CS5H98 JY2-Topics in LLM Agents

Mind the Agent: A Comprehensive Survey on Large Lan-
guage Model-Based Agent Safety

Gaotang Li gaotang3@illinois.edu
gaotang3

Ting-Wei Li twli@illinois. edu
twli

Xuying Ning zuyingn2@illinois. edu
zuyingn?

Reviewed on OpenReview: |https: //openreview. net/ forum? 1d=DHeOUXtpKU&noteld=DHeOUX7ipKU

Abstract

The emergence of Large Language Model (LLM)-based agents represents a significant shift
in Al systems—from passive language models to autonomous agents equipped with memory,
tool-use capabilities, and long-horizon planning. While these agents unlock new possibilities
across web automation, embodied robotics, and collaborative systems, they also introduce
fundamentally novel safety risks that go beyond traditional LLM vulnerabilities. This sur-
vey provides a comprehensive overview of the growing field of LLM-based agent safety. We
begin by contrasting LLM agents with standard LLMs, outlining how agent-specific ca-
pabilities amplify safety challenges such as execution-based harm, memory poisoning, and
emergent failures in multi-agent collaboration. We categorize recent works into four major
threat types—adversarial attacks, jailbreaking attacks, backdoor attacks, and multi-agent
failures—and systematically examine how each exploits different stages of the agent pipeline.
For each threat, we review proposed defense strategies, including robust training, prompt
filtering, backdoor deactivation, and adversarial simulation. To evaluate these defenses, we
survey the emerging landscape of agent safety benchmarks. We introduce a taxonomy based
on attack surface, evaluation targets, and interaction complexity, and compare benchmark
coverage across scenarios and models. Finally, we discuss open challenges and future di-
rections, including dynamic and proactive safety evaluation, training-time alignment, and
scalable defenses for real-world deployment. Our goal is to provide a structured foundation
for advancing the safe and responsible development of LLM-based agents.

1 Introduction

Large Language Model (LLM)-based agents represent a transformative shift in artificial intelligence—from
passive text generators to autonomous systems capable of memory, tool use, long-horizon planning, and real-
world decision-making (Huang et al.l 2024} Wang et al., |2024a). This evolution opens the door to powerful
applications in web automation (Ning et al.l 2025]), embodied robotics (Ma et al.l 2024]), and collaborative
systems (Li et al.l [2024b). However, it also introduces new and fundamentally different safety risks that
traditional LLM evaluations fail to capture.

Unlike conventional LLMs, which operate in single-turn, reactive settings, LLM agents are endowed with
autonomy, memory persistence, and interaction capabilities. These features dramatically expand their attack
surface and failure modes. Agents may not only hallucinate unsafe responses, but also execute harmful
actions, propagate poisoned memory, or behave erratically in multi-agent contexts. Consequently, threats to
agent safety go far beyond well-studied issues such as toxicity or jailbreaks in static chatbots.
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Figure 1: Left — Overview of the LLM Agent Attacking Framework, illustrating key attack vectors such
as Direct Prompt Injection (DPI), Indirect Prompt Injection (IPI), Plan-of-Thought (PoT) Backdoor, and
Memory Poisoning Attacks, each targeting different components of the agent pipeline including user queries,
observations, system prompts, and memory retrieval during planning and execution. Right — Overall tax-
onomy of LLM-based agent safety, categorizing existing research by attack surfaces, corresponding defense
strategies, and evaluation benchmarks.

In this survey, we provide a comprehensive overview of the emerging field of LLM-based agent safety, as shown
in Fig. [II We first distinguish agent safety from traditional LLM concerns, highlighting how capabilities
like persistent memory and tool execution amplify existing risks while introducing new ones. We then
systematically categorize recent attack strategies into four key types: adversarial input attacks, jailbreaking,
backdoor attacks, and multi-agent collaboration failures—each targeting different components of the agent
pipeline.

For each threat, we examine representative research and corresponding defense strategies, such as adversarial
input filtering, backdoor deactivation, and collaborative robustness frameworks. We also review the emerging
landscape of agent safety benchmarks, introducing a taxonomy based on attack surface, evaluation targets,
and interaction complexity. Finally, we discuss open challenges and future directions, including the need for
dynamic safety metrics, proactive safety training, and scalable defenses for real-world deployment.

Our goal is to provide a structured foundation for researchers and practitioners to understand, evaluate, and
mitigate safety risks in LLM-based agents—ensuring their safe integration into increasingly autonomous and
high-stakes applications.

2 Preliminaries

In this section, we compare LLMs with LLM-based agents, and outline how their safety challenges dif-
fer—covering core capabilities, risks, and design implications.

2.1 LLM vs LLM-based Agent

Large Language Models (LLMSs) have revolutionized natural language processing by enabling machines to
understand and generate human-like text. These models, trained on vast corpora, excel in tasks such as text
completion, summarization, and question answering (Qin et al., [2024; Hagos et al., 2024} [Li et al.| 2025} |Yao|
2024b). However, their capabilities are primarily reactive—they generate responses based on input
prompts without inherent goals or the ability to interact with external environments.

In contrast, LLM-based agents represent a significant evolution in Al systems. By integrating LLMs with
additional components, these agents transition from passive text generators to autonomous entities capa-
ble of decision-making and action execution (Crouse et al., |2023; |Cheng et all [2024; Barual, [2024). This
transformation introduces new dimensions to Al applications, including:
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e Autonomously set and pursue goals: Unlike traditional LLMs that respond to prompts, agents
can initiate actions based on predefined objectives (Crouse et al., |2023} [Kannan et al.| 2024} |Gaol
let al.l [2025} [Liu et al.l |2024b)).

¢ Interact with external tools and environments: Agents can perform tasks such as web brows-
ing, code execution, and interfacing with APIs (Shi et al.| 2024} |Debenedetti et al., 2024} |Guo et al.l
[2024; |Zhang et al., 2024c)).

¢ Maintain and utilize memory: They can store and recall information over extended periods,
enabling context-aware decision-making (Xu et al.l 2025; [Mei et al., 2024} Zhong et al., 2024; Packer|

ot L], 2023).

¢« Engage in multi-turn, dynamic interactions: Agents can handle complex workflows that re-
quire reasoning over multiple steps and adapting to new information (Li et al. [2025; (Guan et al.|
[2025; [Park et al.| |2024} |Zhang et all, [2025; Deng et al., [2024; |Gao et all [2025} [Liu et al, 2024D).

2.2 LLM Safety vs LLM-based Agent Safety

While traditional LLMs are powerful tools for text generation and understanding, they operate in a reactive
manner. In contrast, LLM-based agents augment LLMs with components such as long-term memory, plan-
ning modules, and tool-use capabilities, enabling them to act autonomously within dynamic environments.

This shift dramatically alters the landscape of safety.ty. Although conventional LLM risks are mostly confined
to textual harms, LLM-based agents introduce the potential for real-world consequences through autonomous
action and persistent memory. These expanded capabilities open up new vectors for failure and attack, which
we categorize as follows.

« Execution-Based Harm: Agents can perform actions in the world (e.g., APT calls, file execution,
controlling hardware). Attackers can compromise this capability, causing agents to leak sensitive data
or perform physical damage. Contextual backdoors demonstrate that subtle poisoning of prompts
can lead to dangerous downstream effects (Chen et al.} |2025; [Debenedetti et al.| [2024; |Zhang et al.l
|2024a; [Wang et al., 2024b; [Zhang et al.l [2024b]).

¢« Memory Poisoning and Manipulation: Agents often maintain persistent memory (e.g., knowl-
edge bases or episodic memory). Adversaries can inject malicious data into memory, lying dormant
until triggered—an attack far more durable and stealthy than prompt injection (Chen et al.| |2024}
Dong et al, 2025, [Wang et al., 2025a)).

e Risks from Multi-Agent Interactions: In multi-agent settings, novel forms of deception and
collusion arise. Agents can: (i) reinforce each other’s hallucinations; (ii) spread malicious prompts
across peers; (iii) learn to hide intentions from humans (Shahroz Khan et al., |2025; [Lee & Tiwari,
2024; |Cemri et al., 2025; He et al., 2025, [Yu et al.).

3 Attack Strategies

Overview. LM-based agents, by virtue of their autonomy, tool integration, and persistent memory, in-
troduce new attack surfaces beyond those seen in traditional Large Language Models. In this section, we
outline common strategies used by adversaries to exploit these expanded vulnerabilities. We focus on four
major attack categories—adversarial input attacks, jailbreaking attacks, backdoor attacks, and multi-agent
collaboration failures—while also highlighting additional threats such as memory poisoning and prompt
injection.

3.1 Adversarial Input Attacks

Adversarial input attacks involve carefully crafted inputs that induce an LLM agent to produce undesired
outputs (Chakraborty et all, [2018). These inputs can be subtle perturbations of prompts or context that
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remain natural to a human reader but exploit the model’s vulnerabilities (Zou et all 2023)). For example,
an aligned language model that would normally refuse harmful requests can be coaxed into generating
prohibited content by a worst-case input designed to circumvent its safety filters. Attackers employ tactics
such as synonym substitutions (Hauser et al., [2021; |Chiang & Lee, [2022), gibberish token insertions, or
gradient-guided prompt tweaks (Guo et al.l |2021)) to create adversarial examples that maximally confuse the
model while preserving fluent language. Some of these techniques are also known as “prompt injection” (Liu
et al., 2023)). Such malicious prompts or data manipulations may cause the agent to misinterpret user intent
or violate its alignment instructions. In particular, these attacks can be seamlessly integrated into the general
framework of an LM-agent. For instance, Mo et al.| (2024]) points out the potential hazard in the three stages
of an agent: Perception, Brain, and Action. Subsequent studies also expanded their study to VLM-based
agents (Wu et al., 2024)).

3.2 Jailbreaking Attacks

Jailbreaking attacks are explicit attempts to bypass the safety guardrails of an LLM-based agent through
cleverly constructed prompts (Yi et al} [2024). In a jailbreak scenario, an adversary devises an input that
tricks the agent into ignoring its built-in policies or system instructions, thereby yielding outputs it would
normally be forbidden to produce. Such attacks often rely on linguistic manipulation: for instance, the
adversary might role-play (“pretend you are an unethical AlL..”) (Jin et al.,|2024)), use multi-step reasoning
traps (Yao et al., [2025)), or embed malicious instructions amidst innocuous text (Chen & Lu, [2024). These
adversarial prompts effectively exploit loopholes in the model’s alignment logic, inducing the model to break
character and violate usage guidelines. As a result, even though the agent was tuned to refuse disallowed
content, a successful jailbreak prompt can override those restrictions and unlock behaviors ranging from hate
speech to instructions for illicit activities.

3.3 Backdoor Attacks

Backdoor attacks embed covert, attacker-controlled behaviors in LLM agents that activate only when a
secret, trigger appears in the input (Li et al.| 2022; [Zhao et al. |2024). An adversary—such as a malicious
trainer or third-party provider—can poison the training data or tamper with model weights so that the
agent behaves normally on benign inputs but, when the trigger is present, produces predetermined outputs.
For example, a model may always comply with prompts containing a rare token sequence or bypass safety
checks when it encounters a specific keyword (Yao et all 2024a). Recent work integrates such backdoors
directly into agent-training pipelines and shows that they survive “trustworthy” fine-tuning (Wang et al.,
2024b)). Concurrent research reveals that backdoors can corrupt not only the final answer but also the
agent’s intermediate reasoning steps (Yang et al., 2024). Moreover, the long-term memory that many agent
systems maintain (Zhang et al.l |2024d)) makes them susceptible to specialized memory-poisoning attacks,
which pose a distinct set of challenges for securing LLM agents. Representative works along this direction
include AgentPoison (Chen et all|2024), MINJA (Dong et all [2025), and MEXTRA (Wang et al., [2025a)).

3.4 Multi-Agent Collaboration Failures

A prominent application of LLM-based agents is multi-agent collaboration (Liu et al., 2022). Although
collaboration expands an agent system’s capabilities, it also introduces failure modes that arise from complex
inter-agent dynamics. In a typical setting, several agents divide a task—such as a team of chatbots jointly
solving a problem or orchestrating a workflow—and must coordinate seamlessly. Failures occur when this
coordination falters, yielding incorrect or unsafe outcomes that a single-agent system might avoid. A key risk
is inter-agent misalignment: agents may misinterpret one another’s messages, pursue conflicting sub-goals,
or amplify each other’s errors (Cemri et al., [2025). If even one agent is compromised or acts adversarially,
it can inject subtle misinformation or unsafe instructions into the shared dialogue (He et al.| [2025). Because
agents typically trust and build upon their peers’ outputs, these injected faults can propagate unchecked,
cascading into a system-wide failure (Lee & Tiwari, [2024).



CS5H98 JY2-Topics in LLM Agents

4 Defense Strategies

Overview. LLM-based agents have achieved remarkable capabilities, but they face critical safety threats
on multiple fronts. We discuss defense strategies that tackle four primary attack categories, namely adver-
sarial input attacks, jailbreaking attacks, backdoor attacks, and multi-agent collaboration failures. For each
defense, we outline the attack addressed, the technical method, and which agent components are involved.

4.1 Defenses against Adversarial Input Attacks

Adversarial input attacks exploit subtle perturbations to input data, leading models to make incorrect
predictions. Two major forms are direct prompt injection (i.e. malicious instructions embedded in user input)
and indirect prompt attacks (i.e. manipulating external data sources the agent reads, such as a webpage,
to include hidden instructions). Defenses in this category seek to detect or neutralize such malicious inputs
before they affect the agent’s reasoning. For direct prompt injection attack, in addition to strategies for
general LLM such as paraphrasing (Jain et all |2023)), re-tokenization (Jain et al., 2023, shuffling (Xiang
et al.,|2023;|2024b), delimiters-as-quotes (Jain et al., 2023} Liu et al. 2024a) and perplexity-as-indicator (Alon
& Kamfonas) 2023 |Liu et al. [2024a; |Jain et al. 2023) recent studies derive more advance defense strategies
to tackle agenti-specific adversarial input attacks. For instance, Lin & Zhao| (2024)) introduces LLAMOS, a
defense mechanism where an LLM-based agent purifies adversarial textual inputs before they’re processed
by the target LLM. LLAMOS (Lin & Zhaol |2024]) consists of simulating defense agents that minimally alter
adversarial inputs to preserve their original meaning; |[Chern et al. (2024]) uses a debate among multiple
LLMs to identify and counter adversarial or toxic prompts through self-correction; |Agarwal et al.| (2024)
apply response filtering and fine-tuning techniques to mitigate prompt leakage in multi-turn interactions;
Task Shield (Jia et al., |2024)) introduces a test-time defense that enforces task alignment in LLM agents by
verifying that each action supports the user’s original goal.

4.2 Defenses against Jailbreaking Attacks

Jailbreaking attacks manipulate LLMs to produce outputs that violate their safety constraints. Defenses
against such attacks have evolved to include multi-LLM discussion, prompt engineering and output-level
interventions. For example, AutoDefense (Zeng et al 2024)) introduces a multi-agent framework where spe-
cialized LLM agents collaboratively analyze and filter harmful responses; [Armstrong et al.[ (2025) presents
the DATDP method, employing iterative evaluations by LLMs to detect/block manipulative prompts; Shield-
Learner (Ni et al.l [2025) mimics human learning by autonomously distilling attack signatures into patterns,
enabling systematic and interpretable threat detection;|[Barua et al.| (2025]) propose a comprehensive defense
framework using Reverse Turing Tests, multi-agent alignment checks, and adversarial simulations to detect
rogue agents and resist many-shot jailbreaking. In addition, it introduces a method named adaptive adversar-
ial augmentation to generate adversarial variations of successfully defended prompts to facilitate continuous
self-improvement without model retraining. Another line of research focuses on prompt optimization to mit-
igate the threat of jailbreak attacks. A notable work is Robust Prompt Optimization (RPO) (Zhou et al.,
2024)), which operates by appending a lightweight, optimized suffix to system prompts, which is generated
through a discrete optimization process that anticipates and counters adversarial modifications.

4.3 Defenses against Backdoor Attacks

Backdoor attacks involve embedding malicious behaviors into models during training, which are triggered
by specific inputs. Defensive strategies have been developed to detect and neutralize these hidden threats.
For example, BAIT (Shen et al.| |2024) proposes a black-box detection method that reconstructs potential
backdoor triggers by inverting the attack target, enabling the identification of backdoor LLMs without
requiring access to the model internals. [Tong et al.| (2024)) introduce a method named Decayed Contrastive
Decoding, which is a inference-time defense mechanism designed to mitigate distributed backdoor attacks
in multi-turn conversational settings. This method calibrates the model’s output distribution to avoid
generating malicious responses.
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4.4 Defenses against Multi-Agent Collaboration Failures

In multi-agent systems, adversarial manipulation can compromise the collective decision-making process.
Recent research has explored the vulnerabilities inherent in such systems and proposed defense mechanisms.
To combat security and threat issues in multi-agent systems, Wang et al.| (2025b) proposes G-safeguard
introduces a topology-guided approach using graph neural networks to detect and remediate anomalies in
multi-agent communications, enhancing robustness against adversarial attacks; |Song et al.| (2024) presents
Audit-LLM, a collaborative multi-agent framework comprising decomposer, tool builder, and executor agents
to effectively detect insider threats through log analysis. On the other hand, |Sun et al.| (2023)) presents a
secure defense strategy for distributed multi-agent systems subjected to false data injection attacks, en-
hancing system resilience through cooperative control mechanisms. With auxiliary guard agents placed in
multi-agent systems, [Mao et al.| (2025) introduces a framework that enhances security through hierarchical
information management and memory protection, while Xiang et al.| (2024al) proposes the first LLM agent
as a guardrail to other LLM agents, overseeing target LLM agents by checking whether its inputs/outputs
satisfy a set of given guard requests defined by users.

5 Evaluation and Benchmarks

As large language model agents become increasingly integrated into real-world systems—from virtual assis-
tants and web automation tools to embodied agents operating in physical environments—their safety becomes
a critical concern. Unlike conventional LLMs that primarily generate static text, LLM-based agents have the
ability to plan, make decisions, and execute actions in external environments through tool-use, memory, and
interaction. This increased capability brings about a corresponding expansion of the attack surface. Agents
may receive maliciously crafted instructions, be misled by compromised tool outputs, or act unsafely in
physical or simulated environments. Traditional safety benchmarks on LLM (Zhang et al.f Mou et al.| [2024;
Li et al.l [2024a; [Chao et all, |2024)), which focus on toxic content or jailbreak resistance in static settings,
fail to capture these dynamic, interactive, and context-dependent or tool-dependent risks. Hence, a
new generation of agent-oriented security benchmarks has emerged, aiming to rigorously evaluate the safety,
robustness, and failure modes of LLM agents across diverse tasks and settings.

In this section, we focus on Section [5.1] to introduce the classification and taxonomy of benchmarking and
evaluation, aiming to distinguish the similarities and differences among various agent safety benchmarks, as
well as to identify the key aspects that existing evaluation metrics primarily target. Then, in Section [5.2
we provide a detailed overview of benchmark works related to agent security, covering the types of attacks
they aim to measure and the defensive strategies they propose.

5.1 Benchmarking Taxonomy

To systematically evaluate the safety of LLM-based agents, it is essential to formalize what exactly a bench-
mark aims to measure. Existing security benchmarks differ significantly in terms of what risks they focus
on, how those risks are detected and quantified, and under what interaction settings agents are evaluated.
We categorize these dimensions into three major axes: the attack surface considered, the evaluation targets,
and the agent-environment interaction modality.

Attack Surface. This refers to the types of adversarial behaviors that a benchmark is designed to expose.
One common and widely studied vector is @ Direct Prompt Injection (DPI), where malicious instructions
are embedded directly into user inputs with the goal of manipulating the agent’s behavior. A more subtle
but equally dangerous attack type is @ Indirect Prompt Injection (IPI), in which adversarial content is
hidden in tool outputs or retrieved documents, often bypassing traditional input sanitization mechanisms.
Another threat vector is @ Memory Poisoning, where the agent is compromised by persistently stored
malicious data, which can later influence its decision-making through memory retrieval or history replay.
Recent studies (Zhang et all [2024b) also highlight the risk of @ Plan-of-Thought (PoT) Backdoors,
which inject dangerous behavior via seemingly innocuous in-context plan demonstrations. Finally, some
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benchmarks (Yin et all [2024) address ® Unsafe Execution, where the agent carries out harmful or
unethical physical or logical actions in either simulated or real-world environments.

Evaluation Target. Benchmarks also differ in how they measure an agent’s safety-related behavior. A
primary metric is the ® Attack Success Rate (ASR), which measures whether the agent carries out the
attacker’s intended action. To capture defensive behavior, the @ Refusal Rate (RR) evaluates whether
the agent correctly identifies and rejects unsafe instructions or content. On the other hand, a well-designed
benchmark should also ensure that defensive mechanisms do not excessively impair benign functionality; for
this, the ® Benign Task Performance (PNA) measures how well the agent completes non-adversarial
tasks. To balance robustness and utility, some benchmarks propose a composite metric called ® Net Re-
silient Performance (NRP), computed as NRP = PNA x (1 — ASR), which reflects an agent’s overall
reliability under mixed safe and adversarial conditions. In addition to these aggregate indicators, some
benchmarks (Zhang et al.l 2024b)—particularly those evaluating detection-based defenses—introduce diag-
nostic metrics such as the ® False Negative Rate (FNR), which denotes the percentage of compromised
data that is mistakenly identified as clean, and the ® False Positive Rate (FPR), which denotes the
percentage of clean data that is incorrectly flagged as malicious. These metrics are critical in assessing the
reliability of filtering or classification-based defenses, where both missed detections and overly aggressive
rejections can significantly impact the agent’s real-world performance.

Interaction Complexity. Finally, the modality of interaction between the agent and its environment
plays a significant role in benchmarking. Some benchmarks evaluate @ single-turn agents that respond to
static prompts, while others focus on @ multi-turn, stateful agents that interact with tools, accumulate
memory, and plan over long horizons. More advanced setups involve embodied agents that perceive visual
inputs and act within simulated physical environments. These differences in interaction complexity impact
both the nature of risks agents are exposed to and the strategies needed to mitigate them.

Together, these three axes provide a structured view of what it means to evaluate agent safety, and highlight
the need for diverse, scenario-specific benchmarks that reflect the complex behaviors and risks associated
with real-world LLM-based agents. We summarize representative benchmark studies and categorize them
according to the proposed taxonomy. Their corresponding attack surfaces, evaluation targets, and interaction
complexities are shown in the Table below.

Table 1: Taxonomy-based classification of five representative agent security benchmarks across attack surface,
evaluation targets, and interaction complexity.

Benchmark Year Attack Surface Evaluation Target Interaction
Complexity
ASB (Zhang et al.||2024b) 2024 Direct Prompt Injection (DPI), Indirect ASR, RR, PNA, NRP, Multi-turn

Prompt Injection (IPI), Memory Poison- FNR, FPR
ing, Plan-of-Thought Backdoor

AgentDojo (Debenedetti et al.||2024) 2024 Direct Prompt Injection (DPI), Indirect ASR, RR, PNA Multi-turn
Prompt Injection (IPI)

R-JUDGE (Yuan et al.| |2024) 2022 Unsafe Execution FNR, FPR Multi-turn

InjecAgent (Zhan et al.| |2024) 2024 Indirect Prompt Injection (IPI) ASR Single-turn

SafeAgentBench (Yin et al.||2024) 2024 Unsafe Execution RR, PNA Multi-turn

5.2 Benchmark Landscape: A Comparative View of Existing Works

In the following, we introduce representative benchmarks by grouping them into two categories based on their
primary mode of attack. The first category, Interaction-based Risk Benchmarks, focuses on assessing agents’
ability to recognize and avoid unsafe behaviors during interactions with their environment. The second
category centers on Prompt Injection Benchmarks, where agent vulnerabilities are evaluated through direct
or indirect injection attacks. Finally, we discuss the defensive strategies proposed across these benchmarks
to mitigate such risks. The Table below further compares the scenario coverage and other evaluation
settings across different benchmarks.
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Table 2: Comparison of agent security benchmarks on scenario coverage, tool usage, and evaluation.

Benchmark Scenario Coverage Tool Usage # of LLMs Evaluated Evaluation Setting
ASB (Zhang et al.{|2024b) 10 domains (e.g., finance, e- 400+ tools including malicious 13 (e.g., GPT-4, GPT-3.5, Claude, Static tasks with multi-stage
commerce, autonomous driving)  ones LLaMA2/3, Mixtral; mix of attack injection

open/closed-source)
AgentDojo (Debenedetti et al.{|2024) 4 real-world apps (email, Slack, Multiple tools per environ- 9 (e.g., GPT-40, GPT-3.5, Claude 3, Multi-turn dynamic execution

e-banking, travel) ment; dynamically invoked Gemini 1.5, LLaMA3; mix open & in realistic environments
closed)
InjecAgent (Zhan et al.||2024) Multi-domain (finance, smart 17 user tools, 62 attacker tools 30 (e.g., ReAct-GPT-4, ReAct- Single-turn IPI with synthetic
home, email, health) ChatGPT, fine-tuned GPTs; mostly adversarial inputs
closed-source)
R-JUDGE (Yuan et al.||2024) 27 scenarios, 7 categories (OS, Tool usage abstracted in tra- 8 (e.g., GPT-4, ChatGPT, Claude, Post-hoc risk assessment from
IoT, software, web, finance, jectory logs Gemini; all closed-source) agent logs
health, program)
SafeAgentBench (Yin et al.||2024) Embodied agents in household 17 high-level actions in embod- 4 (GPT-4, DeepSeekV2.5, LLaMA3, Full simulation-based plan exe-
robotic settings ied simulator (AI2-THOR) Qwen2; mix of open/closed) cution and semantic evaluation

5.2.1 Interaction-based Risk Benchmarks

R-JUDGE (Yuan et al., |2024) proposes a benchmark for evaluating LLM agents’ ability to detect and
describe behavioral risks during multi-turn interactions. It consists of 162 annotated agent-user dialogues
across seven real-world application domains (e.g., operating systems, smart homes, medical systems), cov-
ering 10 risk types such as privacy leakage, financial loss, or ethical violations. The benchmark involves
two subtasks: identifying risky behaviors in free-form natural language, and labeling interactions as safe
or unsafe. GPT-4 outperforms other models but still fails in a significant number of cases, suggesting that
LLMs struggle with abstract, long-horizon safety reasoning.

SafeAgentBench (Yin et al.,[2024) focuses on embodied agents in physical environments simulated via AI2-
THOR. It includes 750 tasks, of which 450 are designed to induce unsafe physical consequences (e.g., causing
fire, poisoning, or electric shock). Tasks vary in complexity: detailed tasks require executing explicit steps;
abstract tasks test semantic understanding of risk; long-horizon tasks introduce temporal dependencies. The
benchmark combines execution-based metrics with GPT-4-based semantic evaluation. Even the best agents
(e.g., ReAct with GPT-4) struggle to consistently avoid unsafe actions, highlighting the need for grounded
safety planning.

5.2.2 Prompt Injection Benchmarks

InjecAgent (Zhan et al., [2024) evaluates agents under indirect prompt injection attacks, where malicious
content is embedded in tool responses. The benchmark consists of 1,054 adversarial test cases involving
17 user tools and 62 attacker tools. It tests prompted vs. fine-tuned models and shows that hacking-style
prompt templates can significantly increase attack success rates. The results demonstrate that IPI remains
a high-risk vulnerability, especially for prompted agents like GPT-3.5.

AgentDojo (Debenedetti et al., |2024) provides a dynamic simulation framework with four task environ-
ments (Workspace, Slack, Travel, Banking) and over 600 security test cases. Each agent operates by calling
tools, receiving feedback, and modifying internal state. Attacks are injected through APIs, messages, or
environment content. AgentDojo supports both attack evaluation and defense testing (e.g., filters, prompt
delimiters), making it a comprehensive testbed for real-world tool-integrated agents.

ASB (Agent Security Bench) (Zhang et al., |[2024b]) is the most extensive benchmarking effort to date. It
formalizes four stages of agent behavior-System Prompt, User Prompt, Memory, and Tool Use-and evaluates
five types of attacks (DPI, IPI, Memory Poisoning, PoT Backdoor, and Mixed). ASB introduces the Net
Resilient Performance metric and systematically tests 13 LLM backbones, 10 agents, and 400+ tools. It is
also the only benchmark to rigorously evaluate 11 defense mechanisms across diverse scenarios.

5.2.3 Defensive Strategy Evaluation

Across benchmarks, several defense strategies have been proposed to mitigate the risks of prompt injection
and unsafe behavior in LLM agents. Among them, @ encapsulation aims to isolate tool outputs from the
agent’s reasoning process by wrapping them with special delimiters or structured formats. This is especially
relevant for defending against indirect prompt injections, as explored in AgentDojo (Debenedetti et al.
2024) and InjecAgent (Zhan et all |2024)), though its effectiveness depends on consistent parsing behavior.
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@ Prompt rewriting modifies user or tool-generated inputs to remove or neutralize adversarial content.
While simple to implement, ASB (Zhang et al.l|2024b) finds that rewriting can be easily bypassed by adaptive
attacks and may distort benign inputs. ® Semantic filtering leverages LLMs or external classifiers to detect
and block suspicious content before it reaches the agent. SafeAgentBench (Yin et all |2024)) uses this via
the ThinkSafe module to evaluate plan-level safety, but such methods often suffer from high false-positive
rates, rejecting even safe tasks. @ Planning-aware filtering further inspects the structure of an agent’s
intended actions, aiming to block unsafe behaviors at the reasoning or planning stage. This proactive
approach is promising but requires reliable intermediate representations, which many current agents lack.
Lastly, ® access control restricts which tools the agent is allowed to call, preventing misuse of high-risk
functionalities. ASB shows that while this effectively reduces the attack surface, it limits agent versatility
and depends on accurate tool classification.

Despite these developments, no single defensive strategy has proven robust across all benchmarks or attack
types. For instance, AgentDojo shows that even when layered defenses are used, attackers can still succeed
in over 8% of security-critical tasks. Similarly, ASB demonstrates that some mixed attacks (e.g., combining
memory poisoning and prompt injections) bypass all evaluated defenses. This underscores the need for
hybrid, context-aware defenses that can adapt dynamically to diverse threat vectors without compromising
agent performance.

6 Future Directions

As LLM agents evolve to operate in increasingly complex environments and interact with dynamic tools and
users, ensuring their safety becomes both a technical and ethical imperative. In what follows, we outline
major research directions toward robust, generalizable, and trustworthy agent safety.

6.1 Understanding and Managing Agent Vulnerabilities

The vulnerability of LLM agents scales with their capabilities. As agents integrate language, vision, mem-
ory, and planning components, the attack surface expands and cross-modal failures become more likely. For
instance, an agent using a vision model susceptible to adversarial examples and a language model prone to
jailbreaks may experience compounding risks that result in cascading unsafe behaviors. This interdepen-
dence calls for a deeper understanding of how vulnerabilities propagate across modules, and how
seemingly safe subcomponents can interact in unsafe ways when embedded in agent pipelines.

Moreover, agents capable of continuous learning or adaptation introduce temporal instability: their decision
boundaries may evolve over time, potentially creating novel failure modes that elude traditional evaluation.
Addressing these challenges will require new paradigms for safety assessment that operate not
only across modalities but across time. In particular, developing tools that track safety-critical state
changes and analyze vulnerability shifts during agent updates is a promising direction.

6.2 Beyond Static Evaluation: Towards Dynamic and Granular Safety Metrics

Current safety evaluations predominantly rely on static benchmarks and single-dimensional metrics such as
attack success rate (ASR). However, ASR alone fails to capture the severity, subtlety, or ethical impact of
agent behavior. For example, minor perturbations in agent planning may lead to catastrophic real-world
outcomes, even when ASR appears low. Similarly, passing existing benchmarks may offer a false sense of
safety, especially if datasets are outdated or exposed during training.

To address this, future work should aim to design evolving benchmarks that dynamically generate
new test cases and threats, akin to red-teaming competitions or test-time adversarial gener-
ation. Evaluation metrics should also be expanded to assess multi-level robustness: including behavioral
deviation, recovery ability, ethical implications, and risk-awareness in decision-making. These fine-grained
signals are critical for diagnosing deeper safety issues and aligning agents with societal expectations.
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6.3 From Reactive Defenses to Proactive Safety Training

Most current defenses operate reactively—blocking or rewriting unsafe inputs, filtering outputs, or restricting
tool access. While useful, such defenses are limited by their lack of generality and adaptability. In real-world
deployments, agents often operate under black-box conditions with limited supervision, making lightweight,
externally compatible defenses essential.

Future directions should focus on proactive safety strategies embedded in the training process.
One promising approach is to integrate safety constraints into reinforcement learning or imitation learning
frameworks. This includes reward shaping based on risk-sensitive outcomes, counterfactual reasoning about
unintended consequences, or policy regularization via demonstration of safe and unsafe behaviors. Training
agents to generalize from such signals can create more robust and anticipatory safety profiles.

6.4 Safety in Multi-Agent and Real-World Contexts

As agents begin to operate in multi-agent settings—whether through collaboration or competition—mnew
risks emerge. These include covert collusion, emergent unsafe dynamics, and adversarial communication.
Ensuring safety in such settings requires coordinated safety protocols, secure interaction channels,
and robustness to message-based or tool-mediated attacks. Simulated environments that allow adversarial
multi-agent red-teaming can support the development and evaluation of such defenses.

Furthermore, in embodied scenarios, agent actions can directly affect the physical world. Embodied agents
must manage not only digital risks but also threats involving human safety, environmental damage, or ethical
violations. Ensuring safety in such agents requires deeply integrated safety modules—capable of real-time
monitoring, action rejection, and fail-safe fallback planning. This brings forward the need for sensor-aware
risk assessment and real-world consequence modeling in agent training loops.

6.5 Toward Intrinsically Safe and Value-Aligned Agents

The ultimate goal in agent safety is not merely to avoid failures, but to cultivate a form of safety con-
sciousness—an intrinsic tendency toward ethical, low-risk decisions even under uncertainty. This involves
integrating normative reasoning, value alignment, and causal inference into the agent’s core behavior.
Techniques such as adversarial alignment, where models are trained to resist subtle exploits while aligning
with human intent, are early steps in this direction.

Training agents with internalized ethical priors, reinforced through simulation and feedback, may enable
them to adapt responsibly to unfamiliar scenarios. This vision requires a shift from reactive safety
filters to agents that dynamically reason about harm, fairness, and responsibility—especially
when making long-horizon decisions with real-world impact.

7 Conclusion

This survey provides a structured overview of the emerging field of LLM-based agent safety. We first contrast
agent safety with traditional LLM safety, emphasizing new risks introduced by autonomy, memory, tool use,
and multi-turn decision-making. We categorize attacks into four types—adversarial, jailbreaking, backdoor,
and multi-agent collaboration failures—each targeting different stages of the agent pipeline. Corresponding
defenses include robust training, prompt filtering, backdoor deactivation, and adversarial simulation. We
compare representative benchmarks in terms of scenario coverage, tool usage, model diversity, and evaluation
protocols. Finally, we outline future directions, including dynamic evaluation, safety-aware training, black-
box-compatible defenses, and long-horizon verifiability. As agents become more integrated into real-world
systems, ensuring their safety, robustness, and alignment is both a pressing challenge and a necessary step
toward trustworthy autonomous intelligence.
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