Under review as a conference paper at ICLR 2025

QUANTIFYING MEMORY UTILIZATION
WITH EFFECTIVE STATE-SIZE

Anonymous authors
Paper under double-blind review

ABSTRACT

As the space of causal sequence modeling architectures continues to grow, the
need to develop a general framework for their analysis becomes increasingly im-
portant. With this aim, we draw insights from classical signal processing and con-
trol theory, to develop a quantitative measure of memory utilization: the internal
mechanisms through which a model stores past information to produce future out-
puts. This metric, which we call effective state-size (ESS), is tailored to the funda-
mental class of input-invariant and input-varying linear operators, encompassing
a variety of computational units such as variants of attention, convolutions, and
recurrences. Unlike prior work on memory utilization, which either relies on raw
operator visualizations (e.g. attention maps), or simply the total memory capacity
(i.e. cache size) of a model, our metrics provide highly interpretable and action-
able measurements. In particular, we show how ESS can be leveraged to improve
initialization strategies, inform novel regularizers and advance the performance-
efficiency frontier through model distillation. Furthermore, we demonstrate that
the effect of context delimiter tokens (such as end-of-speech tokens) on ESS high-
lights cross-architectural differences in how large language models utilize their
available memory to recall information. Overall, we find that ESS provides valu-
able insights into the dynamics that dictate memory utilization, enabling the de-
sign of more efficient and effective sequence models.

1 INTRODUCTION

In recent years, the success of auto-regressive sequence modeling in the context of deep learning has
largely been driven by advancements in highly parallelizable causal architectures, such as the Trans-
former (Vaswani et al., 2023). However, despite their strong performance and hardware efficiency,
understanding the inner workings of these neural networks remains a challenging task due to their
non-linearity and the diversity of fundamental building blocks used. To this end, we leverage a new
class of model abstractions, allowing for the development of a unified framework for the analysis of
these computational units.

In particular, we note that the majority of sequence models of practical interest can formally be
expressed as either linear operators or input-varying linear operators (y = f(u)u), generalizing
the notion of adaptive, or data-controlled operators to a broader class than previously described in
Massaroli et al. (2021); Poli et al. (2023). The input-varying linear operator framework decouples
the input-varying featurization u — T := f(u) and the linear mapping y = T'u required to construct
and apply the operator respectively.

This decomposition enables a wide array of deep learning primitives to be uniformly formulated as
linear systems, including models like convolutions [33; 39; 30; 48], linear! recurrences [15; 17; 25;
53; 27; 24, 65; 42; 16], and attention variants [59; 29; 57].

Current approaches to analyzing the inner workings of input-varying linear operators often rely upon
simple visualizations of the materialized operator 7" (or the aggregation of 1" across multiple layers
and residuals) (Olsson et al., 2022a; Vig, 2019; Abnar & Zuidema, 2020; Ali et al., 2024; Xiao et al.,
2024; Sun et al., 2024). However, these visualizations alone often fail to highlight critical properties
that explain how different models construct internal representations of the input data. Moreover,

"Here, by linear we refer to the linearity of the state transition.

Under review as a conference paper at ICLR 2025

Causal Sequence Realized Linear Effective State-Size (ESS) ESS-Enabled
Models Structure (y = Tu) rank(Ty.i—1) i € [1,£] Analysis and Techniques
Input-Varying/Invariant T
Linear Operators -3 Model Distillation
Attention ———----
. J Sequence Index
Convolution ——-—==- I Initializer and Featurizer
Recurrence ->8 Analysis
i Sequence Index
Other Structures F->3 Memory Utilization
RNN, LSTM, GRU, etc. Analysis

Sequence Index

Figure 1: An overview of the effective state-size metric and its various downstream applications.

prior attempts in obtaining quantitative metrics, such as through spectral analysis of the operator T’
(Min & Li, 2024; Bhojanapalli et al., 2020), are either limited to a specific model class or do not
appropriately take into account important conflating factors, such as the causal masking of 7" which
significantly distorts the metric (Wu et al., 2024).

In this work, we focus our analysis on the working memory” of model architectures. We exam-
ine two aspects of model memory in particular: memory capacity (i.e. cache size) and memory
utilization. Notably, memory capacity alone can be misleading, as models with similar capacities
may learn to utilize their available memory to varying degrees. Therefore, we introduce the no-
tion of memory utilization — a measure that provides deeper insight into the differences between
architectures with comparable computational efficiency.

By formalizing the duality between causal operators and recurrences (see Section 2.2), and drawing
from classical signal processing and control theory, we propose a new metric called effective state-
size (ESS). Extracted from the rank of specific submatrices of 7', ESS serves as a proxy for the
memory utilization of input-varying linear operators, encompassing the vast majority of models
canonically used in causal sequence modeling. As such, it can serve as an analytical tool that can be
used alongside, and compared to, memory capacity — the theoretically realizable state-size (TSS) —
enabling a wide range of downstream applications (Figure 1).

In particular, our findings demonstrate the efficacy of the ESS metric in identifying undesirable
memory utilization patterns at initialization, reducing inference cost via model-order reduction, mit-
igating poor training dynamics with regularization, and, more broadly, providing insights into the
inner workings of modern sequence models.

Our technical contributions can be summarized as follows:

* We provide a theoretical derivation of the effective state-size and motivate it as a proxy for
memory utilization in the context of both input-invariant and input-varying linear operators
(Section 2).

* We motivate effective state-size beyond its interpretability by demonstrating its correlation
with performance across a wide range of models and memory intensive synthetic tasks
(Section 3).

* We explore the use of the effective state-size metric as a means of enhancing the
performance-efficiency trade off by showcasing its application across various phases of
model training (Sections 4.1, 4.2, 4.3).

* We extend the utility of effective state-size to language, demonstrating how it captures a
previously uncharacterized property of LLMs: state modulation (Section 4.4).

2 THEORY

In this section, we begin with a brief overview of input-invariant and input-varying linear opera-
tors, highlighting the unifying role of the linear systems formulation y = T'u in analyzing modern
sequence models. We proceed by showing how the operator 7' can be used to extract a metric that

Here, we refer to “memory” in the sense commonly associated with the “state” of dynamical systems, as
described by Willems (1989), as opposed to the notion of language models memorizing some fact encountered
during training (Allen-Zhu & Li, 2024).

Under review as a conference paper at ICLR 2025

serves as a proxy for memory utilization. Namely, we prove that for any causal, input-invariant
operator 7', the rank of its submatrices determine the minimally realizable state-size for a linear
recurrence to express 71'. We refer to this metric as the effective state-size of the operator, and show
that even in the more complex and general case of input-varying operators (for which the minimal
state-size is difficult to determine), this metric remains valuable as it provides a reliable lower bound
for the minimally realizable state-size.

2.1 PRELIMINARIES

Using the flattened notation, we let T € R¥“*% 4, 4 € R denote the operator, inputs, and outputs
respectively, ¢ denote the sequence length and d denote the channel dimension. Here, we index
sequence indices with subscripts, i.e. T;; € R4, v; € R? and channels with superscripts, i.e.
TP e R4 4> ¢ RY. For additional details on notation, refer to Section B.1.

A unified representation of sequence models. While typically nonlinear, most sequence models
of interest can effectively materialize a linear operator 7', where the equation y = T'u faithfully
expresses the computation performed by the model (see Section C.2 for further elaboration):

T;; = C;B; linear attention, Tyj =CiAi—1 -+ Aj11B; recurrence,
T, =K, convolution, T;j = C;K;_;B; gated convolution,
T;; = o(C;B;) attention.

Here, we make a distinction between input-invariant operators (such as convolutions) and input-
varying operators (such as attention and gated convolutions), for which the latter are constructed via
causal featurizers that map past inputs into features, i.e. fp : u,; — B;, which are then used to
construct the elements of 7" as outlined above.

2.2 THE REALIZATION PROBLEM

We seek to establish a connection between the operator T;; of both input-invariant and input-varying
linear systems and the operator corresponding to the application of linear recurrences. In doing so,
we demonstrate the generality of both frames of reference, motivating the analysis of T;; through its
dual recurrent realizations, and in particular its dual recurrence with minimum state size.

Consider a general input-invariant linear recurrence formulated as follows:
siv1 = A;s; + By 1
yi = Cisi + Diu,
where (A; € R™+1X™ B, ¢ Rritixd ¢ ¢ R%*4 D, € RdXd)iem; s; and n; are the state and
state-size at time-step ¢ respectively. As discussed in various prior works (Chen, 1998; DeWilde &
van der Veen, 1998), system (1) realizes the following operator (see Section B.2.1 for derivations):
0 1<
Tij = § Di =7 . (2)
CiAi_1Aj_o--- Aj+1Bj 1>

Conversely, various instances of the recurrent realizations (of both input-varying and input-invariant
operators) have been proposed for finite impulse response convolutions, lumped infinite impulse re-
sponse convolutions, attention and linear attention (Chen, 1998; Katharopoulos et al., 2020; Orvieto
et al., 2023b; Parnichkun et al., 2024). Here, we demonstrate that given an input-invariant operator
T, there exists infinite recurrent realization variations, motivating the search for the minimal one.

Theorem 2.1. Given any causal input-invariant operator T, there exist infinite variations of linear
recurrences in the form of Equation (1) that realize an equivalent input-output operator.

Refer to Section B.2.4 for the proof.

2.3 EFFECTIVE STATE-SIZE

Now that we have established that any operator can be formulated using recurrences, we proceed by
demonstrating how the minimal state-size can be determined from the structure of 7.

Under review as a conference paper at ICLR 2025

Theorem 2.2. The rank of the operator submatrix (H; = T;. .,—1) determines the minimal state
size required to represent the causal operation (y = T'u) as a recurrence.

Proof. The proof of Theorem 2.1 demonstrates that the operator submatrices H; can be decomposed
arbitrarily into two state-projection matrices, O; and C;, whose inner product dimension defines the
state size of its recurrent realization at time-step . By the rank-nullity theorem, rank (H;) represents
the minimum inner product dimension of any such state-projection matrices, and thus corresponds
to the minimally realizable state size of the operator 7" at time-step 4. O

Therefore, decomposition methods that have minimal inner product dimensions (such as SVD) can
be used to construct minimal state-projection matrices from H; that subsequently realize minimal
recurrence features (A7, BY, C}, D})icq-

Interpretation of effective state-size. Importantly, due to the input-dependence of general input-
varying linear operators (' = f(u)), the same minimal decomposition of H; is not guaranteed to
obtain state-projection matrices in which the features do not violate causality (i.e., A} depends on
future inputs). Therefore, the realization process outlined in Section B.2.4 is not universally viable
for obtaining minimal input-varying recurrences. One may instead resort to the trivial recurrent real-
ization (Equation B.2.5), where the causality of the featurization process (the process of computing
recurrent features (A;, B;, C;, D;);c(q) is always preserved. However, this comes with the cost of
realizing a state-size that grows with the sequence length (n; = 1), like attention (Vaswani et al.,
2023).

Despite this, rank(H;) still serves as a lower bound for the state-size n; (see Section B.2.2). This
means that for any input-varying operator, an equivalent recurrence must necessarily materialize
a state-size at least as large as rank(H;). To this end, we formally refer to n} = rank(H;) as
the effective state-size (ESS), and the original state size n; as the theoretically realizable state size
(TSS)>. We use these metrics as a proxy for analyzing various aspects of the operator, including its
memory utilization, its ability to model complex long-range dependencies, and more.

2.4 COMPUTING EFFECTIVE STATE-SIZE

Computing the effective state-size requires a few additional considerations due to the numerical
errors and approximations involved in practice. We propose two approaches that provide comple-
mentary perspectives on the same metric.

Tolerance-ESS. Here, a tolerance value is manually selected to threshold the singular values (3;)
of H,;, determining the ESS metric as follows:

tolerance-ESS = |{o]" : o[> 1, 0" € 3;}|. 3)

According to the Eckart—Young—Mirsky theorem, the tolerance-ESS metric can be interpreted as the
minimum state size necessary for an input-invariant recurrence to approximate the original operator,
such that the spectral norm of the approximation error remains below the specified tolerance level
(T35 — T5ll2 < 7).

Entropy-ESS. One drawback of tolerance-ESS is its reliance on the somewhat arbitrary selection
of a tolerance value. One can instead compute the effective rank (Roy & Vetterli, 2007), which
involves exponentiating the normalized spectral entropy (perplexity) of H;:

m
g

entropy-ESS = exp(— Z jol log(pzn)), where p* = —* 4)

ol

m

In contrast to the tolerance-based metric which is discrete, entropy-ESS can assume continuous
values ranging from 1 to |X;|, and does not require the selection of a tolerance value. However,
the normalization applied to the singular values results in the loss of absolute values, which may be
significant for per-sequence-index comparisons of state size. Nonetheless, both the tolerance-based
and entropy-based forms of ESS are valuable for model analysis. Entropy-ESS is particularly useful

*More details regarding TSS can be found in Section B.3.

Under review as a conference paper at ICLR 2025

for summarizing metrics across the entire tolerance space, whereas tolerance-ESS provides a more
precise and readily-interpretable depiction of rank in relation to approximation error. Our code for
computing ESS can be found in Section C.1.1.

3 EMPIRICAL VALIDATION OF EFFECTIVE STATE-SIZE

To demonstrate the practical utility of ESS beyond its theoretical interpretation discussed in Section
2, we next turn to an empirical analysis. In this section, we examine ESS across a wide range of
tasks and models in order to understand how it varies across different regimes, with particular focus
placed on its relationship with model performance on memory intensive tasks.

Task space. In order to explore ESS in an extensive, yet controlled, manner, we iterate on a set
of synthetic tasks proposed by Poli et al. (2024) which have been shown to effectively approximate
model performance on large-scale language tasks. Specifically, we train models on the multi-query
associative recall (MQAR), selective copying and compression tasks, each of which probes the abil-
ity of models to effectively utilize their working memory. We note that here, we restrict the presen-
tation of our results to MQAR and refer the reader to Section D.1 for the results on selective copying
and compression which showcase analogous trends.

Model space. We explore four models as is pertains to the scope of this analysis: gated linear
attention (GLA), weighted linear attention (WLA), linear attention (LA) and softmax attention (SA).
We choose this set of frameworks since, together, they capture a large portion of the space of modern
sequence models. The key distinctions between these models are as follows (more details can be
found in Section C.2):

* GLA layer: This layer implements the gated linear attention formulation described in Yang
et al. (2024a), where the recurrent feature A (gating term) is input-varying, placing it in the
same class as models like Liquid-S4 (Hasani et al., 2022) and Mamba (Gu & Dao, 2024,
Dao & Gu, 2024).

e WLA layer: This layer is nearly identical to GLA, but with an input-invariant A matrix.
This lies in the same class as Hyena-S4D (Poli et al., 2023), RetNets (Sun et al., 2023), and
gated-convolutions in general.

* LA layer: This layer is based off Katharopoulos et al. (2020); A is not trainable and is
instead fixed as the identity matrix.

* SA layer: This is the canonical attention layer which is similar to linear attention, but
with the addition of a softmax non-linearity applied to the attention matrix (Vaswani et al.,
2023), enabling unbounded TSS (see Section C.2 for more details).

Experimental setup. In our analysis, we exhaustively sweep across the tasks and models (which
are comprised of two sequence mixing and two channel mixing layers) detailed above. Within each
task, we also sweep across varying task difficulties. In the case of MQAR, we do so by modulating
the number of key-value (kv) pairs the models are tasked to match, as well as the total sequence
length of the prompt. Within each model, we sweep across varying TSS. For each task-model
configuration, we compute the ESS and accuracy on a validation set every 10 epochs. We will refer
to the entire space of task and models across which we sweep as the task-model space. Finally,
we split our profiling of ESS into two sections: cross task-model analysis (Section 3.1) and within
task-model analysis (Section 3.2). For more details on the setup, refer to Section C.3.

3.1 CROSS TASK-MODEL ANALYSIS

Our first goal is to understand how ESS empirically captures memory utilization by studying its
correlation with post-training MQAR performance across the entire task-model space. To appropri-
ately analyze ESS across tasks, we normalize it by the memory demands of MQAR, constructing an
adjusted form of ESS given by ESS/kv.*

“For SA, we compute (total ESS) and (total TSS) instead of (average ESS) and (average TSS) like we do
for GLA/LA/WLA. This is because in SA, TSS=seqlen which does not change as a function of the model. For
more details, refer to Section C.3 and C.1.

Under review as a conference paper at ICLR 2025

—GLA -] A =V A —SA
1.04

accuracy
accuracy
=}

@
accuracy
o
13
L

corr. with ace.

o
=
s

0.0

274 2"1
ESS/kv

(total ESS)/kv (b) -

(@)

Figure 2: (a) Scatter plots of accuracy vs ESS/kv across featurizers. Within each featurizer plot, all
task-model configurations from the sweep corresponding to each featurizer are shown. (b) ESS/kv
vs TSS/kv as a proxy for model performance as measured by correlation.

Finding 1: Measured over entire task-model space, ESS/kv exhibits significantly higher correla-
tion with accuracy than TSS/kv (Figures 2a, 2b, 7a, 7b).

Note that the strong correlation between ESS/kv and accuracy highlights the efficacy of ESS as a
proxy for memory utilization. Furthermore, this finding underscores a significant gap in the ex-
planatory power between ESS and TSS, emphasizing the importance of analyzing models beyond
just their memory capacity.

3.2 WITHIN TASK-MODEL ANALYSIS

-@- GLA(TSS-%) -@- LA (TSS=§) -@- WLA (TS5=%)
—e— GLA (TS5=128) —@— LA (TSS=125) —8— WLA (TSS=125)
1.0

GLA LA WLA

I . 27-0.1 0.4 0.2 Ul I»M . 2770105mrn.1 I .
8 26 060608 "o F 26 —0.1CNORNRE-0.1 - 05 &

< ERRZRSE ;L% 0.2 06[% 7 106806 0.1
g & -02 -00 F
By |- 0.0 20204 0.2 0.5 05 g 2* 4 Oﬂm A
1] -0.0 B 3}
I 20-0.5 aem l 2 trna
(. Loz :
25 91 95 96 o7 93 91 95 96 o

(a) o ko kv kv

27 —0.00.1 0.6 0]

accuracy

(total ESS)-acc. cor

0.0 0.0
P I R P R

(b) kv kv

Figure 3: (a) Correlation between ESS and accuracy over course of model training bucketed by TSS
and kv. (b) Accuracy and state utilization as a function of kv for low and high TSS models.

Next, to further establish ESS as a proxy for memory utilization, we study how ESS evolves as
a function of MQAR performance in a regime where TSS is kept fixed and, therefore, does not
correlate with accuracy. We do this by analyzing ESS-accuracy correlation on a per-model, per-
task basis over the course of training, uncovering several insights that serve as the basis for our
subsequent analysis.

Finding 2: For less memory-intensive tasks trained using models with high TSS, we observe
a lower correlation between ESS and performance compared to more memory-intensive tasks
trained using a lower TSS (Figure 3a).

This is in line with the interpretation of ESS as a measure for memory utilization. For easier tasks
that are learned by a model with high memory capacity, the model is not incentivized to increase
its memory utilization beyond where it resides at initialization. In contrast, for difficult tasks that
operate in a memory constrained regime, the model is forced to increase its memory utilization in
order to learn, resulting in strong positive correlations between accuracy and ESS over training. °

Digging a bit deeper, we find that this form of ESS analysis reveals two failure modes of model
learning: state saturation and state collapse. State saturation refers to the scenario in which a
model has insufficient TSS to fully learn a task, resulting in its ESS converging near its TSS. This
is reflected in its ESS/TSS (which we refer to as state utilization) residing near 1. We observe this
in Figure 3b where we note that models with a TSS of 8 perform worse on the task as its difficulty
scales due to a saturated state. State collapse, on the other hand, refers to the scenario in which
a model has sufficient TSS to learn (or partially learn) a task, but its ESS fails to increase during
training, resulting in a heavily underutilized state. With respect to state collapse, we observe the
following:

3In Figure 3, the empty spot in the WLA grid corresponds to a NaN from entropy ESS computation. The
empty spots in the SA grid correspond to MQAR task constraints discussed in Section C.3.

Under review as a conference paper at ICLR 2025

ESS-TSS Scaling GLA GLA-S6 (TSS=256)
95 4 S bss
0.75 - 0.7
24 4 ’
@ @ 050 £ & 0.50 &
229 e s 91] 025 < 025 =
> GLA @~ Acc. (Mean) Ace. (Min-Max)
-)(—'GLAVSS (a :' 1024) Ace. (Min-Max) | 0.00 @~ Acc. (Mean) 0.00
2 o7 o o7 912 914
(a) TSS (b) TSS (c) arange Norm. (a)

Figure 4: (a) ESS-TSS scaling in the S6, GLA and GLA-S6 featurizers. (b) ESS and accuracy on
MOQAR as a function of TSS in GLA. (c) ESS and accuracy on MQAR as a function of normalization
factor for initialization in GLA-S6.

Finding 3: For GLA and WLA, state collapse occurs in the high kv bucket of task-model space
(i.e. kv = 27) whereas for LA it does not (Figure 3b). For further discussion on this result, refer to
Section D.1.

While state saturation can only be solved by increasing TSS, state collapse can in principle be solved
by increasing ESS. Unlike TSS which is a fixed hyperparameter of the model, one can modulate ESS
by changing various aspects of the model pipeline. Furthermore, even outside of the state collapse
regime, given the positive correlation between ESS and performance across the task-model space,
increasing ESS is a generally viable approach to improving model performance without sacrificing
efficiency. We explore this idea in the results to follow.

4 APPLICATIONS OF EFFECTIVE STATE-SIZE

In Section 3, we showed that changes in ESS are correlated with changes in performance, both
across models and during model training, indicating its importance beyond just interpretability. In
this section, we aim to push this insight further by understanding how we can leverage ESS to
improve upon the existing performance-efficiency frontier in sequence models. We partition our
results based on the stage of model training at which we apply ESS analysis: initialization-phase
(Section 4.1), mid-training (Section 4.2), and post-training (Section 4.3).

4.1 INITIALIZATION-PHASE ANALYSIS

Initialization in weight space plays a crucial role in machine learning, significantly impacting model
convergence and training stability (Glorot & Bengio, 2010). We extend this concept to the initial-
ization of recurrent models in state space, leaning on the intuition from Figure 2a that suggests
higher ESS can enhance performance. Namely, we illustrate how ESS at initialization can be used
to inform featurizer selection — the selection of the function that maps the input to the operator
T = f(u) or equivalently the recurrent features (A;(u.;), B;(u.;), Ci(u.i), Di(u.;))ic[e — and ini-
tialization schemes. In doing so, we uncover design flaws of a prominent model, S6 (Mamba) (Gu
& Dao, 2024).

ESS-informed featurizer selection. To study the relationship between memory capacity and
memory utilization in S6, we remove the short convolutional layer in the Mamba block and stack two
of these modified blocks between SwiGLUs (Shazeer, 2020). Under the default MQAR task settings
outlined in Poli et al. (2024) (see Tables 2, 3, and 4 for details), we observe that S6 is entirely unable
to learn MQAR (accuracy =~ 0) across multiple scales of TSS (16 - 256) as shown in Figure 23. This
is in line with the results in Yang et al. (2024b), which also independently showed poor performance
of the S6 layer without the additional short convolutional layer on a different in-context recall task.
To investigate the cause, we look into how S6 is preconditioned to utilize its memory by computing
its ESS when processing a Gaussian noise input, prior to training.

Finding 4: Figure 4a demonstrates that the ESS of S6 layers at initialization scales poorly with
respect to TSS, notably failing to increase monotonically. In contrast, GLA layers (Yang et al.,
2024a), configured with hyperparameters to match the TSS, model width, number of layers, and
hidden-state normalization of the S6 model (see Section C.2 and Table 2), exhibit greater and

Under review as a conference paper at ICLR 2025

monotonically increasing ESS-TSS scaling at initialization (Figure 4a). Despite the architectural
similarities between the S6 and GLA layers, Figure 4b demonstrates that unlike S6, GLA achieves
accuracy improvements that correlate with increases in both TSS and ESS. We observe even higher
degrees of correlation in an alternative MQAR setting shown in Figure 24.

Based on these findings, we conjecture that the poor ESS-TSS scaling of S6 prevents the model from
effectively utilizing all of its states, irrespective of increases in memory capacity.

ESS-informed initialization scheme. To further investigate the differences between the afore-
mentioned S6 model and GLA model, we construct a composite model termed GLA-S6. This
model adopts the feature sharing structure of GLA (dividing dimensions into heads and sharing
computations within a head), but applies the S6 featurization to the A matrix as follows:

GLA (original): A = diag(sigmoid(Wu)*/#))
GLA-S6: A = diag(exp(—([1/a 2/a ... n/a]’ © softplus(Wu)))). (6)

Like S6, GLA-S6 fails to learn MQAR across the same range of TSS (see Figure 23) and exhibits
poor initialization-ESS scaling as shown in Figure 4a. Upon further inspection, we identify the
cause of poor ESS scaling: with each new state introduced, the arange term ([1 2 ... n))
exponentially pushes new entries of A towards zero, negating the effects of additional states despite
the increase in TSS. Therefore, to ameliorate the poor ESS scaling, we propose a simple solution:
increase the normalization factor.

Finding 5: By scaling the normalization factor (), Figure 4c shows that GLA-S6 achieves im-
provements in MQAR accuracy post-training, reflecting the impact of increasing its initialization-
ESS, despite the models having identical memory capacities.

These experiments demonstrate the efficacy of analyzing ESS at initialization, as it reveals how
different models are preconditioned to utilize their working memory. This analysis helps identify
potentially weak featurization and initialization schemes, enabling us to pinpoint shortcomings in
the S6 featurizer and implement a straightforward fix.

4.2 MID-TRAINING ANALYSIS

To motivate the idea of increasing ESS mid-training, we revisit to the concept of state collapse — a
phenomenon that arises due to trainability issues (Figure 25), as discussed in Section 3.2. Recall
that state collapse describes a failure mode of learning in GLA and WLA which, unlike LA, have
learnable A; matrices (where ¢ denotes the index along the sequence dimension). To see why this
contributes to state collapse, we note that the values of the operator submatrices H; are dispropor-
tionately influenced by A;, due to the presence of terms in the form of A;_; ... A; for each i. Hence,
the closer A; lies to the O0-matrix, the faster these terms decay, reducing the numerical rank of H;.
We demonstrate this empirically in Figure 5a, which shows that for both GLA and WLA, ESS/kv
and || [], A;||r decrease as a function of sequence length. In contrast, for LA, whose A matrix is
given by the identity, ESS/kv remains large as sequence length grows.

Given this insight, one approach to addressing state collapse in GLA and WLA is pushing the A
matrices towards the identity by adding the following term to the loss function: A||A — I|| r, where
A denotes the strength of the regularizer and I denotes the identity . In doing so, we are effectively
decaying the model towards LA, increasing its ESS and giving us the following:

Finding 6: GLA and WLA trained using the ESS-based regularization scheme described above
outperform LA. When trained without it, they perform worse than LA (Figure 5b).

For more commentary on this result, please refer to Section D.3.

4.3 POST-TRAINING ANALYSIS

Recall from Section 3.1 that we observed a strong correlation between ESS and post-training per-
formance. Building on this insight, a natural question arises: can ESS be used for more than just
performance analysis in the post-training setting? In this section, we answer this question by explor-
ing two additional post-training applications: model-order reduction and hybridization.

Under review as a conference paper at ICLR 2025

»e=GLA ESS =LA ESS =»&WLA ESS
8 GLA A 8 LA]l 8 WA 4] ¢ 8- WLA-8-GLA—— LA TSS (student) = 128

1“50,.--.--.--.-'.- L6 . 100
75
1.251 & S 107 4
£ A= & g .
o 1.00+ < £ 2 1072 Jansenes
1 = < E g3 bl
N SRUE EE s
T - T T T \70 T T T
Qh 21 28 129 210 211 21 23 2\,
seq len .
(a) 1 (b) A (© ESS (teacher)

Figure 5: (a) ESS/kv and || [], A;[|r as a function of sequence length. (b) Accuracy of models as a
function of ESS-based regularizer strength. (c) Distillation loss vs ESS of the teacher model. Refer
to Figure 28 for additional results.

ESS-informed model-order reduction. Model-order reduction refers to the process of improving
model efficiency by reducing state-size while retaining performance. Previous works, such as Mas-
saroli et al. (2023), have explored the distillation of time-invariant operators (T;; = T4 j+) into
linear recurrences with small state-sizes using backpropagation. Other techniques for model-order
reduction such as modal truncation and balanced truncation (Beliczynski et al., 1992; Gawronski &
Juang, 1990) are also applicable to time-invariant operators.

In this study, however, we are concerned with improving the efficiency of general input-varying
linear operators. Since ESS serves as a lower-bound for the minimally realizable TSS (Section 2),
we postulate that ESS can be used as a heuristic for conducting model-order reduction.

To test this, we distill multiple GLA models (with TSS = 256) across various task regimes to
understand how the ESS of the original model (i.e. the teacher model) influences its ability to be
distilled into a smaller student model. We apply the technique outlined in Bick et al. (2024), where
the process can be divided into two-steps. 1) matching the operators (min(||Ts) — T(o |%./]| T |1%))
and 2) matching the output activations (min(||y() — y(||3//|y(113)). More details can be found in
Section C.6.

Figure 5c (and more comprehensively Figure 28) shows the relationship between the ESS of the
teacher model and the final activation loss during distillation.

Finding 7: Higher teacher ESS correlates with greater activation loss. The downstream perfor-
mance after single-layer distillation depends on both the teacher model’s average ESS and student
model’s TSS, with higher teacher ESS and lower student TSS resulting in greater performance
loss (Figure 27).

We also note that directly comparing student ESS against teacher ESS provides additional insights
into the effectiveness of the distillation process (Figure 29). These findings position ESS as a useful
heuristic for predicting model compressibility, enabling efficient estimation of the potential for state-
size reduction without extensive experimentation.

ESS view on hybridization. Another application of post-training ESS analysis is network hy-
bridization, the process of arranging different operators in a multi-layer sequence model (Lieber
et al., 2024). Specifically, we measure the per-layer ESS across various hybrid networks and find
that the precise ordering of layers significantly influences ESS dynamics, offering intuition as to
why certain hybrids outperform others. We refer the reader to Section D.4.2 for these results.

4.4 STATE MODULATION OF LARGE LANGUAGE MODELS

In contrast to synthetic tasks like MQAR, selective copying, and compression, we find that strong
recall performance on language depends not only on a model having sufficient ESS, but also on its
ability to dynamically modulate its ESS in response to inputs. We demonstrate that this explains why
linear attention, though effective on synthetic experiments (Section 3), is widely known to perform
poorly on more complex language tasks (Katharopoulos et al., 2020; Arora et al., 2024).

We begin by evaluating the total ESS (computed across layers and channels) of open-weight pre-
trained models. Our analysis shown in Figure 6a (and more broadly in Section D.5) reveals an

Under review as a conference paper at ICLR 2025

The Effect of Separator Tokens on the ESS Falcon Mamba 7B

Perplexity Gap

== Standard = Bigram Recall

3

3 EXE i
& I
E = -

= — LA —— WLA
z 1 — GLA — SA

F T T T T

04 0 1000 2000 3000 4000

%% 3 2 Bigram Recall Distance
(a) s 3 g (b)
Figure 6: (a) The effect of separator tokens over Falcon Mamba 7B. See Section D.5 for plots
of other open-weight models. (b) Comparison of standard perplexity and bigram recall perplexity

(Arora et al., 2023).

intriguing phenomenon: ESS undergoes a noticeable dip whenever an end-of-speech (EOS) token is
encountered (refer to Section C.8 for experimental details). This behavior aligns with our intuition
regarding the role of EOS tokens and provides a quantitative measure of how effectively a model
can ‘reset’ or ‘forget’ past contexts when transitioning between distinct segments of text.

To investigate these effects in a more controlled environment, we trained four 1B parameter models
(LA, WLA, GLA, and SA as described in Section 3) under identical conditions (see Table 9).

Finding 8: We observe a clear hierarchy in the degree of state modulation, which can be summa-
rized as follows: SA > GLA > WLA > LA (Figure 38).

SA exhibits the most pronounced state modulation, beginning at a tolerance level of 1e—2, while also
realizing the largest ESS. GLA follows, with modulation emerging at a tolerance of le—1. WLA
shows minimal modulation, only detectable at a tolerance of 1.0, while LA displays no discernible
state modulation in response to separator tokens, demonstrating a clear lack of ability to modulate
ESS.

The importance of state modulation becomes apparent when examining model performance. Figure
6b illustrates that although standard perplexities (computed over a subset of the FineWeb dataset
(Penedo et al., 2024)) are similar across SA, WLA, and GLA, significant differences emerge when
considering the bigram recall perplexity metric introduced by Arora et al. (2023).

Finding 9: The ability of a model to recall information, as measured by bigram recall perplex-
ity across a pre-training dataset (rather than within a narrow task space), reveals a performance
hierarchy that closely mirrors the observed state modulation capabilities.

This relationship between bigram recall perplexity and state modulation suggests that state modula-
tion serves as a key mechanism enabling models to effectively manage complex context dependen-
cies commonly found in language, directly impacting their training dynamics and performance on
recall heavy tasks. Further implications and details are discussed in Section D.5.

5 CONCLUSION

In this work, we propose effective state-size (ESS), a measure of memory utilization in sequence
models derived using dynamical systems theory. We motivate this metric as a valuable tool for an-
alyzing memory utilization by demonstrating its strong correlation with performance across a wide
range of synthetic tasks. In doing so, we find that ESS offers a versatile framework for understand-
ing both the performance and efficiency of causal sequence models. Leveraging these insights, we
are able to construct novel, ESS-informed initializers, regularizers and distillation strategies that im-
prove beyond the existing performance-efficiency trade-offs in recurrent models. Finally, we extend
the ESS framework to language tasks, introducing the idea of state modulation — a concept which
proves crucial for performance on bigram recall tasks. Overall, this work establishes ESS as a foun-
dational tool for understanding and improving sequence model performance, opening new avenues
for optimizing memory utilization and, more generally, model efficiency.

%We also observe a similar behavior with scope delimiters in code (Section D.6.1).

10

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we utilized open-source models and tasks, adhering to default task con-
figurations unless otherwise specified. All crucial configurations are detailed in either the main text
or the appendix. Additionally, our code for computing both the tolerance-ESS and entropy-ESS is
provided in the appendix (Section C.1.1).

REFERENCES

Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers, 2020. URL
https://arxiv.org/abs/2005.00928. (pages 1, 18).

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points, 2023. URL https://arxiv.org/abs/2305.13245. (page 23).

Ekin Akyiirek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Ar-
chitectures and algorithms, 2024. URL https://arxiv.org/abs/2401.12973. (page
19).

Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of mamba models, 2024. URL
https://arxiv.org/abs/2403.01590. (pages 1, 18).

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity
scaling laws, 2024. URL https://arxiv.org/abs/2404.05405. (page 2).

Norah Alzahrani, Hisham Abdullah Alyahya, Yazeed Alnumay, Sultan Alrashed, Shaykhah Al-
subaie, Yusef Almushaykeh, Faisal Mirza, Nouf Alotaibi, Nora Altwairesh, Areeb Alowisheq,
M Saiful Bari, and Haidar Khan. When benchmarks are targets: Revealing the sensitivity of large
language model leaderboards, 2024. URL https://arxiv.org/abs/2402.01781. (page
19).

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher Ré. Zoology: Measuring and improving recall in efficient language mod-
els, 2023. URL https://arxiv.org/abs/2312.04927. (pages 10, 10, 19, 19, 19, 27,
27,27).

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
recall-throughput tradeoff, 2024. URL https://arxiv.org/abs/2402.18668. (pages
9, 19).

Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past, 2016. URL https://arxiv.org/abs/1610.06258.

(page 19).

Bartlomiej Beliczynski, Izzet Kale, and Gerald D Cain. Approximation of fir by iir digital filters:
An algorithm based on balanced model reduction. IEEE Transactions on Signal Processing, 40
(3):532-542, 1992. (page 9).

Satwik Bhattamishra, Arkil Patel, Phil Blunsom, and Varun Kanade. Understanding in-context
learning in transformers and 1lms by learning to learn discrete functions, 2023. URL https:
//arxiv.org/abs/2310.03016. (page 19).

Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar. Low-
rank bottleneck in multi-head attention models, 2020. URL https://arxiv.org/abs/
2002.07028. (pages 2, 19).

Aviv Bick, Kevin Y. Li, Eric P. Xing, J. Zico Kolter, and Albert Gu. Transformers to ssms: Distill-
ing quadratic knowledge to subquadratic models, 2024. URL https://arxiv.org/abs/
2408.10189. (page 9).

11

https://arxiv.org/abs/2005.00928
https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2401.12973
https://arxiv.org/abs/2403.01590
https://arxiv.org/abs/2404.05405
https://arxiv.org/abs/2402.01781
https://arxiv.org/abs/2312.04927
https://arxiv.org/abs/2402.18668
https://arxiv.org/abs/1610.06258
https://arxiv.org/abs/2310.03016
https://arxiv.org/abs/2310.03016
https://arxiv.org/abs/2002.07028
https://arxiv.org/abs/2002.07028
https://arxiv.org/abs/2408.10189
https://arxiv.org/abs/2408.10189

Under review as a conference paper at ICLR 2025

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, Michael Petrov, Ludwig Schubert, Chelsea
Voss, Ben Egan, and Swee Kiat Lim. Thread: Circuits. Distill, 2020. doi: 10.23915/distill.00024.
https://distill.pub/2020/circuits. (page 18).

Chi-Tsong Chen. Linear System Theory and Design. Oxford University Press, Inc., USA, 3rd
edition, 1998. ISBN 0195117778. (pages 1, 3, 3).

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality, 2024. URL https://arxiv.org/abs/2405.21060. (pages
1,5, 18, 18).

P. DeWilde and A.J. van der Veen. Time-Varying Systems and Computations. Springer US,
1998. ISBN 9780792381891. URL https://books.google.co. jp/books?id=
n3bEniJ2wWx8C. (pages 1, 3, 18, 22).

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth, 2023. URL https://arxiv.org/
abs/2103.03404. (page 18).

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes, 2019. URL https:
//arxiv.org/abs/1904.01681. (page 19).

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html. (page 19).

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry
hungry hippos: Towards language modeling with state space models, 2023. URL https://
arxiv.org/abs/2212.14052. (page 19).

Wodek Gawronski and Jer-Nan Juang. Model reduction in limited time and frequency intervals. In-
ternational Journal of Systems Science, 21(2):349-376, 1990. doi: 10.1080/00207729008910366.
URL https://doi.org/10.1080/00207729008910366. (page 9).

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine
Learning Research, pp. 249-256, Chia Laguna Resort, Sardinia, Italy, 13-15 May 2010. PMLR.
URL https://proceedings.mlr.press/v9/glorotl0a.html. (page 7).

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752. (pages 1, 5,7, 18, 18, 27).

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022a. URL https://arxiv.org/abs/2111.00396. (pages I, 18, 23).

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and initialization
of diagonal state space models, 2022b. URL https://arxiv.org/abs/2206.11893.

(page 18).

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models, 2022. URL https://arxiv.org/abs/
2209.12951. (pages 1, 5, 18).

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300. (page 19).

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention, 2020. URL https://arxiv.
org/abs/2006.16236. (pages 1, 3,5,9, 18, 18, 23, 25).

12

https://arxiv.org/abs/2405.21060
https://books.google.co.jp/books?id=n3bEniJ2Wx8C
https://books.google.co.jp/books?id=n3bEniJ2Wx8C
https://arxiv.org/abs/2103.03404
https://arxiv.org/abs/2103.03404
https://arxiv.org/abs/1904.01681
https://arxiv.org/abs/1904.01681
https://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2212.14052
https://doi.org/10.1080/00207729008910366
https://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2206.11893
https://arxiv.org/abs/2209.12951
https://arxiv.org/abs/2209.12951
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236

Under review as a conference paper at ICLR 2025

Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J.
Inman. 1d convolutional neural networks and applications: A survey, 2019. URL https:
//arxiv.org/abs/1905.03554. (page 1).

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida,
Amir Bergman, Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam
Rozen, Erez Shwartz, Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba
language model, 2024. URL https://arxiv.org/abs/2403.19887. (pages 9, 31, 47).

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101. (pages 29, 30, 31, 32).

Paul A. Lynn and Wolfgang Fuerst. Introductory digital signal processing with computer applica-
tions (revised ed.). John Wiley & Sons, Inc., USA, 1994. ISBN 0471943746. (page 1).

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissecting
neural odes, 2021. URL https://arxiv.org/abs/2002.08071. (page 1).

Stefano Massaroli, Michael Poli, Daniel Y. Fu, Hermann Kumbong, Rom N. Parnichkun, Aman
Timalsina, David W. Romero, Quinn MclIntyre, Beidi Chen, Atri Rudra, Ce Zhang, Christopher
Re, Stefano Ermon, and Yoshua Bengio. Laughing hyena distillery: Extracting compact recur-
rences from convolutions, 2023. URL https://arxiv.org/abs/2310.18780. (pages 9,
18).

Zeping Min and Zhong Li. On the efficiency of transformers: The effect of attention rank, 2024.
URL https://openreview.net/forum?id=U9sHVJjidYH. (pages 2, 18).

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Gan-
guli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion,
Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam
McCandlish, and Chris Olah. In-context learning and induction heads. Transformer Cir-
cuits Thread, 2022a. https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html. (pages 1, 18).

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022b.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html. (page
19).

Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals & systems (2nd ed.). Prentice-
Hall, Inc., USA, 1996. ISBN 0138147574. (page 1).

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences, 2023a. URL
https://arxiv.org/abs/2303.06349. (page 18).

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670-26698. PMLR, 2023b. (page 3).

Rom N. Parnichkun, Stefano Massaroli, Alessandro Moro, Jimmy T. H. Smith, Ramin Hasani, Math-
ias Lechner, Qi An, Christopher Ré, Hajime Asama, Stefano Ermon, Taiji Suzuki, Atsushi Ya-
mashita, and Michael Poli. State-free inference of state-space models: The transfer function
approach, 2024. URL https://arxiv.org/abs/2405.06147. (pages 1, 3, 18).

Guilherme Penedo, Hynek Kydlicek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. (pages 10, 33).

13

https://arxiv.org/abs/1905.03554
https://arxiv.org/abs/1905.03554
https://arxiv.org/abs/2403.19887
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2002.08071
https://arxiv.org/abs/2310.18780
https://openreview.net/forum?id=U9sHVjidYH
https://arxiv.org/abs/2303.06349
https://arxiv.org/abs/2405.06147

Under review as a conference paper at ICLR 2025

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models, 2023. URL https://arxiv.org/abs/2302.10866. (pages I, 5, 18).

Michael Poli, Armin W Thomas, Eric Nguyen, Pragaash Ponnusamy, Bjorn Deiseroth, Kris-
tian Kersting, Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Ré, Ce Zhang, and Ste-
fano Massaroli. Mechanistic design and scaling of hybrid architectures, 2024. URL https:
//arxiv.org/abs/2403.17844. (pages S, 7, 19, 27).

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
alization beyond overfitting on small algorithmic datasets, 2022. URL https://arxiv.org/
abs/2201.02177. (page 18).

Hubert Ramsauer, Bernhard Schifl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlovi¢, Geir Kjetil Sandve, Victor Greiff,
David Kreil, Michael Kopp, Giinter Klambauer, Johannes Brandstetter, and Sepp Hochreiter.
Hopfield networks is all you need, 2021. URL https://arxiv.org/abs/2008.02217.

(page 19).

David W. Romero, Anna Kuzina, Erik J. Bekkers, Jakub M. Tomczak, and Mark Hoogendoorn.
Ckconv: Continuous kernel convolution for sequential data, 2022. URL https://arxiv.
org/abs/2102.02611. (page).

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007
15th European Signal Processing Conference, pp. 606610, 2007. (page 4).

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019. URL https:
//arxiv.org/abs/1911.02150. (page 23).

Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/
2002.05202. (page 7).

Huitao Shen. Mutual information scaling and expressive power of sequence models, 2019. URL
https://arxiv.org/abs/1905.04271. (page 18).

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers for
sequence modeling, 2023. URL https://arxiv.org/abs/2208.04933. (pages I, 18,
23).

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864. (pages 26, 27).

Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language
models, 2024. URL https://arxiv.org/abs/2402.17762. (pages 1, 18).

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqging Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models, 2023. URL
https://arxiv.org/abs/2307.08621. (pages 5, 18).

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan
Salakhutdinov. Transformer dissection: A unified understanding of transformer’s attention via
the lens of kernel, 2019. URL https://arxiv.org/abs/1908.11775. (pages 1, 18).

Neehal Tumma, Mathias Lechner, Noel Loo, Ramin Hasani, and Daniela Rus. Leveraging low-rank
and sparse recurrent connectivity for robust closed-loop control, 2023. URL https://arxiv.
org/abs/2310.03915. (page 18).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762. (pages 1, 1,4, 5, 18, 18, 23).

Jesse Vig. A multiscale visualization of attention in the transformer model, 2019. URL https:
//arxiv.org/abs/1906.05714. (pages 1, 18).

14

https://arxiv.org/abs/2302.10866
https://arxiv.org/abs/2403.17844
https://arxiv.org/abs/2403.17844
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2008.02217
https://arxiv.org/abs/2102.02611
https://arxiv.org/abs/2102.02611
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1905.04271
https://arxiv.org/abs/2208.04933
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2402.17762
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/1908.11775
https://arxiv.org/abs/2310.03915
https://arxiv.org/abs/2310.03915
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1906.05714
https://arxiv.org/abs/1906.05714

Under review as a conference paper at ICLR 2025

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark, 2024. URL https://arxiv.org/abs/2406.01574. (page
19).

Jan C. Willems. Models for Dynamics, pp. 171-269. Vieweg+Teubner Verlag, Wiesbaden, 1989.
ISBN 978-3-322-96657-5. doi: 10.1007/978-3-322-96657-5_.5. URL https://doi.org/
10.1007/978-3-322-96657-5_5. (page 2).

Xinyi Wu, Amir Ajorlou, Yifei Wang, Stefanie Jegelka, and Ali Jadbabaie. On the role of atten-
tion masks and layernorm in transformers, 2024. URL https://arxiv.org/abs/2405.
18781. (pages 2, 19).

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453.
(pages 1, 18).

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear atten-
tion transformers with hardware-efficient training, 2024a. URL https://arxiv.org/abs/
2312.06635. (pages 1, 5, 7, 18, 18, 30).

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear trans-
formers with the delta rule over sequence length, 2024b. URL https://arxiv.org/abs/
2406.06484. (page 7).

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.
(page 19).

15

https://arxiv.org/abs/2406.01574
https://doi.org/10.1007/978-3-322-96657-5_5
https://doi.org/10.1007/978-3-322-96657-5_5
https://arxiv.org/abs/2405.18781
https://arxiv.org/abs/2405.18781
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/1905.07830

Under review as a conference paper at ICLR 2025

Supplementary Material

CONTENTS
1 Introduction

2 Theory
2.1 Preliminaries L e e e
2.2 The Realization Problem
2.3 Effective State-Size e

2.4 Computing Effective State-Size oo

3 Empirical Validation of Effective State-Size
3.1 Cross Task-Model Analysis it
3.2 Within Task-Model Analysis

4 Applications of Effective State-Size
4.1 Initialization-Phase Analysis L.
4.2 Mid-Training Analysis e
4.3 Post-Training Analysis o v v i e e e e

A~ W W W N

wn

(@)}

4.4 State Modulation of Large Language Models

Conclusion

Related Work

Theoretical Background

B.1 Notation e e
B.2 Derivationsand Proofs L oo
B.2.1 The Operator Realization of Linear Recurrences
B.2.2 Factorizing The Operator Realization Submatrix H;
B.2.3 The Trivial Recurrence Realization
B.2.4 Minimal Recurrent Realization (Proof of Theorem 2.1)

B.3 More on the Theoretically Realizable State-Size

Methods

C.1 Computing ESS
C.1.1 PyTorch Implementation

C.2 Formulation of the Featurizers

O oo o0 I3

Under review as a conference paper at ICLR 2025

C.3 Empirical Validation L e 27
C.4 ESS-Informed Featurizer Selection and Initialization Scheme 29
C.5 ESS-Informed Regularization 30
C.6 ESS-Informed Model-Order Reduction 30
C.7 ESS Analysis for Hybrid Networks, 31
C.8 State Modulation of Large Language Models 32
D Extended Experimental Results 34
D.1 Empirical Validation 34
D.1.1 State Collapse Continued 34
D.1.2 Entropy ESS MQAR Results Continued 34
D.1.3 Tolerance ESS MQARResults 37
D.1.4 Selective Copying and CompressionResults 40
D.1.5 ESS Training Dynamicsin MQAR 42
D.2 Initialization-Phase Analysis oo 43
D.3 Mid-Training Analysis e 43
D.4 Post-Training Analysis o e 45
D.4.1 Model-Order Reduction 45
D.4.2 Hybridization 46
D.5 State Modulation of Large Language Models 47
D.6 Miscellaneous oL e e e e e e e e 51
D.6.1 Effective State-SizeonC++Code 51
D.6.2 How the Number of Prompting Shots Affects the Effective State-Size of
Language Models e 52

17

Under review as a conference paper at ICLR 2025

A RELATED WORK

Causal sequence models. From classical linear recurrences to modern sequence models like
Transformers, a vast array of causal model architectures have emerged (Vaswani et al., 2023; Tsai
et al., 2019; Katharopoulos et al., 2020; Poli et al., 2023; Yang et al., 2024a; Gu & Dao, 2024; Dao &
Gu, 2024; Sun et al., 2023). In recent years, the ability to process sequences in parallel has become
increasingly critical, largely due to advancements in hardware accelerators such as GPUs. This need
for parallelism likely explains the growing popularity of models like attention, Mamba, and S4.

We observe that all of these models, which support parallelization across the sequence dimension,
can be formulated using a linear system representation (y = 7'u) as detailed in the introductory and
theoretical sections (Sections 1 and 2). For this work, we categorize these models into two types:
input-invariant and input-varying linear operators. Input-invariant operators encompass both linear
time-varying (LTV) and linear time-invariant (LTI) systems. The key distinction between these two
frameworks is that the operator 7" in input-invariant models is composed of fixed system parameters
as opposed to parameters being dynamically generated from the input. Although LTV systems
have been relatively unexplored in deep learning, several LTI models have been studied (Gu et al.,
2022a;b; Smith et al., 2023; Orvieto et al., 2023a; Parnichkun et al., 2024). Convolutional models
use kernels / to construct Hankel matrices H, whose rank corresponds to the minimal state-size of
the model (DeWilde & van der Veen, 1998). Massaroli et al. (2023) explored methods to reduce
the order of models by leveraging the Hankel matrix. Notably, the submatrix H; (defined in Theory
2.2) exhibits a Hankel structure in LTT models and provides per-sequence-index information. In this
work, however, we do not explore Hankel matrices further, as they are not easily generalizable to
LTV systems.

In contrast, input-varying linear operators are characterized by an operator T that is dynamically
constructed through a featurizer and is defined by 7' = f(u). Examples of such models include
softmax attention (Vaswani et al., 2023), linear attention (Katharopoulos et al., 2020), Liquid-S4
(Hasani et al., 2022), Mamba (Gu & Dao, 2024; Dao & Gu, 2024), and gated linear attention (Yang
et al., 2024a). Although these models may appear nonlinear in nature, they can still be represented
as input-varying linear operators, enabling the application of linear analysis techniques. This forms
the basis for the effective state-size metric.

Interpretability. Analysis tools for sequence models can be categorized into two types: extrinsic
and intrinsic. Extrinsic tools focus solely on the input and output, treating the model’s internal
processes as black boxes. This approach is highly generalizable as it can be applied to any model,
including those with non-linear recurrences. A notable example by Shen (2019) uses statistical
measures such as mutual information to compute metrics that capture model “expressivity”. While
these methods are versatile and applicable to various datasets, their generality makes them less
effective at capturing the inner workings of causal sequence models, which is the primary focus of
this work.

Intrinsic tools, conversely, directly visualize the model’s internal mechanisms. A recently popular
framework known as mechanistic interpretability provides one such example (Power et al., 2022).
Mechanistic interpretability involves dissecting complex models to understand how specific com-
ponents contribute to the model’s overall behavior (Cammarata et al., 2020). Unlike our work,
mechanistic interpretability does not target the operator view of the model but instead emphasizes
the functional roles and interactions of individual model components.

For our purposes, we are primarily concerned with the visualization and analysis of classical and
modern causal sequence models through the unifying lens of input-invariant and input-varying linear
operators. Most analyses of these operators rely on visualization techniques (Olsson et al., 2022a;
Vig, 2019; Abnar & Zuidema, 2020; Ali et al., 2024; Xiao et al., 2024; Sun et al., 2024) to gain
insights into the model’s internal processes. Visualizing the operator 7' is advantageous, as it reveals
important features like the formation of induction heads, strong activations, diagonal and block-
diagonal patterns, and Toeplitz structures. However, raw visualizations are largely qualitative and
often times do not provide the quantitative metrics necessary for effectively evaluating a model’s
internal mechanisms — a gap we aim to address in this work.

Other, more quantitative intrinsic methods include spectral analysis of the full operator, which has
led to theoretical works like (Dong et al., 2023) and empirical studies (Min & Li, 2024; Tumma

18

Under review as a conference paper at ICLR 2025

et al., 2023; Bhojanapalli et al., 2020). A limitation of these approaches is that they often disregard
the causal masking of 7', which significantly impacts the model’s rank and singular values (Wu et al.,
2024). As aresult, the rank of the causal operator 7" alone lacks a clear interpretation.

The proposed effective state-size metric is an intrinsic method applicable to both input-invariant and
input-varying linear operators. As a quantitative proxy for memory utilization, it offers insights into
the inner workings of causal sequence models, ensuring generality, usability, and interpretability.

Synthetic and language benchmarks. In this work, we build on synthetic tasks from the mech-
anistic architecture design (MAD) framework introduced in (Poli et al., 2024). MAD defines a set
of small-scale tasks designed to evaluate key model capabilities such as in-context recall (Akyiirek
et al., 2024; Bhattamishra et al., 2023; Elhage et al., 2021; Olsson et al., 2022b). Training models
on these tasks is efficient, making them well-suited for exploring a large space of tasks and models,
as demonstrated in several prior works (Dupont et al., 2019; Arora et al., 2024; Fu et al., 2023). In
this work, we investigate the effective state-size across a subset of the MAD tasks: multi-query as-
sociative recall (MQAR), selective copying, and compression, varying the difficulty of each to gain
a nuanced understanding of how effective state-size evolves across these task landscapes.

Among the synthetic tasks we examine, MQAR stands out in particular. Proposed by Arora et al.
(2023), MQAR was designed to bridge the gap between synthetic and real language tasks explained
by associative recall — the ability of a model to retrieve information based on relationships between
different elements in its memory. This capability has long been sought after in the construction
of sequence model architectures (Ramsauer et al., 2021; Ba et al., 2016); as such, we evaluate the
performance of our models on MQAR to measure the benefits of using effective state-size to iterate
on canonical frameworks used in sequence modeling.

One notable aspect of MQAR observed in Arora et al. (2023) is that the size of the model cache
needs to scale with the difficulty of the task to maintain performance. While this observation holds,
our work demonstrates that model cache size is an imperfect measure in this context due to the dis-
crepancy between memory capacity, as measured by theoretically realizable state size, and memory
utilization, as measured by effective state-size. At a higher level, this demonstrates how our work
provides a new perspective on analyzing memory-intensive synthetic tasks.

While the MAD framework and synthetic tasks have shown correlations with model performance
on large-scale language tasks, language itself poses a unique challenge. Models are tasked with
predicting the next token given previous tokens — a simple yet general objective. New tasks can be
created simply by altering the prompts, thereby expanding the range of possible task domains.

Although numerous language evaluation tasks — such as those in Hendrycks et al. (2021); Wang
et al. (2024); Zellers et al. (2019) — have been proposed, they often probe a narrow task space and
tend to be brittle. For example, shuffling the order of multiple choices in MMLU can drastically
change model rankings Alzahrani et al. (2024).

Unlike narrow benchmarks, perplexity scores can be computed across an entire pre-training dataset,
covering a much broader task domain. However, small perplexity gaps between models make it a
challenging metric for evaluation. Recently, Arora et al. found that much of the difference in per-
plexity between models can be attributed to bigram perplexity — a measure of a model’s ability to
utilize the context and predict a successor token (second token of a bigram) given a repeated context
token (first token of a bigram) within a sequence. They demonstrate that most of the average per-
plexity difference between a gated convolution model and an attention model stems from differences
in bigram perplexity, suggesting that recall is a key capability for language models.

The effective state-size analysis presented in this work reveals that strong recall performance as
measured by bigram perplexity in language modeling tasks depends not only on memory capacity,
but also on a model’s ability to modulate its state-size within a given context.

19

Under review as a conference paper at ICLR 2025

B THEORETICAL BACKGROUND

B.1

NOTATION

We adopt the following notation in this paper:

Inputs, outputs, and operators follow flattened notation. Le., u,y € R and T € R¢¥*4,

In particular, the original inputs and outputs with shape ¢ x d are flattened in row-major
ordering, resulting in 7" having ¢ x ¢ sub-blocks, each of which are of size d x d.

Tensor subscripts index sequence indices (time-step) and superscripts index channel/hidden
dimensions. Le., for an input € R’, u; € R? denotes the input vector at sequence-index
i, and u® € R’ denotes the input vector for channel a.. Similarly, 7}; € R?*¢ denotes the
linear weighing of u; on to y;.

Indices within square brackets indicate matrix indices void of semantics (sequence index,
channels, etc.). Le., 4;[4) indexes row a and column 3 of matrix A;.

Semicolons within subscripts denote a product over ranges (A,;3 = A1 A2A3).

Tensor slices are denoted with colons and are inclusive over the ranges. lLe., upg.2 =
UguU1U2.

B.2 DERIVATIONS AND PROOFS

B.2.1

THE OPERATOR REALIZATION OF LINEAR RECURRENCES

Unrolling the recurrence in Equation 1 unveils the follow formulation:

so=20

s1 = Bouyg

59 = Biuy + A1 (Boug)

83 = Boug + As(Biuy + A1 (Boug))

i—1 [j+1
S; = Z H Ak Bj’le 5 (BZ])
j=0 Lk=i—1
i—1 [j+1
y; = C Z [H Ay Bju; | + Djug, (B.2.2)
j=1 Lk=i—1
which corresponds to the operator:
0 1<J
Tij = Dy 1=7. (B.2.3)

CiAi—l;j+1Bj 7> j

B.2.2 FACTORIZING THE OPERATOR REALIZATION SUBMATRIX H;

Factorizing the strictly lower triangular submatrices of the operator (73. .;—1) into causal and anti-
causal factors, unveils that the theoretical state-size (n;) upper bounds the inner product’s dimen-

20

Under review as a conference paper at ICLR 2025

sionality, and therefore the rank of the submatrix(n; > rank(H;)):

C; Ai—l;l c. I By
Ti.ic1=Hy = :
i Co—1] [Ar—21 Ap—2; By
) T I
C; A; By
= At [Ai1a Aici2 Ao I)
i Cg,l_ : B,
_A€—2 [
S
Cit14;
= | Cir2 ity [Ai—11Bo Ai—12B1 ... Ai_1Bis Bi_1] = O,(;.
n; X di
_Cf71A572;i causal
e —
d(é — Z) X Nng

anti-causal
(B.2.4)
Besides unveiling the relationship between the rank of the realized operator and the original state-
size n;, the following insights can be drawn from the decomposition:
* The causal portion C; is the input-state projection matrix at time-step i (i.e., s; = C;u.;—1)
corresponding to Equation (B.2.1).
* ESS (rank(H;)) is simply the minimum rank between the causal and anti-causal projec-
tions.

* In conjunction with Theorem 2.2, we observe that the causally determinable minimal
state-size (causal ESS) is equivalent to the rank of the causal projection. This insight
allows us to construct a more efficient realization of the recurrence:

— We can minimally factorize the causal projection as C; = L; R;, where L; € R™*"
and R; € R™% with r = rank(C;).

— The right factor R; becomes the new input-state projection matrix for H;, effectively
reducing the state dimension to the causal ESS.

- A7 , and B} ; can be determined from R; using the process outlined in Theorem
2.1, and Cz* = CZLZ

B.2.3 THE TRIVIAL RECURRENCE REALIZATION

Any input-varying and input-invariant causal operator can be trivially realized with the following
recurrence:

I (dﬂ {Own]
Siy1 = si+ U
i {0«1) Ia)

vi =[Tio Tin -+ Tii—1]si + Tiu,.

(B.2.5)

In simple terms, the state s; stores each input from ¢ € [i — 1], which is then mapped to the output
with operator features at row 7. Note that in the case where the operator is input varying, the trivial
realization upholds the causality of the featurization process (i.e. the features (A;, B;, C;, Di)ie[g] of
the trivial realization are causally determined). Moreover, the causally determined ESS (see Section
B.2.2) for the trivially realized recurrence is equivalent to its TSS, as C; = I;.

21

Under review as a conference paper at ICLR 2025

B.2.4 MINIMAL RECURRENT REALIZATION (PROOF OF THEOREM 2.1)

Theorem 2.1 Given any causal input-invariant operator T, there exist infinite variations of linear
recurrences in the form of Equation (1) that realize an equivalent input-output operator.

Proof. We first categorize the operator into two portions: the memoryless portion, where ¢ = j, and
the dynamical portion, where ¢ > j. The memoryless portion can be trivially realized by setting
D; = T;;. For the dynamical portion, we draw inspiration from (DeWilde & van der Veen, 1998,
ch. 3) and approach the proof of existence by ansatz. The following steps outline the proof:

1. Section B.2.2 demonstrates that, given a linear recurrence in the form of Equation (1), the
operator submatrix can be factorized into causal and anti-causal parts, where the causal part
represents the input-state projection matrix. We therefore proceed by making the ansatz
that, for any operator submatrix 7;..;—1 = H;, H; can be arbitrarily factorized into O, €
RUE=Dxni and C; € R™* % and that C; represents the input-state projection at time-step i
(i.e., S; — Ciu;i,l).

2. Construct the dynamic features (A;, B;, C;);c[q such that the assumption above holds.
Note that we additionally assume the initial and final states to be 0 without loss in general-
ity, therefore the realization of Cy, Ay, A¢—1, and B,_1 could be ignored.

(a) Set C; = Oj[.4—1] to obtain (C;)e1 ¢, as given the assumptions above, the first set of
rows of O; linearly projects s; onto y; — D;u;, which is identical to C; in Equation
(0.

(b) Set B;_1 = C;.,_q; to obtain (B;);e[¢—1, for which the identity can be obtained by
deconstructing the input-state projection matrix C; and equating its assumed state s;
with Equation (1).

si = Ai—18i-1+ Bi—1ui1

B.2.6
= Ci[:i—d—1Wi—2 + Ci[:, _ g Ui—1. ()

(c) Using the same state-dynamics equation, we could equate the assumed state-
projection matrices with each other obtaining (A;);e[1,¢—1:
siv1 = Aisi + Biu;
Cit1u; = AiCiusi—1 + Cipq[s —a Ui @27
Ci+1[:,:—d—1]u:i—l = AiCiu1 o
Ai = Ci—‘,—l[:,:—d—l]cj'
3. Verify that the realized recurrence maps back to the original operator T;;, proving that ar-
bitrary factorizations (of which there are an infinite variations) of the operator submatrices
can be used to construct equivalent operators.
z_] =C; Az 1-]+1B = O 'dfl]ci[' —d—1]- - C]+gcy+2 i—d—1 CJ+1CJ+1 d:]
= Oita—1)Cilsymd—1) L1 G 1yd— 1 —ay)

= Oia-1)Cil:jd:G+1)d—1] = Hid—1,ja:i+1)d—1) = Tij-
(B.2.8)

O

As an example, H; can be factorized with SVD as follows:

0iCs = (U DD Vi),

where Uy € R™*7, D,y € R™", V(,) € R"™™ are the r-truncated SVD decompositions, and

r = rank of H; € R™*", These factors can then used to realize a minimal recurrence as outlined
above.

22

Under review as a conference paper at ICLR 2025

B.3 MORE ON THE THEORETICALLY REALIZABLE STATE-SIZE

As defined in Section 2, we define the theoretically realizable state-size as n; in Equation 1. We make
the distinction between the TSS and the algorithm-specific cache-size (i.e. number of elements in
a key-value cache of an attention layer (Vaswani et al., 2023; Ainslie et al., 2023; Shazeer, 2019)),
though they generally differ only by a scaling constant.

TSS is a formulation-specific metric. A good example to showcase this point is the difference
between the formulation of attention and linear attention Katharopoulos et al. (2020). The former
can only be realized trivially (Equation B.2.5), whereas the latter can be formulated either trivially
or as a recurrence with a fixed state-size of d/h (per channel), where h is the number of “heads”
(see Section C.2).

We note that irrespective of the particular formulation of the recurrence, the ESS metric unveils
the fixed state-size nature of linear attention in stark contrast to the growing state-size of attention
models, further motivating the use of the ESS metric (Figure 38).

C METHODS

C.1 COMPUTING ESS

In Section 2 and B.1, we introduced the flattened notation as it offers a general framework for
formulating a wide range of operators and recurrences. As an example, an S5 layer (Smith et al.,
2023), which mixes both the channels and sequence simultaneously, can be formulated as y = T'u
(with the operator realization outlined in B.2.1) in the same way an S4 layer can (Gu et al., 2022a),
which only mixes the sequence. The difference between these two models lies in the structure of 7":
for models that only mix the sequence, such as S4, T;; is diagonal, whereas for S5, it is not.

Note that since all of the models in our experiments have decoupled channel mixing and sequence
mixing (like the S4 layer), we compute the effective state-size independently for each channel using
the standard operator formulation 7' € R‘**. This approach is significantly more efficient than
computing ESS for the multi-channel (flattened) representation. Furthermore, in the case of attention
layers, the computation can be further reduced to only the h independent heads, as the operator (i.e.
the attention matrix) is shared across channels within the same head.

In our experiments, the shape of the unprocessed ESS tensor is given by
(batch-size, layers, heads or channels, sequence length — 1),

for a multi-layered model that is processing a batch of sequences. Unless stated otherwise, we
compute ESS metrics averaged across all dimensions with an exception made for softmax attention.

Due to the recurrent realization of softmax attention being constrained to that of the trivial form
(Section B.2.3, C.2), the per-channel TSS (n;) of these models depends only on the sequence length
1. In this setting, the average TSS across channels remains constant regardless of the width of the
model (even when Q and K expansion factors are applied), and therefore no meaningful variations
in TSS are captured by changing the model width. To appropriately capture differences in TSS, we
instead sum over the ESS across the channels of each layer, then compute the average over that sum.
We denote metrics computed in this manner with a prefix “total”, i.e., “total ESS” and “total TSS”
as it captures the total TSS or ESS of a model layer’. Additionally, for the analyses presented in
Section 3, we average across 8 samples (batch-size), and for the rest, we average across 32 samples.

Regarding the distinction between the entropy and tolerance based forms of ESS, we note that
entropy-ESS is a valuable summary metric because its computation is independent of any specific
tolerance value chosen. However, it can potentially be misleading when comparing ESS across se-
quence indices due to the unequal normalization applied to the singular values. Conversely, when
comparing entropy-ESS across different operators, it can be useful as the normalization removes the
effect of the norm of the operator. In most of our experiments, we observe consistent trends between
entropy-ESS and tolerance-ESS when the metrics are marginalized over the sequence length. There-
fore, unless stated otherwise, our figures are presented using the entropy-ESS. In cases where we

"We note that ESS can capture differences in memory utilization under both metric marginalization ap-
proaches.

23

Under review as a conference paper at ICLR 2025

require ESS comparison across the sequence dimension, we instead plot ESS for multiple tolerance
values.

C.1.1 PYTORCH IMPLEMENTATION

Below, we provide a PyTorch implementation of various ESS metrics and helper functions that were
leveraged in our analyses:

import torch

1
2

3 def T2H_i(T, i, d=1):

4 mnnn

5 Extract H_i from T.

7 Args:

8 - T: Flattened operator with shape [..., dxL, dxL].

9 — i: Index of H (H_i) to retrieve.

10 - d: Block size for multi-channel flattened operator
representation (default is 1).

11

12 Returns:

13 — H_i: Submatrix of the operator at index i.
14 mwn

15 return T[...,d*i:, :dxi]

16
7 @torch.no_grad()
g def T2Ss (T, d=1):

19 wnnun

20 Converts an operator into a list of singular values (Ss).
21

22 Args:

23 - T: Flattened operator with shape [..., dxL, dxL]

24 — d: Block size for multi-channel flattened operator

representation (default is 1).

26 Returns:

27 - Ss: A list of singular values for each sequence index in T.
28 o

29 seglen = T.size(-2)//d

30 Ss = []

31 for i in range(l, seglen):

32 H i = T2H_i(T, i, d)

33 _, S_i, _ = torch.svd(H_1)

34 Ss.append (S_1)

35 return Ss

36
37 @torch.no_grad()
33 def Ss2ToleranceESS (Ss, tol=le-4):

39 wun

40 Computes the tolerance-ESS from the list of singular values.
41

42 Args:

43 - Ss: List of singular values.

44 — tol: Tolerance value.

45

46 Returns:

47 - tolerance-ESS

48 mwn

49 ranks = []

50 for SV in Ss:

51 rank = torch.sum(SV>=tol, dim = -1)
52 ranks.append (rank)

53 ranks = torch.stack (ranks, dim=-1)

54 return ranks

24

%

6
7

v

59
60
61
62

63

64
65

66

68
69

70

1

5

4
5
6

/

Under review as a conference paper at ICLR 2025

@torch.no_grad()
def Ss2EntropyESS(Ss, clip=le-12):

wnnn

Computes the entropy-ESS from the list of singular values.

Args:

- Ss: List of singular values.

— clip: clips probabilities below this value avoiding numerical
instabilities when the probabilities are too numerically close to 0.

Returns:
- entropy—-ESS

wnn

ranks = []
for SV in Ss:
p = SV/SV.sum(dim=-1) [..., None]
p = torch.clip(p, clip)
H = -torch.sum(p * torch.log(p), dim=-1)
rank = torch.exp (H)
ranks.append (rank)
ranks = torch.stack (ranks, dim=-1)

return ranks

Example usage (Python-pseudocode):

>>> out = model (u, output_attentions=True)
>>> # T shape: [bs, layers, heads, len, len]
>>> T = out.attention_matrix

>>> Ss = T2Ss(T) # List of singular values
>>> # ESS shape [bs, layers, heads, len-1]
>>> ESS = Ss2ToleranceESS (Ss, tol=le-3)

>>> mean_ESS = torch.mean (ESS)

We note that calculating the effective rank may cause numerical instability when p}* approaches 0
due to the logarithmic term. This is partially mitigated by clipping the normalized singular values
as shown above.

C.2 FORMULATION OF THE FEATURIZERS

Linear attention and state-space model equivalence. We begin by demonstrating that linear
attention models are state-space models, serving as the foundation for the subsequent formulation
of featurizers for other models, such as gated linear attention and weighted linear attention.

A single linear attention head with dimension d/h, typically formulated as
y = qkl, (C.2.1)

in which ¢, k, v € R4 are input features, can be reformulated as a recurrent model (Katharopou-
los et al., 2020):

s; = si_1 + kvl
R (C2.2)
Yi = 4q; Si,

where the recurrent state is matrix-valued s; € R%"*4/h Without loss of generality, applying
column-major flattening to the matrix-valued state and treating v; as the input u;, the recurrence can
be formulated as in Equation (1), where A; = (4,52, and B; and C; are constructed as follows:

25

Under review as a conference paper at ICLR 2025

[ki 0 0]

KR 0 o
y 1
0 ki -+ 0 @ - ¢ o0 --. 0 - 0 -~ 0
: : 0 - 0 g -« ¢" . 0 - 0

Bi-1 = o kY 0 Ci=|. . . : :
0o --- 0 0 - 0 - g . qf/h

0 0 k;
0 0 ... pim

i i (C.2.3)

Notice that the recurrence is SISO, as there is no channel mixing within the recurrence itself. Addi-
tionally, each input/output channel has a state-size of d/h.

Now that we have established the equivalence between linear attention and state-space models in the
form of Equation 1, we proceed with the formulation of the remaining featurizers.

Formulation of the featurizers. To characterize the “values” feature in attention-based models,
we additionally show formulations for the “input-featurizer”, f, («), which is applied to the input of
the recurrence as follows:
sit1 = Aisi + B fu(ui)
yi = CF si + D fu(u).
Note that this is simply for the sake of completeness, and is not necessary for the study of effective
state-size.

(C24)

The following lists the formulations of the recurrent featurizers studied in this paper:

¢ Gated Linear Attention (GLA):
AF_| = diag(sigmoid(W}, Wa,ui)?),

BY y =Wgui, CF =Whui, fu(ui) = Wi,
where Wy, € RY6*4 Wk e RY/M=16 and W, Wk, WE € R¥/"*4_ 4 and h represent
the number of channels and heads, respectively. Each channel ¢ € [d] is grouped into heads,
where the head index corresponding to the channel is given by k = |ch/d], and within the

same head, the recurrent dynamics are shared across each channel. By default, 5 is set to
16.

* Weighted Linear Attention (WLA):
AF = diag(sigmoid(/ik)l/ﬁ),
B£21 = Wgu“ Czk = Wéu“ fu(ul) = qu“

(C.2.5)

(C.2.6)

where W¢, W, and W, are identical to those in GLA, and A* € R%" is explicitly
parameterized and initialized to 0.

e Linear Attention (LA):
AP =1, BF | =RoPE(WEuw;), CF=RoPE(Wgu;), fu(u;)=Wku; (C2.7)

where We, Wg, and W, are identical to those in GLA, and A is a fixed identity matrix.
Rotational positional encoding (RoPE) is by default applied to the B and C' projections (Su
et al., 2023).

¢ Softmax Attention (SA):
BF = RoPE(WEu;), CF =RoPE(Whu,),

BUi) (C2.8)
TF = softmax(Ck(Bk)T)7 Jului) = qui,

26

Under review as a conference paper at ICLR 2025

where T' can be converted into a recurrence using the trivial realization in Equation B.2.5.
We, Wa, and W, are identical to those in GLA. We note that this results in the TSS of
each channel in SA growing solely as a function of sequence length (n; = 7). Rotational

positional encoding (RoPE) is by default applied to the Band C projections (Su et al.,
2023).

¢ S6 (Gu & Dao, 2024):

A° = softplus(W5u; +b°), AS_, = diag(exp(—AA°)),

(C.2.9)
Bl{il = ACWBUi, CZ = WC’LLZ',
where A € R" is initialized to r2 .. n]T, c is the channel index, W, W € R"*4,
and W§ € RTx4,
e GLA-S6:
Al | = diag(exp(—[1/a 2/a ... n/a]" © softplus(W} Wa, u;))), (C.2.10)

Bfil = Wgui, C Wcul, fuluy) = qui,

GLA-S6 is similarly structured to GLA. It has the same channel grouping structure with
“heads”, and identical Wg, W, and W, projections. However, the A matrix is featurized
using the arange term like in S6.

C.3 EMPIRICAL VALIDATION

Here, we provide details on the task-model sweep presented in Section 3. Table 1 lists the hyper-
parameters that were exhaustively swept across to generate the task- model space. Note that the
hyperparameter controlling the task difficulty is task dependent (for more details, see Poli et al.
(2024)).

For the MQAR and selective copying tasks, a default vocab size of 8192 (Arora et al., 2023) was
used for all models. For the compression tasks, the vocab size was varied to modulate task difficulty
as shown in Table 1. Any other task settings not specified here are defaulted to those presented in
Arora et al. (2023). Two important constraints on the tasks from Arora et al. (2023) which we also
utilize in our experiments are as follows: MQAR task requires that

4 + num kv pairs < seq len
and the selective copying task requires that
2 * num tokens to copy + 1 < seq len

Any of the task configurations from Table 1 that violate these conditions were not trained. This is
why the SA plot in Figure 3 has empty spots in the grid.

Finally, we note that all architectures analyzed here consist of 4 layers: 2 sequence mixing layers
(i.e. one of GLA, LA, WLA or SA) and 2 channel mixing layers (i.e. MLPs).

27

Under review as a conference paper at ICLR 2025

Configuration

Value(s)

Tasks

Num. key-value pairs
Num. tokens to copy
Vocab size (compression)
Vocab size (MQAR and selective copying)
Sequence length

Model (featurizer)
Model width

Number of heads
Optimizer

Learning Rate

Weight Decay

Batch Size

Epochs

Steps Per Epoch

Num. Training Samples
Num. Testing Samples

MQAR, selective copying, compression
8, 16, 32, 64, 128

8, 16, 32, 64, 128

8, 16, 32, 64, 128

8192

64, 128, 256, 512, 1024, 2048
GLA, LA, WLA, SA

64, 128, 256, 512

4,8

AdamW

0.002

0.1

64

70

2000

128k

6.4k

Table 1: Set of hyperparameters for task-model sweep.

Regarding the post-hoc analysis performed on the sweep, we note the following:

. : model width
Since the average TSS computed over the channels (which equals "0 20 for GLA,

LA, and WLA) explains more meaningful variation with respect to memory utilization than
model width and number of heads individually, we consolidate those two dimensions into
one by analyzing across the average TSS axis. For SA, since average TSS is a function
of the task rather than model hyperparameters (see Equation B.2.5 and Section C.2), we
instead compute the sum of TSS over all d channels, given by the total TSS per layer = dxi.
In any cases where the average/total qualifier is not specified, note that we are referring to
the average ESS or TSS.

Since we analyze the recurrent models across the average TSS dimension, we compute
average ESS in the plots presented in Section 3.1 in order to compare ESS and TSS as
proxies for performance. Similarly, since we analyze the SA models across the total TSS
dimension, we compute total ESS for those plots. However, we note that plots for both the
average/total ESS and TSS are presented in Section D.1.

When we marginalize across dimensions, we average across all models in that bucket of
task-model space. For example, in Figure 3, for each (TSS, kv) pair, we average over the
correlations of all models that correspond to that pair. Note, however, that we never average
across tasks (i.e. MQAR, selective copying, compression) or featurizers (i.e. GLA, LA,
WLA, SA).

When we compute cross-model correlations (Figure 2a) for SA, we filter out models which
have an accuracy > 0.95. This is done in order to observe meaningful variation as a func-
tion of (total ESS)/kv and (total TSS)/kv since many of the SA models obtain an accuracy
of 1.

When we compute within-model correlations (Figure 3) for MQAR, we drop epoch O from
the computation since we observe a phase at the start of training in which ESS tends to
decrease but accuracy does not change. We elaborate on this phenomenon in Section D.1
and hope to characterize it further in future work.

Regarding the task-adjusted forms of ESS and TSS which, in the case of MQAR, are com-
puted by normalizing the raw ESS value by the number of kv-pairs in the task, we note
that this normalization factor is critical for observing the cross task-model correlations

28

Under review as a conference paper at ICLR 2025

presented in Figure 2a. In particular, in Figure 7, we find that correlations across the task-
model space break down when examining the unnormalized ESS. This points to the higher
level notion that ESS is expected to scale with the memory demands of the task.

* We interpret the state utilization of a model, which is given by ESS/TSS, as a proxy for what
portion of the memory capacity of the network is realized in practice. By definition, state
utilization takes on values ranging continuously from 0 to 1. Recall that a state utilization
near 1 is indicative of state saturation.

* While for most of the ESS analysis conducted on the sweep we use the entropy ESS, we
note that for the state utilization plot presented in Figure 3b, we use the tolerance ESS with
a tolerance level set at 1e-3. We do this because we find that entropy ESS fails to capture
the state collapse phenomenon. This is because state collapse is primarily dictated by the
magnitude of the singular values as opposed to the relative decay rate of the entire spectrum.
In particular, if all of the singular values are close to 0, the layer is likely failing to learn
an expressive state, resulting in poor performance. Due to the normalization applied to the
spectrum, the entropy ESS metric may potentially present this state as having high effective
rank; however, in practice we know that this is a misrepresentation of the true dynamics.
Tolerance ESS, in contrast, appropriately captures the dynamics of the state with respect to
the norm of the operator. Because of this, whenever we analyze ESS as it pertains to state
collapse (e.g. Figure 5a), we present the tolerance ESS instead.

C.4 ESS-INFORMED FEATURIZER SELECTION AND INITIALIZATION SCHEME

Configuration | Value
Model width 128
Num. heads 8 :
arange Norm. (@) | 1000 Configuration | Value
Logit Norm. (55) 16 Model width 128
K -expansion” 1 State expansion (d_state) | 16
Table 2: Default GLA hyperparameters. Table 3: Default S6 hyperparameters.
“For GLA-S6.
b K -expansion is used to vary TSS in the featurizer
experiments.
Configuration | Value
Sequence length 2048
Num. KV Pairs 128
KV Dist. Const. 0.1
Optimizer AdamW ¢
Learning Rate 0.002
Weight Decay 0.1
Batch Size 64
Epochs 70
Steps Per Epoch 2000
Num. Training Samples 128k
Num. Testing Samples 6.4k
Vocabulary Size 8192

Table 4: Default MQAR task settings employed
throughout the featurizer and initialization ex-
periments in Section 4.1.

“Loshchilov & Hutter (2019)

29

Under review as a conference paper at ICLR 2025

C.5 ESS-INFORMED REGULARIZATION

We use the following MQAR configuration for the regularization experiments presented in Section
4.2.

Configuration | Value
Sequence length 4096
Num. KV Pairs 128
KV Dist. Const. 0.1
Optimizer AdamW ¢
Learning Rate 0.002
Weight Decay 0.1
Batch Size 64
Epochs 70
Steps Per Epoch 2000
Num. Training Samples 128k
Num. Testing Samples 6.4k
Vocabulary Size 8192
Model width 128
Num. heads 8

Table 5: MQAR task settings and model hy-
perparameters employed throughout the mid-
training experiments in Section 4.2.

“Loshchilov & Hutter (2019)

Regarding the regularization scheme itself, since we examine models with two sequence mixing
layers, we explore the following strategies: regularizing both layers, only regularizing the first layer
and only regularizing the second layer. Empirically, we find that only regularizing the second layer
performs the best and is thus the result presented in Figure 5b. We elaborate on why this is the most
successful strategy in Section D.3.

C.6 ESS-INFORMED MODEL-ORDER REDUCTION

The teacher models used in the distillation experiments are 2 layer GLA models (Yang et al., 2024a)
with dimension = 128 and TSS = 256 (num_heads = 8 and expand_k = 16). We checkpointed the
models every 10 epochs while training on MQAR across different task difficulties. The task ranges
are given as follows:

* Sequence length: [512, 1024, 2048]
* Number of Key-Value Pairs: [64, 128]

Other settings follow the defaults shown in Table 4. For each task difficulty pair, we repeated the
training run with three different seeds. For each teacher model checkpoint, both layers were distilled
independently with student models of different state-sizes (16, 32, 64, and 128). Distillation settings
are shown in Table 6.

The ESS metric in Figures 5c, 28, and 29 was computed by taking the minimum across input samples
and model channels, evaluated at the mid-point of the sequence (¢/2). Using the mid-point of the
sequence as a summary statistic was done in order to save compute. The midpoint in particular was
chosen as it is the point in the sequence at which H; has the greatest dimensions, retaining the largest
amount of information from the original operator. Other approaches such as taking the maximum or
average across the sequence also show similar trends, but we found taking the minimum to be the
clearest.

30

Under review as a conference paper at ICLR 2025

Configuration | Value
Optimizer AdamW
Batch Size 1
Learning Rate 0.001
Weight Decay 0.0
Training Steps (Operator) 800
Dropout (Operator) 0.2
Training Steps (Activation) 3200
Dropout (Activation) 0.2

Table 6: Distillation settings used for the results presented in Section 4.3.

C.7 ESS ANALYSIS FOR HYBRID NETWORKS

In our ESS analysis applied to hybrid networks, we restrict our scope to GLA-SA hybrids. In
particular, we explore the following two settings:

* 8 layer hybrid networks in which 4 layers are sequence mixers (i.e. one of GLA or SA) and
4 layers are channel mixers (i.e MLPs). We exhaust all possible hybrid networks (of which
there are 16) and perform post-training, per-layer ESS analysis on the networks. We train
these hybrid models on MQAR with task-model settings given below in Table 7.

* 16 layer hybrid networks in which 8 layers are sequence mixers (i.e. one of GLA or SA)
and 8 layers are channel mixers (i.e MLPs). Here, we explore all combinations of hybrid
networks that follow the Jamba hybridization policy (Lieber et al., 2024) and perform post-
training, per-layer ESS analysis on the networks. We train these hybrid models on MQAR
with task-model settings given below in Table 8.

Configuration | Value
Sequence length 2048
Num. KV Pairs 512
KV Dist. Const. 0.1
Optimizer AdamW ¢
Learning Rate 0.002
Weight Decay 0.1
Batch Size 64
Epochs 70
Steps Per Epoch 2000
Num. Training Samples 128k
Num. Testing Samples 6.4k
Vocabulary Size 8192
Model width 64
Num. heads 4

Table 7: Default MQAR task settings employed
throughout the hybridization experiments con-
ducted in the first setting described above.

“Loshchilov & Hutter (2019)

31

Under review as a conference paper at ICLR 2025

Configuration | Value
Sequence length 4096
Num. KV Pairs 1024
KV Dist. Const. 0.1
Optimizer AdamW ¢
Learning Rate 0.002
Weight Decay 0.1
Batch Size 64
Epochs 70
Steps Per Epoch 2000
Num. Training Samples 128k
Num. Testing Samples 6.4k
Vocabulary Size 8192
Model width 16
Num. heads 2

Table 8: Default MQAR task settings employed
throughout the hybridization experiments con-
ducted in the second setting described above.

“Loshchilov & Hutter (2019)

Results for these experiments can be found in Section D.4.2.

C.8 STATE MODULATION OF LARGE LANGUAGE MODELS

State modulation of open-weight models. The following randomly generated sentences were
used to study the effects of separator tokens on state modulation in open-weights pre-trained lan-
guage models.

<bos>Mangoes are rich in vitamin C and can be blended into a refreshing smoothie<sep> Gi-
raffes are the tallest mammals on Earth due to their long necks and legs<sep> She collects vintage
typewriters from the 1940s<sep> Jupiter’s Great Red Spot is a giant storm that has been raging
for hundreds of years<sep>

State modulation on custom-trained 1B models. For our custom-trained 1B language models,
we used longer sentences, as state modulation patterns were less discernible with shorter sequences.
A collection of randomly generated sentences is shown below:

<bos>The deep blue ocean, teeming with an extraordinary array of marine life, from the smallest
plankton to the largest whales, stretches out infinitely towards the horizon, a vast and mysterious
expanse that has captivated the imaginations of explorers, scientists, and poets for centuries, hid-
ing within its depths secrets yet to be discovered and stories yet to be told<sep> In a bustling city
where skyscrapers tower over narrow streets filled with the constant hum of cars and the chatter of
pedestrians, a small café, nestled between two imposing buildings, offers a quiet refuge for those
seeking a moment of peace, with the comforting aroma of freshly brewed coffee and the soft sound
of jazz music playing in the background, creating a cozy ambiance that feels like a world away
from the urban chaos outside<sep> The ancient oak tree, with its gnarled branches stretching
wide and its thick, sturdy trunk standing firm against the passage of time, has witnessed genera-
tions of families grow, seasons change, and countless stories unfold beneath its expansive canopy,
becoming a silent guardian of the park, offering shade to those who seek solace and a sense of
continuity in a rapidly changing world<sep>

We note that the specific sentences and their order are not crucial to this analysis. Similar patterns
have emerged with various sentence arrangements, provided the sentences are sufficiently long.

Training settings are outlined in Table 9.

32

Under review as a conference paper at ICLR 2025

Configuration | Value
Batch Size 16
Max Sequence Length 32k
Training Steps 160k
Optimizer AdamW
Learning Rate 0.001
Weight Decay 0.1
Num. Layers 24
Dimension 2048

Table 9: 1B LLM settings.

The perplexity scores shown in Figure 6b were computed on 16k randomly sampled sequences over
the FineWeb (Penedo et al., 2024) dataset. The raw perplexity samples were smoothed via a kernel
density estimation method.

33

Under review as a conference paper at ICLR 2025

D EXTENDED EXPERIMENTAL RESULTS

D.1 EMPIRICAL VALIDATION

In this section, we provide additional results and commentary from the sweep detailed in Section C.3
that were not presented in the main portion of the paper. One thing to note is that the most of the ESS
results presented in Section 3 were computed using the entropy ESS. However, we also computed
ESS using the tolerance-based approach to affirm that both forms of ESS showcase similar trends.
In particular, we examined tolerances of le-1, 1e-3 and le-5. Since we observe similar trends across
tolerances, we provide plots for a tolerance of 1e-3 below and omit the others for the sake of brevity.

D.1.1 STATE COLLAPSE CONTINUED

Here, we continue our discussion on the state collapse phenomenon presented in Section 3.2. In
particular, while we assert that state collapse is observable across all TSS in the high kv bucket for
GLA/WLA, Figure 3b shows that accuracy differences between LA and GLA/WLA are only evident
in the high TSS/high kv bucket of the task-model space. This is because state saturation is acting as a
confounder, worsening performance in LA (see Figure 3b when TSS is 8). Therefore, although state
collapse in GLA/WLA does not result in worse performance than LA in this specific task-model
setting, it remains an issue even for models with smaller states when trained on sufficiently difficult
tasks. This is the motivation behind the task-model setting explored in Section 4.2.

D.1.2 ENTROPY ESS MQAR RESULTS CONTINUED

GLA LA

10 o wwu 10 ey 10 voe 10 o
. H L (M . 1 . H i
. 0, of s PV | O PV L I
E 88,0 | & ' Is
un.lgl.g (m..l 0008 wiel§eee 001 o8
AT — TR pE— i A ——
TSS kv TSS/kv (total TSS) kv (total TSS) /ky (total TSS)/kv
WLA SA GLA LA WLA SA
5 0 ——" v 10 10 1 —
SR gh by z 8e 0, V%
g g3 g g g o® g 8 g £ g Ses
o5 - 5 £ 05 y Y o5 & Eos $, £ 05
g o g g e Y g o2 | g
00le o oo 00-lam 00-loe o a0 00 = 0olee
; - R TR e a— PR
ESS/kv ESS/k (total ESS)/kv (total ESS)/kv (total ESS)/kv
GLA LA WLA SA LA WLA SA
10 10 10 1 10
B 2 5 K. 5 2 '3. B s
£ 05 ° £ o5 oy o % Zos ‘ o5 % | Eos
0018 o 0040 00 3 00-Les 00de 00 s 00 %
2% 2 2%y 270 92 27 20 9 27 g 20 92 2712 ps
ESS/TSS ESS/TSS ESS/TSS ESS/TSS (total ESS)/(total TSS) (total ESS)/(total TSS) (total ESS)/(total TSS)
SA GLA LA WLA SA
R] ¥ e 0 1049 TS LUFPTREED
« A ;P s o ied
g B |
2o H svmg 058 05
: H M
£ o o o £ 8,
- il 8§28 I ' : 2 wil § 2 o 00 o
23 2 2 26 24 26 24 26 27 2!
ESS TSS TSS TSS TSS

Figure 7: (a) TSS/kv vs accuracy across featurizers. This demonstrates that TSS/kv (i.e. memory
capacity) is a worse proxy for model performance than ESS/kv as discussed in Section 3. (b) (total
TSS)/kv vs accuracy across featurizers. This demonstrates that (total TSS)/kv is a worse proxy for
model performance than (total ESS)/kv. (c) ESS/kv vs accuracy across featurizers. (d) (total ESS)/kv
vs accuracy across featurizers. (e) ESS/TSS (i.e. state utilization) vs accuracy across featurizers. We
note that models that saturate their state tend to perform worse on the task which is evidence of the
state saturation phenomenon discussed in Section 3.2. The models that do not saturate their state
but still perform poorly are the models that undergo state collapse. (f) (total ESS)/(total TSS) vs
accuracy across featurizers. (g) ESS vs accuracy across featurizers. Note that without normalizing
by kv (i.e. the task memory), the correlation with accuracy breaks down substantially. (h) TSS vs
accuracy across featurizers.

34

Under review as a conference paper at ICLR 2025

LA WLA L GLA
71010 10 10 10

WLA SA
1010 10 10

-0

2210 10

21010 10 10

20 00 5
. B 210 10 10 00l g
€ 1010 00 Triaw 0s
o7
IR EE] P
kv kv
LA SA LA WLA SA
10
7101010101010 Rt o | ol
101010081008 fos . ok koo
g 101010
2 -101010)] oo
S el g] 1010 1) 0%
2 2 2400
N i v = o1
E N
e B B et Sr g b b
seq len seq len seq len seq len seq len seq len soa len
§ ——CLA —8—LA ——WLA —e—SA = —e—GLA —e—LA —e-WLA —e—5A
= 1.00 = 100
Gia E 100 B 100
20 z“—mw 3 i = E
20 510lon 2 110 1010 W Zom T Ton g
£ »-10/08 1010 10 a 0% 4 095 &
o g &) g
» 49 09 #1010 10 < 050 £ T £
2 - 1o [SE0E g 000 g 090 %
#1010 E]
v A D os g 5 > o | 2 | ol g 26 | o5 910 g1z gt g6 gis gt
Do h oS 2 Do d g Db b 2 218y
o o o b TSS total TSS
© ® (€]
S —e-GLA —e-Li —e-WLA —e-5a S —e—CLA —e—La —e-WLA —e—Sa
E L0 w0 g
= =
505 g e
35 g 3
< 09 5 <
> g = 0.6
% g =
g
2 00 £
P £ % 3 3 3 a0 ou
g
kv seq len

~
=
=
—~
™

Figure 8: MQAR accuracies marginalized across different dimensions.

SA GLA LA
-0 05
51 »
wi wy B 4
7 2 3, 3
4 4 37 H
" 0¥ 2]
.
PO 2wy P
v ke v v

LA LA
2" 0s 2" 07070708058
04 R . 0.60.6 0.6 0.70.7] o4 o @w
z P PRS00 | RO Z
B 60505010505 S0 5 2 5 8
03 % i 7 03% F o [NIRIRINEN | 2]
; o | .. H o 3
02 RO 0510502 020 B 0003050
3 20 3 30 gmg0 B 3 30 ging p 2 pppmn 2 3 20 g 27 0 39 2090 37 30 slogh
seq len seq len seq len seq len seq len seq len seq len
(© (d)
z = GLA =LA ——WLA —<—SA 2 SeGLA DeLA S WLA —eSA
] o 125
GLA SA Z0m ~ £ —
PRy - 30 < 1255 <6 S
TR 2 e < 100 %
Z 5w 5050 w0z 35 Z
a5 5 0 E 075 &3
0z 2 = =
* % s 3 9 i 7 6 o8 g0 gi2 gl gi6 g gw
Do b b 4 2 2° 2 2 B 20 2 gt gl gl gl gie g
kv total TSS
2 ==GLA =M=LA =%=WLA =»=SA = =H=GLA =H=LA =*=WLA =%=SA
S]
Z 10 =
£ = 205 —
] = = 125 %
= Ly = N
Sos Z S04 100 2
205 = s @
5 4 5 075 &
£ 0.5 & 03 "
g 5 3 a % o 37 3 99 o0 on
4 2 2 2 2 BB or v g0 gl
kv seq len

—~
=
=
—~
—

Figure 9: MQAR ESS/kv marginalized across different dimensions.

35

Under review as a conference paper at ICLR 2025

LA
‘i“““u“

) 1 R L
20 27 2% 2 gingt PR 2 27 38 g0 gi0git 20 47 0 0 ghoght 2 20 gingit 20 27 28 90 ginght 20 27 25 30 g 2 o 3 o glogh
seq len cq lo seq len seq I

seq len seq len seq len seq len

—~
o
=

< <
§ ——GLA =%=LA —+—WLA —*—SA ; ——GLA =LA ——WLA —SA
= L‘ 6 _E
< e 7z
& > a
< L =
X2 = R
z Z g
2 2 g
&= ’ = T
] % > » E 0 gz g g | g | gk
g TSS g total TSS
z —GLA =LA ——WLA ——SA S eGLA =LA —WLA —=SA
Z = Z =
<6 8= < 8
= < =3 <
< = < =
=4 6= = =
g z ° b
> Z 2
Ep 14 EP) =
z E @ E|
3 Z g
4 £ £
Z p » 2 o p > 0 g
3 kv seq
Figure 10: MQAR (total ESS)/kv marginalized across different dimensions
GLA WLA
. -01
TP . o,
e E? upee £
2°-06 06 05 05 06 01 2°-05 05 05 05 05
g I EEEY]
kv kv
LA WLA
ot o4 » [R 010101010 Lo
ng 17 7 - S 7 .- uf
ug PR oo o3 B 2
2-asnsosonnios ot 250806060506 w 2"«..nsosusms " 2 B0 040404 Eo 00
. ;,g m‘., 2 o1 2 g9 gloght 53 o 25 97 30 90 glught 530 30 39 21091 3% 38 g0 glohs
cq len seq len seq len seq len seq len seq len

T GLA =LA —WLA —-5A

= 010 =
504)
E %
S0 0.05 S
. 4
Z 2]
7

PR AFaEOPaPROROET

total TSS

—~
[e]
~

5 =*=GLA =%=LA =*=WLA —==SA 5 —CLA =LA - WLA —-SA

= 0.06 =

S04 z = 0102
3 & 3 %@
Sos 0.05 2 508 %
= s ° 005
P % 2 %
é 02 0.04 3 é 02 &
& e g 9 o £ 3 91 o g g0 on

= kv = seq len

—~
=
=
—~
—

Figure 11: MQAR ESS/TSS marginalized across different dimensions.

36

Under review as a conference paper at ICLR 2025

2-05 05 05 05 05

=

PrarY

. % ; o
E nuulu ‘II-&nansM[040405040404

20 27 3% 1 gioght 2 27 28 g ginght 20 27 38 gp g0t 2047 0 g ghoght , bght 2 27 25 20 gogh 25 57 38 30 glagit
seq len seq len seq len seq len seq len seq len

L
(total ESS

20 37 35 5 gloght
seq len

©)

—~
o
=

—=GLA =*=LA —%=WLA —*=SA
0.014

5

°

ESS)/(total TSS)

0.005

°

0.000
96 95 gl0 gi2 gld ol6 oIs 9t
total TSS

4

(tol

(total BSS)/(total TSS) (GLA/LA/WLA)

s o

[

S <
2 2
g 5
= 2

(total ESS)/(total TSS) (SA)

(total ESS)/(total TSS) (GLA/LA/WLA)

= =z
Il =
E5eGLA Sl SoWEa s o B o0 —eia sewia sesa
3) =
304 00055 7 = 0.004
7 3 203
£os ¢ &
< 0.0020 = 3 0.002
B @ E
=02 El 02

P R " H R S S 1

kv H seq len

() @

LA
o8
- P

E-hm
K

2204 02 05 05
205 06

R

GLA WLA SA
2 o[l 0102 I Ed »-040) » "‘W“H“ l"
020404040804 |, 5 5w £
e =, 0.404 0202060605
g Brosealiashl g Br
3 o R [0 5 - 020508 25 F7ploso |,
4 4 g -, 3
gl - = Lo EE al.
203 20 oo o 30 o oy R ETET] b doboah B2 2 2 gugh 2 0 2 30 jeght R ETED] PR
seq len seq len seq len seq len seq len seq len seq len seq len

= <
=Ty S [Seoia oo SewiA Sea
‘ g z = <
GLA = - 28 3 0.75 s £
205 6T 07 06 Z075 025 . = 025 7
e g ZBaso 000 2
L o oo
S0 s S0z 0B g
~0.25 3 2
el =g =)
g 5 % 5 » o g PP P T PO PR PR Y
@ . @ E
% TSS % total TSS

,\
) D
—~
aQ
—~

—H=GLA =*=LA —=WLA —=S$A —=GLA =%=LA == WLA —%=5A

SA)
LA/LA/WLA
=
2
=
5

rr. (GLA/LA/WLA)
B
I

0.00

ESS-ace. corr. (SA)

o
S

~0. z‘.

ESS-ace. corr. (

!
L
ESS-ace. corr. (G

seq len

~
—_
=~

Figure 13: MQAR ESS-accuracy correlations computed over training marginalized across different
dimensions.

D.1.3 TOLERANCE ESS MQAR RESULTS

Below are plots from the MQAR sweep using tolerance ESS (tol=1e-3) instead of entropy ESS. We
note that all of the prevailing trends remain the same.

37

Under review as a conference paper at ICLR 2025

accuracy

accuracy

©

00

LA GLA LA
10 10 10 10 10 10
5 I I I % 5 5
g H H H g H H
Zos £0s H £0s Sos Sos £05
& g g g & g g
00 00 0.0 -weghs 00 00 00-00e o
B 2 S RS S 2 2
ESS/kv ESS/kv (total ESS) /kv (total ESS)/kv (total ESS)/kv (total ESS)/kv
GLA LA WLA GLA WLA
10 109 10
05] 05 205
o] g H]
00 00

ST

(total ESS)/(total TSS) (total ESS)/(total TSS)

20

ESS/TSS

GLA LA
L0 el 10 1.0
g g g g
£05 £05 Z05 H
g H g
00 . 00 3 00
» 2 2]
ESS ESS

©]

Figure 14: Accuracy vs various forms of tolerance ESS across task-model space. Plots are entirely
analogous to those shown in Figure 7.

WLA

Lio 2 09 b B oo
& % 2l =z
30 5 La} 105
4 &
20
20
5 o 2 20 0gt 2 30 iog) e PR
seq len seq len seq len seq len seq len seq len seq len
=z —M—GLA =LA —4—WLA ——SA T oGLA =LA ——WLA —=SA
3 3
= iz <2 z
=2 E = 34
oy z = %
3 i] B
T o1 25
2 2% S %
IS) & f =
& £
Z2 & 2 o B o 2R T TR PR TS TR T
TSS total TSS

,\
fa]
—~
aQ

—~

—H=GLA =*=LA —<=WLA —=SA

—H=GLA =H=LA —4=WLA —*—SA

= =
= o
z = 15
=, 1z = 4=
52 £ = %
= = <10 z
c! I 2%
= = = 4]
20 08
g2 9 » 2 o B » 3 3 g0 o
g 2 2 2 2 2 - U

kv seq len

—~
=
=
~
=

Figure 15: MQAR ESS/kv marginalized across different dimensions.

38

Under review as a conference paper at ICLR 2025

WLA
2515148 00

2 5l
200

1002

100

20 g1t 2 20 g1t 2 29 0911 37 90 g9 iogil ai0git 23 3 3

seq len seq len seq len seq len seq len seq len

—~
o
=

< =
3 3
= —H=GLA =H—=LA —<~WLA —%—SA £ —GLA =LA —<WLA —*—SA
5 K)
=10 = 202
< < 10 =
w0z = = =
= 2 e 2
= = a
Z5 £ 5 =
= = L 103
z z g
% 2 g
= = =
A A T R N T DA TN TP
] TSS g total TSS
3 3
z S GLA =LA ——WLA =54 = —GLA =LA ——WLA ——SA
= = = =
E 4 dis 4
= 2 4
S0 0i 3 0E
<) = T =
< 2 T 2
Z - @
Ao 2 Z2 H
P ¥ % T P T
3 kv 3 seq len
(h) ®

Figure 16: MQAR (total ESS)/kv marginalized across different dimensions.

LA ‘WLA GLA
i Los

206 06 07 07

2-07 07 07 o7 [

5o

PR P »
ke kv
LA SA WLA SA
E 2 » oz
. ., 0s .,
: [
009 o Z
08030000 03, 7z
09091010 0 - ¥4
2 aa0910101010 foz .msmu - # 050607 2 20208 .
3 gl 330 b g S 37 90 0 gi0gm b 3t 3 b glosh
seq len seq len seq len scq len seq len
= T 5GLA DA SeWLA SesA
Z 10 = P
GLA LA g g 02
o1 JEEEET 0 21 09 09 09 = 5075 Iz
il . 009 fos,, 2 = = 2
» o | £ 2 505 = 050 ol
Z g P e £ g
i ¥ @ 2 72
. 2 2 2025
b z 2] &
» £ B
T, 04 z 2 25 95 gi0 giz gia gio gis g
? 2 4 & s
kv total TSS

,\
fav}
—~
aQ

—~

= —=—GLA =LA ——WLA —==SA = —=—GLA =LA —=WLA —=SA
= o= = . 02
507 35 gom s
- wn - o

0128 3 2
3o]
T 050 ST s
P 011 % 2 2
=025 = € o =)
s S025
&z 9 o 2 2 o @ 96 91 26 90 90 onl
= =

kv seq len

—~
=
=
—~
—

Figure 17: MQAR ESS/TSS marginalized across different dimensions.

39

Under review as a conference paper at ICLR 2025

09 09

08109 09 10

207 07 0s 05 [0909 10 10 10 207 07 07 01|

0309

209,09 09 09 10

29t %

kv K kv

PR PPy
kv kv

. 2 5 SA .
7 F . 2
Loo &
F A . 00
09001010 i 0wi
08909101010 10 200 g

P3P P aingh PR By s S T2 #7300 B3 Pgiegh

seq len seq len seq len seq len el seq len seq len

—~
o
=

26 8 9l g2 glt l6 I8 gk
total TSS

(tot

z 2
3 2
g z —GLA =LA ——WLA —<SA =
210 3 i
_ _ = 5 z
- Z . 2
g 4 g g 075 4
3 08F 7 Kl
K H Z 050 oo
7 g 2025 [
2 0.00
4 H

—=GLA =LA == WLA =S4 - —<—GLA =LA == WLA —<=5A =
0.0060 £
ﬂ‘
0.0055 =
H 0.0050 7
=025 El
¢ 3 3 5 H % 3 » » g0 on
H kv seq len

~
=
=
—~
™
=

Figure 18: MQAR (total ESS)/(total TSS) marginalized across different dimensions.

GLA ‘WLA WLA
K o2 6453 00100 Jos » oo |
- st g, .. L.
os oznaos " g wf S
E - 0.4 01 03]
02 anor |, % 3 [
i ”"“""‘“W‘“I 0 r“ﬂ” 20104 #0300 00 [Bl0s
P s 2 Db Py P
kv kv kv kv
GLA LA SA GLA LA WLA
» oo | i | s] » ol | » o oo o B B oo
s g s £]
2 JoafB02020208 40303 wE g 055 L5 .
. S ArlBBioioni| £ # 0 -2 103030301
40102040100 00 ol o0 | 00§ o 6
- 3 7050204040303 0 F f030304 0400004
2 ol Bos0202 s 7 2] P
05 & a8 a . . 06
2 0.4 2 00 0.2:020.1 » 30,1 08 -0.3] 0303 k05 2° 10.1-0. 2° 0201 03
3 DR () | h PRI |) L o | 08
2537 20 30 giog g g 0 2 gt F 97 30 30 glogh T o baan g g
seq len seq len seq len seq len seq len seq len seq len seq len

(© (

(=N
=

= =
2 —GLA =LA —WLA =54 2 mGLA =LA e WLA ——SA
3 o5 T @
= 00 - < 00 -
2 o0 g T 00 g
5 = 5 —05 3
o 05 053 505 %
] 9 = g oo q =
2 7 % 3 » o 2 26 % 1910 g1z it gl o180
% TSS g total TSS
=
E | =GLA =LA ——WLA ==SA
05 = = =
cE = Z
= =< 00 00
=] =] =
00 2 T £
s - K
H £ g
059 S _os —05%
A g 05 052
H 25 27 3 39 g0 g
Z seq 1
7 seq len

—~
=
=
—~
—
=

Figure 19: MQAR ESS-accuracy correlations computed over training marginalized across different
dimensions.

D.1.4 SELECTIVE COPYING AND COMPRESSION RESULTS

Below, we present results for the selective copying and compression tasks, analogous to the ones
presented in Section 3 on MQAR.

40

Under review as a conference paper at ICLR 2025

GLA LA WLA GLA LA WLA SA
10 10 10
Zos 2 . Zos
8 13 é;"’ 8 ®
0.0+ 00 00 o 00 00 o
JAEE AR o g AP B) » 2
ESS/nte ESS/ntc ESS/nte (tot \| rss) /mte (total ESS)/ntc (total ESS)/ntc (total ESS)/ntc
(@)
GLA WLA GLA LA
10 3 10 10
-He AHHE A1 AR
'0“0 £y > eode o8 £05
 HiUNE isege g 82 8¢ | ¢
toielenages 0.0 clnhl--- -----o 0.0 nag 0.0
2 2! 2t 2 2 2t 2
/nt;

m,m TSS/nc (total xssy.m

Figure 20: Selective copying results. Note that ESS here refers to entropy ESS and we abbreviate
num. tokens to copy as ntc in plots above. (a) ESS/ntc vs accuracy across featurizers. (b) (to-
tal ESS)/ntc vs accuracy across featurizers. (c) TSS/ntc vs accuracy across featurizers. (d) (total
TSS)/ntc vs accuracy across featurizers. (e) ESS-accuracy correlation computed over the course of
training in (TSS, kv) buckets. (f) ESS-accuracy correlation computed over the course of training in
(total TSS, kv) buckets.

WLA GLA LA WLA SA
04 - 0.4 4 04 b 44 04 e
. | . ° H S
Z o £ 38| : g 3 &°
Z02 202 o Z02 202 v ¥ s
H 2 H H ° H 2
00 00 00-4# 00 00 00
TP AR P PArm— o 3 2 3
ESS/vs ESS/vs (total ESS) /vs (total ESS)/vs (total ESS)/vs (total ESS)/vs
(@) (b)
‘WLA GLA WLA
y v
Coa Lol oY o I e
g Hi ! g ; g
] g =] £
it} 1L |I| Pelall
00 ... " 00 " 00 'l
» g
xsv (total 1%95/ mxl xsx)/ (ot " IS\)/ (total TSS),vs

(e)

Figure 21: Compression results. Note that ESS here refers to entropy ESS and we abbreviate vocab
size as vs in plots above. (a) ESS/vs vs accuracy across featurizers. (b) (total ESS)/vs vs accuracy
across featurizers. (c) TSS/vs vs accuracy across featurizers. (d) (total TSS)/vs vs accuracy across
featurizers. (e) ESS-accuracy correlation computed over the course of training in (TSS, kv) buckets.
(f) ESS-accuracy correlation computed over the course of training in (total TSS, kv) buckets.

We note that with respect to the cross task-model trends, we find that in both selective copying and
compression, task-adjusted ESS is a better proxy for model performance than task-adjusted TSS
(Figures 20a, 20c, 21a, 21c). This is substantial as it demonstrates the utility of the ESS metric
beyond just MQAR.

Regarding within task-model trends, we observe similar patterns for selective copying as those seen
in MQAR (Figure 20e), with one notable distinction. Namely, ESS and accuracy are positively
correlated across a larger portion of the task-model space in selective copying than in MQAR. For
compression, however, the within task-model trends look a bit different than what we observe in
selective copying and MQAR (Figure 21e). One potential reason for this is that the compression
task is significantly more difficult than the MQAR and selective copying tasks (as noted by the

41

Under review as a conference paper at ICLR 2025

lower accuracies in Figure 21a), leading to more instabilities over the course of training. But in any
case, this does highlight the fact that the strength of ESS as a proxy for model performance changes
as a function of the task. The precise nature of this relationship in something we hope to explore in
future work.

D.1.5 ESS TRAINING DYNAMICS IN MQAR

As mentioned in Section C.3, we observe a phase at the start of training in MQAR in which ESS
tends to decrease. This is shown in Figure 22 in which we select an arbitrary task-model configu-
ration from the sweep and plot its ESS and accuracy over the course of training on a per featurizer
basis.

—<—Normalized Entropy ESS Normalized Tolerance ESS —e—Accuracy
SA LA WLA
1.0 4 1.0 1.0 1.0
[} [((] [\
= = = =
© © © ©
> > > >
L0531 _.4!05 £ 057 g 05 \///H)H
b= b= b= b=
[} [} (] (]
= = = =
0.0 48 . 0.0 . 0.0 ¢ . 0.0 .
0 50 0 50 0 50 0 50
Epoch Epoch Epoch Epoch

Figure 22: Training dynamics of ESS in select models (dmodel=256, heads=8) trained on MQAR
(seqlen=2048, kv=64). We min-max normalize the ESS curves over the course of training to em-
phasize the shape of the curve as opposed to its magnitude. Note that the tolerance ESS shown here
is computed using a tolerance of le-3.

We find that at the start of training (i.e. in between epochs 0 and 10), even if the accuracy is not
evolving, the ESS is. In particular, in the recurrent frameworks (GLA, LA and WLA), we note
a sharp decrease in the ESS before it begins to rise later in training (and along with it the model
accuracy). In contrast, in SA we observe the opposite: a sharp increase at the start of training
following by a steady decrease (even after it has solved the task). This points to a level of nuance in
the training dynamics of MQAR ESS that we have yet to characterize and is something we hope to
explore in future work.

42

Under review as a conference paper at ICLR 2025

D.2 INITIALIZATION-PHASE ANALYSIS

val/acc val/loss
model.d_state: 256 model.d_state: 128 model.d_state: 256 model.d_state: 128
— model.d_state: 64 = model.d_state: 32 — model.d_state: 64 = model.d_state: 32
— model.d_state: 16 — model.d_state: 16

0.0002 8.37
1.5e-4 8.36
8.35
0.0001
8.34
5e-5
0 train/steps 8.33 train/steps
20k 40k 60k 80k 100k 120k 140k 20k 40k 60k 80k 100k 120k 140k
(a) Validation accuracy of S6 (b) Validation loss of S6
val/acc val/loss
= TSS=256 = TSS=128 = TSS=64 TSS=32 = TSS=256 = TSS=128 = TSS=64 TSS=32
— TSS=16 — TSS=16
8.38
8.37
8.36
1.5e-4
8.35
0.0001 8.34
5e-5 8.33
0 train/steps 8.32 — N,\//J train/steps
20k 40k 60k 80k 100k 120k 20k 40k 60k 80k 100k 120k
(c) Validation accuracy of GLA-S6 (d) Validation loss of GLA-S6

Figure 23: Loss curves of S6 and GLA-S6 showing that the models are unable to improve beyond
random guessing on MQAR, across various state-sizes.

GLA

25 { 3¢ mss

0.75
>
2
é 0.50 £
g
o4 0.25 <
@ Acc. (Mean)
: Acc. (erln—Max) 0.00
25 27
TSS

Figure 24: ESS and MQAR accuracy as a function of TSS on a custom task regime (sequence length
= 1024, num. kv pairs = 256). This figure illustrates a strong correlation between MQAR accuracy,
ESS and TSS.

D.3 MID-TRAINING ANALYSIS

First, we provide some additional commentary on the ESS-based regularization results discussed in
Section 4.2. Recall we showed that decaying the A matrices in GLA and WLA towards the identity
matrix enables these models to outperform LA in the state collapse regime. Our intuition for this
result is that by ameliorating state collapse, GLA and WLA can better leverage their increased
expressivity, which stems from their learnable A matrices — a feature absent from LA.

43

Under review as a conference paper at ICLR 2025

—»—Normalized Entropy ESS Normalized Tolerance ESS —e—Accuracy

GLA LA WLA
1.0

1.0

=
=)

05 005

Metric value
Metric value

Metric value
¢ o
w

Metric value

0 50 0 50 0 50 0 50
Epoch Epoch Epoch Epoch

Figure 25: An example of the training dynamics of ESS in select models (dmodel=512, heads=4)
trained on MQAR (seqlen=2048, kv=128) that undergo state collapse (i.e. GLA and WLA). We
min-max normalize the ESS curves over the course of training to emphasize the shape of the curve
as opposed to its magnitude. Note that the tolerance ESS shown here is computed using a tolerance
of le-3.

Next, as mentioned in Section C.5, we provide some intuition behind the efficacy of regularizing
only the second layer of the network as opposed to the first or both layers.

=>GLA Layer 0= WLA Layer 0
& GLA Layer 1 ¢ WLA Layer 1

0.8 %<2
E \\x\
~ X\ N
D05 N
A , X=X
N
0.2 Yo
X~
2‘6 2‘7 2‘8 2‘9 2‘10 2‘11
seq len

Figure 26: Per-layer ESS/kv as a function of MQAR sequence length for the GLA and WLA featur-
izers. ESS shown here is computed using a tolerance of 1e-3. Layers are O-indexed.

Using 0-indexing for the layers, Figure 26 shows that layer 1 realizes a lower ESS/kv than layer
0, particularly in the case of WLA. This suggests that layer 1 contributes disproportionately to
the observed state collapse (Figure 25); consequently, it makes sense that layer 1 would need to
be regularized more heavily. Now, this begs the question as to why only regularizing the second
layer leads to better performance than regularizing both layers (results of which were not shown).
We have two possible hypotheses for this outcome. First, introducing regularization terms for both
layers may complicate optimization by creating potentially conflicting objectives. Second, excessive
decay of the A matrices towards the identity matrix may cause the model to revert back to the LA
regime, which — as shown in Figure 5b — performs worse than GLA and WLA (when sufficiently
regularized). Nonetheless, we hope to further explore this intuition and investigate other ESS-based
forms of regularization in future work.

44

Under review as a conference paper at ICLR 2025

D.4 POST-TRAINING ANALYSIS

D.4.1

MODEL-ORDER REDUCTION

student
= student
—— student

student

teacher:

TSS=256, Acc.=0.90
: TSS=128, Acc.=0.91
: TSS=64, Acc.=0.87
: TSS=32, Acc.=0.75
: TSS=16, Acc.=0.73

Layer 0

student
student
student

student

teacher:

TSS=256, Acc.=0.90
: TSS=128, Acc.=0.88
: TSS=64, Acc.=0.74
. TSS=32, Acc.=0.37
: TSS=16, Acc.=0.05

Layer 1

N = o
S S S
1 1 1

Mean Effective-State-Size
[\
(=)
1

—

—

0 -

0 128 256 384 512 640 768 896

0 128 256 384 512 640 768 896

Figure 27: This figure compares MQAR accuracy and ESS across reduction scales for layers 0 and
1. The lower ESS in layer O of the teacher model leads to better downstream performance after
distillation compared to distilling layer 1.

Distillation Loss

TSS (student) = 16 TSS (student) = 32

TSS (student) = 64 TSS (student) = 128

100 T o, o® T o®
° ..'.‘ o ° "'ﬂ- rd ¢ :. N
-'—-:MR##‘— R T *‘-@ ___'_'_"""'J.?
| e o MR e d of o g2
AR PELRR 0B, At
* |p s, regression ’.’..."'. I . o,_.f.' °
°*’ * = mean "".‘.",'..- :l“:.z..-..'".
T T T T T T T T T
2! 23 25 2! 23 20 2! 23 25

ESS (teacher)

ESS (teacher)

ESS (teacher)

ESS (teacher)

Figure 28: Correlation between ESS and distillation loss across multiple student TSSs (reduction
ratios). The original teacher models have a TSS of 256.

ESS (student)

TSS (student) = 16

TSS (student) = 32

TSS (student) = 64

TSS (student) = 128

26
— = Bqual BSS /] I <«
g i A
2. ° . Dais ¥ " Y
K e AR ¢ .
B ZEA . Xy -'.\ : .g’ =t
2% 1 glmive :' | i ??' N AP S
. ‘,?:s:"v.l;. : RO A ./“'b)
ol 93 95 gl 93 95 2 2

ESS (teacher)

ESS (teacher)

ESS (teacher)

ESS (teacher)

Figure 29: Teacher ESS vs distilled student ESS. As expected, we observe a clear trend: an increase
in the student TSS results in the student’s ESS more closely matching the teacher’s ESS. Plots like
these can help provide additional context during the distillation process.

45

Under review as a conference paper at ICLR 2025

D.4.2 HYBRIDIZATION

SA Layers: ()
Accuracy: 0.0

SA Layers: (0,)
Accuracy: 0.0

Bl SA Layers

SA Layers: (1,)
Accuracy: 0.98

Bl GLA Layers

SA Layers: (2,)
Accuracy: 1.0

3004 La 3001 La 3001 La 300 La
0 n 0 0
ﬁ 200 E ﬁzoo— E ﬁzoo— E 5200— E
< 2 < 2 < 29 <« F2s
"’100I G ¥ 100+ 0 ¥ 100+ 0 ¥ 100+ o
Lo Lo Lo Lo
0 1 2 3 0o 1 2 3 0 1 2 3 0 1 2 3
Layer Index Layer Index Layer Index Layer Index
SA Layers: (3,) SA Layers: (0, 1) SA Layers: (0, 2) SA Layers: (0, 3)
Accuracy: 1.0 Accuracy: 1.0 Accuracy: 0.98 Accuracy: 0.96
300 La 300 La 3001 La 3001 La
[} “n “n 2w @
@ 200 g @ 200 g 3 200+ g 3 200+ E
< 2 <« 2 <« 2 < F2<
¥ 100 A © Y 1004 © Y 1004 © Y 1004 [}
Lo Lo Lo Lo
o 1 2 3 0o 1 2 3 0o 1 2 3 o 1 2 3
Layer Index Layer Index Layer Index Layer Index
SA Layers: (1, 2) SA Layers: (1, 3) SA Layers: (2, 3) SA Layers: (0, 1, 2)
Accuracy: 0.37 Accuracy: 0.97 Accuracy: 1.0 Accuracy: 0.99
3001 La 3001 La 3001 La 300 La
0 0 0 n
ﬁ 200 E ﬁzoo— E ﬁzoo— E ﬁzoo— E
< r2s « 2 « r2s « Fr2s
¥ 1004 I I 0 ¥ 100 0 ¥ 100+ 0 ¥ 100+ o
Lo Lo Lo Lo
0o 1 2 3 o 1 2 3 o 1 2 3 0o 1 2 3
Layer Index Layer Index Layer Index Layer Index
SA Layers: (0, 1, 3) SA Layers: (0, 2, 3) SA Layers: (1, 2, 3) SA Layers: (0, 1, 2, 3)
Accuracy: 1.0 Accuracy: 0.97 Accuracy: 1.0 Accuracy: 1.0
300 La 300 La 3001 La 3001 La
[} “an “n “on [
@ 2004 zg @ 200+ ZE 3 200 22’ 3 200 2£
< <3 < <3 < <3 < <3
¥ 1001 © Y 1004 © Y 1004 © ¥ 1004 [}
Lo Lo Lo Lo
o 1 2 3 o 1 2 3 o 1 2 3 o 1 2 3
Layer Index Layer Index Layer Index Layer Index
(@)
W SALayers EEE GLA Layers
SA Layers: () SA Layers: (3,) SA Layers: (2, 5) SA Layers: (1, 3, 5) SA Layers: (1, 3,5,7)
Accuracy: 0.0 Accuracy: 0.0 Accuracy: 0.6 Accuracy: 0.0 Accuracy: 1.0

600

GLAESS
SAESs

200

600

SAESS

GLAESS

200

GLAESS

|I||U

34

1l
2

0
01234567

2
Layer Index Layer Index

(b)

3
15
I 0

567

01234567
Layer Index

20
3
15
A Ao

1234567
Layer Index

01234567
Layer Index

—o—accuracy —B—Avg SAESS - Max SA ESS
1.0
300
e
08 4 250
T o6
80 200
3 It
3 04 X 150
2 o
0.2 100
0.0 &1 50
VAN ANLY AN AN AN N AN AN N N AN AN
AN S DD A B AN B B A)
&€ \'G(’@.@ O A A
& QIR
8

SA Layer Indices

©

Figure 30: All results presented here are computed using tolerance-based ESS with a tolerance set
at le-1. Network layers are 0-indexed. (a) Per-layer ESS of all possible 4-layer GLA-SA hybrid
Section C.7. (b) Per-layer ESS of all possible 8-
layer GLA-SA Jamba-inspired hybrid networks. Experimental settings can be found in Section C.7.
(c) Model accuracy and max/average ESS of SA layers in the 4-layer GLA-SA hybrid networks. (d)
Model accuracy and max/average ESS of GLA layers in the 4-layer GLA-SA hybrid networks.

networks. Experimental settings can be found in

—e—accuracy ~B-Avg GLA ESS - Max GLA ESS
n
1.0 10
084 |
8
§06 R n
4 1%}
=1 6 &
S04 "
©
0.2 4
0.0 -0
DAY D DA D B A A A A B AN
R RRRR
<% ”GO@,@,@,QQ‘@.\, (NN
N @‘@@‘Q\‘Q}‘

SA Layer Indices

(d

46

Under review as a conference paper at ICLR 2025

In this section, we present results from a post-training ESS analysis applied to GLA-SA hybrid
networks to demonstrate the ability of ESS to capture differences among hybrid networks with
varying topologies.

In the first experimental setting, we train all possible 4-layer GLA-SA hybrid networks and compute
the per-layer ESS on each model. We use the tolerance-based ESS since we want to analyze failure
modes of learning in hybrid networks. In Figure 30a, we first note that in the pure GLA model, many
of the layers fail to learn expressive states (as evidenced by the tolerance ESS being 0), offering
intuition as to why the model performs so poorly. Moving on to the hybrid networks with a single
attention layer, we note that all of them perform quite well with the exception of the network which
has attention in the first layer. Interestingly, we find that when attention is placed in the first layer,
it suffers from state collapse. At a higher level, this substantiates why many state-of-the-art hybrid
networks (such as Jamba) do not place attention as the first layer of the network. However, such
hybrids are typically constructed purely on the basis of performance: here, ESS is able to provide
a distinct perspective. Next, examining the hybrids with 2 SA layers, we find that the only poor
performing topology is with attention placed in the second and third layers. Again, we find that
the ESS of the attention layers is lower than what we observe in the hybrids that solve the task,
indicating its usefulness as a proxy for performance beyond the 2-layer non-hybrid networks we
explored in Section 3.

To clarify this, we examine the maximum/average ESS (computed across layers) of the SA and
GLA layers separately to understand how each relates to model performance. Notably, we find that
maximum ESS across attention layers best correlates with accuracy (Figure 30c). Interestingly, the
average SA layer ESS is a worse proxy for performance, potentially indicating that having a single
layer with high memory utilization in hybrid networks is more important than having many layers
with lower memory utilization. This offers support as to why hybrid networks like Jamba have a
1:7 ratio between attention and non-attention layers. Regarding the GLA layers, we find that despite
both the maximum and average SS varying across models, they do not correspond to changes in
accuracy. One possible explanation for this is that since the attention layers are responsible for
driving the total ESS of the network up due to their unbounded state size, the role of non-attention
layers in hybrid networks may not be captured entirely by the magnitude of their ESS. Nonetheless,
this is something we hope to explore in future work.

In the second experimental setting, we move beyond 4-layer GLA-SA hybrids to 8-layer GLA-SA
hybrids. Here, instead of iterating over all possible topologies, we restrict the space of networks to
those constructed via the hybridization policy proposed by Jamba. The Jamba hybridization policy
takes in the number of layers as input and provides a particular hybrid topology as output (refer to
Lieber et al. (2024) for more details). Since most topologies explored in the 4-layer setting solved
the task, we both reduce the model dimension of the network and make the task more difficult to
see if we can observe performance differences across the architectures (model settings can be found
in Table 8). Unsurprisingly, we find that the pure GLA network is unable to solve the task and
also realizes a tolerance-based ESS of 0 in all layers (Figure 30b). However, more interesting is
the fact that while the 2 SA-layer Jamba hybrid partially learns the task, the 3 SA-layer does not.
Examining the ESS shows that the attention layers in the 3 SA-layer hybrid suffer from state collapse
which we know is highly correlated with poor performance on MQAR. This points to a deficiency of
fixed-topology hybridization policies like Jamba which do not take into account factors like network
trainability which can significantly influence model performance. Furthermore, this suggests that
the ESS metric can be used to better inform the construction of hybrid networks. We hope to further
elucidate these per-layer ESS trends and leverage these insights to construct novel ESS-informed
hybridization policies in future work.

D.5 STATE MODULATION OF LARGE LANGUAGE MODELS

State modulation patterns on various open-weight models are illustrated in Figures 31, 32, 33, 34,
35, and 36.

47

Under review as a conference paper at ICLR 2025

The Effect of Separator Tokens on the ESS Mamba 2.8B

x10%

2538

<sep> = <eos>
<sep> = period

N

——— —— -—
- ———— — SMoemmTGo

——
] ‘-'—__.———_—...\

’/
e
-
=
- —g= Rl

/.

= tol = 1.0e-01
= tol = 1.0e-03
= tol = 1.0e-05

——

L ™ —

971G 9YR}S QAP [RIOT,

4

2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551

Figure 31

<sep> = <eos>
- <sep> = period

The Effect of Separator Tokens on the ESS Pythia-2.8B

x10%

= tol = 1.0e-01

= tol = 1.0e-03
= tol = 1.0e-05

2552
2553
2554
2555

D 2

5
071§ 9101g PAOYT [¥I0T,

2556
2557
2558
2559
2560
2561

2562
2563
2564
2565
2566

Figure 32

<sep> = <eos>
== <sep> = period

The Effect of Separator Tokens on the ESS Phi-2 2.7B

= tol = 1.0e-01
= tol = 1.0e-03
= tol = 1.0e-05

x10%

.0
5

o —

071§ 911G OATDOP [¥I0T,

2567
2568
2569
2570
2571

2572
2573
2574
2575
2576
2577
2578

Figure 33

The Effect of Separator Tokens on the ESS Phi3-Mini-4k-Instruct 3.8B

x 106

<sep> = <eos>
<sep> = period

= tol = 1.0e-01
= tol = 1.0e-03
= tol = 1.0e-05

~« Y =) —

071G 181G OATIONH [eI0L,

OO " AN M
N 00 00 0 0 ©
0N 1 wWwwww
AN N AN AN NN

2585
2586
2587
2588
2589
2590
2591

Figure 34

48

Under review as a conference paper at ICLR 2025

%106 The Effect of Separator Tokens on the ESS Mistral7B-v0.1

T
51 = tol = 1.0e-01 N —_— sep> = <eos>
= tol = 1.0e-03 7 ., - <sep> = period

S 4] - tol = 1.0e05 p ~

Total Effective State Size
w
‘
\
\
\

04 =
T e o s Lm
250 B A G e e) v o coEe PEENUDR U4 S 4TS CORO oz
E ¥ 70 5 2 T, T wRw PUROE TReT e 3)
N RN A N % & N N
Figure 35
%106 The Effect of Separator Tokens on the ESS Mistral7B-v0.2
T
51 = tol = 1.0e-01 "" \\ —SEP> = <E0S>
= tol = 1.0e-03 // "~ == <sep> = period

£ 44 = tol = 1.0e-05 /

Total Effective State Size
\
\
\
\‘

. <} 2 0L CONZALE D PEE) &
LR RATRE A Y CTRRTER RSO U R
S Z 2° 3¢ 2 2 % e <
% =2 SN £} N
Figure 36
%100 The Effect of Separator Tokens on the ESS Llama-3-Instruct 8B
T
1 = tol = 1.0e-01 /"\\ —sep> = <e0s>
= tol = 1.0e-03 /” ‘\\ == <sep> = period
~ tol = 1.0e-05 ~ N
/‘/ \\
/’ \\
S
: /’ \\
E‘:: 5] ’/ ——-—-—\ \\
| > .
i —
07\\
2 0 G T, Qg v s B PR BT LLED PELEN UL 4 D OLT S o OPND g ees g ol
BELRRLTE R LY YL ORIRTE YURCRT TRE B3R 27NE RN RN AL T M)
2 & % s %% :) EEN
2 > % % %
% 7 2
Figure 37

The figures above reveal significant cross-architectural differences in context processing. The
attention-based model at a similar 7B scale (Figure 35, 36, and 37) shows minimal change in its
ESS pattern when an EOS token is replaced with a period (”.”). In contrast, the limited cache-size
state-space model (Falcon Mamba 7B, Figure 6a) exhibits a substantial reduction in state modulation

under the same token substitution.

We attribute this difference to a phenomenon we term “preemptive state modulation” in limited state-
size models, which stems from fundamental architectural differences. State-space models (SSMs)
with limited cache must efficiently manage their finite memory capacity and learn to preemptively
modulate state-size to optimize information retention, relying on explicit signals like EOS tokens to
trigger context resets. In contrast, attention models with linearly increasing cache can store all past
information without the need for selective forgetting, do not require preemptive state modulation,
and show less sensitivity to explicit demarcation tokens. This distinction highlights the different
strategies employed by various model architectures in managing context across diverse inputs, po-
tentially influencing their performance on tasks requiring long-range recall or context separation.

49

Under review as a conference paper at ICLR 2025

However, a subset of attention models demonstrated varying state modulation patterns in response
to different separator tokens, with this effect being more pronounced in smaller model sizes (see
Figure 32, 33, and 34). This phenomenon, while not consistent across all attention architectures,
merits deeper exploration.

Figure 38 illustrates the state modulation patterns at different tolerance levels for the four 1B lan-
guage models (LA, WLA, GLA, SA), trained under identical conditions.

%106 Separator Token vs. ESS (tol=1.0e-03) %106 Separator Token vs. ESS (tol=1.0e-02)
N - LA - GLA — <sep>: <eos> £251-1A - GLA — <sep>: <eos>
[2 44 — WLA = SA e - == <sep>: period (rw = WLA = SA el == <sep>: period
] L= N £ 2.0 _m~- S~
o, Lo 8 4 Pt ~~~
< g = N
£ 27 £ 1.0 1 = N\
=] =
ERE Z 054
=] S
T T 0.0 T T
Context 1 Context 2 Context 3 Context 1 Context 2 Context 3
(a) (b)
«10° Separator Token vs. ESS (tol=1.0e-01) «10° Separator Token vs. ESS (tol=1.0e+00)
£ = LA = GLA — <sep>: <eos> £ 1.25 = GLA — <sep>: <eos>
b — WLA = SA e~ o= - == <sep>: period &z - SA == <sep>: period
£ 6 e e~ £ 1.00
= T A g S =
@ g o= P \\\ @ 0
@ s s i ~ 2 0.75
Z 44 - Ul AV INIZ > N i
< 4 P NN s \\ 8
[0.50
st /I’ = \\ gj 5
—= 21 A =
E \\ £ 025
= =
T T 0.00 -r T T
Context 1 Context 2 Context 3 Context 1 Context 2 Context 3
(© (d

Figure 38: An illustration of the effect of different separator tokens over different layers across dif-
ferent tolerances. Softmax attention exhibits the most pronounced state modulation, beginning at a
tolerance level of 1e—2, followed by gated linear attention with significant modulation starting at a
tolerance of 1le—1. Weighted linear attention shows minimal modulation, only detectable at a toler-
ance of 1.0, while linear attention displays no discernible separator token-induced state modulation.

Notably, GLA exhibits a substantial variation in state modulation depending on the separator to-
ken, consistent with our earlier observations in Falcon Mamba, with regards to preemptive state
modulation. In contrast, SA shows a smaller, yet non-trivial, effect. WLA and LA show no dis-
cernible differences across separator tokens, which may be attributed to their overall limited ability
to modulate state size.

50

Under review as a conference paper at ICLR 2025

D.6 MISCELLANEOUS

D.6.1 EFFECTIVE STATE-SIZE ON C++ CODE

Beyond sentence delimiters such as periods and end-of-speech tokens (discussed in Section 4.4), we
observe similar “dips” in effective state-size where there are scope delimiter tokens such as “}”.

The following plots demonstrate the ESS pattern of Llama3-8B processing the C++ code of a fast
inverse square root algorithm and a Fibonacci sequence generator algorithm.

Quake fast inverse square-root algorithm:

%106 ESS of Quake Fast Inv sqrt Algorithm on Llama-3-8B-Instruct

4 T T T

//“-’\, = tol = 1.0e-01
/ = tol = 1.0e-02
N A \f\ /‘/\

(<]
S
w0
/ N\ B
w0
£ 24 / ‘\\\
8
5
El_
g ~———
\!H

Figure 39: Effective state-size over a quake fast inverse square root algorithm’s code.

I #include <iostream>
2 finclude <cmath>
3

4 // Quake Fast Inverse Square Root function
5 float quakeFastInvSqgrt (float number) {

6 long 1ij;

7 float x2, y;

8 const float threehalfs = 1.5F;

9

10 x2 = number * 0.5F;

11 y = number;

12 i = x(longx)&y; // Bit-level hacking: convert float to
long

13 i = 0x5£3759df - (1 >> 1); // Initial magic number and bit shift

14 y = x(floatx)&i; // Convert back from long to float

15

16 // Newton’s method step for refining the result

17 y =y * (threehalfs - (x2 * y x y)); // First iteration

18

19 return y;

22 int main() {

23 float number;

24

25 // Input: Get the number from the user

26 std::cout << "Enter a number: ";

27 std::cin >> number;

28

29 // Output: Display the result using the Quake fast inverse sqrt

30 float quake_result = quakeFastInvSqgrt (number) ;

31 std::cout << "Quake Fast Inverse Sqgrt: " << quake_result << std::endl
;

2

33 // Compare with standard sqgrt function

34 float std_result = 1.0f / std::sqrt (number);

51

Under review as a conference paper at ICLR 2025

35 std::cout << "Standard Inverse Sqgrt: " << std_result << std::endl;

37 return 0;

Fibonacci sequence generating algorithm:
<106 ESS of Fibonacci Algorithm on Llama-3-8B-Instruct
175 = tol = 1.0c-01 /"'\
T = tol = 1.0e-02
1.50 .—/\-’\/

1.25 4

1.00 A

0.75
0.50 S R B

\,—\M -\—-—\
0.25

T T T

Total Effective State Size

|

Figure 40: Effective state-size over a Fibonacci sequence generator algorithm’s code.

I #include <iostream>

> int fibonacci (int n) {
3 if (n <= 1) {

4 return n;

5 }

6 return fibonacci(n - 1) + fibonacci(n - 2); // Recursive case

3 int main () {

9 int n;

10 std::cout << "Enter a positive integer: ";

1 std::cin >> n;

12 std::cout << "Fibonacci number at position " << n << " is: " <<
fibonacci (n) << std::endl;

13 return 0;

D.6.2 HoOwW THE NUMBER OF PROMPTING SHOTS AFFECTS THE EFFECTIVE STATE-SIZE OF
LANGUAGE MODELS

Here, we explore how varying the number of shots when prompting large language models affects
their effective state-size patterns. We use Phi-2 as the candidate attention model and Mamba-2.8B
as the state-space model. The task we tested this on is MMLU (elementary mathematics).

At the start of the Q&A section for the attention model, there is a noticeable difference in state size
between O-shot and 1-shot prompts. Beyond 1-shot, the difference in ESS appears minimal. For the
state-space model, varying the number of shots has minimal impact on the effective state-size.

Although these sparse experimental results require further investigation, we note the stark differ-
ence in the effective state-size patterns between these two architectures, which provides additional
insights into understanding the fundamental differences in the way prompts are processed across
models.

52

Under review as a conference paper at ICLR 2025

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819 0
2820
2821
2822
2823
2824 3.5 710"
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834 0.0
2835

2835 Figure 42: The variation in effective state-size with a varying number of shots (2.8B State-Space
2857 Model).
2838

2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

%106 Phi-2 2.7B on MMLU (Elementary Mathematics)

T T T T
= O-shots (Acc.: 0.38) 1-shot (Acc.: 0.41) = 3-shots (Acc.: 0.44) = 5-shots (Acc.: 0.43)

//’“""‘\\\

2

0.001)
oo

Total Effective State Size (tol

Eg. 1 Eg. .3 Eg. 4 Eg. 5 Q&A

Figure 41: The variation in effective state-size with a varying number of shots (2.7B Attention).

Mamba-2.8B on MMLU (Elementary Mathematics)

T T
= 0-shots (Acc.: 0.27) 1-shot (Acc.: 0.24) ~ 3-shots (Acc.: 0.23) = 5-shots (Acc.: 0.26)

0.001)

3.0 1

Total Effective State Size (tol

Eg. 1 Eg. 2 Eg. 3 Eg. 4 Eg. 5 Q&A

53

	Introduction
	Theory
	Preliminaries
	The Realization Problem
	Effective State-Size
	Computing Effective State-Size

	Empirical Validation of Effective State-Size
	Cross Task-Model Analysis
	Within Task-Model Analysis

	Applications of Effective State-Size
	Initialization-Phase Analysis
	Mid-Training Analysis
	Post-Training Analysis
	State Modulation of Large Language Models

	Conclusion
	Related Work
	Theoretical Background
	Notation
	Derivations and Proofs
	The Operator Realization of Linear Recurrences
	Factorizing The Operator Realization Submatrix Hi
	The Trivial Recurrence Realization
	Minimal Recurrent Realization (Proof of Theorem 2.1)

	More on the Theoretically Realizable State-Size

	Methods
	Computing ESS
	PyTorch Implementation

	Formulation of the Featurizers
	Empirical Validation
	ESS-Informed Featurizer Selection and Initialization Scheme
	ESS-Informed Regularization
	ESS-Informed Model-Order Reduction
	ESS Analysis for Hybrid Networks
	State Modulation of Large Language Models

	Extended Experimental Results
	Empirical Validation
	State Collapse Continued
	Entropy ESS MQAR Results Continued
	Tolerance ESS MQAR Results
	Selective Copying and Compression Results
	ESS Training Dynamics in MQAR

	Initialization-Phase Analysis
	Mid-Training Analysis
	Post-Training Analysis
	Model-Order Reduction
	Hybridization

	State Modulation of Large Language Models
	Miscellaneous
	Effective State-Size on C++ Code
	How the Number of Prompting Shots Affects the Effective State-Size of Language Models

