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Abstract001

The parametric knowledge memorized by large002
language models (LLMs) becomes outdated003
quickly. In-context editing (ICE) is currently004
the most effective method for updating the005
knowledge of LLMs. Recent advancements006
involve enhancing ICE by modifying the de-007
coding strategy, obviating the need for altering008
internal model structures or adjusting external009
prompts. However, this enhancement operates010
across the entire sequence generation, encom-011
passing a plethora of non-critical tokens. In012
this work, we introduce Adaptive Token Biaser013
(ATBIAS), a new decoding technique designed014
to enhance ICE. It focuses on the tokens that015
are mostly related to knowledge during decod-016
ing, biasing their logits by matching key enti-017
ties related to new and parametric knowledge.018
Experimental results show that ATBIAS signif-019
icantly enhances ICE performance, achieving020
up to a 32.3% improvement over state-of-the-021
art ICE methods while incurring only half the022
latency. ATBIAS not only improves the knowl-023
edge editing capabilities of ICE but can also be024
widely applied to LLMs with negligible cost.025

1 Introduction026

Large language models (LLMs) (OpenAI, 2022,027

2023; Touvron et al., 2023a,b; Song et al., 2024)028

accumulate a substantial volume of factual knowl-029

edge during pretraining. However, some of this030

knowledge may quickly become outdated, resulting031

in decreased reliability of LLMs (Chen and Shu,032

2023; Zhang et al., 2023b; Huang et al., 2023a).033

Due to the substantial cost associated with retrain-034

ing, knowledge editing (KE) (Sinitsin et al., 2020;035

De Cao et al., 2021; Mitchell et al., 2022; Yao et al.,036

2023) has been proposed to update the knowledge037

in LLMs by injecting new knowledge or modifying038

parametric knowledge.039

As currently the most effective KE method, in-040

context editing (ICE) (Madaan et al., 2022; Zhong041

et al., 2023; Zheng et al., 2023; Cohen et al., 2024)042
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Figure 1: A simple example of in-context editing (ICE).
ICE successfully edits easy knowledge but fails to edit
stubborn knowledge.

has demonstrated state-of-the-art performance in 043

KE. By providing contextual editing prompts with 044

new knowledge retrieved from the edit memory, 045

ICE can efficiently guide LLMs to inference and 046

generate the answers related to the new knowledge. 047

Bi et al. (2024a,b) indicate that editing stub- 048

born knowledge solely through external context 049

prompts is challenging, as this knowledge has been 050

established in LLMs with strong confidence during 051

pre-training, as illustrated in Figure 1. Recent state- 052

of-the-art ICE method DeCK (Bi et al., 2024a) en- 053

hances the editing of stubborn knowledge by modi- 054

fying entire generating sequence during decoding. 055

However, this approach carries potential risks, not 056

only introducing the possibility of inference errors 057

but also incurring higher latency costs. 058

In this work, we explore enhancing ICE for 059

editing stubborn knowledge during the decoding 060

stage of LLMs, without altering internal LLMs’ 061

parameters or modifying external prompts. We pro- 062

pose Adaptive Token Biaser (ATBIAS), a new KE 063

framework for LLMs that enhances ICE by match- 064

ing key entities and biasing the logits of specific 065

tokens. The framework of ATBIAS is shown in 066

Figure 2. Unlike previous decoding (Li et al., 2023; 067

Chuang et al., 2023; Bi et al., 2024a), ATBIAS fo- 068

cuses more on the matched tokens rather than the 069
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Figure 2: Illustration of how ATBIAS enhances ICE during decoding. ATBIAS adjusts the key token probabilities
based on the similarity computed between filtered tokens and extracted new and parametric knowledge entities.

entire generated sequence. We argue that modifi-070

cations on other tokens are unnecessary, leading to071

redundant computational costs and even mistakes.072

For example, in generating text The author Richard073

Dawkins wrote "Misery", the key terms "Richard"074

and "Dawkins" merit attention over other words in075

the text. Indiscriminate adjustments to other words076

(such as "The", "author", etc.) can pose a poten-077

tial risk of introducing fundamental errors in the078

logical coherence of the entire inference statement.079

The main goal of ATBIAS is to increase the gen-080

eration probability of tokens related to new knowl-081

edge while decreasing that of parametric knowl-082

edge. Capturing key textual entities is a prerequi-083

site for matching crucial tokens. ATBIAS provides084

a parametric induction and entity extraction mod-085

ule, which can efficiently extract key entities from086

both new facts and parametric facts induced from087

LLMs. We also introduce knowledge caching, en-088

abling the aforementioned process to be completed089

offline. This ensures our ATBIAS performs effi-090

cient editing with only a single inference.091

We design a specialized filtering mechanism092

that ensures our approach only considers top-093

ranked and high-probability predicted tokens. The094

probabilistic-ranking filter not only significantly re-095

duces the likelihood of implausible tokens having096

their logits erroneously amplified but also greatly097

improves the time efficiency of ATBIAS.098

Tokens related to key entities cannot be precisely099

located due to the tokenization rules. Therefore,100

we developed an N-gram and Jaccard-based simi-101

larity comparison algorithm to match tokens with102

entities. We introduce bias to the logits of both new 103

and old knowledge entities based on the similar- 104

ity computed between the filtered tokens and these 105

entities. The tokens related to new knowledge are 106

more likely to be output than parametric knowledge 107

during the generation of LLMs, thus significantly 108

enhancing the editing capabilities of ICE. 109

Experimental results indicate that our ATBIAS 110

significantly enhances ICE performance, achieving 111

up to a 32.3% improvement over state-of-the-art 112

decoding methods while incurring only half the 113

latency. This means that ATBIAS not only further 114

improves editing capabilities but can also be widely 115

applied to LLMs with negligible cost. Furthermore, 116

we suggest that research into decoding methods 117

should focus more on key tokens rather than the 118

entire sequence in generation. 119

2 Preliminary 120

LLMs Decoding. The primary goal of LLMs 121

during decoding is to predict the succeeding word 122

within a provided context sequence. Formally, 123

given a sequence of tokens {x1, x2, . . . , xt−1} of 124

length t− 1, we can calculate the probability dis- 125

tribution of next token over the vocabulary set V: 126

P (x|x<t) = softmax(ϕ(ht)), x ∈ V (1) 127

where ϕ(·) represents an affine layer for embedding 128

vectors H = {h1, . . . , ht−1}. In decoding, LLMs 129

samples from the conditional distribution P (x|x<t) 130

to generate next token xt, continuing this process 131

until an end-of-sequence token is produced. 132
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Multi-hop Editing. Multi-hop editing is a highly133

challenging task in KE, aimed at verifying whether134

a fact has been thoroughly edited in LLMs. It135

not only edits the specific knowledge but also all136

related knowledge within the multi-hop relations137

impacted by this edit. For example, consider the138

two-hop question in Figure 2. The original answer139

would be "United States" with the facts Stephen140

King wrote "Misery", Stephen King is a U.S. citizen.141

With an edit Richard Dawkins wrote "Misery" and142

existing knowledge Richard Dawkins is British, the143

edited output answer should be "United Kingdom".144

3 Methods145

The framework of ATBIAS is shown in Figure146

2. First, we induce LLMs to output parametric147

knowledge by clozing the retrieved new knowl-148

edge, and then we extract the knowledge entities149

from them (Section 3.1). This process can be op-150

timized through knowledge caching (Section 3.5).151

Next, we refine the tokens using a probability and152

rank-based token filter (Section 3.2), and match153

key entities with an n-gram and jaccard similarity154

calculation algorithm (Section 3.3). Finally, we155

adaptively bias the logits of the crucial tokens (Sec-156

tion 3.4) to predict the next tokens.157

3.1 Parametric Induction & Entity Extraction158

Extracting key knowledge entities from redundant159

knowledge information is a fundamental prereq-160

uisite of ATBIAS. This enables the adjustment161

of corresponding token probabilities during decod-162

ing. Specifically, ATBIAS enables the preprocess-163

ing to obtain parametric output from LLMs corre-164

sponding to each new fact piece in the edit memory.165

For example, consider a piece of new fact updated166

in the edited fact memory: The author Richard167

Dawkins wrote "Misery". By clozing the new fact168

such as The author _ wrote "Misery", LLMs can be169

induced to provide parametric fact outputs like The170

author Stephen King wrote "Misery".171

Subsequently, the key knowledge entities are in-172

dividually extracted from these fact pieces. We173

define the function extract(·) to represent this pro-174

cess. Given a set of fact pieces fact, we can obtain175

a list of split entity strings:176

Efact = Extract(fact) (2)177

Then, the extracted entities Enew and Epara from178

new fact and parametric fact are used to match the179

key tokens in Section 3.4.180

3.2 Probabilistic-Ranking Filter 181

As introduced in Section 2, tokens with higher 182

probabilities in the distribution P (x|x<t) are more 183

likely to be sampled and output during the decoding 184

in LLMs. However, if we calculate the similarity 185

(Section 3.3) for all tokens in the vocabulary V to 186

adjust their logits (Section 3.4), it will not only 187

cause unnecessary time overhead but also increase 188

the potential risk of erroneously amplifying the 189

probabilities of unreliable tokens. 190

Inspired by APC (Li et al., 2023), we design a 191

stringent filtering mechanism to eliminate the unre- 192

liable tokens. Specifically, we control the decoding 193

scope based on both the probability values of the 194

tokens and their rankings. 195

First, we set a constraint parameter α to ensure 196

that the filtered tokens logits have only a small dif- 197

ference from the highest probability. Using P (xt) 198

to represent P (xt|x<t) for notational brevity, the 199

probabilistic filter can be formalized as follows: 200

Vprob =
{
xt ∈ V : P (xt) ≥ αmax

w
P (w)

}
(3) 201

We then define the ranking-based filtering: 202

Vrank = {xt ∈ V : P (xt) ≥ P (Rk)} (4) 203

where Rk represents the token with the k-th largest 204

probability. This implies that we exclusively fo- 205

cus on the top-k tokens in the distribution. Subse- 206

quently, we obtain a more stringent set of filtered 207

tokens: 208

Vhead(xt|x<t) = V1 ∩ V2 (5) 209

Vhead imposes specific decoding constraints by 210

considering both probability and ranking, thereby 211

avoiding situations where filtered tokens have high 212

rankings but low credibility, or where there are too 213

many tokens with high probabilities. We can then 214

predict the next token by: 215

Pfilt(xt) =

{
P (xt), if xt ∈ Vhead(xt|x<t),

−∞, otherwise.
(6) 216

3.3 N-gram and Jaccard Similarity 217

Tokens related to key entities cannot be precisely 218

identified due to tokenization rules. Therefore, 219

directly identifying specific tokens and adjusting 220

their logits is not feasible. ATBIAS presents a 221

novel approach where tokens are first decoded into 222

strings during the decoding process, which are then 223
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matched with the strings derived from key entities.224

Thus, tokens more relevant to key entities can be225

identified by matching decoded strings with entity226

strings. An additional challenge is that a word may227

be segmented by the tokenizer into various pre-228

fixes, infixes, and suffixes. For example, ’Dawkins’229

might be segmented into "Daw-" and "-kins". This230

means the decoded strings may be the substrings231

of entity strings. Therefore, we need to match the232

substrings obtained from decoding the tokens with233

the full strings split from the key entities.234

To tackle the above challenges, we developed an235

N-gram and Jaccard-based similarity comparison236

algorithm to match the filtered tokens with key en-237

tities. The target of our algorithm is to compare238

the similarity between substrings (tokens) and full239

strings (entities), including complex word struc-240

tures such as prefixes, infixes, and suffixes.241

We begins by decomposing both the substring242

and the full string into character n-grams. A charac-243

ter n-gram is a contiguous sequence of n characters244

within a string. We define the function g(·) to rep-245

resent the decomposition of a string into an n-gram246

set. For example, for the string "Stephen" and247

n=3, the set of 3-grams includes g("Stephen") =248

{"Ste", "tep", "eph", "phe", "hen"}. Specially, we249

compute the n-gram sets of the substrings and the250

full strings using a sliding window approach.251

Next, we can calculate the Jaccard similarity (Ni-252

wattanakul et al., 2013) between the two decom-253

posed n-gram sets of decoded strings and entity254

strings, which can be formalized as follows:255

sim(xt, ei) =
|g(xd

t ) ∩ g(ei)|
|g(xd

t ) ∪ g(ei)|
(7)256

where xd
t represents the decoded strings from fil-257

tered tokens satisfying xd
t = decode(xt) and xt ∈258

Vhead(xt|x<t), ei ∈ E and E = {e1, e2, . . . , em}259

is the split entity strings set of length m.260

3.4 Adaptive Token Biaser261

The main goal of our adaptive token biaser is to262

increase the logits of tokens corresponding to new263

knowledge entities while decreasing those of para-264

metric knowledge entities, thus enhancing the ca-265

pability of ICE editing knowledge. Therefore, the266

biasing operation can be divided into two parts,267

starting with the enhancement of new knowledge:268

Padj(xt) = Pfilt(xt) + λnP̄sim(xt, e
n
i ) (8)269

where λn is the bias coefficient for new knowledge,270

en
i represents the split string of new knowledge enti-271

Algorithm 1 Adaptive Token Biaser

Require: P : distribution of tokens, V : vocabulary,
Fnew: new facts, Fpara: parametric facts

1: Filter V → Vhead
2: Extract Fnew → Enew and Fpara → Epara
3: Compute avg. P̄ = 1

|Vhead|
∑

xi∈Vhead
P (xi)

4: for each xi ∈ Vhead do
5: Decode xi → xd

i

6: for each en
j ∈ Enew do

7: if xd
i in en

j then
8: N-gram Decompose xd

i , en
j → gix, gje

9: P (xi) = P (xi) + λn · P̄ · |gix∩g
j
e|

|gix∪g
j
e|

10: end if
11: end for
12: for each e

p
j ∈ Epara do

13: if xd
i in e

p
j then

14: N-gram Decompose xd
i , ep

j → gix, gje

15: P (xi) = P (xi)− λp · P̄ · |gix∩g
j
e|

|gix∪g
j
e|

16: end if
17: end for
18: end for
19: return P

ties such that en
i ∈ Enew = {en

1, e
n
2, . . . , e

n
m}. And 272

P̄ is the average probability of all filtered tokens, 273

defined as: 274

P̄ =
1

|Vhead|
∑

xt∈Vhead

Pfilt(xt) (9) 275

Similarly, the suppression of parametric knowledge 276

can be represented as follows: 277

Padj(xt) = Pfilt(xt)− λpP̄sim(xt, e
p
i ) (10) 278

where λp is the tuning coefficient for parametric 279

knowledge, ep
i ∈ Epara represents the split string of 280

parametric knowledge entities. 281

The overall process of ATBIAS is shown in Al- 282

gorithm 1. ATBIAS controls the degree of logits 283

bias for tokens corresponding to key entity texts 284

by calculating similarity. The n-gram and jaccard 285

similarity in Section 3.3 ensures the validity of this 286

step, as a higher overlap receives a certain weight, 287

while lower overlap or mismatches receive a weight 288

of zero. This distinguishes our ATBIAS from the 289

decoding methods that operate on the entire gener- 290

ating sequence. ATBIAS focuses only on the few 291

crucial tokens, such as "Richard" and "Dawkins" 292

in The author Richard Dawkins wrote "Misery", 293
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Model Method MQUAKE-3K MQUAKE-2002 MQUAKE-HARD

ROME (Meng et al., 2022a) 18.2 19.1 15.7
LLAMA2- IKE (Zheng et al., 2023) 85.4 85.1 88.9
7B-CHAT IKE w/ DeCK (Bi et al., 2024a) 91.3 89.4 98.6

IKE w/ ATBIAS (ours) 93.1 92.3 98.8

ROME (Meng et al., 2022a) 39.4 39.7 35.2
LLAMA2- IKE (Zheng et al., 2023) 63.8 64.1 55.2
13B-CHAT IKE w/ DeCK (Bi et al., 2024a) 84.6 84.4 89.7

IKE w/ ATBIAS (ours) 89.7 87.6 91.2

ROME (Meng et al., 2022a) 28.1 30.2 26.3
MISTRAL- IKE (Zheng et al., 2023) 34.1 35.6 15.6
7B-INSTRUCT IKE w/ DeCK (Bi et al., 2024a) 46.7 48.5 19.2

IKE w/ ATBIAS (ours) 47.6 48.7 22.6

Table 1: Experimental results (accuracy; %) across ROME, original IKE, IKE enhanced by DeCK and our ATBIAS.
The batch size of the edit memory was set to 1 to evaluate the foundational capability of directly editing knowledge.
The best editing result for each LLM is highlighted in bold font.

without biasing the majority of others like "The",294

"author", etc. This ensures that our editing pro-295

cess does not interfere with the reasoning of LLMs,296

reducing the potential risk of introducing inappro-297

priate tokens during decoding.298

3.5 Knowledge Caching for Efficient Editing299

Considering that parametric induction and entity300

extraction in Section 3.1 can introduce additional301

time overhead, we can preprocess these steps in302

advance. Specifically, whenever a new fact is up-303

dated in the edited memory, we offline induce the304

LLMs to output the corresponding parametric fact305

and then extract the entities from both the new and306

parametric facts. We record these in a knowledge307

cache to ensure that they can be directly retrieved308

during online inference by the LLMs.309

Actually, the offline preprocessing is not impera-310

tive, as many advanced ICE methods (Zhong et al.,311

2023; Wang et al., 2024; Shi et al., 2024) inher-312

ently involve parametric output during their pro-313

cess with LLMs. For example, MeLLo (Zhong314

et al., 2023) prompts LLMs to output parametric315

answers to subquestions. And then ATBIAS can316

extract the entities from these parametric answers317

in MeLLo online, using simple methods or tools318

such as fine-tuned LMs or regular expressions. See319

the Appendix A for detailed examples. Therefore,320

our ATBIAS only requires a single inference with321

negligible additional overhead.322

4 Experiments323

4.1 Experimental Setup324

Tasks. Our experiments focus on the one-hop325

and multi-hop question-answering tasks introduced326

in Section 2. We set the batch size of the edit 327

memory as 1 and full batch for multi-hop editing 328

evaluation. The batch size means the number of 329

instances providing the edited facts for knowledge 330

retrieval. 331

Datasets. We conduct extensive experiments for 332

the main multi-hop editing task using MQUAKE- 333

3K (Zhong et al., 2023) along with its challeng- 334

ing derivatives, MQUAKE-2002 and MQUAKE- 335

HARD, introduced by Wang et al. (2024). 336

MQUAKE provides multi-hop knowledge ques- 337

tions to evaluate KE on counterfactual edits. We 338

also evaluate for one-hop editing task on COUN- 339

TERFACT (Meng et al., 2022a). Additionally, we 340

follow (Bi et al., 2024a) to use corresponding STUB- 341

BORN datasets to further evaluate the effectiveness 342

of editing stubborn knowledge in Section 4.4. 343

Models and Baselines. We examine different 344

LLM families and sizes, including LLAMA2- 345

7B-CHAT, LLAMA2-13B-CHAT(Touvron et al., 346

2023b), and MISTRAL-7B-INSTRUCT (Jiang et al., 347

2023). We employ the state-of-art ICE methods 348

IKE (Cohen et al., 2024) and MeLLo (Zhong 349

et al., 2023), and advanced model-editing tech- 350

niques ROME (Meng et al., 2022a) as baselines. 351

We also compare our approach with these ICE 352

methods enhanced by DeCK (Bi et al., 2024a), the 353

state-of-the-art decoding method for ICE that con- 354

trasts knowledge. IKE prompts LLMs to edit new 355

knowledge using contextual demonstrations, while 356

MeLLo edits multi-hop knowledge by decompos- 357

ing sub-questions and guiding LLMs to generate 358

answers. ROME views editing as least squares 359

with linear equality constraints and employs the 360

Lagrange multiplier for solving. 361
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Model Method MQUAKE-3K MQUAKE-2002 MQUAKE-HARD

LLAMA2- MeLLo (Zhong et al., 2023) 32.6 40.8 5.1

7B-CHAT
MeLLo w/ DeCK (Bi et al., 2024a) 43.1 45.8 5.8
MeLLo w/ ATBIAS (ours) 54.3 48.9 6.3

LLAMA2- MeLLo (Zhong et al., 2023) 33.4 35.9 3.9

13B-CHAT
MeLLo w/ DeCK (Bi et al., 2024a) 36.8 38.2 6.2
MeLLo w/ ATBIAS (ours) 48.7 43.6 6.7

MISTRAL- MeLLo (Zhong et al., 2023) 21.8 22.8 2.1

7B-INSTRUCT
MeLLo w/ DeCK (Bi et al., 2024a) 21.3 22.9 2.6
MeLLo w/ ATBIAS (ours) 24.7 25.4 3.1

Table 2: Experimental results (accuracy; %) on multi- hop editing task with 500 instances. We conduct the
experiments with the full batch size edit memory to evaluate the performance of memory based KE.

Implementation. We implement IKE with multi-362

hop question-answering demonstrations and chain-363

of-thought (COT) (Wei et al., 2022) prompting364

to enhance its performance. We deploy ATBIAS365

to MeLLo without the need for additional prepro-366

cessing, as MeLLo naturally outputs parametric367

knowledge (Section 3.1). The prompts used in IKE368

and MeLLo are shown in Appendix C. The model369

editing methods ROME in our baselines are de-370

ployed using EasyEdit (Wang et al., 2023b). We371

set n to 2 in the n-gram decomposition, the adap-372

tive constraint α to 0.0005 and k to 10, with bias373

coefficients λn set to 25 and λp set to 1.374

4.2 Overall Performance375

We set the batch size of the edit memory as 1376

for evaluating the foundational direct editing ca-377

pabilities of IKE (Zheng et al., 2023) method,378

especially considering multi-hop questions with379

1,000 instances. The batch size means the num-380

ber of instances providing the edited facts for381

knowledge retrieval. Table 1 displays the perfor-382

mance on MQUAKE across various models and383

datasets. Overall, compared to the model-editing384

method ROME, the ICE method IKE demon-385

strates a clear advantage. The enhanced IKE386

by ATBIAS consistently shows the best perfor-387

mance. Furthermore, as model parameters in-388

crease (LLAMA2-13B-CHAT) and pretraining be-389

comes more refined (MISTRAL-7B-INSTRUCT),390

the knowledge within LLMs becomes more stub-391

born to editing. ATBIAS can enhance ICE to effec-392

tively edit this stubborn knowledge.393

We follow the setup of previous work (Zhong394

et al., 2023; Wang et al., 2024) to conduct exper-395

iments for MeLLo (Zhong et al., 2023) with the396

full batch size edit memory. As shown in Table 2,397

the experimental results illustrate that ATBIAS en-398

hances MeLLo to varying degrees in full batch ex-399

periments. Specifically, the enhancement provided 400

by our ATBIAS shows a significant advantage, with 401

an impressive improvement of up to 32.3% com- 402

pared to DeCK. This is because ATBIAS operates 403

on a small number of key tokens rather than the 404

entire sequence as in DeCK, leaving other tokens 405

in the inference process unaffected. This greatly 406

reduces the potential risk of introducing fundamen- 407

tal errors during the inference stage, making our 408

ATBIAS’s enhancements even more pronounced 409

in longer and more complex editing pipelines. It 410

further indicates that ATBIAS holds significant po- 411

tential for real-world KE applications with higher 412

performance and lower costs. 413

4.3 One-hop Editing 414

Despite the greater challenge of multihop edit- 415

ing, we still used the COUNTERFACT dataset to 416

evaluate one-hop editing for the robustness of our 417

method. As the results shown in Table 3, the ICE 418

method IKE achieved high accuracy in the simpler 419

one-hop editing task, with IKE enhanced by our 420

ATBIAS consistently outperforming others. 421

Model IKE w/ DeCK w/ ATBIAS

LLAMA2-7B 98.37 98.65 99.42
LLAMA2-13B 93.76 94.23 95.35

Table 3: Experimental results of IKE on COUNTER-
FACT for one-hop editing task.

4.4 Editing on Stubborn Knowledge 422

Stubborn knowledge in LLMs is difficult to edit 423

because it is established with strong confidence dur- 424

ing the pretraining process. We follow (Bi et al., 425

2024a) to construct the corresponding STUBBORN 426

datasets for different models to specifically evalu- 427

ate ATBIAS’s performance on stubborn knowledge. 428

The stubborn datasets are categorized into different 429
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Model STUBBORN ROME IKE IKE w/ DeCK IKE w/ ATBIAS

LLAMA2-7B-CHAT
> 33% 17.7 56.4 72.3 73.9
> 67% 19.3 37.8 55.9 57.8

LLAMA2-13B-CHAT
> 33% 42.5 38.9 70.1 71.6
> 67% 40.2 29.4 48.5 56.5

MISTRAL-7B-INSTRUCT
> 33% 19.7 20.7 26.5 33.2
> 67% 18.5 17.9 22.6 27.9

Table 4: Performance of different models on their respective STUBBORN datasets. The edit memory batch size of
the IKE methods is set to 1. ‘STUBBORN > 33%’ indicates instances from the MQUAKE-3K dataset where IKE
failed to edit knowledge more than 33% of the time. ‘STUBBORN > 67%’ follows the same criterion.

difficulty levels based on the proportion of correct430

answers when using ICE methods to edit the same431

knowledge multiple times with different questions.432

The experimental results on the STUBBORN433

datasets are presented in Table 4. We find that434

IKE’s performance on STUBBORN datasets signifi-435

cantly declined compared to Table 1, even falling436

below the model-editing method ROME. This in-437

dicates that relying solely on external prompts is438

insufficient to change LLMs’ confidence in this439

stubborn knowledge. The enhancement methods440

applied during decoding significantly improve the441

effectiveness of editing stubborn knowledge, with442

ATBIAS consistently achieving the best perfor-443

mance. This suggests ATBIAS enhances ICE meth-444

ods’ ability to effectively edit stubborn knowledge.445

Model Method Latency Throughput
(ms/token) (token/s)

LLAMA2-
Baseline 36.03 (×1.00) 27.76 (×1.00)

7B-CHAT
DeCK 69.99 (×1.94) 14.29 (×0.51)

ATBIAS 36.19 (×1.01) 27.64 (×1.00)

LLAMA2-
Baseline 51.41 (×1.00) 19.45 (×1.00)

13B-CHAT
DeCK 94.08 (×1.83) 10.63 (×0.55)

ATBIAS 49.11 (×0.95) 20.36 (×1.05)

Table 5: Decoding latency (ms/tokens) and throughput
(tokens/s). Green shows low latency and high through-
put, red shows high latency and low throughput.

4.5 Latency & Throughput446

Table 5 shows the decoding latency for the baseline,447

as well as when incorporating DeCK or ATBIAS.448

DeCK requires generating and comparing two se-449

quences during decoding, resulting in approxi-450

mately 2x the latency of the baseline. It is worth451

noting that ATBIAS increases the decoding time by452

only a factor of 1.01 in LLAMA2-7B-CHAT and is453

even more efficient in LLAMA2-13B-CHAT com-454

pared to the baseline. This efficiency is due to the455

probabilistic-ranking filter, which filters out most 456

low-probability tokens and only considers highly 457

confident tokens for prediction. It suggests that 458

ATBIAS, with its outstanding editing performance, 459

can also be widely applied at negligible cost. 460

4.6 Why ATBIAS Edits Efficiently? 461

Bi et al. (2024a) observes that the values of the 462

logits corresponding to the parametric knowledge’s 463

tokens are very high before editing. Even though 464

ICE significantly increases the logits of the tokens 465

corresponding to new knowledge, there are still 466

cases where it fails to surpass the parametric ones. 467

To reveal the underlying reasons why ATBIAS can 468

effectively enhance the ICE methods from a model 469

interpretability perspective, we analyzed the prob- 470

ability changes of the new knowledge before and 471

after applying ATBIAS. Specifically, we capture 472

the first tokens of the new and parametric knowl- 473

edge entities that represent them and then record 474

their normalized logits. 475

The results illustrated in Figure 3 show that IKE 476

with ATBIAS has a higher distribution within the 477

high probability range, while IKE without ATBIAS 478

is concentrated in the low probability range. Addi- 479

tionally, the probability ranking of new knowledge 480

significantly increased after incorporating ATBIAS. 481

Moreover, the probability distribution of the para- 482

metric knowledge exhibited an opposite trend after 483

incorporating ATBIAS. This further explains why 484

ATBIAS can effectively enhance ICE: it increases 485

the probabilities of new knowledge entities and de- 486

creases the probabilities of parametric knowledge 487

entities. As shown in the editing example in Figure 488

2 (Richard Dawkins is a citizen of the United King- 489

dom), the newly generated knowledge entities by 490

ATBIAS serve as new contextual cues during infer- 491

encing to reason over multiple hops of knowledge, 492

significantly improving editing performance. 493
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ICE w/ ATBaisICE w/o ATBais

Figure 3: Probability (left) and ranking (right) statistics of new Knowledge for LLAMA2-7B-CHAT on stubborn >
33%. The probabilities are derived from normalize calculations.

4.7 Ablation Study494

We conducted a comprehensive ablation study on495

the adaptive constraints, bias coefficients, and key496

components of ATBIAS. Table 6 presents the re-497

sults for the filter in ATBIAS, demonstrating the498

necessity of filtering tokens based on both proba-499

bility and ranking constraints. Additional ablation500

study results can be found in the Appendix B.501

Model Prob Rank Prob & Rank

LLAMA2-7B 90.2 81.5 93.1
LLAMA2-13B 81.9 72.4 89.7

Table 6: Ablation study results for the filter of our
ATBIAS. Prob and Rank respectively represent proba-
bility and ranking constraints in the filter.

5 Related Work502

Factual Hallucinations. Factual hallucinations503

have garnered widespread attention due to their sig-504

nificant side effects, as LLMs generate content that505

deviates from established world knowledge (Ton-506

moy et al., 2024; Huang et al., 2023a; Wang et al.,507

2023a). These hallucinations can arise from vari-508

ous sources and at different stages of the LLM life509

cycle (Zhang et al., 2023b). Outdated knowledge is510

a major factor contributing to factual hallucinations.511

ATBIAS enhances KE during the inference stage512

in LLMs to mitigate these hallucinations.513

Knowledge Editing. KE (Yao et al., 2023) has514

been proposed to update information in LLMs, en-515

abling accurate responses to current questions. In516

general, there are three lines of works for KE.517

Model editing (Zhu et al., 2020; Meng et al.,518

2022a,b; Huang et al., 2023b) involves adding or al-519

tering the model parameters responsible for the un-520

desirable output. Meta-learning methods (De Cao521

et al., 2021; Mitchell et al., 2021) use a hypernet-522

work to learn the necessary adjustments for editing523

LLMs. In-context editing methods (ICE) (Mitchell 524

et al., 2022; Madaan et al., 2022; Zhong et al., 525

2023; Zheng et al., 2023) demonstrate significant 526

potential, enabling the editing of LLMs by prompt- 527

ing them with edited facts and retrieving editing 528

demonstrations from the edit memory. 529

Decoding Strategy. Recent work modifies vari- 530

ous decoding strategies to enhance different align- 531

ments by altering the logits of the original tokens 532

during generation. CD (Li et al., 2023) compares 533

powerful expert language models with weaker ama- 534

teur language models to enhance fluency and coher- 535

ence. DoLa (Chuang et al., 2023) contrasts mature 536

layers with premature layers, while ICD (Zhang 537

et al., 2023a) compares with models injected with 538

hallucinations, aiming to enhance the factual ac- 539

curacy of the model. DeCK (Bi et al., 2024a) en- 540

hances ICE by highlighting the output probabil- 541

ity increment of new knowledge in contrast to the 542

parametric knowledge. Unlike the aforementioned 543

decoding methods, ATBIAS proposed in this paper 544

only needs to adjust key tokens to enhance KE and 545

mitigate factual hallucinations in LLMs. 546

6 Conclusion 547

In this work, we propose a new KE framework, 548

ATBIAS, to enhance ICE. ATBIAS focuses on the 549

crucial tokens that are mostly related to knowl- 550

edge during the generation, biasing their logits by 551

matching the knowledge entities. This design ef- 552

fectively reduces the potential risk of introducing 553

fundamental errors in the logical coherence of the 554

entire inference statement. Experimental results 555

show that ATBIAS significantly improves the edit- 556

ing success rate of ICE and outperforms the current 557

best decoding methods. Furthermore, the latency 558

of ATBIAS is at most 1.01 times that of the base- 559

line, meaning ATBIAS not only enhances ICE but 560

can also be widely applied with negligible cost. 561
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Limitations562

We mainly evaluate the KE methods on the563

LLAMA2-7B-CHAT, LLAMA2-13B-CHAT, and564

MISTRAL-7B-INSTRUCT. The efficacy of these565

methods on other LLMs remains less explored. Ad-566

ditionally, although ATBIAS is expected to be eas-567

ily deployable on any ICE method to enhance KE568

performance, we currently evaluate ATBIAS on the569

representative IKE and MeLLo, lacking broader570

validation. We leave the evaluation on other mod-571

els and ICE methods for future work.572

Ethical Considerations573

Ethical considerations are of utmost importance in574

our research endeavors. In this paper, we conscien-575

tiously adhere to ethical principles by exclusively576

utilizing open-source datasets and employing mod-577

els that are either open-source or widely recognized578

in the scientific community. Moreover, counterfac-579

tual public datasets were used in knowledge edit-580

ing to measure knowledge updates. Our proposed581

method is designed to ensure that the model does582

not produce any harmful or misleading informa-583

tion. We are committed to upholding ethical stan-584

dards throughout the research process, prioritizing585

transparency, and promoting the responsible use of586

technology for the betterment of society.587

References588

Baolong Bi, Shenghua Liu, Lingrui Mei, Yiwei Wang,589
Pengliang Ji, and Xueqi Cheng. 2024a. Decoding by590
contrasting knowledge: Enhancing llms’ confidence591
on edited facts. Preprint, arXiv:2405.11613.592

Baolong Bi, Shenghua Liu, Yiwei Wang, Lingrui Mei,593
and Xueqi Cheng. 2024b. Is factuality decoding a594
free lunch for llms? evaluation on knowledge editing595
benchmark. arXiv preprint arXiv:2404.00216.596

Canyu Chen and Kai Shu. 2023. Combating misinfor-597
mation in the age of llms: Opportunities and chal-598
lenges. arXiv preprint arXiv:2311.05656.599

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon600
Kim, James Glass, and Pengcheng He. 2023. Dola:601
Decoding by contrasting layers improves factu-602
ality in large language models. arXiv preprint603
arXiv:2309.03883.604

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,605
and Mor Geva. 2024. Evaluating the ripple effects606
of knowledge editing in language models. Transac-607
tions of the Association for Computational Linguis-608
tics, 12:283–298.609

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 610
ing factual knowledge in language models. arXiv 611
preprint arXiv:2104.08164. 612

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, 613
Zhangyin Feng, Haotian Wang, Qianglong Chen, 614
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting 615
Liu. 2023a. A survey on hallucination in large lan- 616
guage models: Principles, taxonomy, challenges, and 617
open questions. Preprint, arXiv:2311.05232. 618

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, 619
Wenge Rong, and Zhang Xiong. 2023b. Transformer- 620
patcher: One mistake worth one neuron. arXiv 621
preprint arXiv:2301.09785. 622

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 623
sch, Chris Bamford, Devendra Singh Chaplot, Diego 624
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 625
laume Lample, Lucile Saulnier, et al. 2023. Mistral 626
7b. arXiv preprint arXiv:2310.06825. 627

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, 628
Jason Eisner, Tatsunori Hashimoto, Luke Zettle- 629
moyer, and Mike Lewis. 2023. Contrastive decod- 630
ing: Open-ended text generation as optimization. In 631
Proceedings of the 61st Annual Meeting of the As- 632
sociation for Computational Linguistics (Volume 1: 633
Long Papers), pages 12286–12312, Toronto, Canada. 634
Association for Computational Linguistics. 635

Aman Madaan, Niket Tandon, Peter Clark, and Yim- 636
ing Yang. 2022. Memory-assisted prompt editing 637
to improve gpt-3 after deployment. arXiv preprint 638
arXiv:2201.06009. 639

Kevin Meng, David Bau, Alex Andonian, and Yonatan 640
Belinkov. 2022a. Locating and editing factual as- 641
sociations in gpt. Advances in Neural Information 642
Processing Systems, 35:17359–17372. 643

Kevin Meng, Arnab Sen Sharma, Alex Andonian, 644
Yonatan Belinkov, and David Bau. 2022b. Mass- 645
editing memory in a transformer. arXiv preprint 646
arXiv:2210.07229. 647

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 648
Finn, and Christopher D Manning. 2021. Fast model 649
editing at scale. arXiv preprint arXiv:2110.11309. 650

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo- 651
pher D Manning, and Chelsea Finn. 2022. Memory- 652
based model editing at scale. In International Con- 653
ference on Machine Learning, pages 15817–15831. 654
PMLR. 655

Suphakit Niwattanakul, Jatsada Singthongchai, 656
Ekkachai Naenudorn, and Supachanun Wanapu. 657
2013. Using of jaccard coefficient for keywords 658
similarity. In Proceedings of the international mul- 659
ticonference of engineers and computer scientists, 660
volume 1, pages 380–384. 661

OpenAI. 2022. large-scale generative pre-training 662
model for conversation. OpenAI blog. 663

9

https://arxiv.org/abs/2405.11613
https://arxiv.org/abs/2405.11613
https://arxiv.org/abs/2405.11613
https://arxiv.org/abs/2405.11613
https://arxiv.org/abs/2405.11613
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://doi.org/10.18653/v1/2023.acl-long.687
https://doi.org/10.18653/v1/2023.acl-long.687
https://doi.org/10.18653/v1/2023.acl-long.687
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt


OpenAI. 2023. Gpt-4 technical report. Preprint,664
arXiv:2303.08774.665

Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen666
Zhong, Kaixiong Zhou, and Ninghao Liu. 2024.667
Retrieval-enhanced knowledge editing for multi-hop668
question answering in language models. arXiv669
preprint arXiv:2403.19631.670

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin,671
Sergei Popov, and Artem Babenko. 2020. Editable672
neural networks. arXiv preprint arXiv:2004.00345.673

Zezheng Song, Jiaxin Yuan, and Haizhao Yang. 2024.674
Fmint: Bridging human designed and data pretrained675
models for differential equation foundation model.676
arXiv preprint arXiv:2404.14688.677

S. M Towhidul Islam Tonmoy, S M Mehedi Zaman,678
Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha,679
and Amitava Das. 2024. A comprehensive survey of680
hallucination mitigation techniques in large language681
models. Preprint, arXiv:2401.01313.682

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier683
Martinet, Marie-Anne Lachaux, Timothée Lacroix,684
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal685
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard686
Grave, and Guillaume Lample. 2023a. Llama: Open687
and efficient foundation language models. CoRR,688
abs/2302.13971.689

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-690
bert, Amjad Almahairi, Yasmine Babaei, Nikolay691
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti692
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton693
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,694
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,695
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-696
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan697
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,698
Isabel Kloumann, Artem Korenev, Punit Singh Koura,699
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-700
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-701
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-702
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-703
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,704
Ruan Silva, Eric Michael Smith, Ranjan Subrama-705
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-706
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,707
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,708
Melanie Kambadur, Sharan Narang, Aurelien Ro-709
driguez, Robert Stojnic, Sergey Edunov, and Thomas710
Scialom. 2023b. Llama 2: Open foundation and711
fine-tuned chat models. Preprint, arXiv:2307.09288.712

Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Xian-713
gru Tang, Tianhang Zhang, Cheng Jiayang, Yunzhi714
Yao, Wenyang Gao, Xuming Hu, Zehan Qi, et al.715
2023a. Survey on factuality in large language models:716
Knowledge, retrieval and domain-specificity. arXiv717
preprint arXiv:2310.07521.718

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao,719
Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan720

Cheng, Kangwei Liu, Guozhou Zheng, et al. 2023b. 721
Easyedit: An easy-to-use knowledge editing frame- 722
work for large language models. arXiv preprint 723
arXiv:2308.07269. 724

Yiwei Wang, Muhao Chen, Nanyun Peng, and Kai- 725
Wei Chang. 2024. Deepedit: Knowledge edit- 726
ing as decoding with constraints. arXiv preprint 727
arXiv:2401.10471. 728

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 729
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 730
et al. 2022. Chain-of-thought prompting elicits rea- 731
soning in large language models. Advances in neural 732
information processing systems, 35:24824–24837. 733

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, 734
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu 735
Zhang. 2023. Editing large language models: Prob- 736
lems, methods, and opportunities. arXiv preprint 737
arXiv:2305.13172. 738

Yue Zhang, Leyang Cui, Wei Bi, and Shuming Shi. 739
2023a. Alleviating hallucinations of large lan- 740
guage models through induced hallucinations. arXiv 741
preprint arXiv:2312.15710. 742

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, 743
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang, 744
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei 745
Bi, Freda Shi, and Shuming Shi. 2023b. Siren’s song 746
in the ai ocean: A survey on hallucination in large 747
language models. Preprint, arXiv:2309.01219. 748

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong 749
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we 750
edit factual knowledge by in-context learning? arXiv 751
preprint arXiv:2305.12740. 752

Zexuan Zhong, Zhengxuan Wu, Christopher D Man- 753
ning, Christopher Potts, and Danqi Chen. 2023. 754
Mquake: Assessing knowledge editing in language 755
models via multi-hop questions. arXiv preprint 756
arXiv:2305.14795. 757

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh 758
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar. 759
2020. Modifying memories in transformer models. 760
arXiv preprint arXiv:2012.00363. 761

A How Can ATBIAS Be Easily Deployed 762

on MeLLo? 763

Many advanced ICE methods (Zhong et al., 2023; 764

Wang et al., 2024; Shi et al., 2024) inherently pos- 765

sess parametric knowledge, so ATBIAS does not 766

need to induce LLMs to preprocess it offline. Table 767

4 demonstrates how MeLLo (Zhong et al., 2023) 768

can easily deploy ATBIAS without additional infer- 769

ence, directly extracting the required entities from 770

the parametric output of subquestion responses. 771

This means that knowledge entities can be extracted 772

10

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219


Multi-hop question:
Subquestion:

What is the country of the author of the book "Misery"? 
Who is the author of the book "Misery"? 

Retrieved fact: Richard Dawkins wrote "Misery".
Answer: Richard Dawkins.

Parametric output: Stephen King wrote "Misery".

Subquestion: What is the country of Richard Dawkins?

Retrieved fact: Richard Dawkins is from United Kingdom.
Answer: United Kingdom.

Parametric output: Richard Dawkins is a citizen of United Kingdom.

Final answer: United Kingdom.

Contradict!

Not Contradict.

Stephen King

Dawkins Richard
Extract Entity

Extract Entity

ATBias

MeLLo

Enhance!

Figure 4: An illustration of ATBIAS’s easy deployment on MeLLo.

online and fed into ATBIAS when using MeLLo.773

Thus, ATBIAS enhances ICE during the decoding774

stage with just a single inference step.775

B Additional Ablation Study of ATBIAS776

We conduct following additional ablation study777

experiments using the ICE method IKE (Zheng778

et al., 2023) with LLAMA2-7B-CHAT and779

LLAMA2-13B-CHAT on the MQUAKE-3K780

datasets.781

B.1 N-gram Decomposition782

The N-gram decomposition is a prerequisite for783

calculating the similarity between the knowledge784

entities and filtered tokens (Section 3.3). Table 5785

presents the ablation study results for various val-786

ues of gram n during this process. Both excessively787

high and low decomposition precision can diminish788

the matching effectiveness, with n = 2 yielding789

the best editing performance.790

Figure 5: Ablation study results of the gram n for n-
gram decomposition process.

B.2 Probabilistic Constraint of Filter791

The probabilistic constraint of ATBIAS’s filter792

(Section 3.2) that represented in Equation 3 is sub-793

jected to an ablation study on the parameter α. The794

results of this study are shown in Table 6, indicat-795

ing that α = 0.0005 yields the best editing per-796

formance. The fact that smaller α values yield 797

better performance further indicates the strictness 798

of our filtering process, effectively preventing in- 799

terference from unreasonable tokens. 800

Figure 6: Ablation study results of the probabilistic
constraint α of filter.

B.3 Ranking Constraint of Filter 801

The ablation study results of ranking constraint 802

(Equation 4) are illustrated in Table 7, showing that 803

k = 10 yields the best editing performance. 804

Figure 7: Ablation study results of the ranking con-
straint k of filter.

B.4 Bias Coefficient of Knowledge 805

We adjust the logits of tokens matching with the 806

new and parametric knowledge entities (Section 8) 807

with the bias coefficients λn (Equation 10) and λp. 808

The ablation study results of λn and λp are shown 809

in Table 9 and 10, respectively. ATBIAS achieves 810

the best performance when λn = 25. 811
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[3 in-context demonstrations abbreviated]

Question: What is the capital city of the country of citizenship of Ivanka Trump’s spouse?
Edit Knowledge: Jared Kushner is a citizen of Canada.
Thoughts: Ivanka Trump’s spouse is Jared Kushner. Jared Kushner is a citizen of Canada. The
capital city of Canada is Ottawa.
Answer: Ottawa

Question: Which continent is the country where the director of "My House Husband: Ikaw Na!"
was educated located in?
Edit Knowledge: Irene Villamor was educated in New York University.
Thoughts: The director of "My House Husband: Ikaw Na!" is Jose Javier Reyes. Jose Javier Reyes
was educated in New York University. De La Salle University is located in United States of America.
United States of America is located in the continent if North America.
Answer: North America

Table 7: An illustration of the COT based IKE solving two simplified examples. The orange parts are facts retrieved
by the retriever.

[2 in-context demonstrations abbreviated]

Question: What is the capital city of the country of citizenship of Ivanka Trump’s spouse?
Subquestion: Who is Ivanka Trump’s spouse?
Generated answer: Ivanka Trump’s spouse is Jared Kushner.
Retrieved fact: David Cameron is married to Samantha Cameron.
Retrieved fact does not contradict to generated answer.
Intermediate answer: Jared Kushner
Subquestion: What is the country of citizenship of Jared Kushner?
Generated answer: The country of citizenship of Jared Kushner is United States.
Retrieved fact: Jared Kushner is a citizen of Canada.
Retrieved fact contradicts to generated answer.
Intermediate answer: Canada
Subquestion: What is the capital city of Canada?
Generated answer: The capital city of Canada is Ottawa.
Retrieved fact: The capital city of United States is Seattle.
Retrieved fact does not contradict to generated answer, so the intermediate answer.
Intermediate answer: Ottawa
Final answer: Ottawa

Table 8: A step-by-step illustration of MeLLo solving one simplified example. Blue parts are generated by the
language model, and orange parts are facts retrieved by the retriever.

Model λn = 20 λn = 25 λn = 30

LLAMA2-7B 90.5 93.1 92.7
LLAMA2-13B 86.6 89.7 88.9

Table 9: Ablation study results of the bias coefficient of
new knowledge λn.

ATBIAS achieves the best performance when812

λp = 1. An λp value of 0 means that the logits of813

tokens matching with parametric knowledge enti-814

ties are not reduced, and the results indicate that815

this leads to a decline in performance. Optimal816

performance is achieved with smaller values of λp817

because excessively large λp values may cause the818

logits of tokens incorrectly matching old knowl-819

edge entities to decrease too much, adversely af-820

fecting editing performance.821

Model λp = 0 λp = 1 λp = 2

LLAMA2-7B 85.9 93.1 88.6
LLAMA2-13B 70.2 89.7 83.2

Table 10: Ablation study results of the bias coefficient
of parametric knowledge λp.

C Prompts of ICE for Experiments 822

The prompt we used in IKE (Zheng et al., 2023) 823

is shown in 7, and the prompt we used in MeLLo 824

is shown in 8. Based on the provided contextual 825

demonstrations, LLMs can be guided to perform 826

the corresponding ICE methods. ATBIAS can en- 827

hance these ICE methods without modifying any 828

prompts. 829
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