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Abstract

Soft labels can improve the generalization of a neural network classifier in many1

domains, such as image classification. Despite its success, the current literature2

has overlooked the efficiency of label smoothing in node classification with graph-3

structured data. In this work, we propose a simple yet effective label smoothing for4

the transductive node classification task. We design the soft label to encapsulate5

the local context of the target node through the neighborhood label distribution. We6

apply the smoothing method for seven baseline models to show its effectiveness.7

The label smoothing methods improve the classification accuracy in 10 node classi-8

fication datasets in most cases. In the following analysis, we find that incorporating9

global label statistics in posterior computation is the key to the success of label10

smoothing. Further investigation reveals that the soft labels mitigate overfitting11

during training, leading to better generalization performance.12

1 Introduction13

Adding a uniform noise to the ground truth labels has shown remarkable success in training neu-14

ral networks for various classification tasks, including image classification and natural language15

processing [Szegedy et al., 2016a, Vaswani et al., 2017, Müller et al., 2019, Zhang et al., 2021].16

Despite its simplicity, label smoothing acts as a regularizer for the output distribution and improves17

generalization performance [Pereyra et al., 2017]. More sophisticated soft labeling approaches have18

been proposed based on the theoretical analysis of label smoothing [Li et al., 2020, Lienen and19

Hüllermeier, 2021]. However, the usefulness of smoothing has been under-explored in the graph20

domain, especially for node classification tasks.21

In this work, we propose a simple yet effective smoothing method for transductive node classification22

tasks. Inspired by the previous work suggesting predicting the local context of a node [Hu et al., 2019,23

Rong et al., 2020], such as subgraph prediction, helps to learn better representations, we propose24

a smoothing method that can potentially reflect the local context of the target node. To encode25

the neighborhood information into the node label, we propose to relabel the node with a posterior26

distribution of the label given neighborhood labels.27

Under the assumption that the neighborhood labels are conditionally independent given the label28

of the node to be relabeled, we factorize the likelihood into the product of conditional distributions29

between two adjacent nodes. To compute the posterior, we estimate the conditionals and prior from a30

graph’s global label statistics, making the posterior incorporate the local structure and global label31

distributions. Since the posterior obtained in this way does not preserve the ground truth label, we32

finally interpolate the posterior with the ground truth label, resulting in a soft label.33

The posterior, however, may pose high variance when there are few numbers of neighborhood34

nodes. To mitigate the issue with the sparse labels, we further propose iterative pseudo labeling to35

re-estimate the likelihood and prior based on the pseudo labels. Specifically, we use the pseudo labels36
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of validation and test sets to update the likelihood and prior, along with the ground truth labels of the37

training set.38

We apply our smoothing method to seven different baseline neural network models, including MLP39

and variants of graph neural networks, and test its performance on 10 benchmark node classification40

datasets. Our empirical study finds that the soft label with iterative pseudo labeling improves the41

accuracy in 67 out of 70 cases despite its simplicity. We analyze the cases where the soft label42

decreases the accuracy and reveals characteristics of label distributions with which the soft labeling43

may not work. Further analysis shows that using local neighborhood structure and global label44

statistics is the key to its success. Through the loss curve analysis, we find that the soft label prevents45

over-fitting, leading to a better generalization performance in classification.46

2 Related work47

In this section, we introduce previous studies related to our method. We begin by discussing various48

node classification methods, followed by an exploration of the application of soft labels in model49

training.50

2.1 Node classification51

Graph structures are utilized in various ways for node classification tasks. Some studies propose52

model frameworks based on the assumption of specific graph structures. For example, GCN [Kipf53

and Welling, 2016], GraphSAGE [Hamilton et al., 2017], and GAT [Veličković et al., 2017] aggregate54

neighbor node representations based on the homophilic assumption. To address the class-imbalance55

problem, GraphSMOTE [Zhao et al., 2021], ImGAGN [Qu et al., 2021], and GraphENS [Park et al.,56

2022] are proposed for homophilic graphs. H2GCN [Zhu et al., 2020] and U-GCN [Jin et al., 2021]57

aggregate representations of multi-hop neighbor nodes to improve performance on heterophilic58

graphs. Other studies concentrate on learning graph structure. GPR-GNN [Chien et al., 2020] and59

CPGNN [Zhu et al., 2021] learn graph structures to determine which nodes to aggregate adaptively.60

LDS [Franceschi et al., 2019], IDGL [Chen et al., 2020] and DHGR [Bi et al., 2022] take a graph61

rewiring approach, learning optimized graph structures to refine the given structure. Besides, research62

such as ChebNet [Defferrard et al., 2016], APPNP [Gasteiger et al., 2018], and BernNet [He et al.,63

2021] focus on learning appropriate filters from the graph signals.64

2.2 Classification with soft labels65

Hinton et al. [2015] demonstrate that a small student model trained using soft labels generated66

by the predictions of a large teacher model shows better performance than a model trained using67

one-hot labels. This approach, known as knowledge distillation (KD), is widely adopted in computer68

vision [Liu et al., 2019], natural language processing (NLP) [Jiao et al., 2020], and recommendation69

systems [Tang and Wang, 2018] for compression or performance improvement. In the graph domain,70

applying KD has been considered an effective method to distill graph structure knowledge to student71

models. TinyGNN [Yan et al., 2020] highlights that deep GNNs can learn information from further72

neighbor nodes than shallow GNNs, and it distills local structure knowledge from deep GNNs to73

shallow GNNs. NOSMOG [Tian et al., 2023] improves the performance of multi-layer perceptrons74

(MLPs) on graph data by distilling graph structure information from a GNN teacher model.75

On the other hand, simpler alternatives to generate soft labels are considered. The label smoothing76

(LS) [Szegedy et al., 2016a] generates soft labels by adding uniform noise to the labels. The benefits77

of LS have been widely explored. Müller et al. [2019] show that LS improves model calibration.78

Lukasik et al. [2020] establish a connection between LS and label-correction techniques, revealing79

LS can address label noise. LS has been widely adopted in computer vision [Zhang et al., 2021] and80

NLP [Vaswani et al., 2017] studies, but has received little attention in the graph domain.81

3 Method82

In this section, we describe our approach for label smoothing for the node classification problem and83

provide a new training strategy that iteratively refines the soft labels via pseudo labels obtained from84

the training procedure.85
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Figure 1: Overall illustration of posterior node relabeling. To relabel the node label, we compute
the posterior distribution of the label given neighborhood labels. Note that the node features are not
considered in the relabeling process.

3.1 Posterior label smoothing86

Consider a transductive node classification with graph G = (V, E ,X), where V and E denotes the set87

of nodes and edges respectively, and X ∈ R|V|×d denotes d-dimensional node feature matrix. For88

each node i in a training set, we have a label yi ∈ [K], where K is the total number of classes. We89

use the notation ei ∈ {0, 1}K for one-hot encoding of yi, i.e., eik = 1 if yi = k and
∑

k eik = 1.90

In a transductive setting, we observe the connectivity between all nodes, including the test nodes,91

without having true labels of the test nodes.92

We propose a simple and effective relabeling method to allocate a new label of a node based on the93

label distribution of the neighborhood nodes. Specifically, we consider the posterior distribution of94

node labels given their neighbors. Let N (i) be a set of neighborhood nodes of node i. If we assume95

the distribution of node labels depends on the graph connectivity, then the posterior probability of96

node i’s label, given its neighborhood labels, is97

P (Yi = k|{Yj = yj}j∈N (i)) =
P ({Yj = yj}j∈N (i)|Yi = k)P (Yi = k)∑K
ℓ=1 P ({Yj = yj}j∈N (i)|Yi = ℓ)P (Yi = ℓ)

. (1)

The likelihood measures the joint probability of the neighborhood labels given the label of node i. To98

obtain the likelihood, we approximate the likelihood through the product of empirical conditional99

label distribution between adjacent nodes, i.e., P ({Yj = yj}j∈N (i)|Yi = k) ≈
∏

j∈N (i) P (Yj =100

yj |Yi = k, (i, j) ∈ E), where P (Yj = yj |Yi = k, (i, j) ∈ E) is the conditional of between adjacent101

nodes. The conditional between adjacent nodes i and j with label n and m, respectively, is estimated102

by103

P̂ (Yj = m|Yi = n, (i, j) ∈ E) := |{(u, v) | yv = m, yu = n, (u, v) ∈ E}|
|{(u, v) | yu = n, (u, v) ∈ E}|

. (2)

The prior distribution is also estimated from the empirical observations. We use the empirical104

proportion of label as a prior, i.e., P̂ (Yi = m) := |{u | yu = m}|/|V|. We also explore alternative105

designs for the likelihood and compare their performances in Section 4.2.106

Note that, in implementation, all empirical distributions are computed only with the training nodes107

and their labels. The empirical distribution might be updated after node relabeling through the108

posterior computation, but we keep it the same throughout the relabeling process.109

The posterior distribution can be used as a soft label to train the model, but we add uniform noise ϵ to110

the posterior to mitigate the risk of the posterior becoming overly confident if there are few or no111

neighbors. In addition, since the most probable label from the posterior might be different from the112

ground truth label, we interpolate the posterior with the ground truth label. To this end, we obtain the113

soft label êi of node i as114

êi = (1− α)ẽi + αei , (3)
where ẽik ∝ P (Yi = k | {Yj = yj}j∈N (i)) + βϵ. α and β control the importance of interpolation115

and uniform noise. By enforcing α > 1/2, we can keep the most probable label of soft label the same116
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as the ground truth label, but we find that this condition is not necessary in empirical experiments.117

We name our method as PosteL (Posterior Label smoothing). The detailed algorithm of PosteL is118

shown in Algorithm 1.119

Algorithm 1 PosteL: Posterior label smoothing

Require: The set of training nodes Vtrain ⊂ V , the number of classes K, one-hot encoding of
training node labels {ei}i∈Vtrain

, and hyperparameters α and β.
Ensure: The set of soft labels {êi}i∈Vtrain

Estimate prior distribution for m ∈ [K]: P̂ (Yi = m) =
∑

u∈Vtrain
eum/|Vtrain|.

Define the set of training neighbors for each node u: Ntrain(u) = N (u) ∩ Vtrain.
Estimate the empirical conditional for n,m ∈ [K]:

P̂ (Yj = m|Yi = n, (i, j) ∈ E) ∝
∑

u:u∈Vtrain,yu=n

∑
v∈Ntrain(u)

evm.
for i ∈ Vtrain do

Approximate likelihood:
P ({Yj = yj}j∈Ntrain(i)|Yi = k) ≈

∏
j∈Ntrain(i)

P̂ (Yj = yj |Yi = k, (i, j) ∈ E).
Compute posterior distribution: P (Yi = k | {Yj = yj}j∈Ntrain(i)) using Equation (1).
Add uniform noise: ẽik ∝ P (Yi = k | {Yj = yj}j∈Ntrain(i)) + βϵ.
Obtain soft label: êi = (1− α)ẽi + αei.

end for

3.2 Iterative pseudo labeling120

Posterior relabeling is a method used to predict the label of a node based on the labels of its121

neighboring nodes. However, in transductive node classification tasks where train, validation, and122

test nodes coexist within the same graph, the presence of unlabeled nodes can hinder the accurate123

prediction of posterior labels. For instance, when a node has no labeled neighbors, the likelihood124

becomes one, and the posterior only relies on the prior. Moreover, in cases where labeled neighbors125

are scarce, noisy labels among the neighbors can significantly compromise the posterior distribution.126

Such challenges are particularly prevalent in sparse graphs. For example, 26.35% of nodes in the127

Cornell dataset have no neighbors with labels. In such scenarios, the posterior relabeling can be128

challenging.129

To address these limitations, we propose to update the likelihoods and priors through the pseudo130

labels of validation and test nodes. We first train a graph neural network with the soft labels obtained131

via Equation (3) and predict the labels of validation and test nodes to obtain the pseudo labels. We132

choose the most probable label as a pseudo label from the prediction. We then update the likelihood133

and prior with the pseudo labels, leading to the re-calibration of the posterior smoothing and soft134

labels. By repeating training and re-calibration until the best validation loss of the predictor no longer135

decreases, we can maximize the performance of node classification. We assume that if posterior label136

smoothing improves classification performance with a better estimation of likelihood and prior, the137

pseudo labels obtained from the predictor can benefit the posterior estimation as long as there are not138

many false pseudo labels.139

4 Experiments140

The experimental section is composed of two parts. First, we evaluate the performance of our method141

for node classification through various datasets and models. Second, we provide a comprehensive142

analysis of our method, investigating the conditions under which it performs well and the importance143

of each design choice.144

4.1 Node classification145

In this section, we assess the enhancements in node classification performance across a range of146

datasets and backbone models. Our aim is to validate the consistent efficacy of our method across147

datasets and backbone models with diverse characteristics.148
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Table 1: Classification accuracy on 10 node classification datasets. ∆ represents the performance
improvement achieved by PosteL compared to the backbone model trained with the ground truth
label. All results of the backbone model trained with the ground truth label are sourced from He et al.
[2021].

Cora CiteSeer PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell

GCN 87.14±1.01 79.86±0.67 86.74±0.27 83.32±0.33 88.26±0.73 59.61±2.21 33.23±1.16 46.78±0.87 77.38±3.28 65.90±4.43

+LS 87.77±0.97 81.06±0.59 87.73±0.24 89.08±0.30 94.05±0.26 64.81±1.53 33.81±0.75 49.53±1.10 77.87±3.11 67.87±3.77

+KD 87.90±0.90 80.97±0.56 87.03±0.29 88.56±0.36 93.64±0.31 64.49±1.38 33.33±0.78 49.38±0.64 78.03±2.62 63.61±5.57

+PosteL 88.56±0.90 82.10±0.50 88.00±0.25 89.30±0.23 94.08±0.35 65.80±1.23 35.16±0.43 52.76±0.64 80.82±2.79 80.33±1.80
∆ +1.42(↑) +2.24(↑) +1.26(↑) +5.98(↑) +5.82(↑) +6.19(↑) +1.93(↑) +5.98(↑) +3.44(↑) +14.43(↑)
GAT 88.03±0.79 80.52±0.71 87.04±0.24 83.32±0.39 90.94±0.68 63.13±1.93 33.93±2.47 44.49±0.88 80.82±2.13 78.21±2.95

+LS 88.69±0.99 81.27±0.86 86.33±0.32 88.95±0.31 94.06±0.39 65.16±1.49 34.55±1.15 45.94±1.60 78.69±4.10 74.10±4.10

+KD 87.47±0.94 80.79±0.60 86.54±0.31 88.99±0.46 93.76±0.31 65.14±1.47 35.13±1.36 43.86±0.85 79.02±2.46 73.44±2.46

+PosteL 89.21±1.08 82.13±0.64 87.08±0.19 89.60±0.29 94.31±0.31 66.28±1.14 35.92±0.72 49.38±1.05 80.33±2.62 80.33±1.81
∆ +1.18(↑) +1.61(↑) +0.04(↑) +6.28(↑) +3.37(↑) +3.15(↑) +1.99(↑) +4.89(↑) −0.49(↓) +2.12(↑)
APPNP 88.14±0.73 80.47±0.74 88.12±0.31 85.32±0.37 88.51±0.31 51.84±1.82 39.66±0.55 34.71±0.57 90.98±1.64 91.81±1.96

+LS 89.01±0.64 81.58±0.61 88.90±0.32 87.28±0.27 94.34±0.23 53.98±1.47 39.44±0.78 36.81±0.98 91.31±1.48 89.51±1.81

+KD 89.16±0.74 81.88±0.61 88.04±0.39 86.28±0.44 93.85±0.26 52.17±1.23 41.43±0.95 35.28±1.10 90.33±1.64 91.48±1.97

+PosteL 89.62±0.84 82.47±0.66 89.17±0.26 87.46±0.29 94.42±0.24 53.83±1.66 40.18±0.70 36.71±0.60 92.13±1.48 93.44±1.64
∆ +1.48(↑) +2.00(↑) +1.05(↑) +2.14(↑) +5.91(↑) +1.99(↑) +0.52(↑) +2.00(↑) +1.15(↑) +1.63(↑)
MLP 76.96±0.95 76.58±0.88 85.94±0.22 82.85±0.38 84.72±0.34 46.85±1.51 40.19±0.56 31.03±1.18 91.45±1.14 90.82±1.63

+LS 77.21±0.97 76.82±0.66 86.14±0.35 83.62±0.88 89.46±0.44 48.23±1.23 39.75±0.63 31.10±0.80 90.98±1.64 90.98±1.31

+KD 76.32±0.94 77.75±0.75 85.10±0.29 83.89±0.53 88.23±0.38 47.40±1.75 41.32±0.75 32.58±0.83 89.34±1.97 91.80±1.15

+PosteL 78.39±0.94 78.40±0.71 86.51±0.33 84.20±0.55 89.90±0.27 48.51±1.66 40.15±0.46 33.11±0.60 92.95±1.31 93.61±1.80
∆ +1.43(↑) +1.82(↑) +0.57(↑) +1.35(↑) +5.18(↑) +1.66(↑) −0.04(↓) +2.08(↑) +1.50(↑) +2.79(↑)
ChebNet 86.67±0.82 79.11±0.75 87.95±0.28 87.54±0.43 93.77±0.32 59.28±1.25 37.61±0.89 40.55±0.42 86.22±2.45 83.93±2.13

+LS 87.22±0.99 79.70±0.63 88.48±0.29 89.55±0.38 94.53±0.37 66.41±1.16 39.39±0.73 42.55±1.11 87.21±2.62 84.59±2.30

+KD 87.36±0.95 80.80±0.72 88.41±0.20 89.81±0.30 94.76±0.30 61.47±1.23 40.68±0.50 43.88±1.97 84.75±3.61 83.61±2.30

+PosteL 88.57±0.92 82.48±0.52 89.20±0.31 89.95±0.40 94.87±0.25 66.83±0.77 39.56±0.51 50.87±0.90 86.39±2.46 88.52±2.63
∆ +1.90(↑) +3.37(↑) +1.25(↑) +2.41(↑) +1.10(↑) +7.55(↑) +1.95(↑) +10.32(↑) +0.17(↑) +4.59(↑)
GPR-GNN 88.57±0.69 80.12±0.83 88.46±0.33 86.85±0.25 93.85±0.28 67.28±1.09 39.92±0.67 50.15±1.92 92.95±1.31 91.37±1.81

+LS 88.82±0.99 79.78±1.06 88.24±0.42 88.39±0.48 93.97±0.33 67.90±1.01 39.72±0.70 53.39±1.80 92.79±1.15 90.49±2.46

+KD 89.33±1.03 81.24±0.85 89.85±0.56 87.88±1.11 94.23±0.51 66.76±1.31 42.00±0.63 53.26±1.07 94.26±1.48 88.52±1.97

+PosteL 89.20±1.07 81.21±0.64 90.57±0.31 89.84±0.43 94.76±0.38 68.38±1.12 40.08±0.69 53.54±0.79 93.28±1.31 92.46±0.99
∆ +0.63(↑) +1.09(↑) +2.11(↑) +2.99(↑) +0.91(↑) +1.10(↑) +0.16(↑) +3.39(↑) +0.33(↑) +1.09(↑)
BernNet 88.52±0.95 80.09±0.79 88.48±0.41 87.64±0.44 93.63±0.35 68.29±1.58 41.79±1.01 51.35±0.73 93.12±0.65 92.13±1.64

+LS 88.80±0.92 80.37±1.05 87.40±0.27 88.32±0.38 93.70±0.21 69.58±0.94 39.60±0.53 52.39±0.60 91.80±1.80 90.49±1.48

+KD 87.78±0.99 81.20±0.86 87.59±0.41 87.35±0.40 93.96±0.40 67.75±1.42 41.04±0.89 51.25±0.83 93.61±1.31 90.33±2.30

+PosteL 89.39±0.92 82.46±0.67 89.07±0.29 89.56±0.35 94.54±0.36 69.65±0.83 40.40±0.67 53.11±0.87 93.93±1.15 92.95±1.80
∆ +0.87(↑) +2.37(↑) +0.59(↑) +1.92(↑) +0.91(↑) +1.36(↑) −1.39(↓) +1.76(↑) +0.81(↑) +0.82(↑)

Datasets We assess the performance of our method across 10 node classification datasets. To149

examine the effect of our method on diverse types of graphs, we conduct experiments on both150

homophilic and heterophilic graphs. Adjacent nodes in a homophilic graph are likely to have the same151

label. Adjacent nodes in a heterophilic graph are likely to have different labels. For the homophilic152

datasets, we use five datasets: the citation graphs Cora, CiteSeer, and PubMed [Sen et al., 2008,153

Yang et al., 2016], and the Amazon co-purchase graphs Computers and Photo [McAuley et al.,154

2015]. For the heterophilic datasets, we use five datasets: the Wikipedia graphs Chameleon and155

Squirrel [Rozemberczki et al., 2021], the Actor co-occurrence graph Actor [Tang et al., 2009], and the156

webpage graphs Texas and Cornell [Pei et al., 2020]. Detailed statistics of each dataset are illustrated157

in Appendix A.158

Experimental setup and baselines We evaluate the performance of PosteL across various back-159

bone models, ranging from MLP, which ignores underlying structure between nodes, to six widely160

used graph neural networks: GCN [Kipf and Welling, 2016], GAT [Veličković et al., 2017],161

APPNP [Gasteiger et al., 2018], ChebNet [Defferrard et al., 2016], GPR-GNN [Chien et al., 2020],162

and BernNet [He et al., 2021]. We follow the experimental setup and backbone implementations of He163

et al. [2021]. Specifically, we use fixed 10 train, validation, and test splits with ratios of 60%/20%/20%,164

respectively, and measure the accuracy at the lowest validation loss. We report the mean performance165

and 95% confidence interval. The model is trained for 1,000 epochs, and we apply early stopping166

when validation loss does not decrease during the last 200 epochs. For all models, the learning167

rate is validated within {0.001, 0.002, 0.01, 0.05}, and weight decay within {0, 0.0005}. The search168

spaces of the other model-dependent hyperparameters are provided in Appendix B. We validate two169

hyperparameters for PosteL: posterior label ratio α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}170

and uniform noise ratio β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.171

We compare our method with two different soft labeling methods, including label smoothing172

(LS) [Szegedy et al., 2016b] and knowledge distillation (KD) [Hinton et al., 2015]. For KD, we173
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Figure 2: Loss curve of GCN trained on PosteL labels and ground truth labels on the Squirrel dataset.

use an ensemble of average logits from three independently trained GNNs as a teacher model. The174

temperature parameter for KD is set to four following the previous work [Stanton et al., 2021].175

Results In Table 1, the classification accuracy and 95% confidence interval for each of the seven176

models across the 10 datasets are presented. In most cases, PosteL outperforms baseline methods177

across various settings, demonstrating significant performance enhancements and validating its178

effectiveness for node classification. Specifically, our method performs better in 67 cases out of179

70 settings against the ground truth labels. Furthermore, among these settings, 39 cases show180

improvements over the 95% confidence interval. Notably, on the Cornell dataset with the GCN181

backbone, our method achieves a substantial performance enhancement of 14.43%. When compared182

to the other soft label methods, PosteL performs better in most cases as well. The knowledge183

distillation method shows comparable performance with the GPR-GNN baseline, but even in this184

case, there are marginal differences between the two approaches.185

4.2 Analysis186

In this section, we analyze the main experimental result from various perspectives, including design187

choices, ablations, and computational complexity.188

Learning curves analysis We investigate the influence of soft labels on the learning dynamics of189

GNNs by visualizing the loss function of GCNs with and without soft labels. Figure 2 visualizes the190

differences between training, validation, and test losses with and without the PosteL labels on the191

Squirrel dataset. From the training loss, we observe that the cross entropy with the PosteL labels192

converges to a higher loss than that with the ground truth labels. The curve shows that predicting soft193

labels is more difficult than predicting ground truth labels. On the other hand, the validation and test194

losses with the soft labels converge to lower losses than those with the ground truth labels. Especially,195

up to 200 epochs, we observe that no overfitting happens with the soft labels. We conjecture that196

predicting the correct PosteL label implies the correct prediction of the local neighborhood structure197

since the PosteL labels contain the local neighborhood information of the target node. Hence, the198

model trained with PosteL labels could have a better understanding of the graph structure, potentially199

leading to a better generalization performance. A similar context prediction approach has been200

proposed as a pertaining method in previous studies [Hu et al., 2019, Rong et al., 2020]. We provide201

the same curves for all datasets in Figure 6 and Figure 7 in Appendix D. All curves across all datasets202

show similar patterns.203

Influence of neighborhood label distribution Our approach assumes that the distribution of204

neighborhood labels varies depending on the label of the target node. If there are no significant205

differences between the neighborhood’s label distributions, the posterior relabeling assigns similar206

soft labels for all nodes, making our method similar to the uniform noise method.207

Figure 3 shows the neighborhood label distribution for three different datasets. In the PubMed and208

Texas datasets, we observe a notable difference in the conditionals when w.r.t the different labels of a209

target node. The PubMed dataset is known to be homophilic, where nodes with the same labels are210

likely to be connected, and the conditional distributions match the characteristics of the homophilic211

dataset. The Texas dataset, a heterophilic dataset, shows that some pairs of labels more frequently212

appear in the graph. For example, when the target node has the label of 1, their neighborhoods will213

likely have the label of 5. On the other hand, the conditionals of the Actor dataset do not vary much214
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Figure 3: Empirical conditional distributions between two adjacent nodes. We omit the adjacent
condition (i, j) ∈ E from the figures for simplicity.
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(a) Chameleon

GT Labels PosteL Labels

(b) Squirrel

Figure 4: t-SNE plots of the final layer representation of the Chameleon and Squirrel datasets. For
each dataset, the left figure displays the representations trained on the ground truth labels, while the
right figure displays the representations trained on the PosteL labels.

regarding the label of the target node. In such a case, the prior will likely dominate the posterior.215

Therefore, the posterior may not provide useful information about neighborhood nodes, potentially216

limiting the effectiveness of our method. This analysis aligns with the results in Table 1, where the217

improvement of the Actor dataset is less significant than those of the PubMed and Texas datasets. The218

neighborhood label distributions for all datasets are provided in Figure 8 and Figure 9 in Appendix E.219

Visualization of node embeddings Figure 4 presents the t-SNE [Van der Maaten and Hinton, 2008]220

plots of node embeddings from the GCN with the Chameleon and Squirrel datasets. The node color221

represents the label. For each dataset, the left plot visualizes the embeddings with the ground truth222

labels, while the right plot visualizes the embeddings with PosteL labels. The visualization shows223

that the embeddings from the soft labels form tighter clusters compared to those trained with the224

ground truth labels. This visualization results coincide with the t-SNE visualization of the previous225

work of Müller et al. [2019].226

Effect of iterative pseudo labeling We evaluate the impact of iterative pseudo labeling by analyzing227

the loss curve at each iteration. Figure 5 illustrates the loss curves for different iterations on the228

Cornell dataset. As the iteration progresses, the validation and test losses after 1,000 epochs keep229

decreasing. In this example, the model performs best after four iteration steps. We find that the best230

validation performance is obtained from 1.13 iterations on average. We provide the average iteration231

steps in Appendix C used to report the results in Table 1.232
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Figure 5: The impact of the iterative pseudo labeling: loss curves of GCN on the Cornell dataset.

Table 2: Classification accuracy with various choices of likelihood model. PosteL (local-1) and
(local-2) indicate that the likelihood is estimated within one- and two-hop neighbors of a target node,
respectively. PosteL (norm.), shortened from PosteL (normalized), indicates that the likelihood is
normalized based on the degree of a node.

Cora CiteSeer Computers Photo Chameleon Actor Texas Cornell

GCN 87.14±1.01 79.86±0.67 83.32±0.33 88.26±0.73 59.61±2.21 33.23±1.16 77.38±3.28 65.90±4.43

+PosteL (local-1) 88.26±1.07 81.42±0.46 89.08±0.31 93.61±0.40 65.36±1.25 33.48±1.03 79.02±3.11 71.97±4.10

+PosteL (local-2) 88.62±0.97 81.92±0.42 88.62±0.48 93.95±0.37 65.10±1.55 34.63±0.46 78.20±2.79 73.28±4.10

+PosteL (norm.) 89.00±0.99 81.86±0.70 89.30±0.39 94.13±0.39 66.00±1.14 34.90±0.63 80.33±2.95 80.00±1.97

+PosteL 88.56±0.90 82.10±0.50 89.30±0.23 94.08±0.35 65.80±1.23 35.16±0.43 80.82±2.79 80.33±1.80

Design choices of likelihood model We explore various valid design choices for likelihood models.233

We introduce two variants of PosteL: PosteL (normalized) and PosteL (local-H). In Equation (2),234

each edge has an equal contribution to the conditional. The conditional can be influenced by a few235

numbers of nodes with many connections. To mitigate the importance of high-degree nodes, we236

alternatively test the following conditional, denoted as PosteL (normalized):237

P̂ norm.(Yj = m|Yi = n, (i, j) ∈ E) :=
∑

yu=n

∑
v∈N (u)

1
|N (u)| · 1[yv = m]

|{yu = n | u ∈ V}|
,

where 1 is an indicator function.238

In PosteL (local-H), we estimate the likelihood and prior distributions of each node from their239

respective H-hop ego graphs. Specifically, the likelihood of PosteL (local-H) is formulated as240

follows:241

P̂ local-H(Yj = m|Yi = n, (i, j) ∈ E) := |{(u, v)|yv = m, yu = n, (u, v) ∈ E , u, v ∈ N (H)(i)}|
|{(u, v)|yu = n, (u, v) ∈ E , u, v ∈ N (H)(i)}|

,

where N (H)(i) denotes the set of neighborhoods of node i within H hops. Through the local242

likelihood, we test the importance of global and local statistics in the smoothing process.243

Table 2 shows the comparison between these variants. The likelihood with global statistics, e.g.,244

PosteL and PosteL (normalized), performs better than the local likelihood methods, e.g., PosteL245

(local-1) and PosteL (local-2) in general, highlighting the importance of simultaneously utilizing246

global statistics. Especially in the Cornell dataset, a significant performance gap between PosteL and247

PosteL (local) is observed. PosteL (normalized) demonstrates similar performance to PosteL.248

Ablation studies To highlight the importance of each component in PosteL, we perform ablation249

studies on three components: posterior smoothing without uniform noise (PS), uniform smoothing250

(UN), and iterative pseudo labeling (IPL). Table 3 presents the performance results from the ablation251

studies.252

The configuration with all components included achieves the highest performance, underscoring the253

significance of each component. The iterative pseudo labeling proves effective across almost all254

datasets, with a particularly notable impact on the Cornell dataset. However, even without iterative255

pseudo labeling, the performance remains competitive, suggesting that its use can be decided based256

on available resources. Additionally, incorporating uniform noise into the posterior distribution257

enhances performance on several datasets. Moreover, PosteL consistently outperforms the approach258

using only uniform noise, a widely used label smoothing method.259
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Table 3: Ablation studies on three main components of PosteL on GCN. PS stands for posterior label
smoothing without uniform noise, UN stands for uniform noise added to the posterior distribution,
and IPL stands for iterative pseudo labeling. We use ✓to indicate the presence of the corresponding
component in training and ✗ to indicate its absence. IPL with one indicates the performance with a
single pseudo labeling step.

PS UN IPL Cora CiteSeer Computers Photo Chameleon Actor Texas Cornell

✗ ✗ ✗ 87.14±1.01 79.86±0.67 83.32±0.33 88.26±0.73 59.61±2.21 33.23±1.16 77.38±3.28 65.90±4.43

✓ ✗ ✗ 88.11±1.22 80.95±0.52 88.86±0.40 93.55±0.30 64.53±1.23 33.48±0.62 78.52±2.46 68.52±4.43

✗ ✓ ✗ 87.77±0.97 81.06±0.59 89.08±0.30 94.05±0.26 64.81±1.53 33.81±0.75 77.87±3.11 67.87±3.77

✓ ✗ ✓ 88.56±0.90 81.64±0.57 88.70±0.27 93.70±0.37 64.25±1.93 34.71±0.76 80.82±2.79 80.16±1.97

✓ ✓ ✗ 87.83±0.92 82.09±0.44 89.17±0.31 93.98±0.34 66.19±1.60 34.91±0.48 79.51±3.61 71.97±5.25

✓ ✓ 1 87.96±0.90 82.33±0.52 89.16±0.30 94.06±0.27 65.89±1.51 34.96±0.48 80.16±2.79 80.33±1.97

✓ ✓ ✓ 88.56±0.90 82.10±0.50 89.30±0.23 94.08±0.35 65.80±1.23 35.16±0.43 80.82±2.79 80.33±1.80

Table 4: Accuracy of the model trained with sparse labels. The ratio indicates the percentage of nodes
used for training.

ratio Cora CiteSeer Computers Photo Chameleon Actor Texas Cornell

GCN 5% 80.03±0.57 70.19±0.49 85.32±0.60 92.39±0.24 45.96±2.48 25.20±0.83 54.23±6.35 50.58±5.84
+PosteL 80.42±0.64 71.08±0.65 86.22±0.45 92.66±0.21 51.35±1.19 27.04±0.51 57.52±1.97 50.36±3.43

GCN 10% 83.05±0.51 72.09±0.46 86.68±0.59 92.49±0.29 51.55±1.67 26.78±0.68 60.08±2.56 53.64±3.49

+PosteL 83.50±0.36 73.76±0.26 87.47±0.37 92.88±0.30 56.33±1.86 28.07±0.19 61.63±2.87 57.75±1.86

GCN 20% 84.46±0.68 73.93±0.69 87.12±0.33 93.24±0.33 55.57±1.18 27.42±0.76 63.33±2.05 52.91±2.65

+PosteL 85.32±0.65 75.73±0.39 87.77±0.19 93.47±0.18 60.91±1.07 29.23±0.50 64.87±2.74 56.92±2.39

GCN 30% 85.76±0.46 75.56±0.44 87.02±0.49 93.14±0.27 59.41±1.08 28.81±0.50 65.64±4.36 60.40±3.96

+PosteL 86.04±0.37 77.30±0.65 88.09±0.31 93.47±0.27 63.64±0.98 30.21±0.39 69.80±3.86 64.95±2.08

GCN 40% 86.32±0.43 77.17±0.52 87.88±0.58 93.76±0.20 60.44±1.20 29.71±0.72 67.88±2.47 62.00±2.12

+PosteL 86.23±0.37 79.22±0.32 88.21±0.29 93.99±0.24 63.82±1.44 31.05±0.40 73.76±2.59 67.41±4.71

Complexity analysis The computational complexity of calculating the posterior label is O(|E|K).260

Since the labeling is performed before the learning stage, the time required to process the posterior261

label can be considered negligible. The training time increases linearly w.r.t the number of iterations262

with the pseudo labeling. However, experiments show that an average of 1.13 iterations is needed,263

making our approach feasible without having too many iterations. The proof of computational264

complexity is in Appendix C.265

4.3 Training with sparse labels266

Our method relies on global statistics estimated from training nodes. However, in scenarios where267

training data is sparse, the estimation of global statistics can be challenging. To assess the effectiveness268

of the label smoothing from graphs with sparse labels, we conduct experiments with varying sizes of269

a training set. We vary the size of the training set from 5% to 40% of an entire dataset and conduct270

the classification experiments with the same setting used in the previous section. The percentage of271

validation nodes is set to 20% for all experiments. Table 4 provides the classification performance272

with sparse labels. Even in scenarios with sparse labels, PosteL consistently outperforms models273

trained on ground truth labels in most cases. These results show that our method can effectively274

capture global statistics even when training data is limited.275

5 Conclusion276

In this paper, we proposed a novel posterior label smoothing method, PosteL, designed to enhance277

node classification performance in graph-structured data. Our approach integrates both local neighbor-278

hood information and global label statistics to generate soft labels, thereby improving generalization279

and mitigating overfitting. Extensive experiments across various datasets and models demonstrated280

the effectiveness of PosteL, showing significant performance gains compared to baseline methods281

despite its simplicity.282
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and how they scale with dataset size.442

• If applicable, the authors should discuss possible limitations of their approach to443

address problems of privacy and fairness.444

• While the authors might fear that complete honesty about limitations might be used by445

reviewers as grounds for rejection, a worse outcome might be that reviewers discover446

limitations that aren’t acknowledged in the paper. The authors should use their best447

judgment and recognize that individual actions in favor of transparency play an impor-448

tant role in developing norms that preserve the integrity of the community. Reviewers449

will be specifically instructed to not penalize honesty concerning limitations.450

3. Theory Assumptions and Proofs451

Question: For each theoretical result, does the paper provide the full set of assumptions and452

a complete (and correct) proof?453

Answer: [Yes]454
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Justification: The computational complexity of the proposed model is proven in Appendix C.455

Guidelines:456

• The answer NA means that the paper does not include theoretical results.457

• All the theorems, formulas, and proofs in the paper should be numbered and cross-458

referenced.459

• All assumptions should be clearly stated or referenced in the statement of any theorems.460

• The proofs can either appear in the main paper or the supplemental material, but if461

they appear in the supplemental material, the authors are encouraged to provide a short462

proof sketch to provide intuition.463

• Inversely, any informal proof provided in the core of the paper should be complemented464

by formal proofs provided in appendix or supplemental material.465

• Theorems and Lemmas that the proof relies upon should be properly referenced.466

4. Experimental Result Reproducibility467

Question: Does the paper fully disclose all the information needed to reproduce the main ex-468

perimental results of the paper to the extent that it affects the main claims and/or conclusions469

of the paper (regardless of whether the code and data are provided or not)?470

Answer: [Yes]471

Justification: We provide the source code in the supplemental material, and all the hyperpa-472

rameters we used are reported in Section 4.473

Guidelines:474

• The answer NA means that the paper does not include experiments.475

• If the paper includes experiments, a No answer to this question will not be perceived476

well by the reviewers: Making the paper reproducible is important, regardless of477

whether the code and data are provided or not.478

• If the contribution is a dataset and/or model, the authors should describe the steps taken479

to make their results reproducible or verifiable.480

• Depending on the contribution, reproducibility can be accomplished in various ways.481

For example, if the contribution is a novel architecture, describing the architecture fully482

might suffice, or if the contribution is a specific model and empirical evaluation, it may483

be necessary to either make it possible for others to replicate the model with the same484

dataset, or provide access to the model. In general. releasing code and data is often485

one good way to accomplish this, but reproducibility can also be provided via detailed486

instructions for how to replicate the results, access to a hosted model (e.g., in the case487

of a large language model), releasing of a model checkpoint, or other means that are488

appropriate to the research performed.489

• While NeurIPS does not require releasing code, the conference does require all submis-490

sions to provide some reasonable avenue for reproducibility, which may depend on the491

nature of the contribution. For example492

(a) If the contribution is primarily a new algorithm, the paper should make it clear how493

to reproduce that algorithm.494

(b) If the contribution is primarily a new model architecture, the paper should describe495

the architecture clearly and fully.496

(c) If the contribution is a new model (e.g., a large language model), then there should497

either be a way to access this model for reproducing the results or a way to reproduce498

the model (e.g., with an open-source dataset or instructions for how to construct499

the dataset).500

(d) We recognize that reproducibility may be tricky in some cases, in which case501

authors are welcome to describe the particular way they provide for reproducibility.502

In the case of closed-source models, it may be that access to the model is limited in503

some way (e.g., to registered users), but it should be possible for other researchers504

to have some path to reproducing or verifying the results.505

5. Open access to data and code506

Question: Does the paper provide open access to the data and code, with sufficient instruc-507

tions to faithfully reproduce the main experimental results, as described in supplemental508

material?509
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Answer: [Yes]510

Justification: We provide the source code for the proposed model, along with the environment511

required to reproduce it and the hyperparameter space we utilized.512

Guidelines:513

• The answer NA means that paper does not include experiments requiring code.514

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/515

public/guides/CodeSubmissionPolicy) for more details.516

• While we encourage the release of code and data, we understand that this might not be517

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not518

including code, unless this is central to the contribution (e.g., for a new open-source519

benchmark).520

• The instructions should contain the exact command and environment needed to run to521

reproduce the results. See the NeurIPS code and data submission guidelines (https:522

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.523

• The authors should provide instructions on data access and preparation, including how524

to access the raw data, preprocessed data, intermediate data, and generated data, etc.525

• The authors should provide scripts to reproduce all experimental results for the new526

proposed method and baselines. If only a subset of experiments are reproducible, they527

should state which ones are omitted from the script and why.528

• At submission time, to preserve anonymity, the authors should release anonymized529

versions (if applicable).530

• Providing as much information as possible in supplemental material (appended to the531

paper) is recommended, but including URLs to data and code is permitted.532

6. Experimental Setting/Details533

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-534

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the535

results?536

Answer: [Yes]537

Justification: We provide all details in the appendix and experiments sections.538

Guidelines:539

• The answer NA means that the paper does not include experiments.540

• The experimental setting should be presented in the core of the paper to a level of detail541

that is necessary to appreciate the results and make sense of them.542

• The full details can be provided either with the code, in appendix, or as supplemental543

material.544

7. Experiment Statistical Significance545

Question: Does the paper report error bars suitably and correctly defined or other appropriate546

information about the statistical significance of the experiments?547

Answer: [Yes]548

Justification: We provide the 95% confidence interval for all main experiments.549

Guidelines:550

• The answer NA means that the paper does not include experiments.551

• The authors should answer "Yes" if the results are accompanied by error bars, confi-552

dence intervals, or statistical significance tests, at least for the experiments that support553

the main claims of the paper.554

• The factors of variability that the error bars are capturing should be clearly stated (for555

example, train/test split, initialization, random drawing of some parameter, or overall556

run with given experimental conditions).557

• The method for calculating the error bars should be explained (closed form formula,558

call to a library function, bootstrap, etc.)559

• The assumptions made should be given (e.g., Normally distributed errors).560
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• It should be clear whether the error bar is the standard deviation or the standard error561

of the mean.562

• It is OK to report 1-sigma error bars, but one should state it. The authors should563

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis564

of Normality of errors is not verified.565

• For asymmetric distributions, the authors should be careful not to show in tables or566

figures symmetric error bars that would yield results that are out of range (e.g. negative567

error rates).568

• If error bars are reported in tables or plots, The authors should explain in the text how569

they were calculated and reference the corresponding figures or tables in the text.570

8. Experiments Compute Resources571

Question: For each experiment, does the paper provide sufficient information on the com-572

puter resources (type of compute workers, memory, time of execution) needed to reproduce573

the experiments?574

Answer: [Yes]575

Justification: We provide experiments computer resources in Appendix B.576

Guidelines:577

• The answer NA means that the paper does not include experiments.578

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,579

or cloud provider, including relevant memory and storage.580

• The paper should provide the amount of compute required for each of the individual581

experimental runs as well as estimate the total compute.582

• The paper should disclose whether the full research project required more compute583

than the experiments reported in the paper (e.g., preliminary or failed experiments that584

didn’t make it into the paper).585

9. Code Of Ethics586

Question: Does the research conducted in the paper conform, in every respect, with the587

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?588

Answer: [Yes]589

Justification: Our paper follows the NeurIPS Code of Ethics.590

Guidelines:591

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.592

• If the authors answer No, they should explain the special circumstances that require a593

deviation from the Code of Ethics.594

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-595

eration due to laws or regulations in their jurisdiction).596

10. Broader Impacts597

Question: Does the paper discuss both potential positive societal impacts and negative598

societal impacts of the work performed?599

Answer: [NA]600

Justification: This paper proposes a label smoothing method designed to improve the601

classification performance.602

Guidelines:603

• The answer NA means that there is no societal impact of the work performed.604

• If the authors answer NA or No, they should explain why their work has no societal605

impact or why the paper does not address societal impact.606

• Examples of negative societal impacts include potential malicious or unintended uses607

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations608

(e.g., deployment of technologies that could make decisions that unfairly impact specific609

groups), privacy considerations, and security considerations.610
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• The conference expects that many papers will be foundational research and not tied611

to particular applications, let alone deployments. However, if there is a direct path to612

any negative applications, the authors should point it out. For example, it is legitimate613

to point out that an improvement in the quality of generative models could be used to614

generate deepfakes for disinformation. On the other hand, it is not needed to point out615

that a generic algorithm for optimizing neural networks could enable people to train616

models that generate Deepfakes faster.617

• The authors should consider possible harms that could arise when the technology is618

being used as intended and functioning correctly, harms that could arise when the619

technology is being used as intended but gives incorrect results, and harms following620

from (intentional or unintentional) misuse of the technology.621

• If there are negative societal impacts, the authors could also discuss possible mitigation622

strategies (e.g., gated release of models, providing defenses in addition to attacks,623

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from624

feedback over time, improving the efficiency and accessibility of ML).625

11. Safeguards626

Question: Does the paper describe safeguards that have been put in place for responsible627

release of data or models that have a high risk for misuse (e.g., pretrained language models,628

image generators, or scraped datasets)?629

Answer: [NA]630

Justification: This paper poses no risk for misuse.631

Guidelines:632

• The answer NA means that the paper poses no such risks.633

• Released models that have a high risk for misuse or dual-use should be released with634

necessary safeguards to allow for controlled use of the model, for example by requiring635

that users adhere to usage guidelines or restrictions to access the model or implementing636

safety filters.637

• Datasets that have been scraped from the Internet could pose safety risks. The authors638

should describe how they avoided releasing unsafe images.639

• We recognize that providing effective safeguards is challenging, and many papers do640

not require this, but we encourage authors to take this into account and make a best641

faith effort.642

12. Licenses for existing assets643

Question: Are the creators or original owners of assets (e.g., code, data, models), used in644

the paper, properly credited and are the license and terms of use explicitly mentioned and645

properly respected?646

Answer: [Yes]647

Justification: We cite the original paper that produced the code package and dataset.648

Guidelines:649

• The answer NA means that the paper does not use existing assets.650

• The authors should cite the original paper that produced the code package or dataset.651

• The authors should state which version of the asset is used and, if possible, include a652

URL.653

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.654

• For scraped data from a particular source (e.g., website), the copyright and terms of655

service of that source should be provided.656

• If assets are released, the license, copyright information, and terms of use in the657

package should be provided. For popular datasets, paperswithcode.com/datasets658

has curated licenses for some datasets. Their licensing guide can help determine the659

license of a dataset.660

• For existing datasets that are re-packaged, both the original license and the license of661

the derived asset (if it has changed) should be provided.662
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• If this information is not available online, the authors are encouraged to reach out to663

the asset’s creators.664

13. New Assets665

Question: Are new assets introduced in the paper well documented and is the documentation666

provided alongside the assets?667

Answer: [Yes]668

Justification: We provide documentation for the code.669

Guidelines:670

• The answer NA means that the paper does not release new assets.671

• Researchers should communicate the details of the dataset/code/model as part of their672

submissions via structured templates. This includes details about training, license,673

limitations, etc.674

• The paper should discuss whether and how consent was obtained from people whose675

asset is used.676

• At submission time, remember to anonymize your assets (if applicable). You can either677

create an anonymized URL or include an anonymized zip file.678

14. Crowdsourcing and Research with Human Subjects679

Question: For crowdsourcing experiments and research with human subjects, does the paper680

include the full text of instructions given to participants and screenshots, if applicable, as681

well as details about compensation (if any)?682

Answer: [NA]683

Justification: This work does not involve crowdsourcing.684

Guidelines:685

• The answer NA means that the paper does not involve crowdsourcing nor research with686

human subjects.687

• Including this information in the supplemental material is fine, but if the main contribu-688

tion of the paper involves human subjects, then as much detail as possible should be689

included in the main paper.690

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,691

or other labor should be paid at least the minimum wage in the country of the data692

collector.693

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human694

Subjects695

Question: Does the paper describe potential risks incurred by study participants, whether696

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)697

approvals (or an equivalent approval/review based on the requirements of your country or698

institution) were obtained?699

Answer: [NA]700

Justification: The paper does not involve crowdsourcing nor research with human subjects.701

Guidelines:702

• The answer NA means that the paper does not involve crowdsourcing nor research with703

human subjects.704

• Depending on the country in which research is conducted, IRB approval (or equivalent)705

may be required for any human subjects research. If you obtained IRB approval, you706

should clearly state this in the paper.707

• We recognize that the procedures for this may vary significantly between institutions708

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the709

guidelines for their institution.710

• For initial submissions, do not include any information that would break anonymity (if711

applicable), such as the institution conducting the review.712
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A Dataset statistics713

We provide detailed statistics about the dataset used for the experiments in Table 5.

Dataset # nodes # edges # features # classes

Cora 2,708 5,278 1,433 7
CiteSeer 3,327 4,552 3,703 6
PubMed 19,717 44,324 500 3

Computers 13,752 245,861 767 10
Photo 7,650 119,081 745 8

Chameleon 2,277 31,396 2,325 5
Actor 7,600 30,019 932 5

Squirrel 5,201 198,423 2,089 5
Texas 183 287 1,703 5

Cornell 183 277 1,703 5

Table 5: Statistics of the dataset utilized in the experiments.

714

B Detailed experimental setup715

In this section, we provide the computer resources and search space for model hyperparameters.716

Our experiments are executed on AMD EPYC 7513 32-core Processor and a single NVIDIA RTX717

A6000 GPU with 48GB of memory. We use the same model hyperparameter search space as He et al.718

[2021]. Specifically, we set the number of layers for all models to two. The dropout ratio for the719

linear layers is fixed at 0.5. For the GCN [Kipf and Welling, 2016], the hidden layer dimension is set720

to 64. The GAT [Veličković et al., 2017] uses eight heads, each with a hidden dimension of eight.721

For the APPNP [Gasteiger et al., 2018], a two-layer MLP with a hidden dimension of 64 is used, the722

power iteration step is set to 10, and the teleport probability is chosen from {0.1, 0.2, 0.5, 0.9}. For723

the MLP, the hidden dimension is set to 64. For the ChebNet [Defferrard et al., 2016], the hidden724

dimension is set to 32, and two propagation steps are used. For the GPR-GNN [Chien et al., 2020], a725

two-layer MLP with a hidden dimension of 64 is used as the feature extractor neural network, and the726

random walk path length is set to 10. The PPR teleport probability is chosen from {0.1, 0.2, 0.5, 0.9}.727

For BernNet [He et al., 2021], a two-layer MLP with a hidden dimension of 64 is used as the feature728

extractor, and the polynomial approximation order is set to 10. The dropout ratio for the propagation729

layers in both GPR-GNN and BernNet is chosen from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.730

C Complexity analysis731

In this section, we provide a detailed analysis of the time complexity of Section 3.1. Specifically, we732

demonstrate the time complexity of obtaining the prior and likelihood distributions separately. Finally,733

we determine the time complexity of computing the posterior distribution using these distributions.734

First, the prior distribution P̂ (Yi = m) can be obtained as follows:735

P̂ (Yi = m) =
|{u | yu = k}|

|V|
=

∑
u∈V eum

|V|
. (4)

The time complexity of calculating Equation (4) is O(|V|), so the time complexity of calculating the736

prior distribution for K classes is O(|V|K).737

Next, calculating the empirical conditional P̂ (Yj = m|Yi = n, (i, j) ∈ E) from Equation (2) can be738

performed as follows:739

P̂ (Yj = m|Yi = n, (i, j) ∈ E) ∝
∑

u:u∈V,yu=n

∑
v∈N (u)

evm. (5)
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Table 6: Average iteration counts of iterative pseudo labeling for each backbone and dataset used to
report Table 1.

Cora CiteSeer PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell

GCN+PosteL 2.5 2.2 1.5 1 0.9 0.9 1.1 0.7 1.8 2.5
GAT+PosteL 1.6 1.8 1 1.2 0.7 0.8 2 1.1 3.1 2.4

APPNP+PosteL 1.9 2 1.1 0.8 1.1 1 1.1 0.9 1.4 2.9
MLP+PosteL 1.7 2.2 0.4 0.7 0.7 0.1 0.8 0.6 0.9 2.4

ChebNet+PosteL 1.6 2.1 1.2 0.6 0.6 1 0.7 0.7 2 2
GPR-GNN+PosteL 0.8 1.1 0.8 0.5 1.3 1 0.3 0.7 1.1 1

BernNet+PosteL 1.5 1.8 0.9 0.8 1 1.5 1.5 0.5 1.2 2.1

The time complexity of calculating Equation (5) for all possible pairs of m and n is740

O(
∑

u∈V |N (u)|K). Since
∑

u∈V N (u) = 2|E|, the time complexity for calculating empirical741

conditional is O(|E|K).742

The likelihood is approximated through the product of empirical conditional distributions, denoted743

as P ({Yj = yj}j∈N (i)|Yi = k) ≈
∏

j∈N (i) P̂ (Yj = yj |Yi = k, (i, j) ∈ E). Likelihood calculation744

for all training nodes operates in O(
∑

u∈V |N (u)|K) time complexity. So the overall computational745

complexity for likelihood calculation is O(|E|K).746

After obtaining the prior distribution and likelihood, the posterior distribution is obtained by Bayes’747

rule in Equation (1). Applying Bayes’ rule for |V| nodes and K classes can be done in O(|V|K). So748

the overall time complexity is O ((|E|+ |V|)K). In most cases, |V| < |E|, so the time complexity of749

PosteL is O(|E|K).750

In Section 3.2, iterative pseudo labeling is proposed, which involves iteratively refining the pseudo751

labels of validation and test nodes to calculate posterior labels. Since this process requires training752

the model from scratch for each iteration, the number of iterations can be a significant bottleneck in753

terms of runtime. Consequently, the iteration counts are evaluated to assess this aspect. The mean754

iteration counts for each backbone and dataset in Table 1 are summarized in Table 6. With an overall755

mean iteration count of 1.13, we argue that this level of additional time investment is justifiable for756

the sake of performance enhancement.757
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D Learning curves analysis for all datasets758

The learning curves for all datasets are provided in Figure 6 and Figure 7.759
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Figure 6: Loss curve of GCN trained on PosteL labels and ground truth labels on homophilic datasets.
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Figure 7: Loss curve of GCN trained on PosteL labels and ground truth labels on heterophilic datasets.
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E Empirical conditional distribution for all datasets760

The empirical conditional distribution for all datasets is provided in Figure 8 and Figure 9.

1 2 3 4 50.0

0.2

0.4
P(Yj|Yi = 1)

1 2 3 4 50.0

0.2

0.4
P(Yj|Yi = 2)

1 2 3 4 50.0

0.2

P(Yj|Yi = 3)

1 2 3 4 50.0

0.2

P(Yj|Yi = 4)

1 2 3 4 50.0

0.2

P(Yj|Yi = 5)

(a) Chameleon

1 2 3 4 50.0

0.1

0.2

P(Yj|Yi = 1)

1 2 3 4 50.0

0.1

0.2

P(Yj|Yi = 2)

1 2 3 4 50.0

0.1

0.2

P(Yj|Yi = 3)

1 2 3 4 50.0

0.1

0.2

P(Yj|Yi = 4)

1 2 3 4 50.0

0.1

0.2

P(Yj|Yi = 5)

(b) Actor

1 2 3 4 50.0

0.2

P(Yj|Yi = 1)

1 2 3 4 50.0

0.2

P(Yj|Yi = 2)

1 2 3 4 50.0

0.2

P(Yj|Yi = 3)

1 2 3 4 50.0

0.2

P(Yj|Yi = 4)

1 2 3 4 50.0

0.2

P(Yj|Yi = 5)

(c) Squirrel

1 2 3 4 50.0

0.5

P(Yj|Yi = 1)

1 2 3 4 50.0

0.5

1.0
P(Yj|Yi = 2)

1 2 3 4 50.0

0.2

0.4
P(Yj|Yi = 3)

1 2 3 4 50.0

0.2

0.5

P(Yj|Yi = 4)

1 2 3 4 50.0

0.2

0.4
P(Yj|Yi = 5)

(d) Texas

1 2 3 4 50.0

0.2

P(Yj|Yi = 1)

1 2 3 4 50.0

0.2

0.4

P(Yj|Yi = 2)

1 2 3 4 50.0

0.2

0.4
P(Yj|Yi = 3)

1 2 3 4 50.0

0.2

0.4
P(Yj|Yi = 4)

1 2 3 4 50.0

0.2

0.4
P(Yj|Yi = 5)

(e) Cornell

Figure 8: Empirical conditional distributions between two adjacent nodes on heterophilic graphs.
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Figure 9: Empirical conditional distributions between two adjacent nodes on homophilic graphs.
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