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Abstract
We introduce a benchmarking method for evaluating generalization and memorization in time series forecasting
models for chaotic dynamical systems. By generating two complementary types of test sets—by perturbating
training trajectories to minimally/maximally diverge over a fixed time horizon—we quantify each model’s
sensitivity to distribution shift. Our results reveal consistent trade-offs between training accuracy and OOD
generalization across neural architectures, offering a lightweight diagnostic tool for model evaluation in the
small-data regime.

1. Introduction
Dynamical systems describe how a state evolves over time according to fixed rules, underpinning phenomena from planetary
orbits (Contopoulos, 2013) and climate dynamics (Reichstein et al., 2019) to economic cycles (Tu, 2012) and neural activity
(Izhikevich, 2007). Accurate forecasts aid transportation, energy, and public-health planning.

Traditional approaches derive governing equations from physics and fit unknown parameters (Rapp et al., 1999; Abarbanel
et al., 2009). Their built-in inductive bias yields interpretability and often reliable extrapolation but fails when key physics
are missing—e.g., climate models that omit small eddies under-predict extreme weather (Ma et al., 2015; Czaja et al., 2019).
Data-driven methods—from early local-linear predictors (Farmer & Sidorowich, 1987) to reservoir computing (Jaeger &
Haas, 2004; Gauthier et al., 2021), recurrent nets (Bailer-Jones et al., 1998; Wang, 2017), neural ODEs (Chen et al., 2018),
dynamic-mode decomposition (Schmid, 2010), and sparse-library regression (Brunton et al., 2016)—learn directly from
data but often generalise poorly beyond the training regime.

Real deployments encounter unseen regimes, so out-of-distribution (OOD) generalisation is a critical benchmark. In
computer vision this means new object classes (Liu et al., 2023); in RL, harder tasks (Cobbe et al., 2020). For dynamical
systems, researchers perturb initial conditions, vary parameters, or corrupt observations, yet choices are usually ad-hoc,
leading to incomparable robustness claims.

We propose a small, reproducible stress test of OOD generalization in dynamical systems modelling. For any reference
trajectory we (1) linearise the dynamics to obtain Jacobian eigen-directions, (2) nudge the initial state by the same radius
along a stable eigenvector (near-OOD) and an unstable eigenvector (far-OOD), and (3) compare forecasting error on the
paired trajectories. The identical step size isolates sensitivity to the first unstable mode.

Contributions. (1) A Jacobian-based generator for paired near/far-OOD tests; (2) an open-source, Colab-ready toolkit; (3)
empirical evaluation of 30 different chaotic dynamical systems predicted by KNN, LSTM, NBEATS, TIDE, and Transformer
models.

2. Related Work
In dynamical-systems modeling and reconstruction, out-of-distribution/domain (OOD) evaluation is important for assessing
how well a learned model performs under conditions that differ substantially from its training data. Because dynamical
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systems are so easily simulated, researchers can introduce systematic “knobs” for OOD testing such as varying the system’s
equations, its physical parameters, or its initial conditions. They can also simulate realistic observational shifts such as
added noise or coarser time resolution. Although many papers explore multiple types of distribution shifts (e.g. (Song et al.,
2025; Mouli et al., 2024; McCabe et al., 2024)), the specific choices tend to be arbitrary and inconsistent, making it difficult
to compare models and benchmark progress across the field.

Initial Conditions Evaluation on unseen initial conditions or trajectories is perhaps the most standard OOD test. Many
studies measure generalization by reserving later time-steps of a trajectory for testing, forcing models to extrapolate beyond
the temporal window seen during training (Zhang & Saxena, 2024; Volkmann et al., 2024; Park et al., 2024). Others
deliberately sample training and test initial states randomly (Levine & Stuart, 2022; Vlachas et al., 2018; Kaptanoglu et al.,
2023) or from different distributions (Bhamidipaty et al., 2023; Mouli et al., 2024; Song et al., 2025; Bihlo, 2024; Yang &
Osher, 2024). For instance, DynaDojo provides a unified benchmarking platform for canonical systems like Lorenz, N-body,
and Kuramoto, comparing model performance on in-distribution versus OOD initial conditions drawn from a separate region
of state-space (Bhamidipaty et al., 2023). MetaPhysiCA further examines two axes of shift—novel initial states alone, and
joint shifts in both initial conditions and ODE parameters—and demonstrates substantial error reductions over non-causal
baselines under both settings (Mouli et al., 2024).

Dynamical Regime Not all initial-condition shifts are created equal. Small perturbations can dramatically alter long-term
trajectory geometry in chaotic systems, while multimodal attractors admit qualitatively distinct dynamical regimes. McCabe
et al. categorize Navier–Stokes initial states by the behaviors they induce (i.e. Random Periodic versus Turbulent) (McCabe
et al., 2024). And Goring et al. argue that true OOD generalization requires crossing attractor basins. In their framework, a
multistable system is partitioned by attractor, with some basins held out entirely for testing so that models must generalize
to regimes never seen during training (Göring et al., 2024).

Dynamics/Parameters Beyond input changes, shifts in physical parameters probe a model’s robustness to changes in
system dynamics. The LEADS framework formalizes each “environment” as a distinct distribution over parameter vectors
(e.g. Lotka–Volterra coefficients), drawing training and test values from non-overlapping ranges to evaluate generalization
(Yin et al., 2021). Subramanian et al. show that pre-training a transformer-style neural operator on PDEs with diffusion
coefficients in [0.1, 1.0] then fine-tuning on [1.1, 2.0] yields orders-of-magnitude gains in sample efficiency compared
to learning from scratch (Subramanian et al., 2023). Li & Yang introduce a dual-branch neural operator in which an
in-distribution branch handles λ ∈ [1, 5] (Poisson eigenvalues) or k ∈ [0.5, 2.0] (Helmholtz wavenumbers) and an OOD
branch transfers pseudo-solutions to recover accuracy when λ > 5 or k > 2 without the need for OOD labels (Li & Yang,
2025).

Systems Transfer across entirely new dynamical systems and tasks represents an even more ambitious form of OOD
evaluation. FMint, a foundation model pre-trained on a diverse corpus of ODE trajectories, can be fine-tuned with as few
as 25 to 1000 samples to model unseen systems—from driven-damped pendulums to FitzHugh–Nagumo—outperforming
state-of-the-art simulators and numerical solvers (Song et al., 2025). Even zero-shot forecasting is possible. A general-
purpose time-series foundation model, despite never seeing dynamical-system data during pre-training, accurately predicts
135 chaotic systems for up to one Lyapunov time while preserving attractor geometry (Zhang & Gilpin, 2024). LLMs, too,
have shown improved emergent reasoning for solving tasks from visual puzzles to chess moves when pre-trained on more
complex cellular automata (Zhang et al., 2025).

Observation Finally, realistic application demands robustness to observational shifts such as sensor noise and sampling
rates. Prior work has evaluated methods for sensitivity to noise (Stepaniants, 2023; Volkmann et al., 2024) and examined
performance under coarser or irregular time-step strides (Song et al., 2025) to simulate non-ideal measurement scenarios.

Together, these varied OOD tests form a rich but fragmented landscape. It is clear that we need clarity to drive reproducible
progress in dynamical systems forecasting.
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3. Methods
Problem Setting

Let {x(i)
ref (t)}Ni=1 denote a training set of trajectories from a dynamical system, used to train a predictive model. To evaluate

the model’s ability to generalize beyond the training distribution, we construct in-distribution (ID) and out-of-distribution
(OOD) test trajectories by perturbing each reference trajectory xref(t) in two controlled ways. For each trajectory, we
generate an ID variant xid(t) and an OOD variant xood(t) by modifying the initial condition:

xid(0) = xref(0) + δxid(0), xood(0) = xref(0) + δxood(0).

Both perturbations are designed to have the same integrated deviation ϵ over an initial window [0, C] (with C < T ), but
differ maximally in their deviation over the full interval [0, T ]. This setup enables us to isolate the model’s performance
under controlled deviations and quantify the generalization gap between ID and OOD scenarios.

Generating ID and OOD Test Trajectories via Constrained Perturbations

To construct perturbations for nonlinear systems, we linearize the dynamics around a reference trajectory and solve a
generalised eigenvalue problem to identify the directions that minimize or maximize the deviation over a long time window
[0, T ], under a fixed integrated deviation constraint over [0, C].

Setup. Let xref(t) be a reference trajectory governed by a nonlinear dynamical system ẋ = f(x). The deviation
δx(t) = x(t;x0 + δ)− xref(t) evolves approximately as:

˙δx ≈ A(t)δx, A(t) = Df(xref(t)).

We define the state transition matrix Φ(t, 0) as the solution to Φ̇ = A(t)Φ with Φ(0, 0) = I . Then:

δx(t) ≈ Φ(t, 0)δx(0).

Generalised Gramian Construction. Define two Gramians:

WC =

∫ C

0

Φ(t, 0)⊤Φ(t, 0) dt,

WT =

∫ T

0

Φ(t, 0)⊤Φ(t, 0) dt.

Constrained Optimisation. We solve the generalised eigenvalue problem:

WT v = λWCv

and take the top eigenvector v1 (maximally divergent) and bottom eigenvector vn (minimally divergent). We then scale each
to satisfy the constraint:

δ⊤WCδ = Cϵ2.

Thus, the perturbations become:

δood = ϵ · v1√
v⊤1 WCv1

, δid = ϵ · vn√
v⊤n WCvn

.

The full nonlinear system is then simulated forward from these perturbed initial conditions.
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Algorithm 1 Construct ID/OOD Perturbations via Generalised Eigenproblem
Input: Nonlinear system ẋ = f(x), reference trajectory xref(t), horizon T , constraint window C < T , error level ϵ
Output: Perturbations xid(t), xood(t)
1. Compute Jacobian trajectory A(t) = Df(xref(t)) for t ∈ [0, T ]
2. Integrate tangent-linear system Φ̇ = A(t)Φ to obtain Φ(t, 0)

3. Compute Gramians WC =
∫ C

0
Φ⊤Φ dt, WT =

∫ T

0
Φ⊤Φ dt

4. Solve WT v = λWCv; sort eigenvalues λ1 ≥ · · · ≥ λn

5. Scale eigenvectors v1, vn to satisfy δ⊤WCδ = Cϵ2

6. Set xood(0) = xref(0) + δood, xid(0) = xref(0) + δid
7. Simulate nonlinear system from both initial conditions
8. return xid(t), xood(t)

4. Results
We begin with global summaries (Fig. 1), then zoom into a representative system (ThomasLabyrinth) across all five
models (Fig. 2). Full per–system heat-maps are deferred to Appendix A.

(a) Mean σ-RMSE vs. mean sMAPE with IQR error bars. (b) Distribution of slopes ( ∂ sMAPE/∂σ).

Figure 1. Global error behaviour across 30 chaotic systems. (a) Models positioned by their mean error and error–shift slope. (b) Spread
of slopes per model.

Generalization Behavior Across Models. Figure 1 reveals a trade-off between forecasting accuracy and robustness to
distribution shift. The KNN baseline achieves the lowest mean sMAPE across all systems, but also exhibits by far the
largest positive slope—indicating that its performance degrades steeply as the test trajectories diverge from training data.
This aligns with the fact that our test sets are perturbations of the training set: KNN performs well by memorization when
test points lie close to training samples, but generalizes poorly beyond that neighborhood.

Among the neural models, the relative ordering of mean sMAPE matches prior findings in Zhang & Gilpin (2024), with
NBEATS and TIDE outperforming TRANSFORMER and LSTM. However, our analysis goes further by also capturing how
performance changes with increasing distribution shift. We observe an inverse relationship between average sMAPE
and slope: models with better average performance tend to have larger slopes, suggesting they rely more heavily on
memorization and degrade more rapidly when test inputs differ from training. Conversely, models with flatter slopes (e.g.,
LSTM) exhibit more stable generalization, even if their average error is slightly higher.

These findings demonstrate that our method provides an efficient, diagnostic proxy for comparing memorization and
generalization behaviors across models on small chaotic datasets—information not available from sMAPE alone.
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A. Per-System Results Heatmaps
This appendix provides representative slopes observed when models are trained on a particular system and prediction errors
are plotted against test vs. training trajectory distances. The complete system-by-model breakdown for both mean sMAPE
and slope values. The heatmaps supplement the aggregate findings presented in Section 4.

(a) KNN (b) LSTM (c) Transformer

(d) TiDE (e) N-BEATS

Figure 2. Per-trajectory scatter on the TL system. Each point is a single trajectory: standardized-RMSE( test ∥ train) on the x-axis and
sMAPE(pred ∥ test) on the y-axis. In-distribution points are shown in blue, out-of-distribution in orange. The pattern is representative of
what one sees across systems where the larger the deviation between training and test trajectories, the larger the prediction sMAPE is.
However, the slope differs for each model, which relates to each model’s degree of generalization.
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Figure 3. Per-system mean sMAPE. Each cell reports the mean symmetric mean absolute percentage error for a given chaotic system
(row) and model (column). Darker shades indicate better performance (lower error). This figure allows fine-grained comparison across all
30 systems.
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Figure 4. Per-system slopes: ∂ sMAPE / ∂ shift. Red indicates systems where model performance degrades sharply as the input
distribution shifts away from the training data. Blue indicates stability or error reduction with shift. These values correspond to the slopes
used in Figures 1 and 2.
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Figure 5. We also include evidence that the perturbation method works effectively across a variety of 30 chaotic dynamical systems by
plotting the integrated standardized-RMSE over Lyapunov time between the in- and out-of-distribution test sets that were perturbed to lead
to maximal and minimal divergence, respectively, relative to the reference training trajectory over window of T = 2 Lyapunov times. The
in and out initial condition perturbations were constrained to cause equal RMSE divergence over a shorter window C = 1 Lyapunov time.

11


