
fraction of instances, the MLP head predicts suboptimal hyperparameter that degrades performance,
inflating the average runtime. So we report results under a Moderated Solving Time metric, de-
fined as the minimum between the runtime with predicted hyperparameter and that with the default
hyperparameter. We then report the average moderated runtime as well as the corresponding av-
erage speedup ratio. Results in Table 4 provide strong evidence for the practical effectiveness of
GLIM on out-of-distribution problems. For experimental results on the in-distribution dataset, see
Appendix D.2.

7 CONCLUSION

In this paper, we proposed GLIM, a general-purpose embedding model for MILPs. We demonstrated
that it is possible to train a shared backbone model across 2,000 classes of MILP problems. Beyond
achieving strong performance on in-distribution data, GLIM exhibits robust generalization to un-
seen, out-of-distribution datasets. Our results highlight two key benefits: (i) as an MILP embedding
model, GLIM effectively captures problem type, scale, and solving complexity; and (ii) as a general-
purpose backbone, it can be readily adapted to downstream task. While a performance gap remains
between in-distribution and out-of-distribution settings, GLIM offers a particularly promising step
toward developing unified models for combinatorial optimization. To the best of our knowledge,
this represents one of the first attempts to train a single model that generalizes across diverse distri-
butions and tasks without fine-tuning on unseen problems. Looking forward, an important direction
is to further narrow the gap between in-distribution and out-of-distribution performance, enabling
even stronger transfer across problem domains.

9
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ETHICS STATEMENT

The methods proposed in this paper aim to learn a unified representation for diverse Mixed-Integer
Linear Programs, which is related to the broader field of neural combinatorial optimization and
representation learning. To our best knowledge, no ethical issues or harmful insights of this work
need to be otherwise stated.

REPRODUCIBILITY STATEMENT

The datasets used and the baseline implementation are described in Appendix A. The detailed hy-
permeters and implementation of the models for training and testing are provided in Appendix
B. Source code and datasets can be accessed at https://anonymous.4open.science/r/
GLIM-DBAF.
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A DETAILS ON EXPERIMENTS

A.1 DATASETS

A.1.1 CONSTRUCTION OF DATASETS

We first obtain the formulation codes for 2,000 classes of MILP problems from https:
//huggingface.co/datasets/microsoft/MILP-Evolve/, which are already suffi-
ciently diverse in type. However, each formulation code can only generate problems of a fixed
scale. We observe that the parameter set within each formulation code can be adjusted to produce
problems of varying scales. Therefore, we prompt a large language model (LLM) with each formu-
lation code to generate multiple parameter sets. Specifically, we employ GPT-4o (Hurst et al., 2024)
as the LLM with the following prompt:

Prompt to diversify instance scale

You are a world-class expert in optimization and algorithmic problem solving. Your
task is to generate instances of the same class of problems with varying scales or levels of
difficulty.
In the provided code, a MILP (Mixed-Integer Linear Programming) problem is defined, gen-
erated, and solved. In the ‘main’ function of the code, there is a Python Dict named ‘param-
eters’ that describes the input parameters of the problem.
You should carefully analyze the problem context and provide a new ‘parameters’ Dict in
JSON format that results in a problem of a different scale when used with the code. The new
instance should differ meaningfully from the current one, but not be too easy (solving time
≤ 1s) or too hard (solving time ≥ 100s), and the new instance can be larger or smaller than
the original one.

For each original formulation code, we generate 10 different parameter sets, resulting in a total of
20,000 formulation codes. From each formulation code, we further generate problems using 5 dif-
ferent random seeds, yielding 100,000 problem instances in total. Not all of these instances are
guaranteed to be feasible, and some may be unsolvable or too large/small in scale or difficulty. Fol-
lowing the filtering procedure described in Section 5.1, we ultimately obtain 77,295 valid problem
instances. These are randomly split into GLIM-train and GLIM-valid with a 9:1 ratio.

For testing on in-distribution data, we consider two tasks. For the first task, MILP instance retrieval,
we evaluate using the entire GLIM-valid dataset. For the second task, MILP solver hyperparameter
prediction, we select four benchmark problem classes (Combinatorial Auction Problem, General-
ized Independent Set Problem, Fixed Charge Multi-Commodity Network Flow Problem, Set Cover
Problem) that appear in the training set, and generate additional instances for evaluation.

For testing on out-of-distribution data, we evaluate on four standard problem classes: Multi-Item
Lot Sizing, Graph Coloring, Bin Packing, and Job Scheduling, as well as the MIPLIB Collection
Set, none of which appear in the training data.

A.1.2 DETAILS OF DATA LABELS

In the training process of GLIM, we employ three types of data labels: the type label, the scale label,
and the complexity label.

Type label The type label captures the categorical information of a problem instance. Since all
MILP instances used in GLIM training are synthetically generated from MILP formulation codes,
the formulation code itself fully encodes the problem type. To extract this information, we input
the formulation code into an LLM and design a prompt that instructs the LLM to produce a textual
description of the corresponding MILP instance:
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Prompt to generate type description

You are a world-class expert in optimization and algorithmic modeling.

You are given a Python code that defines, generates, and solves a Mixed-Integer Linear Pro-
gramming (MILP) problem. Your task is to write a single, high-quality paragraph that pro-
vides a detailed, comprehensive, and scale-independent description of the MILP problem
defined by the code. This description should not rely on any specific parameter values (e.g.
from the parameters dict or instance sizes), but instead focus on the general formulation
and structure of the problem.

Your response must consist of a single, complete paragraph, and should focus on (but not be
limited to) the following key aspects:
- The problem domain (e.g. network design, resource allocation),
- The formulation used (including how flows, capacities, and decisions are modeled),
- The different types of decision variables (continuous, integer, binary) and what they repre-
sent,
- The constraints (e.g. flow conservation, capacity constraints, budget limits, worker-resource
coupling),
- The objective function, including all cost components and trade-offs being optimized.

Avoid using any dataset-specific values. Focus instead on the logic, relationships, and math-
ematical modeling choices in the code. Write your response as if explaining the essence
of the MILP formulation to a fellow expert who has not seen the code but is capable of
understanding advanced optimization models.

We then feed the generated textual description into the text embedding model
Qwen-3-embedding, obtaining a type label representation ltype ∈ R4096. All MILP in-
stances belonging to the same category share the same type label.

Scale label and complexity label The scale label encodes the size-related characteristics of an
MILP instance. Specifically, we select eight core statistical features, summarized in Table 5. The
complexity label corresponds to the solving time of the instance. We compute this by solving the
MILP instance with the Gurobi 12.0.2 solver (Gurobi Optimization, LLC, 2024), restricted to a
single CPU core to ensure a uniform computational environment.

Table 5: MILP statistical indicators used for scale label.

Indicator Description
num vars Number of variables
num constrs Number of constraints
num nonzeros Number of nonzero coefficients in the constraint matrix
coef dens Density of coefficients
cons degree mean Average degree of constraints
cons degree std Standard deviation of constraint degrees
var degree mean Average degree of variables
var degree std Standard deviation of variable degrees

A.1.3 SAMPLES OF DIFFERENT FORMS OF MILP DATA

Here we provide a sample of code and corresponding textual description in training dataset. Lines
91-98 in the code correspond to the parameter part of the code, which we change to generate prob-
lems of different sizes.
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Formulation Code

1 import random
2 import time
3 import numpy as np
4 import networkx as nx
5 from pyscipopt import Model, quicksum
6
7 class GISP:
8 def __init__(self, parameters, seed=None):
9 for key, value in parameters.items():

10 setattr(self, key, value)
11
12 self.seed = seed
13 if self.seed:
14 random.seed(seed)
15 np.random.seed(seed)
16
17 ################# Data Generation #################
18 def generate_random_graph(self):
19 n_nodes = np.random.randint(self.min_n, self.max_n)
20 G = nx.erdos_renyi_graph(n=n_nodes, p=self.er_prob, seed

=self.seed)
21 return G
22
23 def generate_revenues_costs(self, G):
24 if self.set_type == ’SET1’:
25 for node in G.nodes:
26 G.nodes[node][’revenue’] = np.random.randint(1,

100)
27 for u, v in G.edges:
28 G[u][v][’cost’] = (G.nodes[u][’revenue’] + G.

nodes[v][’revenue’]) / float(self.set_param)
29 elif self.set_type == ’SET2’:
30 for node in G.nodes:
31 G.nodes[node][’revenue’] = float(self.set_param)
32 for u, v in G.edges:
33 G[u][v][’cost’] = 1.0
34
35 def generate_removable_edges(self, G):
36 E2 = set()
37 for edge in G.edges:
38 if np.random.random() <= self.alpha:
39 E2.add(edge)
40 return E2
41
42 def generate_instance(self):
43 G = self.generate_random_graph()
44 self.generate_revenues_costs(G)
45 E2 = self.generate_removable_edges(G)
46 res = {’G’: G, ’E2’: E2}
47
48 return res
49
50 ################# PySCIPOpt Modeling #################
51 def solve(self, instance):
52 G, E2 = instance[’G’], instance[’E2’]
53
54 model = Model("GISP")
55 node_vars = {f"x{node}": model.addVar(vtype="B", name=f

"x{node}") for node in G.nodes}
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56 edge_vars = {f"y{u}_{v}": model.addVar(vtype="B", name=f
"y{u}_{v}") for u, v in G.edges}

57
58 objective_expr = quicksum(
59 G.nodes[node][’revenue’] * node_vars[f"x{node}"]
60 for node in G.nodes
61 )
62
63 objective_expr -= quicksum(
64 G[u][v][’cost’] * edge_vars[f"y{u}_{v}"]
65 for u, v in E2
66 )
67
68 for u, v in G.edges:
69 if (u, v) in E2:
70 model.addCons(
71 node_vars[f"x{u}"] + node_vars[f"x{v}"] -

edge_vars[f"y{u}_{v}"] <= 1,
72 name=f"C_{u}_{v}"
73 )
74 else:
75 model.addCons(
76 node_vars[f"x{u}"] + node_vars[f"x{v}"] <=

1,
77 name=f"C_{u}_{v}"
78 )
79
80 model.setObjective(objective_expr, "maximize")
81
82 start_time = time.time()
83 model.optimize()
84 end_time = time.time()
85
86 return model.getStatus(), end_time - start_time
87
88
89 if __name__ == ’__main__’:
90 seed = 42
91 parameters = {
92 ’min_n’: 70,
93 ’max_n’: 100,
94 ’er_prob’: 0.6,
95 ’set_type’: ’SET2’,
96 ’set_param’: 100.0,
97 ’alpha’: 0.5
98 }
99

100 gisp = GISP(parameters, seed=seed)
101 instance = gisp.generate_instance()
102 solve_status, solve_time = gisp.solve(instance)
103
104 print(f"Solve Status: {solve_status}")
105 print(f"Solve Time: {solve_time:.2f} seconds")
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Textual Description

The Generalized Independent Set Problem (GISP) is a combinatorial optimization
problem that extends the classical Independent Set Problem by incorporating edge removal
decisions with associated costs, formulated as a Mixed-Integer Linear Program (MILP).
The problem operates on an undirected graph where nodes represent entities with associated
revenues, and edges represent conflicts or dependencies between these entities. The
objective is to select a subset of nodes that maximizes the total revenue of the selected nodes
while accounting for the costs of removing certain edges to resolve conflicts, subject to
constraints ensuring the selected nodes form an independent set (i.e., no two selected nodes
are adjacent). The decision variables include binary node-selection variables indicating
whether a node is included in the independent set and binary edge-removal variables for
a subset of removable edges, which allow the relaxation of conflict constraints at a cost.
The constraints enforce that either at most one node from any pair of adjacent nodes
is selected or the edge between them is removed (if removable), ensuring the solution’s
feasibility. The objective function balances the trade-off between maximizing the total
revenue from selected nodes and minimizing the total cost of edge removals, with the
edge costs being either derived from node revenues or set to a constant, depending on the
problem configuration. This formulation captures the interplay between node selection and
edge removal, making it suitable for applications requiring conflict resolution or resource
allocation under interdependencies.

A.2 BASELINES

Text Embedding Models Since there are no existing works on MILP embedding models to serve
as baselines, we consider a broader alternative for comparison: text embedding models. MILP prob-
lems in .lp or .mps format are represented as human-readable text, which makes them suitable for
input into a text embedding model. However, the context window limits of current text embedding
models are relatively small (e.g., 4096 or 8192 tokens). As a result, for large-scale problems, the
entire textual representation cannot be directly fed into the model, and only a sampled subset can be
used. Following the sampling strategy described in (cite), we extract 150 lines of information from
each instance: the first 50 lines, 50 lines sampled at random from the middle, and the last 50 lines.
An example of the sampled information from one instance is shown below:

Example of sampled instance

* SCIP STATISTICS * Problem name : GISP
* Variables : 2350 (2350 binary, 0 integer, 0 implicit integer, 0 continuous)
* Constraints : 2242
NAME GISP
OBJSENSE MIN
ROWS N Obj L C 0 4 L C 0 8 L C 0 13 L C 0 16
(omitted...)
COLUMNS
INTSTART ’MARKER’ ’INTORG’
x0 Obj -100 C 0 68 1
x0 C 0 70 1 C 0 71 1
x0 C 0 72 1 C 0 76 1
x0 C 0 84 1 C 0 86 1
x0 C 0 98 1 C 0 103 1
(omitted...)
BV Bound y103 105
BV Bound y103 106
BV Bound y104 107
ENDATA
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We adopt the current state-of-the-art text embedding models Qwen-3-embedding-8b and
Linq-mistral-embed for comparison. To align with GLIM’s disentangled embeddings in the
three dimensions of type, scale, and complexity, we design instruction prompts for the text em-
bedding models. This enables them to also produce three sub-embeddings, [ztype, zscale, zcomp]. We
further set the output dimensionality of the text embedding models to 256, consistent with GLIM’s
design. The instruction prompts for extracting the type/scale/complexity embeddings are as follows:

Instruction prompt for text embedding model

(For type embedding) Given a Mixed Integer Linear Programming (MILP) problem
instance in MPS format below, retrieve a similar problem instance that belongs to the same
problem category, domain application, or mathematical structure type.

(For scale embedding) Given a Mixed Integer Linear Programming (MILP) problem instance
in MPS format below, retrieve a similar problem instance that has matching statistical prop-
erties including number of variables, constraints, non-zero elements, and coefficient distri-
butions.

(For complexity embedding) Given a Mixed Integer Linear Programming (MILP) problem
instance in MPS format below, retrieve a similar problem instance that has comparable com-
putational complexity, solution difficulty, and optimization challenge level.

GLIM Variants We trained three different versions of the GLIM model (GLIM-S, GLIM-M, and
GLIM-L) for comparison. These models share the same architecture but differ in the amount of
training data used. The training data scales are summarized in Table 6. In addition, Figures 9–12
visualize the loss curves of these three models on GLIM-valid during training.

Table 6: Training data statistics for GLIM-S, GLIM-M, and GLIM-L.

Model Num. of MILP Classes Num. of MILP Instances
GLIM-S 50 1,908
GLIM-M 400 13,925
GLIM-L 2000 69,569
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B IMPLEMENTATION DETAILS OF GLIM

B.1 DETAILS OF BIPARTITE GRAPH FEATURES

To encode an MILP instance as a corresponding bipartite graph, we incorporate information about
both variables and constraints into the node features of the graph representation. The specific node
features used in our encoding are detailed in Table 7.

Table 7: Node type features and descriptions for Variables and Constraints.

Node Type Feature Description

Vars

type Variable type
lb Variable lower bound
ub Variable upper bound

norm coef Objective coefficient normalized by objective norm

Cons

row norm ℓ2-norm of row coefficients
obj norm ℓ2-norm of objective coefficients

lhs Left-hand side (depending on constraint sense)
rhs Right-hand side (depending on constraint sense)

ncols Total number of variables in the model
nlpnonz Number of nonzero coefficients in the row

cst Row constant term
origin type Constraint sense: {<,=, >, other}

intcols Count of integral coefficients in the row
rank Normalized row index

In each layer, messages are passed iteratively between variable and constraint nodes, allowing their
representations to be mutually refined based on the graph’s structure.

We employ residual connections across GNN layers and apply GraphNorm (Cai et al., 2021) to the
final node embeddings to stabilize training and improve performance on graphs of varying sizes.

B.2 DETAILS OF MODEL ARCHITECTURE

Feature Embedding We embed rows/cols with two-layer MLPs and normalize edges:

hr,0i = ϕr(x
r
i ) = GELU(Wr,2 Drop(GELU(Wr,1 Norm(xri )))) , (4)

hc,0j = ϕc(x
c
j) = GELU

(
Wc,2 Drop

(
GELU

(
Wc,1 Norm(xcj)

)))
, (5)

ẽij = Norm(eij), (6)

where Norm is either LayerNorm, and Drop denotes dropout.

Bipartite Message Passing Encoder We employ alternating bipartite convolutions for T itera-
tions. One layer from columns to rows reads

mr,t
i =

∑
j∈N (i)

ψ
(
hr,ti , hc,tj , ẽji

)
, ψ(a, b, c) = LN

(
Wℓa+Wec+Wrb

)
, (7)

hr,t+1
i = Ur

([
mr,t

i ; hr,ti

])︸ ︷︷ ︸
post-conv & fusion

, Ur(z) =Wo,r GELU(z), (8)

and symmetrically a layer from rows to columns:

mc,t
j =

∑
i∈N (j)

ψ
(
hc,tj , hr,t+1

i , ẽij

)
, (9)

hc,t+1
j = Uc

([
mc,t

j ; hc,tj

])
. (10)
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When T > 1, residual accumulation is applied across iterations (i.e., h·,t+1 ← h·,t+(·)). Optionally,
an edge-aware multi-head GAT variant can be used in place of ψ. After message passing we apply
GraphNorm per part:

hr = GraphNorm
(
GELU(Wr,3h

r,T )
)
, hc = GraphNorm

(
GELU(Wc,3h

c,T )
)
. (11)

Token Construction and Side Embeddings Let Hr = {hri }i∈Vr
and Hc = {hcj}j∈Vc

. We add
learned type-specific offsets sr, sc ∈ Rd to distinguish rows/cols and concatenate:

T =
{
hri + sr

}
i
∪
{
hcj + sc

}
j
∈ RN×d, (12)

with N = |Vr| + |Vc| and model width d = emb size. During training, we apply token dropout
with rate p while preserving expected magnitude and at least one token per graph.

B.2.1 PERCEIVER-LIKE ATTENTION BLOCK

We introduce three learnable latent queries (type, scale, complexity), Q(0) =
[
qtype, qscale, qcomp

]
∈

R3×d. For extremely large graphs we perform a light-weight Top-K truncation of context tokens by
their ℓ2-norm:

TK = arg topK
t∈T

∥t∥2, K = max token attn, (13)

and use TK as keys/values.

Each Perceiver block consists of cross-attention from latents to tokens, followed by latent self-
attention and an MLP:

Q̃(ℓ) = Q(ℓ−1) +DropPath
(
Drop

(
Attn

(
LN
(
Q(ℓ−1)

)
,LN

(
TK
)
,LN

(
TK
))))

, (14)

Q̂(ℓ) = Q̃(ℓ) +DropPath
(
Drop

(
Attn

(
LN
(
Q̃(ℓ)

)
,LN

(
Q̃(ℓ)

)
,LN

(
Q̃(ℓ)

))))
, (15)

Q(ℓ) = Q̂(ℓ) +DropPath
(
MLP

(
Q̂(ℓ)

))
, (16)

where multi-head attention is

Attn(Q,K, V ) = Concat
(
head1, . . . ,headH

)
WO,headh = Softmax

(
QWQ

h (KWK
h )⊤√

d/H

)
VWV

h .

(17)
The block outputs three refined latent embeddings ztype, zscale, zcomp ∈ Rd from Q(L).

Why Perceiver-like block instead of Full Self-Attention? A naive self-attention over all node
tokens scales quadratically in N : time/memory Θ(N2d), which is prohibitive for MILPs where N
can reach tens of thousands. In contrast, the Perceiver-style cross-attention uses only Lq=3 latent
queries and K ≪ N context tokens:

cost = Θ(LLqKd)︸ ︷︷ ︸
cross-attn

+Θ(LL2
qd)︸ ︷︷ ︸

latent self-attn

≪ Θ(N2d),

and remains linear inK while preserving targeted aggregation via learned queries. Top-K truncation
further caps compute/memory without architectural changes, and token dropout regularizes training
on large instances.

B.2.2 PROJECTION HEADS AND OUTPUTS

From the disentangled latents we compute task-specific outputs with lightweight MLP heads:

ytype = ftype(ztype) =W2 Drop(GELU(W1 LN(ztype))) ∈ R4096, (18)

ŝ = fscale(zscale) ∈ R8, t̂ = fcomp(zcomp) ∈ R, (19)
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where the type head projects to a 4096-d space used for contrastive alignment with a precomputed
4096-d text embedding; the scale head regresses eight log-statistics; and the complexity head re-
gresses log-solving time. Following CLIP, we maintain a learnable temperature τ > 0 (implemented
as log τ ) to scale similarities:

Sm→t = τ cos

(
ytype

∥ytype∥2
,
ytext

∥ytext∥2

)
, St→m = τ cos

(
ytext

∥ytext∥2
,
ytype

∥ytype∥2

)
. (20)

These heads correspond directly to the three losses detailed in Appendix B.2.3.

B.2.3 TRAINING OBJECTIVES

To enforce the desired disentanglement, we train GLIM using a composite loss function that com-
bines objectives for each of the three factors. The total loss is a weighted sum of the individual
losses:

L = λtypeLtype + λscaleLscale + λcompLcomp, (21)

where λtype, λscale and λcomp are hyperparameters that balance the contribution of each task.

Type Objective Following the approach of CLIP (Radford et al., 2021), for each MILP instance in
a batch, we have its corresponding type label, which is a text embedding derived from the problem’s
formulation code (see Appendix A.1.2). The goal is to maximize the cosine similarity between
the MILP’s type embedding and its paired text embedding, while simultaneously minimizing the
similarity with all other text embeddings in the same batch. This is achieved through a symmetric
cross-entropy loss over the similarity scores.

For a batch of N pairs, the loss is:

Ltype =
1

2
(CE(Sm→t) + CE(St→m)) ,

where Sm→t and St→m are the N × N matrices of cosine similarities between all MILP and text
embeddings in the batch, scaled by a learnable temperature parameter. CE denotes the cross-entropy
loss with respect to identity-matrix labels.

Scale Objective The scale objective is a multi-target regression task. The scale head, an MLP,
takes the scale embedding zscale as input and predicts a vector of 8 structural statistics (e.g., number
of variables, constraints). As these statistics often follow a heavy-tailed distribution, we predict
their logarithmic values. The loss is the Mean Squared Error (MSE) between the predicted and
ground-truth log-statistics:

Lscale =
1

8

8∑
i=1

(MLPscale(zscale)i − log(ŝi + ϵ))
2
, (22)

where si is the i-th ground-truth statistic and ϵ is a small constant for numerical stability.

Complexity Objective Similarly, the complexity objective is a regression task. The complexity
head predicts the solver time for the instance based on the complexity embedding zcomp. As with the
scale labels, we use the log-transformed solving time as the target to mitigate the effect of outliers
and stabilize training. The loss is also defined as the Mean Squared Error:

Lcomp =
(
MLPcomp(zcomp)− log(t̂+ ϵ)

)2
, (23)

where t̂ is the ground-truth solving time. This multi-task objective forces the model to encode
distinct, interpretable information into each component of the final embedding vector.

B.3 IMPLEMENTATION DETAILS

We use DistributedDataParallel for multi-GPU training. The largest model, GLIM-L,
was trained on 4 NVIDIA V100 GPUs for approximately three days. The hyperparameters used in
our experiments are reported in Table 8.
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Table 8: Training hyperparameters for GLIM models.

Hyperparameter Value
Batch size 8
Epochs 100
Learning rate 0.00005
Dropout 0.2
Attention dropout 0.1
Drop path 0.05
Token dropout 0.1
Type loss weight 2.0
Scale loss weight 2.0
Complexity loss weight 1.0
Embedding size 256
Number of attention layers 4
Number of GNN layers 2
GAT heads 16
Attention heads 16
Max token attention 16384

C DETAILS OF MILP SOLVER HYPERPARAMETER PREDICTION

To train the MLP head for solver hyperparameter prediction, we first needed to construct a suitable
training dataset. The input data of the training set is identical to that used by the GLIM backbone;
the key difference lies in the labels, which correspond to the near-optimal solver hyperparameters
for each instance. To obtain these labels, we employed smac3 (Lindauer et al., 2022), a widely used
Bayesian optimization framework, to perform hyperparameter tuning on the Gurobi solver. Gurobi
provides a wide range of hyperparameter interfaces. From these, we use the same hyperparame-
ter selection space as in (Guo et al., 2024), as summarized in Table 9, which includes parameters
governing MIP strategy, simplex procedures, presolving, cut generation, and other algorithmic com-
ponents of Gurobi.

Since hyperparameter tuning with smac3 is computationally expensive, we restricted the tuning
process to instances with an original solving time (i.e., under Gurobi default settings) of less than
5 seconds. For each eligible instance, tuning was capped at 200 trials, and the best hyperparameter
configuration found was recorded. We further filtered out instances for which no speedup was
achieved, thereby obtaining the final dataset used for training the MLP head.

Table 9: Selected hyperparameters of Gurobi. The column “category” indicates the solver compo-
nent affected by the hyperparameter.

Hyperparameter Category Value Type Range Description
Heuristics MIP double [0, 1] Controls the intensity of MIP heuristics.
MIPFocus MIP integer {0, 1, 2, 3} Sets the focus of the MIP solver.
VarBranch MIP integer {-1, 0, 1, 2, 3} Variable branching strategy.
BranchDir MIP integer {-1, 0, 1} Preferred branching direction.
RINS MIP integer {-1, 0, . . . , 20} RINS heuristic level.
PartitionPlace MIP integer {0, 1, . . . , 31} Controls when the partition heuristic is applied.
NodeMethod MIP integer {-1, 0, 1, 2} Method for solving MIP node relaxations.
LPWarmStart Simplex integer {0, 1, 2} Warm start usage in simplex.
PerturbValue Simplex double [0, 0.001] Magnitude of simplex perturbation.
Presolve Presolve integer {-1, 0, 1, 2} Presolve aggressiveness level.
Prepasses Presolve integer {-1, 0, . . . , 20} Maximum number of presolve passes.
Cuts MIP Cuts integer {-1, 0, 1, 2, 3} Global cut generation control.
CliqueCuts MIP Cuts integer {-1, 0, 1, 2} Clique cut generation level.
CoverCuts MIP Cuts integer {-1, 0, 1, 2} Cover cut generation level.
Method Other integer {-1, 0, 1, 2, 3, 4, 5} Algorithm for solving continuous models.

The loss function of the MLP head is defined as the prediction error over the selected solver hyper-
parameters. For integer-type hyperparameters, we employ cross-entropy loss, while for double-type
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hyperparameters we use mean squared error (MSE). The overall training objective is obtained by
summing the losses of all hyperparameters with equal weights.

The input to the MLP head is a 768-dimensional vector, constructed by concatenating three 256-
dimensional embedding tokens that encode type, scale, and complexity, respectively. During infer-
ence, predictions for double-type hyperparameters are taken directly as continuous outputs, whereas
integer-type hyperparameters are decoded using greedy selection. The hyperparameters used for
training the MLP head are summarized in Table 10.

Table 10: Hyperparameters for training the MLP head.

Hyperparameter Value
Hidden Dimension 256
Learning Rate 1.0× 10−3

Label Smoothing 0.1
Epochs 100
Batch Size 8

D FURTHER EXPERIMENTS AND ANALYSIS

D.1 ABLATION STUDY

We compare the Perceiver-like attention block used in GLIM with a standard self-attention block.
In prior work Li et al. (2025), self-attention blocks were directly applied to the node embeddings
produced by a GNN in the context of Language–MILP Contrastive Learning. To enable a fair
comparison, we replace GLIM’s Perceiver-like block with a self-attention block. Since self-attention
requires O(n2) attention computation, we cap the maximum token input length at 512; for larger
MILP instances, we subsample the node embeddings. We evaluate the impact of this architectural
choice on the MILP Instance Retrieval task, with results reported in Table 11.

Table 11: Comparison of MEE results on MILP Instnace Retrieval task of different GLIM model
architectures.

Target=Scale Target=Complexity
Dataset GLIM-valid MIPLIB GLIM-valid MIPLIB

GLIM-S w/ Self-Attention 0.121 1.547 0.869 3.721
GLIM-S 0.038 1.442 0.671 4.053

GLIM-M w/ Self-Attention 0.054 1.306 0.726 3.760
GLIM-M 0.026 1.255 0.678 3.494

GLIM-L w/ Self-Attention 0.030 0.892 0.680 3.746
GLIM-L 0.024 1.203 0.645 3.357

D.2 MORE RESULTS ON MILP SOLVER HYPERPARAMETER PREDICTION

We evaluate the performance of GLIM variants and baseline models on four in-distribution bench-
mark problems: Combinatorial Auction (CA), Generalized Independent Set (GISP), Fixed Charge
Multi-Commodity Network Flow (FCMCNF), and Set Cover (SC). Results for Win Rate are re-
ported in Table 12, while comparisons on Average Solving Time and Speedup Ratio are presented
in Table 13. As shown, GLIM-S outperforms both GLIM-M and GLIM-L. This is because the train-
ing corpus of GLIM-S already includes these benchmark problems, whereas GLIM-M and GLIM-L
are trained on much larger and more diverse datasets, which dilutes their representation power for
problems already seen in the training distribution.
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Table 12: Win rate results for the MILP Solver Hyperparameter Prediction task.

Model In-Distribution
CA GISP FCMCNF SC

Linq-Embed-Mistral 50/50 44/44 31/37 50/50
Qwen-3-Embed 50/50 44/44 34/37 50/50
GLIM-S 50/50 44/44 33/37 50/50
GLIM-M 50/50 44/44 33/37 50/50
GLIM-L 50/50 44/44 32/37 50/50

Table 13: Average solving time results for the MILP Solver Hyperparameter Prediction task. The
ratio in parentheses is the average speedup ratio.

Model In-Distribution
CA GISP FCMCNF SC

Default 69.715 28.068 29.727 15.380
Linq-Embed-Mistral 15.357 (9.77) 3.207 (12.36) 8.829 (3.11) 3.055 (8.96)
Qwen-3-Embed 18.513 (7.92) 2.385 (14.22) 8.206 (3.60) 2.587 (9.46)
GLIM-S 3.959 (21.09) 1.809 (17.28) 7.803 (3.77) 2.871 (9.16)
GLIM-M 6.502 (20.56) 4.086 (13.19) 8.150 (3.31) 3.013 (8.38)
GLIM-L 5.600 (11.60) 2.461 (12.37) 8.896 (2.68) 4.284 (6.27)
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