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Abstract

Reinforcement learning (RL) has emerged as a powerful tool for tackling control
problems, but its practical application is often hindered by the complexity arising
from intricate reward functions with multiple terms. The reward hypothesis posits
that any objective can be encapsulated in a scalar reward function, yet balancing in-
dividual, potentially adversarial, reward terms without "reward hacking" remains
challenging. To overcome the limitations of traditional RL methods, which often
require precise balancing of competing reward terms, we propose a two-stage re-
ward curriculum that first maximizes a simpler subset of the reward function and
then transitions to the full, complex reward. We provide a method based on how
well an actor fits a critic to automatically determine the transition point between
the two stages. Additionally, we introduce a flexible replay buffer that enables ef-
ficient phase transfer by reusing samples from one stage in the next. We evaluate
our method on the DeepMind control suite, modified to include additional auxil-
iary terms in the reward definitions and a mobile robot scenario with several com-
peting reward terms. In both settings, our two-stage reward curriculum achieves
a substantial improvement in performance compared to a baseline trained without
curriculum. Instead of exploiting the auxiliary terms in the reward, it is able to
learn policies that balance task completion and auxiliary objective satisfaction.

1 Introduction

Reinforcement Learning (RL) has emerged as a powerful paradigm in the field of robotic control,
offering the promise of adaptable and efficient solutions to complex problems. RL has demonstrated
its potential to learn optimal policies in a wide range of applications such as manipulation [Gu
et al., 2016, Kalashnikov et al., 2018, Leyendecker et al., 2022, Han et al., 2023] or mobile robotics
[Lillicrap, 2015, Zhu et al., 2017, Rodriguez-Ramos et al., 2018, Zhu and Zhang, 2021, Sang and
Wang, 2022]. However, as we transition from carefully curated benchmarks to realistic scenarios, a
significant gap emerges, highlighting the challenges of applying RL in practical settings.

One of the primary challenges in realistic applications lies in the complexity of the environment and
the multiplicity of objectives. While classical RL problems often focus on a single, well-defined
goal, real-world scenarios typically involve multiple, sometimes conflicting objectives. For instance,
a mobile robot might need to navigate to a goal location while simultaneously avoiding obstacles,
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Figure 1: Comparison of the baseline TD3 and SAC algorithms with reward curriculum versions
(RC-TD3 and RC-SAC). An icon above the diagonal means that the curriculum version outperforms
the baseline. The first columns show the normalized mean episode reward visualized using auxiliary
weight w = 0.5 and the second columns show the achieved base reward. The rows correspond to
the w used during training.

maintaining a specific velocity, and ensuring a smooth trajectory [Zhang et al., 2023, Ceder et al.,
2024]. This multi-objective nature of real-world problems poses a significant challenge to traditional
RL approaches.

The reward hypothesis suggests that any learning objective can be expressed by a single scalar
reward under certain assumptions [Sutton, 2018, Bowling et al., 2023]. However, formulating an
effective reward function for complex tasks is non-trivial and can often result in undesired behaviors
[Booth et al., 2023, Knox et al., 2023, Knox and MacGlashan, 2024]. Moreover, optimizing such
complex rewards can be challenging due to the presence of local optima, where policies might
satisfy only a subset of objectives (e.g., minimizing energy consumption by remaining stationary)
without learning the intended task, which is referred to as reward hacking. We call such potentially
conflicting objectives complex reward functions, where the complexity lies in the presence of strong
local optima for undesired behaviors. Notably, our setting focuses on a single reward function,
distinct from multi-objective reinforcement learning (MORL) which typically considers a set of
Pareto-optimal solutions for multiple objectives [?].

A line of work that has emerged to tackle challenging RL problems is curriculum learning [Ben-
gio et al., 2009, Narvekar et al., 2020]. Inspired by how animals can be trained to learn new skills
[Skinner, 1958], learning proceeds from simple problems to gradually more challenging ones. In
the realm of RL, such curricula are often hand-designed and have been successfully employed in
several applications in robotic control [Sanger, 1994, Hwangbo et al., 2019, Leyendecker et al.,
2022]. More recently several methods for automatic curriculum design have emerged that are able
to learn curriculum policies [Narvekar and Stone, 2019] or that break down problems into smaller
ones [Andrychowicz et al., 2017, Fang et al., 2019] for more effective learning. Further, automatic
curricula are used in sparse or no reward settings as intrinsically motivated exploration that encour-
ages reaching diverse states [Bellemare et al., 2016, Pathak et al., 2017, Burda et al., 2018, Shyam
et al., 2019]. Nevertheless, such methods have been explored less for reward functions.

To address the challenge of learning with complex reward functions, we propose leveraging curricu-
lum learning. We introduce a novel two-stage reward curriculum combined with a flexible replay
buffer to effectively balance task success and auxiliary objectives. In the first phase, a subset of
rewards is used for training to simplify the discovery of successful trajectories. When the policy has
converged sufficiently, the second phase is initiated, optimizing the full reward. To automatically de-
termine when to switch to the second phase, we track how well the actor optimizes the Q-function
as a proxy for policy convergence. Additionally, our method allows for sample-efficient reuse of
collected trajectories by incorporating two rewards in the replay buffer such that samples from the
first phase can be reused for training with an updated reward in the second phase.

To analyze the efficacy of our method, we first evaluate it on several modified environments from
the DeepMind (DM) control suite, where the agent in addition to the original reward gets penalized
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for taking large actions. Furthermore, we evaluate it on a mobile robot that is tasked to reach a goal
location while avoiding collisions. Simultaneously, it must fulfill several auxiliary rewards, includ-
ing maintaining a reference velocity, staying close to a planned path when possible, and generating
smooth trajectories. We formulate the reward in an intuitive way, to enable simple testing of differ-
ent auxiliary reward weights w. The complexity lies in finding a solution that maximally satisfies
auxiliary terms while still reaching the goal, exacerbated by the plurality of the objective.

In our experiments, we compare our method to a baseline that always trains on the full reward.
We show that our two-stage reward curriculum becomes more effective for higher weights of aux-
iliary terms. Especially for environments where the auxiliary terms encourage reward hacking, our
method proves most useful and prevents getting stuck with undesired behaviors (see Fig. 1). In an
ablation study we show that the “pretrained” network weights from the first phase help find better
solutions and that the flexible replay buffer becomes important in the more challenging mobile robot
environment. Furthermore, we demonstrate that the automatic switch effectively identifies suitable
switching times, leading to faster convergence than the static approach. Our contributions can be
summarized as follows:

1. We introduce a novel two-stage reward curriculum to effectively learn complex rewards by
i) reusing past experiences with updated rewards (in order to improve sample-efficiency),
and ii) an automatic mechanism to switch phases. The curriculum is integrated in two RL
methods, one based on SAC and the other based on TD3.

2. We extensively evaluate our method on several modified DM control suite environments
and discuss in which environments a reward curriculum is most effective. Further we ex-
tensively evaluate our method in a mobile robot navigation problem with several conflicting
reward terms.

3. In ablation studies, we investigate the impact of the key components of our method, includ-
ing the automatic switching mechanism and flexible replay buffer, as well as the effect of
switching between reward functions during training.

2 Problem Formulation

We formulate the problem as a Markov Decision Process (MDP) defined by the tuple
⟨S,A,P, r, p0, γ⟩. A represents the action space, S the state space, P : S × A × S → [0, 1] is
the state transition function, p0 : S → [0, 1] the initial state distribution and γ ∈ [0, 1) a discount
factor. The reward is denoted by r; we omit its explicit dependence on state and action r(s, a) for a
less clustered notation.

The objective of RL is to maximize the expected return, E[Gn], where Gn =
∑N

k=n γ
k−nrk is the

cumulative discounted reward, with n being the current step and N the maximum steps per episode.
A key concept for achieving this goal is the action-value function, commonly referred to as the Q-
function, which represents the expected return when taking action a in state s. The Q-function is
parameterized by weights ϕ, and denoted as Qϕ(s, a).

In our case, we consider any control problem with several reward terms that are available separately,
where each can be categorized either as a base reward rbase if it helps learning the goal (for instance
reward shaping terms), and auxiliary rewards raux, which specify the desired behavior. The reward
is then given as the weighted sum with w ∈ [0, 1]

r = rbase + w · raux (1)

The goal is to develop a method that allows learning a policy πθ(a|s) parametrized by weights θ
that learns to complete tasks (encoded by rbase) while maximally satisfying the auxiliary objectives
raux and being robust to different reward weights w. Intuitively, the challenge lies in finding policies
that learn the task without reward hacking.

3 Reward Curriculum

We propose a novel two-stage reward curriculum to effectively learn complex reward functions in
a sample-efficient manner. In principle the reward curriculum can be combined with any off-policy
RL algorithm, though in this work we focus on two versions of our method: one based on Soft-Actor
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Critic (SAC) [Haarnoja et al., 2018] and the other based on Twin-Delayed DDPG (TD3) [Fujimoto
et al., 2018], which we denote as RC-SAC and RC-TD3 respectively. In the first phase of the
curriculum, we consider only a subset of reward terms for training, denoted as rbase. In the second
phase, we then directly optimize the full reward r = rbase + w · raux. Details about RC-TD3 and
RC-SAC can be found in Appendix A.

Formally, we define the curriculum reward as

rcr =

{
rbase if CR = 0

r otherwise
(2)

where CR denotes the index of the current curriculum phase. Algorithm 1 in Appendix B describes
the two-stage curriculum in detail.

3.1 Reuse of past experience

A key aspect of our method is leveraging past experiences after a phase switch. Specifically, we store
tuples of the form {(st, at, rbase, r, st+1)} in the replay buffer. When transitioning to the second
phase, we reuse experiences from the first phase by now utilizing reward r for training instead of
rbase. This mechanism aims to stabilize training by populating the replay buffer with a diverse set
of samples, thereby facilitating sample-efficient learning. Notably, this approach is only compatible
with off-policy RL algorithms, as it relies on the ability to learn from stored experiences.

3.2 Automatic phase switch

Another key aspect of the reward curriculum is to find appropriate times to transition from the initial
phase to training with the full reward. We hypothesize that the actor has to sufficiently learn the task
using the base reward before the other terms should be added. As a proxy for learning, we consider
how well the actor optimizes the critic. In the case of TD3 that would simply be the actor loss 5, for
SAC it would be the actor loss 6 but without the additional entropy term. If the actor fits the critic
well for m timesteps, i.e. ∀i ∈ {t − k + 1, . . . , t} : Jπ,Q;i < ΓCR where ΓCR is the threshold that
defines a “good” fit, we switch to the second curriculum phase.

4 Environments

We evaluate the methods RC-SAC and RC-TD3 on several different environments from the DM
control suite and on a mobile robot environment with several reward terms. In the following, we
describe the details of the environments.

4.1 DM Control Suite

The DM Control Suite [Tassa et al., 2018] is a well-known collection of control environments in
RL. We use the state-space observations and the environments have an action space A ∈ [−1, 1]2.
The original rewards are in the range [0, 1], which we take as base reward rbase. Furthermore, we
introduce the following reward term to minimize action magnitudes, to find efficient solutions to the
control problems

raux = −
d∑

i=1

|ai| (3)

where d is the number of actions of each environment. This is used as an auxiliary term in the
curriculum reward (see Equation 2).

4.2 Mobile Robot

To evaluate our method in a more realistic and complex setting (in terms of rewards), we consider a
mobile robot navigation problem where the robot is tasked to reach a goal position while avoiding
obstacles and satisfying various other objectives. The environment maps are randomized and contain
both permanent (e.g., walls and corridors) and temporary (e.g., dynamic or static) obstacles. A
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(a) Functions for dense reward terms with κ = 0.942,
vref = 1.2 and dtrack,max = 5. The range for each
term is normalized to [−1, 1]. Green shows the re-
ward shaping term that enables finding the goal faster.
The other penalizing terms are colored in red.

(b) Exemplary environment maps used for training.
Obstacle positions, paths, initial states, and goal po-
sitions are randomized. While maps 0 and 2 contain
dynamic obstacles, maps 1 and 3 only contain static
ones.

Figure 2: Dense reward functions and training environments

subset of exemplary environment maps can be found in Figure 2b. Furthermore, a reference path
that considers only permanent obstacles is computed using A* [Hart et al., 1968]. This reference
path should simulate a setting where an optimal path is pre-computed but the robot might not be
able to naively follow it due to temporary obstacles.

The state space S ∈ R178 consists of the latest two lidar observations, the robot’s position, the
current speed, the reference path, and the goal position. The action space A ∈ [−1, 1]2 represents
the translational and angular acceleration.

For the reward design, we will focus on easily interpretable formulations. The objectives include
reaching a goal position while driving at a reference velocity, staying close to the reference path,
and creating smooth trajectories. Thus, there are three possible outcomes of an episode: (1) reach
the goal, (2) timeout, i.e. reach maximum steps, or (3) collide with an obstacle. Empirical tests have
shown that penalizing collisions mainly hinders exploration and does not lead to better final policies.
Therefore, the only outcome-based reward included is:

rg =

{
100 if reached goal
0 otherwise

The other objectives can be expressed as dense terms evaluated at each step. To enable intuitive
weighting, we normalize each term between [−1, 1]. We chose this range over [−1, 0] to discourage
the policy from learning to crash immediately.

To achieve smooth trajectories we encourage minimizing accelerations. As this corresponds to our
action space, we penalize high action values, similar to the DM control experiments, as

ra = 1−
2∑

i=1

|ai|, ra ∈ [−1, 1]

Further, to drive at a desired reference velocity vref we model a velocity reward as a piece-wise
quadratic function centered on vref, and scaled to our desired range. This choice is motivated by the
intuition that slowing down is less severe than going too fast.

rv = 1− lκ2 (vt − vref ) · 2
max(lκ2 (−vref ), lκ2 (vmax − vref ))

, rv ∈ [−1, 1]

with the piece-wise quadratic function lκ2 being defined as:

lκ2 (x) =

{
κx2 if x > 0

(1− κ)x2 otherwise
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Figure 3: Performance of TD3, SAC, RC-TD3 and RC-SAC for the mobile robot environment.
Results are averaged over the last 50, 000 training timesteps and 4 seeds. Both RC-TD3 and RC-
SAC consistently outperform TD3 and SAC across all metrics, indicating the effectiveness of a
reward curriculum. Interestingly, RC-SAC and SAC manage to better optimize the auxiliary rewards
compared to RC-TD3 and TD3. Overall, RC-SAC performs the best and manages to retain high
success rates across all w.

where κ ∈ [0, 1] controls the slope of the negative and positive regions and vmax = 1.5 is the
maximum velocity.

Further, we linearly penalize deviating from the reference trajectory with the following reward term

rx = clip
(
|dtrack |

dtrack ,max
,−1, 1

)
, rx ∈ [−1, 1]

where dtrack is the distance between the agent and the reference trajectory and dtrack ,max is a tuning
parameter that sets the maximum distance. This is done to make the robot’s behavior predictable,
such that it only deviates from a planned path if necessary.

To enable effective learning we additionally make use of potential-based reward shaping Ng et al.
[1999], by encouraging progress along the reference path, through

rp =
ppath(s

′)− ppath(s)

vmax · dt
, rp ∈ [−1, 1]

where ppath(s) is the position on a path in state s and the denominator is the maximum distance
traversed in one step. As it is potential-based, it does not alter the ordering over policies Ng et al.
[1999]. Figure 2a gives an overview of the dense reward terms used.

Assuming that all terms are equally important we assign equal weights. The reward is then given by

r = rg + wprp + w(rv + ra + rx) (4)

where we set the reward-shaping weight wp = 0.25 throughout all experiments.

While selecting which reward terms should belong to rbase and raux was straight-forward in the case
of the modified DM control suite, it becomes less clear when having more than two objectives such
as in the case of the mobile robot. However, we found that simply using the terms that encourage the
agent to only learn the task as rbase (See Appendix D for more details). Specifically, we chose the
base reward as rbase = rg + wprp, and all other reward terms become part of the auxiliary reward,
thus raux = w(ra + rx + rv).
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5 Results & Discussion

Results are computed over four random seeds and to facilitate comparison across different training
configurations, we report the rewards with fixed weights w = 0.5 for DM Control and w = 0.1
for the mobile robot environment. Note that these weights are used solely for evaluation purposes
and differ from the reward weights used during training. We report the normalized episode reward,
where 0 corresponds to the worst performance and 1 corresponds to the best performance. Details
can be found in Appendix C.

5.1 DM Control

We test our method for w ∈ {0.5, 1.0} on the DM control suite environments pendulum swingup,
fish upright, fish swim, reacher hard, reacher easy, finger turn hard, finger turn easy, finger spin,
ball in cup catch, cartpole balance, cheetah run, cartpole swingup, walker stand, walker walk and
walker run. For the automatic switch we use ΓCR = −50 with m = 20. We train for 2, 000, 000
steps and use the average over the last 50, 000 steps as final result. In Fig. 1 we show the mean
episode reward obtained with RC-TD3 and RC-SAC on the Y-axis versus the episode reward with
TD3 and SAC on the X-Axis. A table with mean values and standard deviations can be found in the
Appendix E. A symbol above the diagonal indicates that the curriculum improves performance, and
below implies the opposite. It shows that the reward curriculum is equal or better in almost all cases.
This is especially the case for environments that do not automatically optimize the auxiliary rewards
by completing the task. For instance, in cartpole balance it is beneficial for the task to predict
small actions, thus a curriculum does not have a sizable effect. However, for tasks like finger spin,
adding the auxiliary term seems to hinder learning the task, leading to suboptimal policies with the
baselines. In those cases, where other terms substantially impact learnability, our curriculum method
proves to be most effective (i.e. environments with episode reward around the range from -100 to
500). Furthermore, there is one group in the bottom left, where the policy does not successfully
learn the problem at all. In this case, the curriculum does not have any effect and learning remains
unsuccessful. Furthermore, when examining the base reward rbase in Fig. 1 (i.e. the reward that only
encodes task learning) it can be seen that employing a reward curriculum is even more beneficial
in terms of rbase than when looking at r, indicating that it indeed encourages learning the task and
prevents reward hacking. In contrast, the baseline does not learn the problem at all in some cases,
such as for finger spin, walker run or cheetah run. In these instances, the majority of the episode
reward of the baseline solely comes from exploiting auxiliary terms.

5.2 Mobile Robot

For the mobile robot we evaluate our method for the auxiliary weights w =
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0}. We choose these values as we expect more refined
changes for smaller w. We train for T = 1, 000, 000 steps and use the average over the last 50, 000
training steps as final metrics. The automatic switch parameters used are ΓCR = −10 for RC-TD3
and ΓCR = −20 for RC-SAC with m = 20. In the case of TD3, we start with σ = 0.9 and anneal it
to σ = 0.1 over the first T/2 frames for additional exploration.

We present the results of TD3, SAC, RC-TD3, and RC-SAC as a function of w in Fig. 3. To
ensure comparability, the reward is calculated using a fixed w = 0.1, while the other terms are
independent of w. Consistent with previous observations, the reward curriculum exhibits increased
effectiveness with growing w. While the auxiliary rewards raux are relatively similar between the
reward curriculum versions and their baselines, the curriculum versions more effectively learn the
task, indicated by an increased base reward rbase. Interestingly, RC-SAC achieves a substantially
higher success rate, particularly for large w, surpassing RC-TD3 and yielding the best results in
this environment. Furthermore, RC-SAC on average switched phases at 477 ± 96 while RC-TD3
switched at 246± 25. Importantly, the results demonstrated that optimizing the auxiliary objectives
indeed conflicts with task performance, as they exhibit opposing trends. Overall, the value w = 0.2
seems to lead to the highest reward for both RC-TD3 and RC-SAC. These findings corroborate our
earlier results and demonstrate the efficacy of our approach in achieving higher rewards compared
to the baselines, especially in the presence of strong auxiliary objectives. In Appendix E, we show
how the success rates of the different versions progress over training, which corroborates the finding
that the baselines get stuck early on.
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Figure 4: Comparison of the median episode reward of RC-TD3, resetting the network weights and
resetting the replay buffer when changing curriculum phases. The values are smoothed by taking
the running average with window size 50 [k].

5.3 Ablation Studies

To better understand the impact of our method’s components, we perform the following ablation
studies. They are conducted on a subset of the environments which should capture the main trends,
namely on finger spin, walker run, cartpole swingup, and the mobile robot environment.

What is the importance of the flexible replay buffer? In the first experiment, we compare re-
setting the network weights or resetting the replay buffer (i.e. deleting all samples collected so far)
after switching curriculum phases to our method which reuses past experience via the flexible replay
buffer. The results for the DM control environments are shown in Fig. 4. As can be seen, resetting
the weights substantially decreases performance while resetting the buffer has little influence. This
indicates that for those environments, the main contribution of the reward curriculum is the pre-
trained policy. However, when resetting the buffer in the mobile robot environment (see Fig. 6) we
can see that the performance deteriorates substantially compared to using the flexible replay buffer.
We conclude that the buffer becomes more important to stabilize training when the environment
becomes more challenging. The high standard deviations in cartpole swingup are due to training
instabilities later in training, which do not seem to be specific to our method.

Figure 5: Comparison of the median episode reward of RC-TD3 with automatic curriculum switch
as described in Section 3.2 to switching at times T/8, T/3, and T/2 where T are the total number of
timesteps. The values are smoothed by taking the running average with window size 50 [k] and the
dashed lines indicate the time each curriculum switched phases.

How does the automatic switch compare to switching after a fixed amount of timesteps? The
second ablation study focuses on testing the effectiveness of the automatic curriculum switch. We
make use of the same DM control environment subset as before, finger spin, walker run, and cartpole
swingup. The proposed automatic switch to change the curriculum phase is compared to statically
switching at times at T/2, T/3, and T/8. Fig. 5 illustrates the results. It shows that our automatic
switch leads to equal or better results than switching at a fixed time while converging to better
solutions earlier, thus being more sample-efficient. Table 3 in the Appendix shows the average
switch steps (in [k]) of our method, showing that in most cases phases are switched relatively early,
except when learning is challenging. For instance, in finger turn hard it either switches phases late or
not at all in the given timesteps, indicating that it did not successfully learn the problem. We observe

8



Figure 6: Comparison of the median success rate in the mobile robot environment of RC-TD3 and
RC-SAC to resetting the buffer at the curriculum switch and linearly transitioning between rbase and
r after the curriculum switch with step sizes 0.01 and 0.02.

that the times where the curriculum does not switch phases correspond to an agent not learning the
task. Similar training instabilities for cartpole swingup as before also occur in this experiment.

Does the sudden curriculum step deteriorate performance? Lastly, we want to further investi-
gate the sudden switch between training on rbase and r. In order to do so we compare our training
to linearly annealing rbase towards r over a certain amount of steps in the mobile robot environment.
The results are presented in Fig. 6 for the two different step sizes 0.01 and 0.02 which transition
for 100,000 and 50,000 steps respectively. As it can be seen, linear annealing does not substantially
alter the performance. One hypothesis for why the sudden step does not deteriorate performance is
that rbase ⊂ r, thus reward signals and therefore losses in phase 2 should have similar trends as in
phase 1.

6 Related Work

Reward shaping is a well-established technique to facilitate sample-efficient learning, with a history
spanning decades [Dorigo and Colombetti, 1994, Randløv and Alstrøm, 1998]. The most prevalent
approach is potential-based reward shaping, which preserves the policy ordering [Ng et al., 1999].
Building on this foundation, recent work has explored the concept of automatic reward shaping,
where the shaping process is learned and adapted during training. For instance, Hu et al. [2020] for-
mulate reward shaping as a bi-level optimization problem, where the high-level policy optimizes the
true reward and adaptively selects reward shaping weights for the lower-level policy. This approach
has been successfully applied to various tasks with sparse rewards, effectively creating an automatic
reward-shaping curriculum. Another line of research focuses on building automatic reward curricula
through intrinsic motivation, encouraging exploration of unexpected states [Bellemare et al., 2016,
Pathak et al., 2017, Burda et al., 2018, Shyam et al., 2019]. However, these methods primarily
modify the shaping terms while keeping the ground-truth rewards fixed.

Although less prevalent, several works have employed reward curricula in reinforcement learning
(RL) using subsets of the true reward. For instance, Hwangbo et al. [2019] utilize an exponential re-
ward curriculum, initially focusing on locomotion and gradually increasing the weight of other cost
terms to refine the behavior. Similarly, Leyendecker et al. [2022] observe that RL agents optimized
on complex reward functions with multiple constraints are highly sensitive to individual reward
weights, leading to local optima when directly optimizing the full reward. They successfully learn a
policy by gradually increasing constraint weights based on task success. Furthermore, Pathare et al.
[2024] employ a three-stage reward curriculum, incrementally increasing complexity and realism
by incorporating additional terms. However, they find reward curriculum learning largely ineffec-
tive. While these works employ reward curricula, they focus solely on single environments without
discussing broader implications. To the best of our knowledge, we are the first to systematically
investigate two-stage curricula, examining how sample-efficient experience transfer between phases
can mitigate reward exploitation.
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7 Conclusion

In this work, we present a two-stage reward curriculum, where we first train an RL agent on an
easier subset of rewards and switch to training using the full reward. We introduce a flexible replay
buffer that adaptively changes rewards to reuse samples from one phase in the next. Further, we
provide a mechanism to automatically determine when to change curriculum phases. In extensive
experiments we show that our method outperforms the baseline only trained on the full reward in
almost all cases. It is especially successful for high auxiliary weights and environments where the
other objectives substantially hinder learning the task. We believe that this work contributes towards
developing more stable RL methods to effectively learn challenging objectives. For future work,
methods to automatically detect a feasible reward subset for the first phase could be developed and
further evaluations in real-world experiments are required.
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A RL Algorithms

For both RC-TD3 and RC-SAC, we use target networks that are updated using Polyak averaging with
τ = 0.005, where the target parameters are updated as θ̄ ← τθ+(1− τ)θ̄ for policy parameters and
ϕ̄← τϕ+ (1− τ)ϕ̄ for Q-value parameters.

A.1 RC-TD3

In the following, we show how the reward curriculum integrates with Twin-Delayed DDPG (TD3)
[Fujimoto et al., 2018]. It extends the Deep Deterministic Policy Gradient (DDPG) [Lillicrap, 2015]
algorithm to enhance its stability by making use of two Q-functions, delay the policy updates, and
add noise to target actions to avoid exploitation of Q-function errors.

It uses a deterministic policy, though for sampling an action Gaussian noise is added for improved
exploration

at = πθ(st) + ϵ ϵ ∼ N (0, σ)

A similar procedure but with clipped noise is used when calculating the next action ã′ to update the
estimated Q function to avoid exploitation of overestimations as

ã′ = πθ̄(s
′) + ϵ ϵ ∼ clip(N (0, σ̃),−c, c)

where πθ̄ is a target policy. The Q targets are then computed as

y(rcr, s
′) = rcr + γ min

i=1,2
Qϕ̄i

(s′, ã′)

and the Q function is updated by minimizing the Smooth L1 loss ? to the target

JQ(ϕi) = SmoothL1(Qϕi
(s, a)− y(rcr, s

′))

in order to stabilize training. The policy is updated using the first Q network as

Jπ(θ) = Qϕ1
(s, πθ(s)) (5)

Importantly, the policy is not updated in every iteration. In our case we follow the standard imple-
mentation and only update the actor in every second iteration. In all experiments we set σ̃ = 0.2,
c = 0.5 and σ = 0.1. For more details about the parameters and specific design choices, we refer to
the original paper.

A.2 RC-SAC

Furthermore, we show how our method integrates with SAC. Instead of solely optimizing the ex-
pected return, SAC makes use of the maximum entropy objective [Ziebart, 2010] such that a policy
additionally tries to maximize its entropyH at each state which is defined as

π∗
θ = argmax

πθ

∑
t

E(st,at)∼ρπθ
[rcr(st, at) + αH(πθ(·|st)]

where α is a parameter to control the policy temperature, i.e. the relative importance of the entropy
term. SAC makes use of two Q-functions parameterized by ϕ1 and ϕ2 which are updated as

JQ(ϕi) = SmoothL1(Qϕi(s, a)− y(rcr, s
′))

where i is the Q-function index and the targets are computed as

y(rcr, s
′) = rcr + γ

[
min
i=1,2

Qϕ̄i
(s′, ã′)− α log πθ(ã

′|s′)
]

Importantly, ã′ ∼ πθ(·|s′) is newly sampled during training and Qϕ̄i
is the ith target Q-function.

Note that instead of optimizing for a general reward r, we use rcr in this step which changes depend-
ing on the phase. The policy update is given by

Jπ(θ) = min
i=1,2

Qϕi(s, ãθ(s))− α log πθ(ãθ(s)|s) (6)
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where ãθ(s) is sampled from πθ(·|s) via the reparameterization trick [Ruiz et al., 2016]. We make
use of the entropy-constraint variant of SAC as described in [Haarnoja et al., 2018], where α is
updated as

J(α) = Ea∼πθ

[
−α log πθ(a|s)− αH̃

]
where H̃ is the target entropy. An important parameter in SAC is the initial value for α, which we
denote as αinit. It determines the importance of the entropy term and, thus how much the agent
explores different states. When α converges to low values, the agent focuses mainly on the objective
instead and becomes more deterministic. For our experiments, we set αinit = 1.0 and clip it to a
minimum of αmin = 0.0001 to increase stability.

B Reward Curriculum Algorithm

Here weights with bar indicate target networks and m is the window length for how many consecu-
tive policy losses Jπ needs to be below the threshold Jπ,CR in order to move to the second curriculum
phase.

Algorithm 1 Off-policy Reward Curriculum (RC-TD3)

1: Initialize networks ϕ1, ϕ2, ϕ̄1, ϕ̄2, θ, θ̄
2: Initialize replay buffer D, timestep t← 0
3: Initialize curriculum phase CR ← 0 ▷ Start with base reward only
4: for each iteration do
5: for each environment step do
6: at ← πθ(st) + ϵ where ϵ ∼ N (0, σ)
7: Execute at, observe st+1, rbase,t, and raux,t
8: Store D ← D ∪ {(st, at, rbase,t, raux,t, st+1)}
9: t← t+ 1

10: end for
11: /* Curriculum Update: Phase 0→ Phase 1 */
12: if policy loss plateaus over m steps: ∀i ∈ {t−m+ 1, . . . , t} : Jπ;i < Jπ;CR then
13: CR ← 1 ▷ Change to phase 2
14: end if
15: for each gradient step do
16: Sample batch B = {(s, a, rbase, raux, s

′)} ∼ D
17: /* Select Curriculum Reward */

18: rcr ←
{
rbase if CR = 0

rbase + w · raux if CR = 1
19: BCR ← {(s, a, rcr, s

′)}
20: for i ∈ {1, 2} do
21: ϕi ← ϕi − λQ∇ϕi

JQ(ϕi;BCR)
22: end for
23: θ ← θ − λπ∇θJπ(θ;BCR) ▷ Delayed in TD3
24: Update target networks with rate τtarg
25: end for
26: end for

C Experimental Setup

As neural network architecture, we use two fully connected layers, each with 256 hidden units and
ReLU activation. We use a replay ratio of 1, where we first sample 1000 environment steps and then
train for the same number of gradient steps. Our replay buffer has a capacity of 1000 000 samples
and we set λQ = λπ = λα = 3.0 × 10−4, τtarg = 0.995, and the batch size to 128. In the DM
control suite experiments we set ΓCR = −50 with m = 20 (in [k]) for both RC-TD3 and RC-SAC,
while we use γ = 0.999 for RC-TD3 and γ = 0.99 for RC-SAC with a maximum of 1000 steps per
episode. For the mobile robot we use γ = 0.99, m = 20, ΓCR = −10 for RC-TD3 and ΓCR = −20
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for RC-SAC with a maximum of 300 steps per episode. We utilized Nvidia T4 and A40 GPUs as
computational resources.

D Mobile robot base reward

An important assumption underlying our approach is that training on a subset of rewards is easier
than training on the full reward function. However, while in the case of the DM control suite it
was relatively clear which initial reward to use, it might be that some subset of initial rewards rbase
converges faster than others. To empirically validate this, we perform experiments on different
subsets of the shaped reward function. Specifically, we consider the following subsets:

rbase ∈ {rfull, rgp, rgpc, rgpv, rgpa, rgpx}

where

rgp = rg + rp,

rgpv = rg + rp + rv,

rgpa = rg + rp + ra,

rgpx = rg + rp + rx.

We train for T = 300 000 environment steps on the randomized maps in Figure 2b over 4 seeds
for each subset with w = 0.5. Fig. 7 shows the task success rate for each subset over the training
steps. It can be concluded that non of the other terms seem to help learning the task and in fact
make learning more challenging. Therefore, this confirms that only training on the reward terms
that clearly contribute to learning the task is the most beneficial subset for this environment.

Figure 7: Success rate for the mobile robot during training using TD3 with different initial reward
subsets for w = 0.5.

E Additional Results

In Fig. 8, we show the success rate of the mobile robot during training. We can see that both RC
versions manage to increase the success rate throughout training while the baselines get stuck early
on.

The episode rewards obtained using SAC and RC-SAC are presented in detail in Table 1. Similarly,
the episode rewards for TD3 and RC-TD3 are reported in Table 2. The iteration at which the cur-
riculum switched for various tasks using the reward curriculum algorithms is summarized in Table
3. Notably, instances where the curriculum failed to progress to the second phase were associated
with subpar performance in the initial phase.
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w = 0.5 w = 1.0
SAC RC-SAC SAC RC-SAC

ball in cup-catch 851 ± 19 851 ± 19 407 ± 781 853 ± 19
cartpole-balance 25 ± 891 914 ± 2 911 ± 10 914 ± 2
cartpole-swingup 268 ± 690 725 ± 2 -76 ± 4 -79 ± 2
cheetah-run 315 ± 64 325 ± 81 177 ± 79 236 ± 42
finger-spin -118 ± 2 545 ± 82 -118 ± 2 630 ± 55
finger-turn easy 384 ± 492 28 ± 539 293 ± 488 11 ± 576
finger-turn hard 27 ± 369 -152 ± 610 -39 ± 419 -288 ± 468
fish-swim -26 ± 179 -314 ± 286 -65 ± 119 -262 ± 296
fish-upright 680 ± 146 666 ± 194 500 ± 387 492 ± 391
pendulum-swingup -255 ± 478 -419 ± 561 -8 ± 254 -131 ± 467
reacher-easy 834 ± 101 831 ± 97 834 ± 151 839 ± 105
reacher-hard 804 ± 142 785 ± 192 814 ± 135 817 ± 104
walker-run -15 ± 51 165 ± 35 -103 ± 42 196 ± 45
walker-stand 785 ± 16 777 ± 45 787 ± 16 792 ± 15
walker-walk 622 ± 63 655 ± 38 578 ± 99 648 ± 96

Table 1: Mean and standard deviation of the episode reward for SAC and RC-SAC for the DM
control suite over 4 random seeds. Bold values indicate that one method was clearly better (i.e. the
standard deviations did not overlap) and underlines indicate that the mean value was higher.

w = 0.5 w = 1.0
TD3 RC-TD3 TD3 RC-TD3

ball in cup-catch 766 ± 306 884 ± 22 867 ± 34 439 ± 760
cartpole-balance 758 ± 292 756 ± 306 798 ± 226 847 ± 73
cartpole-swingup 646 ± 84 209 ± 636 388 ± 332 429 ± 357
cheetah-run -77 ± 1 -169 ± 276 -77 ± 1 92 ± 227
finger-spin -80 ± 1 501 ± 75 -80 ± 1 561 ± 74
finger-turn easy -697 ± 384 -640 ± 362 -732 ± 335 -579 ± 361
finger-turn hard -810 ± 234 -642 ± 355 -758 ± 298 -630 ± 396
fish-swim -824 ± 142 -837 ± 142 -801 ± 111 -830 ± 135
fish-upright 508 ± 253 381 ± 249 626 ± 176 634 ± 174
pendulum-swingup -16 ± 232 299 ± 443 -22 ± 219 41 ± 475
reacher-easy 116 ± 600 65 ± 634 -264 ± 689 86 ± 749
reacher-hard -857 ± 167 -823 ± 179 -845 ± 155 -738 ± 302
walker-run -3 ± 24 84 ± 57 -61 ± 5 202 ± 126
walker-stand 780 ± 41 753 ± 66 783 ± 128 799 ± 105
walker-walk 462 ± 321 538 ± 123 391 ± 447 613 ± 98

Table 2: Mean and standard deviation of the episode reward for TD3 and RC-TD3 for the DM
control suite over 4 random seeds. Bold values indicate that one method was clearly better (i.e. the
standard deviations did not overlap) and underlines indicate that the mean value was higher.
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Figure 8: Success rate for the mobile robot during training with w = 1.0.

RC-TD3 RC-SAC
w = 0.5 w = 1.0 w = 0.5 w = 1.0

fish-upright 101 ± 14 100 ± 7 90 ± 7 142 ± 85
finger-turn hard 735 ± 571 1306 ± 609 * 1057 ± 0 nan ± nan
cheetah-run 305 ± 50 285 ± 32 451 ± 20 486 ± 28
fish-swim 273 ± 78 270 ± 66 nan ± nan nan ± nan
walker-walk 190 ± 47 186 ± 30 141 ± 15 154 ± 32
walker-stand 128 ± 10 122 ± 11 94 ± 8 91 ± 4
walker-run 279 ± 67 290 ± 48 506 ± 215 462 ± 65
pendulum-swingup 313 ± 100 * 488 ± 54 * 504 ± 184 504 ± 96
reacher-hard 300 ± 171 316 ± 146 206 ± 16 174 ± 17
reacher-easy 124 ± 73 93 ± 39 104 ± 19 101 ± 13
finger-spin 255 ± 71 303 ± 95 245 ± 67 302 ± 28
ball in cup-catch 194 ± 80 227 ± 99 * 64 ± 17 66 ± 17
cartpole-balance 84 ± 1 82 ± 2 51 ± 2 51 ± 1
cartpole-swingup 122 ± 8 120 ± 8 97 ± 11 84 ± 7
finger-turn easy 359 ± 50 331 ± 73 824 ± 286 1601 ± 370

Table 3: Number of steps [k] when the curriculum phase switches for RC-TD3 and RC-SAC. In
certain cases, the second phase was never initiated which is shown by * if 3

4 , is 2
4 and means 1

4
runs switched to the second phase. Nan indicates that no run switched to the second phase. The few
times when the curriculum did not switch phases corresponded to unsuccessful initial training.
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