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ABSTRACT

As an important branch of weakly supervised learning, partial label learning deals
with data where each instance is assigned with a set of candidate labels, whereas
only one of them is true. In this paper, we propose a family of loss functions
named Leveraged Weighted (LW) loss function, which for the first time intro-
duces the leverage parameter β to partial loss functions to leverage between losses
on partial labels and residual labels (non-partial labels). Under mild assumptions,
we achieve the relationship between the partial loss function and its corresponding
ordinary loss that leads to the consistency in risk. Compared to the existing liter-
atures, our result applies to both deterministic and stochastic scenarios, considers
the loss functions of a more general form, and takes milder assumptions on the
distribution of the partial label set. As special cases, with β = 1 and β = 2, the
corresponding ordinary loss of our LW loss respectively match the binary classifi-
cation loss and the one-versus-all (OVA) loss function. In this way, our theorems
successfully explain the experimental results on parameter analysis, where β = 1
and especially β = 2 are considered as preferred choices for the leverage parame-
ter β. Last but not least, real data comparisons show the high effectiveness of our
LW loss over other state-of-the-art partial label learning algorithms.

1 INTRODUCTION

While labeled data is usually expensive, time consuming to collect, and sometimes requires human
domain experts to annotate, partially labeled data is often relatively easier to obtain (Nguyen &
Caruana, 2008b). Partially labeled problem, also called ambiguously labeled problem, refers to the
task where each training example is associated a set of candidate labels, while only one is assumed to
be true. Conceptually speaking, partial label learning lies between the traditional supervised learning
with explicit supervision and the unsupervised learning with blind supervision, nevertheless, it is
essentially different from the semi-supervised setting where both labeled and unlabeled data are
available. The problem of learning from partially labeled examples naturally arises in a number
of real-world scenarios such as web mining (Luo & Orabona, 2010), multimedia contents analysis
(Cour et al., 2009; Zeng et al., 2013), ecoinformatics (Liu & Dietterich, 2012), etc. This field has
attracted much attention of researchers and there is a rich body of literature on this problem.

Most of the existing analysis is established on the strategy of disambiguation, i.e. aiming to identify
the ground-truth label from candidate label set. One intuitive strategy is to treat all the candidate
labels in an equal manner and then average the outputs from all candidate labels for prediction.
Following this strategy, for parametric models, Cour et al. (2011) designs the convex loss for par-
tial label (CLPL), via which the averaged output from all candidate labels is distinguished from
the outputs from non-candidate labels. In Hüllermeier & Beringer (2006), several nonparametric,
instance-based algorithms for ambiguous learning based on greedy heuristics are proposed. Besides,
Zhang & Yu (2015) establishes an instance-based approach, named IPAL, trying to identify the valid
label of each partial label example via an iterative label propagation procedure. Although intuitive
and easy to implement, the effectiveness of averaging strategy is heavily affected if the outputs of
false positive labels overwhelm that of the truth label. Another way towards disambiguation treats
the ground-truth label as a latent variable and identify it from the candidate label set through it-
erative refining procedure such as maximum likelihood criteria, or the maximum margin criteria.
For instance, Jin & Ghahramani (2003) use an EM like algorithm with a discriminative log-linear
model to disambiguate correct labels from incorrect ones and Grandvalet et al. (2004) adds a mini-
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mum entropy term to the set of possible label distributions. Lv et al. (2020) generalize Jin’s (Jin &
Ghahramani, 2003) learning objectives, and seamlessly combines updating model parameters and
identifying true labels.

However, many of these proposed algorithms rely on iterative non-convex learning. In order to
tackle this issue, Liu & Dietterich (2012) proposes a probabilistic model, named the Logistic Stick-
Breaking Conditional Multinomial Model (LSB-CMM), which maps data points to mixture compo-
nents and then assigns to each mixture component a label drawn from a component-specific multi-
nomial distribution. This optimization problem is similar to the problem of logistic regression and
is also a concave maximization problem, which can be solved by any gradient-based method. In
addition, within the margin-based learning framework, Nguyen & Caruana (2008a) formulates the
partially labeled problem as a convex quadratic optimization through utilizing the L2-norm regular-
ization and the redefined hinge loss for partial label data. Unfortunately, the margin does not con-
sider the predictive difference between the ground-truth label and other false positive labels, which
may lead to suboptimal performance for the resulting maximum margin partial label approach. The
fact can be easily observed that the major difficulty in making use of multi-class margin for par-
tial label training examples lies in that the truth label information is not accessible to the learning
algorithm. Therefore, an alternating optimization procedure is employed in Yu & Zhang (2016)
to iteratively identify the ground-truth label and maximize the multi-class margin. Although these
approaches adopting the two strategies are able to extract the relative labeling confidence of each
candidate label, they fail to reflect the mutually exclusive relationships among different candidate
labels and is generally conducted by focusing on manipulating the label space. Therefore, some
novel partial learning methods arises taking advantage of new techniques such as feature-aware
(Zhang et al., 2016), dictionaries (Chen et al., 2014), self-training (Feng & An, 2019) and label
enhancement (Xu et al., 2019).

In this paper, we propose a family of loss functions named Leveraged Weighted (LW) loss function,
leveraging between losses on partial labels and residual labels (non-partial labels). We examine
the theoretical properties of our LW loss, especially the choice of leverage parameter β, from the
perspective of risk consistency. Then we design the partial label learning algorithm by learning the
weighting parameters and score functions iteratively. As follows are our contributions.

1) Under mild assumption that each untrue label appears independently in the partial label set, we
achieve the relationship between the partial loss function and its corresponding ordinary loss such
that their risks corresponds to each other. In this way, we theoretically guarantees the optimization
of partial label learning leads to the optimization of ordinary-labeled multiclass classification. Com-
pared to the existing literature about risk consistency, our result applies not only to the deterministic
scenario but also to the stochastic scenario where the true output label is a probabilistic function of
the input. Moreover, we make milder assumptions on the distribution of partial labels, and extend
the previous result to the partial loss function of a more general form.
2) We propose a family of loss function for partial label learning named Leveraged Weighted (LW)
loss function, which combines binary losses on each label and leverages between losses on partial
labels and residual labels (non-partial labels). We highlight that it is the first time that the lever-
age parameter β is introduce into loss function for partial label learning. Risk consistency analysis
presents the corresponding ordinary loss function of LW loss, and shows that β = 1 and especially
β = 2 are preferred choices for the leverage parameter β. To be specific, with β = 2 and symmetric
binary loss function, the corresponding ordinary loss of our LW loss exactly matches the one-versus-
all (OVA) loss function proposed by Zhang (2004).
3) We conduct parameter analysis of our LW loss for partial label learning on four benchmark
datasets, where the experimental results that β = 1 and especially β = 2 achieves high learning ac-
curacy over the state-of-the-art partial label learning algorithm, which exactly verifies the theoretical
analysis about the leverage parameter β. We also show the desirable performance of our algorithm
under various data generation situations.

2 METHODOLOGY

We assume that X ⊂ Rd is a non-empty feature space (or input space), Y := {1, . . . ,K} =: [K] is
the ordinary label space and that Y := {Y |Y ⊂ Y} = 2[K] is the partial label space, where 2[K] is
the collection of all subsets in [K]. In the partially supervised setting, for an input random variable
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X ∈ X , we have the corresponding ambiguity set (or partial label set) Y ∈ Y , containing the true
label, denoted by random variable Y ∈ Y . The goal is to find the latent ground-truth label Y for the
input X through observing the partial label set Y . For the rest of this paper, y always represents the
true label of input x unless otherwise specified. All proofs are shown in the supplementary material.

2.1 FUNDAMENTAL ASSUMPTION

The fundamental assumptions focus on the distribution of the partial label set Y .

For notational simplicity, we denote P(z ∈ y|Y = y,X = x) := qz for all z ∈ [K]. Assumption 1
implies that the true label y always resides in the partial label set y, which exactly corresponds with
the problem setting of partial label learning.

Assumption 1 Denote y as the true label of an input x, then we assume

qy := P(y ∈ y|Y = y,X = x) = 1.

By Assumption 1, we have #|Y | ≥ 1, and #|Y | = 1 holds if and only if Y = {Y }, in which case
the partial label learning problem reduces to multi-class classification with ordinary labels.

Assumption 2 Denote y as the true label of an input x, then we assume for z 6= y

qz := P(z ∈ y|Y = y,X = x) < 1.

Assumption 2 corresponds with the assumptions in Cour et al. (2011); Lv et al. (2020), which guar-
antees the partial label learning problem to be ERM learnable.

Assumption 3 When the true label y and the input x is given, the behavior of label z ∈ y, where
z 6= y and z ∈ [K], is independent, i.e. for z1, z2 ∈ [K], z1 6= z2 and z1, z2 6= y, we have

P({z1, z2} ∈ y|Y = y,X = x) = P(z1 ∈ y|Y = y,X = x) · P(z2 ∈ y|Y = y,X = x).

Assumption 3 states that when the true label y and the input x is given, the behavior of each label
z 6= y, z ∈ [K], whether belonging to the partial label set or not, is independent. According to the
problem setting, the probability of each label z 6= y being in the partial label set may be different.
For instance, when the true label is mule, dunkey is more likely to be picked as a partial label than
cat. However, when no additional information is given, it is perfectly natural to assume that the
labelers make independent decision for each label, i.e. the situation of cat being a partial label
doesn’t affect whether dunkey is picked and vice versa.

Lemma 1 follows directly from Assumption 1 and 3. It shows the conditional distribution of partial
label set Y , which is essential in achieving the risk of our partial label learning algorithm.

Lemma 1 When Assumption 1 and Assumption 3 hold, for all y ∈ Y , we have

P(Y = y|Y = y,X = x) =
∏

s∈y,s 6=y

qs ·
∏
t/∈y

(1− qt).

2.2 RELATIONSHIP BETWEEN PARTIAL LOSS AND ORDINARY LOSS

We first of all introduce some notations and key concepts. We denote g(X) = (g1(X), . . . , gK(X))
as the decision function learned by an algorithm, where gz(X) is the score function for label
z ∈ [K]. Larger gz(x) implies that x is more likely to come from class z ∈ [K]. Then the re-
sulting classifier is f(X) = arg maxz∈[K] gz(X). We denote R̄(L̄, g(X)) as the risk, also called
generalization error, for the decision function g(X) w.r.t. the partial loss function L̄. By definition,
R̄(L̄, g(X)) := E(X,Y )[L̄(Y , g(X))], measuring the average loss of a g(X) learned through partial
labels w.r.t. the joint distribution of (X,Y ). Similarly, we denote R(L, g(X)) as the ordinary risk
for g(X), where L is the loss function for learning with ordinary labels (X,Y ), and by definition,
R(L, g(X)) := E(X,Y )[L(Y, g(X))], w.r.t. the joint distribution of ordinary-labeled data (X,Y ).

In this part, we are interested in the partial risk R̄(L̄, g(X)). We wonder under what circumstances
the partial risk R̄(L̄, g(X)) corresponds to the ordinary riskR(L, g(X)), i.e. what algorithm design
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for partial label learning will achieve the same theoretical effectiveness as when using ordinary
labels. Theorem 1 answers this problem from the perspective of loss function.

Theorem 1 Denote L : Y ×RK → R+ as a loss function for the ordinary-label classification, and
L̄ : Y × RK → R+ as the loss function for the partial-label classification. If the loss function for
ordinary classification problem L(y, g(x)) is of the form

L(y, g(x)) =
∑
y∈Y

P(Y = y|Y = y,X = x)L̄(y, g(x)),

we have R̄(L̄, g(X)) = R(L, g(X)). Moreover, under Assumption 1 and Assumption 3, we have

L(y, g(x)) =
∑
y∈Yy

∏
s∈y,s6=y

qs
∏
t/∈y

(1− qt)L̄(y, g(x)),

where Yy := {y ∈ Y |y ∈ y} with y denoting the true label of x.

2.3 LEVERAGED WEIGHTED (LW) LOSS FUNCTION

In this paper, we propose a family of loss function for partial label learning named Leveraged
Weighted (LW) loss function. We adopt a multiclass scheme frequently used for the fully super-
vised setting (Crammer & Singer, 2001; Rifkin & Klautau, 2004; Zhang, 2004; Tewari & Bartlett,
2005), that combines binary losses ψ(·) : Y ×R→ R+ on the score functions gz , z ∈ [K], to create
a multiclass loss. We highlight that it is the first time that the leverage parameter β is introduce into
loss function for partial label learning, which leverages between losses on partial labels and residual
labels (non-partial labels). To be specific, the partial loss function of concern is of the form

L̄ψ(y, g(x)) =
∑
z∈y

wzψ(gz(x)) + β ·
∑
z/∈y

wzψ(−gz(x)). (1)

It consists of three components.

• A binary loss function ψ(·) : Y ×R→ R+, which forces gz to be larger when z resides in
the partial label set y, while ψ(−gz) punishes large gz when z /∈ y.

• Weighting parameters wz ≥ 0 on ψ(gz) for z ∈ [K]. Generally speaking, we would like to
assign more weights to the loss of labels that are more likely to be the true label.

• The leverage parameter β ≥ 0 that distinguishes between partial labels and non-partial
ones. Larger β quickly rules out non-partial labels during training. However, it also lessens
the weights assigned to partial labels.

We mention that the partial loss proposed in (1) is a general form. Some special cases include

1) Taking β = 1, wz = 1/#|y| for z ∈ y and wz = 1 for z /∈ y, we achieve the “naı̈ve”
partial loss proposed by Jin & Ghahramani (2002), the form of which is

L̄naı̈ve
ψ (y, g(x)) =

1

#|y|
∑
y∈y

ψ(gy(x)) +
∑
y/∈y

ψ(−gy(x)). (2)

2) By taking wz∗ = 1 where z∗ = arg maxz∈y gz , wz = 0 for z ∈ y \ {z∗}, wz = 1 for
z /∈ y, and β = 1, we achieve the partial loss function adopting the “hardmax” scheme
proposed by Cour et al. (2011), with the form of

L̄hardmax
ψ (y, g(x)) = ψ(max

y∈y
gy(x)) +

∑
y/∈y

ψ(−gy(x)). (3)

3) By taking wz∗ = 1 where z∗ = arg maxz∈y gz , wz = 0 for z ∈ y \ {z∗}, wz = 0 for
z /∈ y, and β = 0, we achieve the partial loss function adopting the “softmax” scheme
proposed by Lv et al. (2020), with the form of

L̄softmax
ψ (y, g(x)) = ψ(max

y∈y
gy(x)) = min

y∈y
ψ(gy(x)). (4)
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2.4 RISK CONSISTENCY OF LW LOSS

Theorem 2 If the partial loss function is of the form in (1), then its corresponding ordinary loss
function has the form

Lψ(y, g(x)) = wyψ(gy(x)) +
∑
z 6=y

wzqz
[
ψ(gz(x)) + βψ(−gz(x))

]
, (5)

such that R̄(L̄, g(X)) = R(L, g(X)).

Theorem 2 shows the consistency in risk between LW loss for partial label learning and its corre-
sponding loss for ordinary label learning. Compared to the previous result in Lv et al. (2020), where
partial loss function (5) is considered under the deterministic scenario, i.e. the true label of a point
can be uniquely determined by some measurable function f : X → Y , we highlight that our result
applies to both deterministic and stochastic scenarios, i.e. Theorem 2 also holds when the output
label is a probabilistic function of the input. We extend the previous result to the partial loss func-
tion of a more general form, with (5) being one of the special cases. This enables us to take a step
further to compare between various partial loss functions w.r.t. their corresponding ordinary loss.
Moreover, compared to Feng et al. (2020), where the partial label set is assumed to be uniformly
sampled, our assumptions are much weaker and closer to the reality.

In the following analysis, we focus on symmetric binary loss ψ(·) for their fine theoretical properties.
We remark that commonly adopted loss functions such as zero-one loss, Sigmoid loss, Ramp loss,
etc. satisfies the symmetric condition. (See Ishida et al. (2017))

Corollary 1 If ψ(·) is symmetric, i.e. ψ(gz(x)) + ψ(−gz(x)) = 1, and

1) β = 0, then we have Lψ(y, g(x)) = wyψ(gy(x)) +
∑

z∈y,z 6=y

wzqzψ(gz(x)).

2) β = 1, then we have Lψ(y, g(x)) = wyψ(gy(x)) +
∑
z 6=y

wzqz.

3) β = 2, then we have Lψ(y, g(x)) = wyψ(gy(x)) +
∑
z 6=y

wzqzψ(−gz(x)) +
∑
z 6=y

wzqz.

When ψ(·) is symmetric β = 0, the average loss ψ(−gz) on the residual labels z /∈ y failed to offset
the average loss ψ(gz) on partial labels z ∈ y \ {y}. Therefore, in addition to focus on the true
label y, the corresponding ordinary loss also give positive weights to those partial, but unfortunately
untrue, labels, which may harm the effectiveness of the partial label learning. This problem can only
be avoided when wz = 0 for z ∈ y \ {y}, which corresponds to the “softmax” loss function (4).

When ψ(·) is symmetric and β = 1, the corresponding ordinary loss function Lψ(y, g(x)) is a linear
transformation of ψ(gy(x)). In this case, when optimizing the partial loss function L̄ψ , we are at the
same time optimizing the corresponding ordinary loss Lψ := ψ(gz(x)).

When ψ(·) is symmetric and β = 2, the corresponding ordinary loss function Lψ(y, g(x)) is a linear
combination of ψ(gy(x)) and ψ(−gz(x)) for z 6= y. When taking wz = 1/qz for z ∈ [K], we have

Lψ(y, g(x)) = ψ(gy(x)) +
∑
z 6=y

ψ(−gz(x)) +K − 1,

which corresponds to the one-versus-all (OVA) loss function proposed by Zhang (2004).

As a matter of fact, the leverage parameter β decides to what extent the average extra loss ψ(gz(x))
on z ∈ y \ {y} is compensated by the average ψ(−gz(x)) on z /∈ y, and Corollary 1 indicates that
β = 1 and especially β = 2 can be good choices.

3 MAIN ALGORITHM

In the theoretical analysis of the previous section, we focus on partial and ordinary loss functions
that consistent in risk. However, in experiment, the risk for partial label loss is not directly accessible
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Algorithm 1 Leveraged Weighted Loss for Partial Label Learning

Input: Training data Dn := {(x1,y1), . . . , (xn,yn)};
Number of Training Epochs T ;
Learning rate ρ > 0;
For i = 1, . . . , n initialize w(0)

z,i = 1
#|yi|

for z ∈ yi and w(0)
z,i = 1

K−#|yi|
for z /∈ yi.

for t = 1 to T do
Calculate empirical risk R̄(t)

Dn
(L̄(t−1), g(x; θ(t−1))) by (7);

Update parameter θ(t) for score functions by (8) and achieve g(x; θ(t)).
Update weighting parameters w(t)

z,i by (6);
end for
Output: Decision function achieved by ŷ = arg minz∈[K] gz(x; θ(T )).

since the underlying distribution of P(X,Y ) is unknown. Instead, the we can measure the empirical
risk of a learning algorithm on the partially labeled sample Dn := {(x1,y1), . . . , (xn,yn)}, which
is R̄Dn

(L̄, g(X)) = 1
n

∑n
i=1 L̄(yi, g(xi)). In the following experiments, we select sigmoid loss as

the binary loss in our LW loss function for our method due to its symmetric property. To be specific,
we let ψ(gz(x)) := 1/(1 + exp(gz(x))) for z ∈ [K].

Iterative Learning Process of Weighting Parameters. We take the network parameters θ for score
functions g(x) :=

(
g1(x), . . . , gK(x)

)
into consideration, and write g(x; θ) and gz(x; θ) instead.

Now we turn to determine the weighting parameters, another important component in our LW loss.
Our goal is to assign larger weight to the binary loss of true label y, and assign weight as small as
possible for the binary losses for z 6= y. However, since we cannot directly observe the true label
y for input x from the partial labeled data, the weighting parameters cannot be directly assigned.
Therefore, inspired by the EM algorithm and PRODEN proposed by Lv et al. (2020), we learn the
weighting parameters through an iterative process instead of assigning fixed values. The overall
algorithm is shown in Algorithm 1.

At the first glance, it seems natural to perform the softmax operation on all score functions gz(x; θ)

for z ∈ [K], i.e. to update the weighting parameters at t-th step by w(t)
z = exp(gz(x;θ

(t)))∑
z∈[K] exp(gz(x;θ

(t)))
.

However, since larger score implies higher probability of a label to be the true label, the weights for
partial labels tend to grow rapidly through training, resulting in much larger weights for the partial
losses than the residual ones. Finally, as the training epochs grow, the losses on residual labels as
well as the leverage parameter β gradually lose their functions, which we are not pleased to see.

To conquer this problem, we perform the softmax operation on the score functions gz(x; θ) for z ∈ y
and those for z /∈ y respectively, i.e.

w(t)
z =

exp(gz(x; θ(t)))∑
z∈y exp(gz(x; θ(t)))

for z ∈ y, and w(t)
z =

exp(gz(x; θ(t)))∑
z/∈y exp(gz(x; θ(t)))

for z /∈ y. (6)

By this means we have
∑
z∈y w

(t)
z =

∑
z/∈y w

(t)
z = 1. Thus the leverage parameter β can gain the

full control of the relative scale of losses on partial labels and residual labels. Note that w(t)
z varies

with sample instances. Thus for each instance (xi,yi), i = 1, . . . , n, we denote the weighting
parameter as w(t)

z,i.

Then we achieve the empirical risk function for the t-th step as

R̄(t)
Dn

(L̄(t−1), g(x; θ(t−1))) =
1

n

n∑
i=1

L̄(t−1)(yi, g(xi; θ
(t−1)))

=
1

n

n∑
i=1

( ∑
z∈yi

w
(t−1)
z,i /

(
1 + exp(gz(x; θ(t−1)))

)
+ β ·

∑
z/∈yi

w
(t−1)
z,i /

(
1 + exp(−gz(x; θ(t−1)))

))
,

(7)

and update the parameters in score functions, i.e. let ρ > 0 be the learning rate, we have for z ∈ [K],

θ(t) = θ(t−1) − ρ · ∂R̄(t)
Dn

(L̄(t−1), g(x; θ(t−1)))/∂θ. (8)
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4 EXPERIMENTS

We base our experiments on four benchmark datasets: MNIST (LeCun et al., 1998), Kuzushiji-
MNIST (KMNIST) (Clanuwat et al., 2018), Fashion-MNIST (FMNIST) (Xiao et al., 2017), and
CIFAR-10 (Krizhevsky et al., 2009). According to Assumptions 1, 2 and 3, we generate partially
labeled data by making K − 1 independent decisions for labels z 6= y, where each label z has
probability qz to enter the partial label set. Note that the true label y always resides in the partial
label set y, and we accept the occasion that y = [K].

4.1 PARAMETER ANALYSIS

In this part, we let the partially labeled data be generated with equal probability, i.e. qz = q ∈ [0, 1)
for z ∈ [K]. We take both linear model and 5-layer perceptron (MLP) to verify the effectiveness of
our LW loss and algorithm. More implementation details are shown in the supplementary materials.

MNIST, Linear, q=0.1 MNIST, Linear, q=0.5 MNIST, MLP, q=0.1 MNIST, MLP, q=0.5

KMNIST, Linear, q=0.1 KMNIST, Linear, q=0.5 KMNIST, MLP, q=0.1 KMNIST, MLP, q=0.5

FMNIST, Linear, q=0.1 FMNIST, Linear, q=0.5 FMNIST, MLP, q=0.1 FMNIST, MLP, q=0.5

Figure 1: The study of leverage parameter β on different datasets, models and q.

Figure 1 presents the test accuracy during the training process. Since models converges fast in some
cases, we just show the results of first 300 or 400 epochs. We mention that the result of β = 0 is
sometimes too bad to be in the scope, thus not shown in some figures. From Figure 1, we observe
that under linear models, β = 1 brings satisfactory results compared with β with other values.
With MLP model, β = 2 is always the optimal parameter and β = 1 is the second best. These
results exactly correspond to the the theoretical results presented in Corollary 1, which explains
the experimental results from the perspective of the relationship between partial loss and ordinary
multi-classification loss. It is also worth mentioning that the case of β = 0 is equivalent to using
the PRODEN algorithm with Sigmoid loss function instead of with cross entropy loss in the original
paper. Figure 1 also shows that our algorithm (with β = 1 or β = 2) performs far better than
PRODEN (with β = 0). In addition, for β = 4 and β = 0, the performance deteriorates drastically
since the loss concentrates too much on either partial set or residual set.

4.2 OVERALL ACCURACY

In this section, we compare our algorithm with the state-of-the-art partial label learning algorithm
PRODEN Lv et al. (2020) (with cross entropy loss), which only focuses on the loss induced by the
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partial label set, i.e. the case β = 0. However, they use cross entropy loss function instead of sig-
moid function and obtain the superior results. First, we provide the accuracy on the four benchmark
datasets. The parital label sets are generated by five random samplings and the parameters of PRO-
DEN are selected according to the original paper. We follow the experimental settings in Section
4.1, and in addition, we train a 12-layer ConvNet (Laine & Aila, 2017) for CIFAR-10. Moreover,
we take average of test accuracy during the last ten epochs as the final results to obtain stable results.

Table 1: Accuracy comparisons on benchmark datasets.

Dataset Model q = 0.1 q = 0.3 q = 0.5 q = 0.7
β∗ Accuracy β∗ Accuracy β∗ Accuracy β∗ Accuracy

MNIST OURS 2 98.78 (0.08)
∗

2 98.65 (0.03)
∗

2 98.52 (0.07)
∗

2 98.12 (0.10)
∗

PRODEN 0 98.55 (0.13) 0 98.47 (0.12) 0 98.36 (0.08) 0 98.02 (0.05)

KMNIST OURS 2 93.38 (0.18)
∗

2 92.24 (0.14)
∗

2 90.70 (0.48)
∗

2 88.84 (0.41)
∗

PRODEN 0 91.07 (0.20) 0 90.45 (0.12) 0 88.67 (0.22) 0 85.53 (0.61)

FMNIST OURS 1 89.98 (0.10)
∗

1 89.55 (0.14)
∗

2 88.86 (0.17) 4 87.66 (0.09)
∗

PRODEN 0 89.48 (0.11) 0 89.18 (0.18) 0 88.85 (0.16) 0 87.40 (0.14)

CIFAR-10 OURS 1 90.62 (0.08)
∗

1 89.53 (0.11)
∗

1 86.10 (0.11)
∗ - -

PRODEN 0 89.00 (0.18) 0 87.76 (0.23) 0 84.94 (0.31) - -

* The best results are marked in bold, and the standard deviation is reported in the parenthesis beside each
value. we apply the Wilcoxon signed-rank test, and mark with ∗ the results that are significantly better than
others with significance level α = 0.05.

From Table 1, we find our method with optimal β = 2 or β = 1 outperforms PRODEN in most
cases, which corresponds exactly to Corollary 1.

4.3 THE INFLUENCE OF DATA GENERATION

Figure 2: The influence of qadj .

In the data generation of previous subsections, the un-
true partial labels are selected with equal probabilities, i.e.
qz = q for z 6= y. In reality, however, some labels may be
more analogous to the true label than others, and thus the
probabilities qz for these labels may naturally be higher
than others. In this subsection we simulate the situation
where each true label has two similar labels (adjacent la-
bels in experiment) with higher probability qadj > q to be
partial labels, while all other labels enjoy equal probabil-
ity q = 0.1. Note that when qadj = q, the data generation
reduced to the equal probability case.

Figure 2 shows the comparison between our algorithm and PRODEN with various qadj . Since higher
qadj indicates that true labels are more likely to be confused by similar labels, both our algorithm
and PRODEN performs worse as qadj increases. Nonetheless, partial label learning with our LW
loss always enjoys higher accuracy than PRODEN.

5 CONCLUSION

In this paper, we propose a family of loss functions named Leveraged Weighted (LW) loss function,
where we for the first time introduce the leverage parameter β to the partial loss function. From
the theoretical perspective, we prove the relationship between our proposed LW loss for partial
label learning and the ordinary multiclass classification losses that achieve the same risk as the LW
risk. We mention that our theoretical analysis considers more general situations than the existing
literatures. Then we examine the weighting parameter β from both the theoretical and empirical
perspectives, both of which reaches the concensus that β = 1 and especially β = 2 are preferred
choices for our LW loss. Specifically, with β = 2, the corresponding ordinary loss of LW matches
exactly to the one-versus-all (OVA) loss function, which theoretically guarantees the performance of
our LW loss. Last but not least, comparisons with the state-of-the-art PRODEN shows the advantage
of our methods under various data generation situations.
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Eyke Hüllermeier and Jürgen Beringer. Learning from ambiguously labeled examples. Intelligent Data Analy-
sis, 10(5):419–439, 2006.

Takashi Ishida, Gang Niu, Weihua Hu, and Masashi Sugiyama. Learning from complementary labels. neural
information processing systems, pp. 5639–5649, 2017.

R. Jin and Z. Ghahramani. Learning with multiple labels. In Advances in Neural Information Processing
Systems, pp. 897–904, 2002.

Rong Jin and Zoubin Ghahramani. Learning with multiple labels. In Advances in neural information processing
systems, pp. 921–928, 2003.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In 5th International Con-
ference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=BJ6oOfqge.
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