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Abstract

Time series analysis provides essential insights for
real-world system dynamics and informs down-
stream decision-making, yet most existing meth-
ods often overlook the rich contextual signals
present in auxiliary modalities (e.g., financial
news or domain-specific documents). To bridge
this gap, we introduce TimeXL, a multi-modal
prediction framework that integrates a prototype-
based time series encoder with three collaborat-
ing Large Language Models (LLMs) to deliver
more accurate predictions and interpretable ex-
planations. First, a multi-modal prototype-based
encoder processes both time series and textual in-
puts to generate preliminary forecasts alongside
case-based rationales. These outputs then feed
into a prediction LLM, which refines the forecasts
by reasoning over the encoder’s predictions and
explanations. Next, a reflection LLM compares
the predicted values against the ground truth, iden-
tifying textual inconsistencies or noise. Guided
by this feedback, a refinement LLM iteratively en-
hances text quality and triggers encoder retraining.
This closed-loop workflow—prediction, critique
(reflect), and refinement—continuously boosts
the framework’s performance and interpretability.
Empirical evaluations on four real-world datasets
demonstrate that TimeXL achieves up to 8.9 % im-
provement in AUC and produces human-centric,
multi-modal explanations, highlighting the power
of LLM-driven reasoning for time series predic-
tion.

1. Introduction
In the modern big-data era, time series analysis has become
indispensable for understanding real-world system behav-
iors and guiding downstream decision-making tasks across
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numerous domains, including healthcare, traffic, finance,
and weather (Jin et al., 2018; Guo et al., 2019; Zhang et al.,
2017; Qin et al., 2017). Although deep learning models have
demonstrated success in capturing complex temporal depen-
dencies (Nie et al., 2023; Deng & Hooi, 2021; Zhang et al.,
2022; Liu et al., 2024d), real-world time series are frequently
influenced by external information beyond purely temporal
factors. Such additional context, which may come from
textual narratives (e.g., finance news (Dong et al., 2024)
or medical reports (King et al., 2023)), can offer critical
insights for more accurate forecasting and explainability.

Recent multi-modal approaches for time series have shown
promise by integrating rich contextual signals from disparate
data sources—such as textual descriptions—to improve per-
formance on tasks ranging from forecasting and classifica-
tion to imputation and retrieval (Ekambaram et al., 2020;
Niu et al., 2023; Lee et al., 2024; Xing & He, 2023; Moroto
et al., 2024; Zhao et al., 2022; Bamford et al., 2023). While
these approaches utilize supplementary data to enhance pre-
dictive accuracy, they often lack explicit mechanisms to
systematically reason and explain about why or how con-
textual signals affect outcomes. This gap in interpretability
poses significant barriers for high-stakes applications such
as finance or healthcare, where trust and transparency are
paramount.

Meanwhile, Large Language Models (LLMs) (Achiam et al.,
2023; Team et al., 2023; Touvron et al.) have risen to promi-
nence for their remarkable ability to process and reason
over textual data across domains, enabling tasks like senti-
ment analysis, question answering, and content generation
in zero- and few-shot settings (Zhang et al., 2024; Kamalloo
et al., 2023; Wang et al., 2024c). Their encoded domain
knowledge makes them natural candidates for supporting
multi-modal time series analyses, where textual context
(e.g., news or expert notes) plays a vital role (Liu et al.; Nie
et al., 2024; Koa et al., 2024; Wang et al., 2023; Shi et al.,
2024; Yu et al., 2023; Singhal et al., 2023).

Motivated by these observations, we introduce TimeXL,
a novel framework that adopts a closed-loop workflow of
prediction, critique (reflect), and refinement, and unifies
a prototype-driven time series encoder with LLM-based
reasoning to deliver both accurate and interpretable multi-
modal forecasting (Figure 1). Our approach first employs
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Figure 1. An overview of the TimeXL workflow. A prototype-
based explainable encoder first produces predictions and case-
based rationales for both time series and text. The prediction LLM
refines forecasts based on these rationales (Step 1). A reflection
LLM then critiques the output against ground truth (Step 2), provid-
ing feedback to detect textual noise (Step 3). Finally, a refinement
LLM updates the text accordingly, triggering encoder retraining
for improved accuracy and explanations (Step 4).

a multi-modal prototype-based encoder to generate pre-
liminary time series predictions alongside human-readable
explanations, leveraging case-based reasoning (Kolodner,
1992; Ming et al., 2019; Ni et al., 2021; Jiang et al., 2023)
from both the temporal and textual modalities. These ex-
planations not only justify the encoder’s predictions but
also serve as auxiliary signals to guide an LLM-powered
component that further refines the forecasts and contextual
rationales.

Unlike conventional methods that merely fuse multi-modal
inputs for better accuracy, TimeXL iterates between pre-
dictive and refinement phases to mitigate textual noise, fill
knowledge gaps, and produce more faithful explanations.
Specifically, a reflection LLM diagnoses potential weak-
nesses by comparing predictions with ground-truth signals,
while a refinement LLM incorporates these insights to up-
date textual inputs and prototypes iteratively. This feedback
loop progressively improves both the predictive and explana-
tory capabilities of the entire system. Our contributions are
summarized as follows:

• We present a prototype-based encoder that combines
time series data with textual context, producing trans-
parent, case-based rationales.

• We exploit the interpretative prowess of LLMs to rea-
son over the encoder’s outputs and iteratively refine
both predictions and text, leading to improved predic-
tion accuracy and explanations.

• Experiments on four real-world benchmarks show that
TimeXL consistently outperforms baselines, achieving
up to a 8.9% improvement in AUC while providing
faithful, human-centric multi-modal explanations.

Overall, TimeXL opens new avenues for explainable multi-
modal time series analysis by coupling prototype-based
inference with LLM-driven reasoning.

2. Related Work
2.1. Multi-modal Time Series Analysis

In recent years, multi-modal time series analysis has gained
significant traction in diverse domains such as finance,
healthcare, environmental sciences, and industry (Ekam-
baram et al., 2020; Skenderi et al., 2024; Niu et al., 2023;
Yang & Wu, 2021; Zhao et al., 2022; Xing & He, 2023).
Multiple approaches have been proposed to model inter-
actions across different modalities for various tasks. For
instance, (Lee et al., 2024) introduces a multi-modal aug-
mentation framework for few-shot time series forecasting,
which fuses time series and textual representations both
at the sample and feature levels using attention. Further-
more, (Bamford et al., 2023) aligns multi-modal time series
within a shared latent space of deep encoders and retrieves
specific sequences based on textual queries. In addition,
(Zheng et al., 2024) performs causal structure learning to
uncover root causes in multi-modal time series by separating
modality-invariant and modality-specific components via
contrastive learning. Most recently, (Liu et al., 2024a) estab-
lished a multi-modal forecasting benchmark with baselines,
and demonstrating performance improvements through the
incorporation of a new modality. Although these techniques
have advanced predictive performance by leveraging cross-
modality interactions, they tend to focus primarily on im-
proving numerical accuracy. The deeper reasoning behind
how or why the textual or other contextual signals influence
time series outcomes remains underexplored.

2.2. Time Series Explanation

Recent studies have explored diverse paradigms for time se-
ries interpretability. Gradient-based and perturbation-based
“saliency” methods, for example, highlight important fea-
tures at different time steps (Ismail et al., 2020; Tonekaboni
et al., 2020), while other works explicitly incorporate tem-
poral structures into models and objectives (Leung et al.;
Crabbé & Van Der Schaar, 2021). Surrogate approaches
also offer global or local explanations, such as applying
Shapley values to time series (Bento et al., 2021), enforcing
model consistency via self-supervised objectives (Queen
et al., 2024), or using information-theoretic strategies for
coherent explanations (Liu et al., 2024f). In contrast to
saliency or surrogate-based explanations, we adopt a case-
based reasoning paradigm (Kolodner, 1992; Ming et al.,
2019; Ni et al., 2021; Jiang et al., 2023), which end-to-end
generates predictions and built-in explanations from learned
prototypes. Our work extends this approach to multi-modal
time series by producing human-readable reasoning artifacts
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for both the temporal and contextual modalities.

2.3. LLMs for Time Series Analysis

The rapid development of Large Language Models
(LLMs) (Achiam et al., 2023; Team et al., 2023; Touvron
et al.) has begun to inspire new directions in time series
research (Jiang et al., 2024; Liang et al., 2024). Many ex-
isting techniques fine-tune pre-trained LLMs on time se-
ries tasks, achieving state-of-the-art results in forecasting,
classification, and beyond (Zhou et al., 2023; Bian et al.;
Ansari et al., 2024). Often, textual data—such as domain in-
structions, metadata, or dataset summaries—are encoded as
prefix embeddings to enrich time series representations (Jin
et al., 2024; Liu et al., 2024b; Jia et al., 2024; Liu et al.,
2025). These techniques also contribute to the emergence
of time series foundation models (Ansari et al., 2024; Das
et al., 2023; Woo et al., 2024; Liu et al., 2024e; Wang et al.,
2024a). An alternative line of research leverages the zero-
shot or few-shot reasoning capabilities of LLMs. These
methods directly prompt pre-trained language models with
text-converted time series (Xue & Salim, 2023) or context-
laden prompts representing domain knowledge (Wang et al.,
2023; Yu et al., 2023; Singhal et al., 2023), often yield-
ing surprisingly strong performance in real-world scenarios.
Furthermore, LLMs can act as knowledge inference mod-
ules, synthesizing high-level patterns or explanations that
augment standard time series pipelines (Chen et al., 2023b;
Shi et al., 2024; Lee et al., 2025; Wang et al., 2024b).

3. Methodology
In this section, we present the framework for explainable
multi-modal time series prediction with LLMs. We first
introduce the problem statement. Next, we present the de-
sign of a time series encoder that provides prediction and
multi-modal explanations as the basis. Finally, we introduce
three language agents interacting with the encoder towards
better prediction and reasoning results.

3.1. Problem Statement

In this paper, we consider a multi-modal time series pre-
diction problem. Each instance is represented by the multi-
modal input (x, s), where x = (x1, x2, · · · , xT ) ∈ RN×T

denotes time series data with N variables and T histori-
cal time steps, and s denotes the corresponding text data
describing the real-world context. The text data s can be
further divided into L meaningful segments. Based on the
historical time series and textual context, our objective is to
predict the future outcome y, either as a discrete value for
classification tasks, or as a continuous value for regression
tasks. In this paper, we mainly consider a classification task
while we provide a demonstration of the regression task in
Appendix F. There are three major components in the pro-

posed TimeXL framework, a multi-modal prototype encoder
Menc that provides initial prediction and case-based expla-
nation, a prediction LLMMpred that provides prediction
based on the understanding of context with explanation, a
reflection LLMMrefl that generates feedback, and a refine-
ment LLMMrefine that refines the textual context based on
the feedback. Below, we introduce each component and how
they synergize toward better prediction and explanation.

3.2. Multi-modal Prototype-based Encoder

We design a multi-modal prototype-based encoder that
can generate predictions and explanations across different
modalities in an end-to-end manner, as shown in Figure 2.
We introduce the model architecture, the learning objectives
that yield good explanation properties of prototypes, and
the pipeline of case-based explanations using prototypes.

3.2.1. MULTI-MODAL SEQUENCE MODELING WITH
PROTOTYPES

Sequence Encoder. To capture both temporal and semantic
dependencies, we adopt separate encoders for time series
(Eθ) and text (Eϕ). For x ∈ RN×T , the time series encoder
Eθ maps the entire sequence into one or multiple representa-
tions, which serve as candidates for prototype learning. Si-
multaneously, the text input s is first transformed by a frozen
pre-trained language model, PLM (e.g., BERT(Kenton &
Toutanova, 2019) or Sentence-BERT(Reimers & Gurevych,
2019)), to produce embeddings es ∈ Rds×L. These embed-
dings are then processed by a separate encoder Eϕ to extract
meaningful text features. It is worth noting that the choice
of Eθ and Eϕ also affects the granularity of explanations. As
we will introduce shortly, the prototypes are learned based
on sequence representations and are associated with the
counterparts in the input space, where the correspondences
are determined by the encoders. In this paper, we choose
convolution-based encoders for both modalities to capture
the fine-grained sub-sequence (i.e., segment) patterns:

Ztime =
(
z1, . . . ,zT−w+1

)
= Eθ(x), (1)

Ztext =
(
z′
1, . . . ,z

′
L−w′+1

)
= Eϕ(es), (2)

where zi ∈ Rh and z′
j ∈ Rh′

denote segment-level repre-
sentations learned via convolutional kernels of sizes w and
w′, respectively.

Prototype Allocation. To establish interpretability, we learn
a set of time series prototypes and text prototypes for each
class c ∈ {1, . . . , C}. Specifically, we introduce:

P
(c)
time ∈ Rk×h, P

(c)
text ∈ Rk′×h′

,

so that each prototype p
(c)
i ∈ Rh (time series) or p′(c)

i ∈
Rh′

(text) resides in the same feature space as the relevant
encoder outputs. For an input sequence, we measure the

3
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Figure 2. The overview of TimeXL (left), and multi-modal prototype-based encoder (right).

similarity between each prototype and the most relevant
segment in the corresponding modality:

Sim
(c)
i = max(Sim

(c)
i,1 , · · · ,Sim

(c)
i,T−w+1)

where Sim
(c)
i,j = exp

(
−
∥∥∥p(c)

i − zj

∥∥∥2
2

)
∈ [0, 1] (3)

We aggregate similarity scores across all prototypes for each
modality, yielding Simtime ∈ RkC and Simtext ∈ Rk′C .
Finally, we jointly consider the cross-modal relevance and
use a non-negative fusion weight matrix W ∈ RC×(k+k′)

that translates these scores into class probabilities:

ŷenc = Softmax
(
W

[
Simtime ∥ Simtext

])
∈ [0, 1]C .

(4)

3.2.2. LEARNING PROTOTYPES TOWARD BETTER
EXPLANATION

Learning Objectives. The learning objectives include three
regularization terms that reinforce the interpretability of
multi-modal prototypes. In this paper, we focus on a pre-
dicting discrete label, where the basic objective is the cross-
entropy loss for the prediction drawn from multi-modal
explainable artifacts LCE =

∑
x,s,y y log(ŷenc) + (1 −

y) log(1− ŷenc). Besides, we encourage a clustering struc-
ture of segments in the representation space by enforcing
each segment representation to be adjacent to its closest
prototype. Reversely, we regularize each prototype to be
as close to a segment representation as possible, to help
the prototype locate the most evidencing segment. Both
regularization terms are denoted as Lc and Le, respectively,
where we omit the modality and class notations for ease of

understanding:

Lc =
∑

zj∈Z(·)

min
pi∈P (·)

∥zj − pi∥
2
2 ,

Le =
∑

pi∈P (·)

min
zj∈Z(·)

∥pi − zj∥22
(5)

Moreover, we encourage a diverse structure of prototype
representations to avoid redundancy and maintain a com-
pact explanation space, by penalizing their similarities via a
hinge loss Ld, with a threshold dmin :

Ld =
∑
i=1

∑
j ̸=i

max
(
0, dmin −

∥∥pi − pj

∥∥2
2

)
(6)

The full objective is written as: L = LCE +λ1Lc +λ2Le +
λ3Ld, with hyperparameters λ1, λ2, and λ3 that balance
regularization terms towards achieving an optimal and ex-
plainable prediction.

Prototype Projection. After learning objectives converge,
the multi-modal prototypes are well-regularized and reflect
good explanation properties. However, these prototypes are
still not readily explainable as they are only close to some
exemplar segments in the representation space. Therefore,
we perform prototype projection to associate each prototype
with a training segment from its own class that preserves Le

in the representation space, for both time series and text:

p
(c)
i ← argmin

zj∈Z
(c)

(·)

∥∥∥p(c)
i − zj

∥∥∥2
2
, ∀p(c)

i ∈ P
(c)
(·) (7)

By associating each prototype with a training segment in the
representation space, the multi-modal physical meaning is
induced. During testing phase, a multi-modal instance will
be compared with prototypes across different modalities to

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Explainable Multi-modal Time Series Prediction with LLM-in-the-Loop

infer predictions, where the similarity scores, contribution
weights, and prototypes’ class information assemble the
explanation artifacts for reasoning.

3.3. Explainable Prediction with LLM-in-the-Loop

To further leverage the reasoning and inference capabilities
of LLMs in real-world time series contexts, we propose a
framework with three interacting LLM agents: a predic-
tion agent Mpred, a reflection agent Mrefl, and a refine-
ment agentMrefine. These LLM agents interact with the
multi-modal prototype-based encoderMenc toward better
prediction accuracy and explainability.

3.3.1. MODEL SYNERGY FOR AUGMENTED PREDICTION

Prediction with Enriched Contexts. The prediction LLM
agentMpred generates predictions based on the input text s.
To improve prediction accuracy, the encoderMenc supple-
ments s with case-based explanations. Specifically,Menc

selects the ω prototypes that exhibit the highest relevance
to any of the textual segments within s. Relevance is deter-
mined by the similarity scores used in Equation 3. These
selected prototypes are then added to the input prompt of
Mpred as explanations, providing richer real-world context
and leading to more accurate predictions. The ω prototype-
segment pairs, which construct the explanation expls of the
input text s, are retrieved as follows:

expls =
{(

p
(c)
i , sj

)
: (i, j, c) ∈ Top-ω(Simtext)

}
where Top-ω(Simtext) = argTop-ω(i,j,c)

(
Sim′(c)

i,j

)
.

Note that i, j, c denotes the prototype index, segment index,
and class index, respectively. As expls can contain relevant
contextual guidance across multiple classes, it augments the
input space and removes semantic ambiguity for prediction
agentMpred. Therefore, the prediction is drawn as ŷLLM =
Mpred(s, expls). The prompt for querying the prediction
agentMpred is provided in Appendix D, Figure 13.

Fused Predictions. We compile the final prediction based
on a fusion of both the multi-modal encoderMenc and pre-
diction LLMMpred. Specifically, we linearly combine the
continuous prediction probabilities ŷenc and discrete predic-
tion ŷLLM: ŷ = αŷenc + (1 − α)ŷLLM, where α ∈ [0, 1]
is the hyperparameter selected from validation data. The en-
coderMenc and prediction agentMpred enhance each other
based on their unique strengths. The Menc is fine-tuned
based on explicit supervised signals, ensuring accuracy in
capturing temporal and contextual dependencies of multi-
modal time series. On the other hand,Mpred contributes
deep semantic understanding drawn from extensive text cor-
pora. By fusing predictions from two distinct perspectives,
we achieve a synergistic augmentation toward more accurate

Algorithm 1 TimeXL: Explainable Multi-modal Time Series
Prediction with LLM Agents
Inputs: Multi-modal time series (x, s,y), prototype-based en-
coder Menc, prediction agent Mpred, reflection agent Mrefl, re-
finement agent Mrefine, fusion parameter α, max iteration τ , im-
provement evaluation Eval(·) based on metrics

Training:
Initialize s0 = s, i = 0, ŷall = {}
while Eval(ŷall,y) not pass or iteration i < τ do

Train Menc using multi-modal data Di = {(x, si,y), · · · }
Infer explainable prediction ŷenc, explsi = Menc(x, si)

Infer LLM prediction ŷLLM = Mpred(si, explsi)

Fuse prediction ŷ = αŷenc + (1− α)ŷLLM

Generate reflection Refl = Mrefl(y, ŷLLM, si)
Refine text based on reflection si+1 = Mrefine(Refl, si)
Append ŷ to ŷall

Increment i
return Menc, Refl, si+1

Validation and Testing:
Refinement based on reflection s′ = Mrefine(Refl, s)
Infer explainable prediction ŷenc, expls′ = Menc(x, s

′)
Infer LLM prediction ŷLLM = Mpred(s

′, expls′)
Fuse prediction ŷ = αŷenc + (1− α)ŷLLM

and comprehensive predictions for complex multi-modal
time series.

3.3.2. ITERATIVE CONTEXT REFINEMENT VIA
REFLECTIVE FEEDBACK

While the prediction agentMpred leverages the explainable
artifacts to make informed predictions, it is not inherently
designed to fit into the context of multi-modal time series
data, which could lead to inaccurate predictions when the
quality of textual context is inferior. To tackle this issue, we
exploit another two language agentsMrefl andMrefine to
generate reflective feedback and refinements on the context,
respectively, for better predictive insights.

Given the prediction ŷLLM generated by the prediction
agentMpred, the reflection agentMrefl aims to understand
the reasoning behind the implicit prediction logic ofMpred.
Specifically, it generates a reflective feedback, Refl, by an-
alyzing the input text s and its prediction ŷLLM, against
the ground truth y, to provide actionable insights for re-
finement, i.e., Refl = Mrefl(y, ŷLLM, s). Guided by the
feedback, the refinement agentMrefine refines the previous
text si into si+1 by selecting and emphasizing the most
relevant content, ensuring that important patterns are appro-
priately contextualized, which is similar to how a domain
expert would perform, i.e., si+1 =Mrefine(Refl, si). The
prompts for querying Mrefl and Mrefine are provided in
Figures 14, 15 16, 17, and discussed in Appendix D.

We finally integrate the refinement via reflection into the op-
timization loop of our proposed TimeXL, which is summa-
rized in Algorithm 1. Once the textual context is improved,
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it is used to retrain the multi-modal prototype-based encoder
Menc for the next iteration. As such, the explanation (e.g.,
quality of the prototypes) and predictive performance of
Menc can be improved through this iterative process. Con-
sequently, the prediction agent Mpred could yield better
prediction with more informative inputs, further enhancing
the accuracy of ŷ. We evaluate the trajectory of predictive
performance and terminate the iteration if at least an im-
provement is observed (Eval(·) pass) when max iteration is
reached. Note that, in the testing phase, we use the reflection
Refl generated in the best training iteration (evaluated on
validation set) to guideMrefine for context refinement, mim-
icking how an optimized deep model is applied to testing
data.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate methods on four multi-modal time
series datasets from three different real-world domains, in-
cluding weather, finance, and healthcare. The detailed data
statistics are summarized in Table 3 of Appendix A.1. The
weather dataset contains meteorological reports and the
hourly time series records of temperature, humidity, air pres-
sure, wind speed, and wind direction in New York City. The
task is to predict if it will rain in the next 24 hours, given the
last 24 hours of weather records and summary. The finance
dataset contains the daily record of the raw material prices
together with 14 related indices from January 2017 to July
2024. Given the last 5 business days of stock price data and
news, the task is to predict if the target price will exhibit an
increasing, decreasing, or neutral trend on the next business
day. The healthcare datasets contain Test-Positive (TP)
and Mortality (MT). The Test-Positive dataset consists of
the weekly records and healthcare reports of the number of
positive specimens for Influenza A and B. The task is to
predict if the percentage of respiratory specimens testing
positive in the upcoming week for influenza will exceed the
average value, given the records and summary in the last 20
weeks. Similarly, the Mortality dataset contains the weekly
records and reports of influenza and pneumonia deaths. The
task is to predict if the mortality ratio from influenza and
pneumonia will exceed the average value, given the records
and summary in the last 20 weeks.

Baselines, Evaluation Metrics and Setup We com-
pare TimeXL with state-of-the-art baseline methods for
time series prediction. These baselines includes Auto-
former (Wu et al., 2021), Dlinear (Zeng et al., 2023), Cross-
former (Zhang & Yan, 2023), TimesNet (Wu et al., 2023),
PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024c),
FreTS (Yi et al., 2024), TSMixer (Chen et al., 2023a) and
LLM-based methods like LLMTime (Gruver et al., 2023),
PromptCast (Xue & Salim, 2023), OFA (Zhou et al., 2023),

Time-LLM (Jin et al., 2024) and TimeCMA (Liu et al.,
2025), where LLMTime and PromptCast don’t need fine-
tuning. While these methods are primarily used for time
series prediction with continuous values, they can be easily
adapted for discrete value prediction. We also evaluate the
multi-modal time series methods. Besides the Time-LLM
and TimeCMA where input text is used for embedding re-
programming and alignment, we also evaluate Multi-modal
PatchTST and Multi-modal iTransformer from (Liu et al.,
2024a), as well as TimeCAP (Lee et al., 2025). We evaluate
the discrete prediction via F1 score and AUROC (AUC)
score, due to label imbalance in real-world time series
datasets. We split all datasets for training/validation/testing
by a ratio of 6/2/2. We alternate different embedding meth-
ods for texts based on its average length, where we use
Bert (Kenton & Toutanova, 2019) as the embedding model
for weather and healthcare datasets, and sentence trans-
former (Reimers & Gurevych, 2019) for finance dataset.

4.2. Performance Evaluation

The results of predictive performance are shown in Table 1.
It is notable that multi-modal methods generally outperform
time series methods across all datasets. These methods
include LLM methods (e.g., Time-LLM, TimeCMA) that
leverage text embeddings to enhance time series predictions.
Moreover, the multi-modal variants (MM-iTransformer and
MM-PatchTST) improve the performance of state-of-the-art
time series methods, suggesting the benefits of integrat-
ing real-world contextual information. Besides, TimeCAP
integrates the predictions from both modalities, further im-
proving the predictive performance. TimeXL constantly
achieves the highest F1 and AUC scores, consistently sur-
passing both time series and multi-modal baselines by up to
8.9% of AUC (compared to TimeCAP on Weather dataset).
This underscores the advantage of TimeXL, which syner-
gizes multi-modal time series encoder with language agents
to enhance interpretability and thus predictive performance
in multi-modal time series.

4.3. Explainable Multi-modal Prototypes

Next, we present the explainable multi-modal prototypes
rendered by TimeXL, which establishes the case-based rea-
soning process. Figure 3 shows a subset of time series
and text prototypes learned on the weather dataset. The
time series prototypes demonstrate the typical temporal pat-
terns aligned with different real-world weather conditions
(i.e., rain and not rain). For example, a constant or de-
creasing humidity at a moderate level, combined with high
and steady air pressure, typically indicates a non-rainy sce-
nario. The consistent wind direction is also a sign of mild
weather conditions. On the contrary, high humidity, low
and fluctuating pressure, along with variable winds typi-
cally reveal an unstable weather system ahead. In addition
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Table 1. The F1 score (F1) and AUROC (AUC) for TimeXL and state-of-the-art baselines on real-world multi-modal time series datasets.

Datasets → Weather Finance Healthcare (TP) Healthcare (MT)

Methods ↓ F1 AUC F1 AUC F1 AUC F1 AUC

DLinear (Zeng et al., 2023) 0.540 0.660 0.255 0.485 0.393 0.500 0.419 0.388
Autoformer (Wu et al., 2021) 0.546 0.590 0.565 0.747 0.774 0.918 0.683 0.825
Crossformer (Zhang & Yan, 2023) 0.500 0.594 0.571 0.775 0.924 0.984 0.737 0.913
TimesNet (Wu et al., 2023) 0.494 0.594 0.538 0.756 0.794 0.867 0.765 0.944
iTransformer (Liu et al., 2024c) 0.541 0.650 0.600 0.783 0.861 0.931 0.791 0.963
TSMixer (Chen et al., 2023a) 0.488 0.534 0.465 0.689 0.770 0.797 0.808 0.931
FreTS (Yi et al., 2024) 0.623 0.688 0.546 0.737 0.887 0.950 0.751 0.762
PatchTST (Nie et al., 2023) 0.592 0.675 0.604 0.795 0.841 0.934 0.695 0.928

LLMTime (Gruver et al., 2023) 0.587 0.657 0.315 0.498 0.802 0.817 0.769 0.803
PromptCast (Xue & Salim, 2023) 0.499 0.365 0.418 0.607 0.727 0.768 0.696 0.871
OFA (Zhou et al., 2023) 0.501 0.606 0.512 0.745 0.774 0.879 0.851 0.977
Time-LLM (Jin et al., 2024) 0.613 0.699 0.589 0.792 0.671 0.864 0.733 0.912
TimeCMA (Liu et al., 2025) 0.636 0.731 0.559 0.727 0.729 0.828 0.693 0.843
MM-iTransformer (Liu et al., 2024a) 0.608 0.689 0.605 0.793 0.926 0.986 0.901 0.990
MM-PatchTST (Liu et al., 2024a) 0.621 0.718 0.619 0.812 0.863 0.968 0.780 0.929
TimeCAP (Lee et al., 2025) 0.668 0.742 0.611 0.801 0.954 0.983 0.942 0.988

TimeXL 0.696 0.808 0.631 0.797 0.987 0.996 0.956 0.997

to time series, the text prototypes also highlight consistent
semantic patterns for different weather conditions, such as
the channel-specific (e.g., drier air moving into the area,
strengthening of high-pressure system) and overall (e.g., a
likelihood of dry weather) descriptions of weather activities.
In Appendix C.1, we also present more multi-modal pro-
totypes for the weather dataset in Figure 8, for the finance
dataset in Figure 9, and for healthcare datasets in Figures 10
and 12. The results validate that TimeXL provides coherent
and informative prototypes from the exploitation of time
series and its real-world contexts, which facilitates both
prediction and explanation.

Multi-modal Prototypes

Not Rain

Rain

• which could signal the approach of a weather system
• low-pressure system that could lead to worsening weather 
• humidity levels were predominantly high, and wind speeds were  
• wind direction started westerly, became variable, and  

• suggest a likelihood of dry weather, with stable pressure and
• and the wind direction has primarily been from the west
• indicating the strengthening of a high-pressure system
• drier air moving into the area. Air pressure remained relatively

Figure 3. Key time series prototypes and text prototypes learned
on weather data. Each row in the figure represents a time series
prototype with different channels.

4.4. Multi-modal Case-based Reasoning

Building upon the multi-modal prototypes, we present a
case study on the testing set of weather data, comparing the
original and TimeXL’s reasoning processes to highlight its
explanatory capability, as shown in Figure 4. In this case,
the original text is incorrectly predicted as not rain. We have
three key observations: (1) The refinement process filters the
original text to emphasize weather conditions more indica-
tive of rain, guided by reflections from training examples.
The refined text preserves the statement on stability while
placing more emphasis on humidity and wind as key indica-
tors. (2) Accordingly, the matched segment-prototype pairs
from the original text focus more on temperature stability
and typical diurnal variations, while the matched pairs in the
refined text highlights wind variability, moisture transport,
and approaching weather system, aligning more with rain
conditions. (3) Furthermore, the reasoning on time series
provides a complementary view for assessing weather con-
ditions. The matched time series prototypes identify high
humidity and its drop-and-rise trends, wind speed fluctua-
tions and directional shifts, and the declining phase of air
pressure fluctuations, all of which are linked to the upcom-
ing rainy conditions. The matched multi-modal prototypes
from TimeXL demonstrate its effectiveness in capturing
relevant information for both predictive and explanatory
analysis. We also provide a case study on finance data in
Figure 11, where textual explanations are generated at the
granularity of a half-sentence.

4.5. Iterative Analysis

To verify the effectiveness of overall workflow with reflec-
tion and refinement LLMs as shown in Figure 1, we conduct
an iterative analysis of text quality and TimeXL perfor-

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Explainable Multi-modal Time Series Prediction with LLM-in-the-Loop

Original Text Reasoning Truth: Rain Prediction: Not rain 

TimeXL: Text Reasoning Prediction: Rain 

Original Text: Over the past 24 hours, New York City experienced a gradual increase in temperature throughout 
the day, peaking in the late afternoon before a modest decline towards the evening. Humidity levels started high 
in the early hours, dropped significantly during the day, and then showed a rising trend at the end of the period,
indicating a possible increase in moisture content in the air. Air pressure remained relatively stable with only
minor fluctuations, suggesting a period of stable weather conditions. Wind speeds varied, with a noticeable
increase during the late afternoon, which could have contributed to a brief period of cooler and more turbulent
conditions. Wind direction was predominantly from the south-southwest, shifting slightly to a more south-
southeast orientation later in the day, which is typical for the region's weather patterns during this time.
Prototypes:
Not rain: City has experienced relatively stable temperatures with a slight warming trend observed (0.78)
Not rain: peak during the late afternoon before beginning to decrease slightly into the (0.64)
Not rain: dropping again, indicative of typical diurnal variation (0.51)

Refined Text: Over the past 24 hours, New York City experienced a stable air pressure pattern with minor
fluctuations, indicating stable weather conditions. The day saw a gradual increase in temperature, peaking in
the late afternoon before declining in the evening. Humidity levels were high early on, dropped significantly 
during the day, and rose again later, suggesting increased moisture content. Wind direction shifted from south 
- southwest to south - southeast, bringing moisture-laden air, which could increase the likelihood of rain.
Prototypes:
Rain: direction was variable without a consistent pattern. These indicators suggest (0.47)
Rain: wind direction started westerly, became variable, and (0.64)
Rain: which could signal the approach of a weather system (0.53)

TimeXL: Time Series Reasoning

Figure 4. Multi-modal case-based reasoning example on weather data. The left part illustrates the reasoning process for both the original
and refined text in TimeXL, with matched prototype-input pairs highlighted in the same color along with their similarity scores. The right
part presents the time series reasoning in TimeXL, where matched prototypes are overlaid on the time series.

mance, as shown in Figure 5. Specifically, we evaluate the
text quality based on its zero-shot predictive accuracy using
an LLM. Notably, the text quality benefits from iteration im-
provements and mostly saturates after one or two iterations.
Correspondingly, TimeXL performance quickly improves
and stabilizes with very minor fluctuations. These observa-
tions underscore how TimeXL alternates between predictive
and reflective refinement phases to mitigate textual noise,
thus enhancing its predictive capability.

Figure 5. Iterative analysis: the text quality and TimeXL perfor-
mance over iterations.

Table 2. Ablation studies of TimeXL on real-world multi-modal
time series datasets, evaluated by F1 score.

Ablation Variants Weather Finance TP MT

Encoder Multi-modal 0.674 0.619 0.934 0.937

LLM Time(PromptCast) 0.499 0.418 0.727 0.696
Text 0.645 0.496 0.974 0.901
Text + Prototype 0.667 0.544 0.987 0.952

Fusion Select-Best 0.674 0.619 0.987 0.952
TimeXL 0.696 0.631 0.987 0.956

4.6. Ablation Studies

In this subsection, we present the component ablations of
TimeXL, as shown in Table 2, where we have several ob-
servations. Firstly, the performance of prediction LLM
with text is better than PromptCast (Xue & Salim, 2023),
which highlights the importance of contextual information
for LLM in a zero-shot prediction scenario. Furthermore,
the text prototypes consistently improve the predictive per-
formance of LLM, underscoring the effectiveness of ex-
plainable artifacts from the multi-modal encoder, in terms
of providing relevant contextual guidance. In addition, the
fusion of prediction LLM and multi-modal encoder further
boosts the predictive performance that surpasses the best
of both multi-modal encoder and prediction LLM. These
observations demonstrate the advantage of our framework
synergizing the time series model and LLM for mutually
augmented prediction. In Appendix B, full results (F1 and
AUC) of TimeXL component ablation are provided in Ta-
ble 4, and other ablations are provided in Figures 6, 7.

5. Conclusions
In this paper, we present TimeXL, an explainable multi-
modal time series prediction framework that synergizes a
designed prototype-based encoder with three collaborative
LLM agents in the loop (prediction, reflection, and refine-
ment) to deliver more accurate predictions and explanations.
Experiments on four multi-modal time series datasets show
the advantages of TimeXL over state-of-the-art baselines
and its excellent explanation capabilities.
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6. Impact Statement
This work presents significant advancements in explainable
multi-modal time series prediction by integrating time se-
ries encoders with large language model-based agents. The
broader impact of this work is multifaceted. It has the poten-
tial to support high-stakes decision-making in domains such
as finance and healthcare by delivering more accurate predic-
tions accompanied by reliable case-based explanations that
lead to more robust analyses. No ethical concerns must be
considered in our work. The social impact is substantial as
it provides a new paradigm for analyzing real-world multi-
modal time series data through the integration of emerging
AI tools like language agents.
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A. Experimental Settings
A.1. Dataset Statistics

In this subsection, we provide more details of the real-world datasets we used for the experiments. The data statistics are
summarized in Table 3, including the meta information (e.g., domain resolution, duration of real-world time series records),
the number of channels and timesteps and so on. We used the weather and healthcare datasets in TimeCAP (Lee et al.,
2025), and the finance dataset in (Lee et al., 2024).

The Weather dataset contains the hourly time series record of temperature, humidity, air pressure, wind speed, and wind
direction1, and related weather summaries in New York City from October 2012 to November 2017. The task is to predict if
it will rain in the next 24 hours, given the last 24 hours of weather records and summary.

The Finance dataset contains the daily record of the raw material prices together with 14 related indices ranging from
January 2017 to July 20242, with news articles gathered from S&P Global Commodity Insights. The task is to predict if
future prices will increase by more than 1%, decrease by more than 1%, or exhibit a neutral trend on the next business day,
given the last 5 business days of stock price data and news.

The healthcare datasets are related to testing cases and deaths of influenza3. The Healthcare (Test-Positive) dataset consists
of the weekly records of the number of positive specimens for Influenza A and B, and related healthcare reports. The task is
to predict if the percentage of respiratory specimens testing positive in the upcoming week for influenza will exceed the
average value, given the records and summary in the last 20 weeks. Similarly, the Healthcare (Mortality) dataset contains
the weekly records and healthcare reports of influenza and pneumonia deaths. The task is to predict if the mortality ratio
from influenza and pneumonia will exceed the average value, given the records and summary in the last 20 weeks.

Table 3. Summary of dataset statistics.
Domain Dataset Resolution # Channels # Timesteps Duration Ground Truth Distribution

Weather New York Hourly 5 45,216 2012.10 - 2017.11 Rain (24.26%) / Not rain (75.74%)

Finance Raw Material Daily 15 1,876 2012.09 - 2022.02 Inc. (36.7%) / Dec. (34.1%) / Neutral (29.2%)

Healthcare Test-Positive Weekly 6 447 2015.10 - 2024.04 Not exceed (65.77%) / Exceed (34.23%)

Healthcare Mortality Weekly 4 395 2016.07 - 2024.06 Not exceed (69.33%) / Exceed (30.67%)

A.2. Hyperparameters

First, we provide the hyperparameters of baseline methods. Unless otherwise specified, we used the default hyperparameters
from the Time Series Library (Wu et al., 2023). For LLMTime (Gruver et al., 2023), OFA (Zhou et al., 2023), Time-LLM (Jin
et al., 2024), TimeCMA (Liu et al., 2025), TimeCAP (Lee et al., 2025), we use their own implementations. For all methods,
the dropout rate ∈ {0.0, 0.1, 0.2}, learning rate ∈ {0.0001, 0.0003, 0.001}. For transformer-based and LLM fine-tuning
methods (Wu et al., 2021; Zhang & Yan, 2023; Liu et al., 2024c; Nie et al., 2023; Liu et al., 2025; Jin et al., 2024), the
number of attention layers ∈ {1, 2}, the number of attention heads ∈ {4, 8, 16}. For Dlinear (Zeng et al., 2023), moving
average ∈ {3, 5}. For TimesNet (Wu et al., 2023) the number of layers ∈ {1, 2}. For PatchTST and MM-PatchTST, the
patch size ∈ {3, 5} for the finance dataset.

Next, we provide the hyperparameters of TimeXL. The numbers of time series prototypes and text prototypes are k ∈
{5, 10, 15, 20} and k′ ∈ [5, 10], respectively. The hyperparameters controlling regularization strengths are λ1, λ2, λ3 ∈
[0.1, 0.3] with interval 0.05 for individual modality, dmin ∈ {1.0, 1.5, 2.0} for time series, dmin ∈ {3.0, 3.5, 4.0} for text.
Learning rate for multi-modal encoder ∈ {0.0001, 0.0003, 0.001} The number of case-based explanations fed to prediction
LLM ω ∈ {3, 5, 8, 10}.

1https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data
2https://www.indexmundi.com/commodities
3https://www.cdc.gov/fluview/overview/index.html
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A.3. Large Language Model

We employed the gpt-4o-2024-08-06 version for GPT-4o in OpenAI API. We use the parameters max tokens=2048, top p=1,
and temperature=0.7 for content generation (self-reflection and text refinement), and 0.3 for prediction.

A.4. Environment

We conducted all the experiments on a TensorEX server with 2 Intel Xeon Gold 5218R Processor (each with 20 Core),
512GB memory, and 4 RTX A6000 GPUs (each with 48 GB memory).

B. More Ablation Studies

Here we present the full results of TimeXL component ablations in Table 4. In addition to F1 scores, the results of
AUC scores consistently demonstrate the importance of contextual information, the effectiveness of prototype from the
multi-modal encoder, as well as the advantage of prediction fusion.

We also provide an ablation study on the learning objectives in the TimeXL encoder. The results clearly show that the full
objective consistently achieves the best encoder prediction performance, highlighting the necessity of regularization terms
that enhance the interpretability of multi-modal prototypes. The clustering (λ1) and evidencing (λ2) objectives also play a
crucial role in accurate prediction: the clustering term ensures distinguishable prototypes across different classes, while the
evidencing term ensures accurate projection onto training data.

Moreover, we assess how the number of matched case-based explanations enhances the prediction LLM, as shown in
Figure 7. We conduct experiments on weather and finance datasets, demonstrating that incorporating more relevant case-
based explanations consistently improves prediction performance. This further highlights the effectiveness of explainable
artifacts in providing meaningful contextual guidance.
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Figure 6. Ablation study of TimeXL encoder learning objectives.
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Figure 7. Effect of case-based explanations on LLM prediction performance.

Table 4. Ablation studies of TimeXL on real-world multi-modal time series datasets.

Ablation ↓ Variants Weather Finance Healthcare (Test-Positive) Healthcare (Mortality)

F1 AUC F1 AUC F1 AUC F1 AUC

Encoder Multi-modal 0.674 0.767 0.619 0.791 0.934 0.974 0.937 0.988

LLM Time(PromptCast) 0.499 0.365 0.418 0.607 0.727 0.768 0.696 0.871
Text 0.645 0.724 0.496 0.627 0.974 0.967 0.901 0.969
Text + Prototype 0.667 0.739 0.544 0.662 0.987 0.983 0.952 0.976

Fusion Select-Best 0.674 0.767 0.619 0.791 0.987 0.983 0.952 0.988
TimeXL 0.696 0.808 0.631 0.797 0.987 0.996 0.956 0.997

C. Explainable Multi-modal Prototypes and Case Study
C.1. Multi-modal Prototypes for All Datasets

We present the learned multi-modal prototypes across all datasets, including Weather (Figure 8), Finance (Figure 9),
Healthcare (Test-Positive) (Figure 10), and Healthcare (Mortality) (Figure 12). It is noticeable that the prototypes from both
modalities align well with real-world ground truth scenarios, ensuring faithful explanations and enhancing LLM predictions.

C.2. Case-based Reasoning Example on Finance

We provide another case-based reasoning example to demonstrate the effectiveness of TimeXL in explanatory analysis, as
shown in Figure 11. In this example, the original text is incorrectly predicted as neutral instead of a decreasing trend of
iron ore stock price. We have a few key observations based on the results. First, the refinement LLM filters the original
text to emphasize economic and market conditions more indicative of a declining trend, based on the reflections from
training examples. The refined text preserves discussions on port inventories and steel margins while placing more emphasis
on subdued demand, thin profit margins, and bearish market sentiment as key indicator of prediction. Accordingly, the
case-based explanations from the original text focus more on inventory management and short-term stable patterns, while
those in the refined text highlight demand contraction, production constraints, and macroeconomic uncertainty, which is
more consistent with a decreasing trend. Furthermore, the reasoning on time series provides a complementary view for
predicting iron ore price trends. The time series explanations identify declining price movements across multiple indices. In
general, the multi-modal explanations based on matched prototypes from TimeXL demonstrate its effectiveness in capturing
relevant iron ore market condition for both predictive and explanatory analysis.
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Multi-modal PrototypesNot Rain Rain

• suggest a likelihood of dry weather, with stable pressure and
• westerly shifts,  which typically bring cooler, drier air
• and the wind direction has primarily been from the west
• indicating the strengthening of a high-pressure system
• drier air moving into the area. Air pressure remained relatively
• a notable dip followed by a gradual return to higher levels
• stable with a slight downward trend. Wind speeds were mostly
• hours in New York City, air pressure remained relatively stable

• which could signal the approach of a weather system
• low-pressure system that could lead to worsening weather 
• humidity levels were predominantly high, and wind speeds were  
• recent hours. Air pressure has been decreasing overall, which
• wind direction started westerly, became variable, and  
• brief increase, and wind direction was predominantly north and northeast
• recent hours. Air pressure has been decreasing overall, which
• direction was variable without a consistent pattern. These indicators suggest 

Figure 8. More multi-modal prototypes learned from Weather dataset. Each row in the figure represents a time series prototype.

Original Text Reasoning Truth: Decrease Prediction: Neutral

TimeXL: Text Reasoning Prediction: Decrease 

Original Text:... Recovering global demand has led to higher Asia-Pacific metallurgical coal prices, further indicating a resurgence in 
industrial activity as blast furnaces resume operation globally. Additionally port inventories are being carefully managed due to import 
quotas and vessel inflows, influencing the broader supply chain and price dynamics. ... These dynamics are compounded by ongoing
production controls and concerns about steel margins, which may face further stress in response to weak demand in the construction
market and other key industries. Additionally upcoming economic stimulus measures and potential supply chain disruptions remain 
critical factors to monitor, as they could significantly influence future prices and production levels of iron ore. Asian iron ore prices continue 
to decline due to persistent bearish sentiment, influencing buyers' restocking interest, which appears to be returning Some mills are
transitioning from using low-grade fines to mid-grade fines due to cost inefficiencies in sintering, notably among smaller blast furnaces… In
particular the real estate and construction sectors continue to be key influencers of steel demand and, consequently iron ore prices
Additionally economic stimulus measures aimed at boosting industries could lead to increased demand for iron ore. However geopolitical
tensions and economic policies, particularly those related to trade, could create volatility in iron ore prices. Overall many factors including 
mill margins, port inventories and steel production levels will be critical in shaping the iron ore market's trajectory in the near future .
Prototypes:
Increase: while domestic supply constraints continue due to delays in reactivating mines. On the logistical side the freight rates are
climbing due to increased demand for Capesize vessels (0.21)
Neutral : potentially depressing iron ore prices again. Thus despite short-term strength in iron ore prices driven by active steel mill
production and disruptions in scrap supply (0.39)
Decrease: Iron ore prices have been declining due to the weak steel market, leading to dampened buying interest (0.33)
Neutral: Mills are capitalizing on already high stock levels, buying less iron ore primarily using cheaper port stocks (0.27)

Refined Text: ... Despite this, global demand recovery has bolstered Asia-Pacific metallurgical coal prices, signaling a resurgence in
industrial activity as blast furnaces globally restart operations. Port inventories are under careful management due to import quotas and
vessel inflows, affecting supply chain dynamics. There is a noted contraction in the price spread between different grade fines, with a shift
towards lower-grade iron ore to manage costs, particularly as medium-grade fines command higher premiums. Asian iron ore prices have 
decreased due to subdued steel demand and thin margins, deterring buyers from fixed price options. Production controls in Tangshan 
have further reduced demand, contributing to bearish market sentiment. Seasonal factors, such as the approaching winter heating
season, are expected to tighten sintering controls, indirectly impacting iron ore demand dynamics. Meanwhile, geopolitical tensions and
economic policies, especially those related to trade, could introduce volatility into iron ore prices. Economic stimulus measures aimed at
boosting industrial activity could lead to increased demand for iron ore. Overall, mill margins, port inventories, and steel production levels 
will be critical in determining the future trajectory of the iron ore market.
Prototypes:
Decrease: The iron ore market is experiencing a downturn (0.43)
Decrease: Overall the combination of weak demand (0.32)
Decrease: causing cautious purchasing behavior (0.49)
Decrease: are expected to persist potentially capping steel production and influencing iron ore demand (0.54)

TimeXL: Time Series Reasoning

Figure 11. Multi-modal case-based reasoning example on Finance dataset.
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• supported by low steel mill inventories and limited spot offers
• In conclusion while recent restocking activities provide some support
• The seaborne iron ore market is experiencing upward price movements
• Anticipated economic stimulus measures in China
• Intensified restocking activities ahead of the Lunar New Year have led to increased demand and price

Multi-modal Prototypes

• Overall the combination of weak demand
• are expected to persist potentially capping steel production and influencing iron ore demand
• causing cautious purchasing behavior
• The iron ore market is experiencing a downturn
• Blast furnace operations are affected by stricter environmental regulations

• indicating balanced rawmaterial needs
• with notable volatility driven by various factors
• Geopolitical and seasonal factors
• Indian iron ore supply might increase due to eased export restrictions.
• A proposed weekly spot CFR China blast furnace iron ore pellet premium assessment by Platts aims to enhance
pricing transparency

Increase

Decrease

Neutral

Figure 9. Key multi-modal prototypes learned from Finance dataset. Each row in the figure represents a time series prototype.
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Multi-modal PrototypesExceed Not Exceed

• trend suggests a waning influenza season, which could potentially reduce the
burden on healthcare resources related to flu treatment and hospital
• and 0. 63 %, respectively. This declining trend suggests decreased influenza
activity, potentially easing healthcare resource allocation.
• in the number of specimens tested, reaching a peak at week 6, followed by a
decline, which suggests that the in
• with Influenza A becoming more prevalent later. In recent weeks, there has
been a notable decline, with the overall

• The week - over - week growth in positive specimens for both Influenza A and
B suggests a significant impact on the
• has been a significant upward trend in both the number of respiratory
specimens tested for influenza and the number of positive cases for
• season but continued risk due to the persistent presence of Influenza B. The
healthcare system should maintain vigilance and resources
• been a notable increase in the percentage of respiratory specimens testing
positive for influenza, with the average ratio of positive specimens rising

Figure 10. Key multi-modal prototypes learned from Healthcare (Test-positive) dataset. Each row in the figure represents a time series
prototype.

Multi-modal PrototypesExceed Not Exceed

• significant reduction in influenza or pneumonia - related mortality, indicating
an effective response possibly through vaccination efforts or public
• persistent presence of influenza - related deaths, despite being low, requires
continued surveillance to manage and prevent potential outbreaks.
• This data could reflect seasonal patterns, the effectiveness of public health
interventions, or changes in the prevalence of these infections, which
• These trends suggest a potential reduction in healthcare system burdens but
require continued surveillance for potential reversals or seasonal variations.
• is particularly noteworthy, suggesting successful containment or a natural
decline of influenza cases, which could alleviate some pressure on healthcare

• necessitating close monitoring and potentially increased healthcare
resources. While Influenza seems less concerning, Pneumonia remains a
• suggests a seasonal pattern or an emerging health threat. The healthcare
systemmay need to prepare for increased demand for medical care and
• healthcare resources. This data underscores the urgent need for targeted
healthcare interventions to manage andmitigate further mortality.
• resources and may necessitate increased preventive measures, vaccination
efforts, and allocation of medical care to manage
• This escalation suggests a growing burden on the healthcare system and
underscores the need for vigilant surveillance and

Figure 12. Key multi-modal prototypes learned from Healthcare (Mortality) dataset. Each row in the figure represents a time series
prototype.

D. Designed Prompts for Experiments

In this section, we provide our prompts for prediction LLM in Figure 13 (and a text-only variant for comparison, in
Figure 18), reflection LLM in Figures 14, 15 16, as well as refinement LLM in Figure 17. Note that we adopt a generate-
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update-summarize strategy to effectively capture the reflective thoughts from training samples with class imbalances, which
is more structured and scalable. We make the whole training texts into batches. First, the reflection LLM generates the initial
reflection (Figure 14) by extracting key insights from class-specific summaries, highlighting text patterns that contribute to
correct and incorrect predictions. Next, it updates the reflection (Figure 15) by incorporating new training data, ensuring
incremental and context-aware refinements. Finally, it summarizes multiple reflections from each class (in Figure 16) into a
comprehensive guideline for downstream text refinement. This strategy consolidates knowledge from correct predictions
while learning from incorrect ones, akin to the training process of deep models.

User Prompt

System Prompt

Your job is to act as [specific role]. You will be given a summary of [data description] and related
prototypes that you can refer to. Based on this information, your task is to predict [task description].

Your task is to [task description]. First, review the following [number of prototypes] prototype text
segments and outcomes, so that you can refer to when making predictions.

Prototype #1: [text prototype]
Corresponding Segment#1: [input text segment]
Relevance Score: [similarity score]
Outcome #1: [options]

… 
Next, review the [situation] :
Summary: [text input]

Based on your understanding, predict the outcome of [situation]. Respond your prediction with
[options]. Response should not include other terms.

Figure 13. Prompt for prediction LLM

User Prompt

System Prompt

You are an advanced reasoning agent that can improve the quality of [domain] summary based on
self reflection. You will be given the summaries and [correct flag] predictions of [situation]. Your task
is to learn some reflections that guides the refinement of [domain] summaries.

Your task is to analyze the provided [domain] summaries with [correct flag] predictions, in order to
generate a reflection report improving its quality for [situation] prediction.

Review the following [number of summaries] [domain] summaries with [ground truth] actual
outcomes and [prediction] predictions.

Summary #1: [text input]
Actual Outcome #1: [ground truth]
Prediction #1: [prediction]

…
Based on your analysis, write a high-quality reflection report that summarizes key phrases or
sentences that led to correct predictions of [situation] / commonly misinterpreted and overlooked
phrases or sentences that led to incorrect predictions of [situation].

Use precise terms to convey a clear and professional analysis, and avoid overly general statements.
The report should be a comprehensive and informative paragraph, which can be generalized to refine
similar [domain] summaries. Your response should not include other terms.

Figure 14. Prompt for reflection LLM: reflection generation
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User Prompt

System Prompt

You are an advanced reasoning agent that can improve the quality of [domain] summary based on
self reflection. You will receive a reflection report up to this point. You will also be given the
summaries and [correct flag] predictions of [situation]. Your task is to learn some reflections and
update the current report that guides the refinement of [domain] summaries.

Your task is to analyze the provided [domain] summaries with [correct flag] predictions, in order to
update a reflection report improving its quality for [situation] prediction.

First, review the following reflection report up to this point: [current reflection report]

Next, review the following [number of summaries] [domain] summaries with [ground truth] actual
outcomes and [prediction] predictions.

Summary #1: [text input]
Actual Outcome #1: [ground truth]
Prediction #1: [prediction]

…
Based on your analysis, write a high-quality reflection report that summarizes key phrases or
sentences that led to correct predictions of [situation] / commonly misinterpreted and overlooked
phrases or sentences that led to incorrect predictions of [situation].

Use precise terms to convey a clear and professional analysis, and avoid overly general statements.
The report should contain incremental and context-aware updates, and can be generalized to refine
similar [domain] summaries. Your response should not include other terms.

Figure 15. Prompt for reflection LLM: reflection update

User Prompt

System Prompt

You are an advanced summarization agent that can generate high-quality summarization. You will be
given previously generated reflections for text refinement, from the correct and incorrect predictions
of [domain] texts. Your current task is to summarize these long reflections to better guide financial
text refinement.

Your task is to summarize the long reflections derived from previous predictions of [domain]
contents. The goal is to generate a high-quality report aimed at improving the [domain] text quality for
better predictive accuracy.

First, review the reflections from all combinations of possible predictions and actual outcomes:
[reflection reports]

Based on your analysis, summarize the reflections of different scenarios and write a comprehensive
report that provides guidelines to select the most important content in new [domain] texts where the
actual outcome is unknown. Your response should keep the enough details, yet effective, to improve
the text quality for downstream prediction. Your response should not include other terms.

Figure 16. Prompt for reflection LLM: reflection summarization
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User Prompt

System Prompt

You are an advanced refinement agent designed to enhance the quality of [domain] summary. You
will be provided with reflective thoughts analyzed from other summaries, and a summary that
requires refinement. Your task is to generate a refined [domain] summary, by examining how
reflective thoughts applied to the current summary.

Your task is to generate a refined weather summary from the current summary to improve its
predictions of [situation]. First, review the following reflections that provide guidelines for refinement:

[final reflection report]

Next, review the current [domain] summary that describes [situation]:

Summary #1: [text input]

Based on your understanding, generate a new weather summary by selecting relevant content in the
current summary, which provides insights crucial for understanding [situation]. Response should not
include other terms.

Figure 17. Prompt for refinement LLM

User Prompt

System Prompt

Your job is to act as [specific role]. You will be given a summary of [data description]. Based on this
information, your task is to predict [task description].

Your task is to [task description]. First, review the [situation] :

Summary: [text input]

Based on your understanding, predict the outcome of [situation]. Respond your prediction with
[options]. Response should not include other terms.

Figure 18. Prompt for prediction with text only
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E. Reflection Reports for Text Refinement
In this section, we provide the reflection reports after the first iteration, to demonstrate the reflective thoughts by accessing

real-world contexts.

Reflection Summary – Weather (New York)
Comprehensive Report on Refining Weather Predictions
The review of weather summaries across various predictive scenarios reveals critical insights that can enhance the accuracy and reliability of weather forecasts. By integrating 
these refined elements, future weather texts can better anticipate actual outcomes. Below are the summarized guidelines for improving weather prediction texts:
1.Key Indicators for Dry Conditions ("Not Rained" Predictions and Outcomes):

1. Stable and Slightly Increasing Air Pressure: Consistent readings with minor upward trends suggest high-pressure systems, indicative of dry weather.
2. Gentle to Moderate Wind Speeds: Observations of stable wind speeds without gusts support non-precipitative forecasts.
3. Variable Wind Directions (Northwesterly/Westerly): Shifts from southwesterly to northwesterly/westerly directions bring cooler, drier air, reducing rain likelihood.
4. Decreasing Daytime Humidity: High early humidity followed by daytime decreases correlates with dry conditions.
5. Typical Diurnal Temperature Patterns: Normal temperature variations further support dry forecasts.
6. Absence of Significant Weather Systems: Lack of major air pressure or wind pattern changes reinforces stable, dry conditions.

2.Indicators for Rainy Conditions ("Rained" Predictions and Outcomes):
1. Increasing Humidity Levels: Significant humidity increases are strong rain indicators.
2. Decreasing Air Pressure: A downward pressure trend signals potential rain due to incoming low-pressure systems.
3. Wind Conditions:

1. Slight Wind Speed Increase: Often precedes rain, particularly if observed later.
2. Easterly/Southeasterly Wind Directions: Bring moisture-laden air, favoring rain.

3.Common Misinterpretations ("Rained" Predictions with "Not Rained" Outcomes):
1. Pressure Stability Misinterpretation: Minor pressure fluctuations without other indicators are weak rain predictors.
2. Humidity and Fog Confusion: Differentiate between humidity peaks indicating fog versus those suggesting rain.
3. Overemphasis on Wind Changes: Focus on sustained wind patterns rather than minor variations.
4. Misjudged Temperature Fluctuations: Evaluate temperature changes alongside corroborative indicators like pressure drops.
5. Dynamic Weather System Misinterpretation: Recognize stable atmospheric conditions to avoid false rain predictions.

4.Overlooked Conditions ("Not Rained" Predictions with "Rained" Outcomes):
1. Humidity Peaks and Variability: High peaks or fluctuations often precede rain; they shouldn’t be underestimated.
2. Wind Direction Shifts: Changes to southerly or easterly directions can signal moisture influx.
3. Temperature and Humidity Interactions: Combined changes may offset stable pressure, indicating rain potential.
4. Stable Pressure with Other Variables: Consider pressure stability with high humidity and wind changes collectively.

By focusing on these detailed indicators and refining the interpretation of weather elements, future weather texts can improve prediction quality, providing more accurate and 
reliable forecasts.

Figure 19. Reflection summary for text refinement of Weather dataset.

Reflection Summary – Finance (Raw Material)
Comprehensive Guidelines for Enhancing Financial Text Quality in Predictive Analysis
To improve the accuracy of financial predictions, it's crucial to refine the selection and emphasis of content in financial summaries. Based on reflections from past predictions, 
the following guidelines highlight the essential elements to consider for optimizing text quality:
1.Key Indicators for Price Trends:

1. For predicting increases, focus on indicators such as robust demand from major consumers (e.g., Chinese steel mills), strong steel margins, and preferences for 
high-grade iron ore. Also, consider tight supply chains, low inventories, and economic stimulus measures.

2. For decreases, emphasize rising inventory levels, weak demand, and operational adjustments at mills. Bearish market sentiment and geopolitical tensions should 
be noted as well.

3. For neutral outcomes, identify market equilibrium indicators like balanced supply-demand dynamics, stable mill operations, and moderate buyer behavior.
2.Contextual Influences:

1. Consider the impact of seasonal trends, restocking activities, and economic stimuli on demand fluctuations. Recognize how these factors may cause temporary 
market shifts rather than long-term trends.

2. Analyze global trade and supply chain disruptions to assess their potential to cause short-term volatility or stability rather than sustained changes.
3.Regulatory and Policy Factors:

1. Understand the implications of environmental regulations and geopolitical policies on supply and demand. These elements can significantly alter market dynamics 
and should be carefully integrated into analyses.

4.Market Sentiment and Related Markets:
1. Assess market sentiment and futures movements, recognizing that positive futures alignments often indicate underlying demand. Consider interconnected markets, 

such as steel and coal, for their influence on iron ore demand.
5.Strategic and Operational Adjustments:

1. Pay attention to how mills and buyers adjust operations and procurement strategies in response to market conditions. These adjustments can affect demand 
patterns and price stability.

6.Avoiding Common Misinterpretations:
1. Avoid overemphasizing short-term trends as indicators of sustained market shifts. Be wary of speculative influences and temporary policy announcements that may 

not have immediate or lasting effects.
2. Recognize high inventory levels as potential strategic buffers and consider their role in stabilizing prices during off-peak periods.

By integrating these guidelines, financial summaries can provide a more comprehensive and balanced analysis, enhancing the predictive accuracy of unknown market 
outcomes. The focus should remain on understanding and articulating the complexities of market dynamics to better align predictions with actual trends.

Figure 20. Reflection summary for text refinement of Finance dataset.
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Reflection Summary – Healthcare (Test-Positive)
Comprehensive Report on Improving Healthcare Text Quality for Predictive Accuracy
Introduction
This report synthesizes reflections from past analyses of healthcare summaries concerning influenza positivity rates. The goal is to enhance the quality of these texts to 
improve predictive accuracy for future assessments where actual outcomes are unknown.
Key Indicators for Accurate Predictions
1.Declining Trends for "Not Exceed" Predictions

1. Emphasis on Decline: Correct predictions for outcomes that did not exceed the average often highlighted a clear decline in positivity rates. Terms such as 
"notable decline," "steady decrease," and "significant reduction" are crucial.

2. Comparative Analysis: A pronounced reduction in Influenza A and B, particularly Influenza A, supports accurate assessments.
3. Testing Volume and Ratios: A decrease in testing volume, coupled with positivity rates remaining below the average, strengthens predictions.
4. Low Positivity Percentages: Explicit references to recent positivity rates consistently falling below the long-term average are vital.

2.Indicators of "Exceed" Predictions
1. Marked Increases: Substantial increases in positivity rates, highlighted by specific numerical comparisons, indicate an "exceed" outcome.
2. Influenza Strain Dominance: Details on the predominance of Influenza A or B, with their impact on overall positivity rates, are significant.
3. Rising Testing Volumes: Increased specimen testing, peaking with positivity rates, suggests heightened incidence and surveillance.
4. Healthcare System Impact: References to increased hospitalizations and medical service demand provide context and validate exceeding predictions.
5. Temporal Patterns: Tracking weekly peaks aids in understanding and predicting heightened influenza activity.

Common Misinterpretations
•Relative vs. Absolute Increases: Misinterpretations often arise from conflating relative increases with exceeding the average positivity rate. It is essential to compare these 
increases explicitly with historical averages.
•Contextual Misalignment: Phrases highlighting rises in positivity rates without contextual alignment to the average threshold can mislead predictions.
Guidelines for Text Refinement
•Integrate Clear Comparisons: Ensure summaries incorporate direct comparisons to historical averages to avoid misjudgments.
•Maintain Trend Clarity: Differentiate clearly between increasing trends and those that actually surpass the average positivity rate.
•Include Contextual Analysis: Provide context for increases in positivity rates by detailing the impact on healthcare resources and system strain.
•Highlight Temporal Data: Incorporate temporal patterns and weekly peaks to aid in nuanced predictive analysis.
By adhering to these guidelines, healthcare texts can be refined to enhance predictive accuracy, ultimately aiding in proactive healthcare planning and resource allocation.

Figure 21. Reflection summary for text refinement of Healthcare (Test-Positive) dataset.

Reflection Summary – Healthcare (Mortality)
Reflection Summary Report for Healthcare Text Refinement:
1.Correct 'Not Exceed' Predictions:

1. Key indicators of accurate predictions include phrases such as "general downward trend," "consistent decline," and "significant decrease" in mortality ratios, 
particularly from Influenza or Pneumonia.

2. Terms like "below the average ratio" and "remained under the historical benchmark" effectively signal outcomes that do not surpass average mortality ratios.
3. References to "improvement in management" and "effective public health interventions" highlight successful control measures that contribute to lower mortality 

figures.
4. Acknowledging a "persistent burden" of Pneumonia amidst declines provides a nuanced understanding of stability in disease impact.

2.Correct 'Exceed' Predictions:
1. Accurate forecasts are marked by phrases such as "concerning upward trend," "significant increase," and "notable spike," indicating rising mortality ratios.
2. Quantitative expressions like "dramatic rise" in deaths and comparisons exceeding specific averages effectively contextualize high mortality trends.
3. Descriptions of peaks, potential outbreaks, and healthcare strain underscore the urgency and resource implications, enhancing predictive accuracy.

3.Incorrect 'Exceed' Predictions with 'Not Exceed' Outcomes:
1. Misinterpretations arise from emphasizing upward trends without aligning them with final ratios below the 7.84% threshold.
2. Overemphasis on isolated peaks without considering their unsustained nature leads to overestimations.
3. For improved accuracy, texts should differentiate between temporary increases and sustained trends, and focus on cumulative ratios relative to average 

benchmarks.
4.Incorrect 'Not Exceed' Predictions with 'Exceed' Outcomes:

1. Underestimations often occur by not fully considering the impact of recent historical peaks or seasonal outbreaks, even when declines are present.
2. Incorrect predictions result from neglecting cumulative effects of influenza and pneumonia, especially when one disease overshadows the other.
3. Future accuracy can be enhanced by emphasizing recent peaks, seasonal patterns, and comprehensive disease impacts.

Guidelines for Future Healthcare Texts:
•Prioritize clear identification of trends and ratios, ensuring they are contextualized against historical averages and thresholds.
•Distinguish between short-term fluctuations and sustained trends, emphasizing cumulative impacts over isolated data points.
•Integrate insights from public health interventions and management effectiveness to provide a holistic view of disease control.
•Consider seasonal patterns and recent historical data to anticipate potential outbreaks or shifts in disease prevalence.
•Ensure quantitative comparisons are explicit and supported by comprehensive data analysis to avoid misinterpretations.
This structured approach will aid in crafting accurate healthcare summaries, enhancing predictive accuracy and improving the quality of healthcare texts for future analyses.

Figure 22. Reflection summary for text refinement of Healthcare (Mortality) dataset.

F. TimeXL for Regression-based Prediction: A Finance Demonstration
In this section, we provide a demonstration of using TimeXL for regression tasks. Two minor modifications adapt TimeXL

for continuous value prediction. First, we add a regression branch in the encoder design, as shown in Figure 23. On the top
of time series prototype layers, we reversely ensemble each time series segment representation as a weighted sum of time
series prototypes, and add a regression head for prediction. Accordingly, we add another regression loss term (i,e., MSE
and MAE) to the learning objectives. Second, we adjust the prompt for prediction LLM by adding time series inputs and
requesting continuous forecast values, as shown in Figure 24. As such, TimeXL is equipped with regression capability.

We perform the experiments on the same finance dataset, where the target value is the raw material stock price. We provide
the performance of the LLM-based prediction as well as TimeXL, as preliminary results, as shown in Table 5. It can be
seen that the text modality introduces complementary information, which improves both trend and price value prediction.
Besides, the identified prototypes provide contextual guidance, which further improves the predictive performance. TimeXL
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yields the best results, underscoring the efficacy of mutually augmented prediction. Additionally, we provide a visualization
comparing the predicted trend and stock price values, with ground truths for reference.

Table 5. Performance of TimeXL for regression tasks.

Variants F1 AUC RMSE MAE MAPE(%)

Time(PromptCast) 0.418 0.607 4.728 3.227 2.306
Text + Time 0.520 0.651 4.848 3.167 2.238
Text + Time + Prototype 0.571 0.687 4.688 3.095 2.193

TimeXL 0.626 0.785 4.608 3.077 2.186
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Figure 23. Multi-modal prototype-based encoder design in TimeXL for regression tasks.

User Prompt

System Prompt

Your job is to act as [specific role]. You will be given a summary of [data description] and related
prototypes that you can refer to. Based on this information, your task is to predict [task description].

Your task is to [task description]. First, review the following [number of prototypes] prototype text
segments and outcomes, so that you can refer to when making predictions.

Prototype #1: [text prototype]
Corresponding Segment#1: [input text segment]
Relevance Score: [similarity score]
Outcome #1: [options]

… 
Next, review the [situation] :
Summary: [text input]

Finally, review the [domain] record of [situation] : [time series values]

Based on your understanding, predict the outcome of [situation], followed by the value of [domain]
record. Respond your prediction with [options] and [numerical value]. Response should not include
other terms.

Figure 24. Prompt for regression tasks.
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Trend Prediction

Actual Trend

Figure 25. Visualization of TimeXL regression and trend prediction on Finance dataset.
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