

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ANON: EXPLORING THE ADAPTIVITY OF OPTIMIZERS AND BEYOND

Anonymous authors

Paper under double-blind review

ABSTRACT

Adaptive optimizers such as Adam have achieved great success in training large-scale models like large language models and diffusion models. However, they often generalize worse than non-adaptive methods, such as SGD on classical architectures like CNNs. We identify a key cause of this performance gap: *adaptivity* in pre-conditioners, which limits the optimizer’s ability to adapt to diverse optimization landscapes. To address this, we propose **Anon** (Adaptivity Non-restricted Optimizer with Novel convergence technique), a novel optimizer with **continuously tunable adaptivity** $\gamma \in \mathbb{R}$, allowing it to interpolate between SGD-like and Adam-like behaviors and even extrapolate beyond both. To ensure convergence across the entire adaptivity spectrum, we introduce *incremental delay update (IDU)*, a novel mechanism that is more flexible than AMSGrad’s hard max-tracking strategy and enhances robustness to gradient noise. We theoretically establish convergence guarantees under both convex and non-convex settings. Empirically, Anon consistently outperforms state-of-the-art optimizers on representative image classification, diffusion, and language modeling tasks. These results demonstrate that adaptivity can serve as a valuable tunable design principle, and Anon provides the first unified and reliable framework capable of bridging the gap between classical and modern optimizers and surpassing their advantageous properties. Our code is available at <https://anonymous.4open.science/r/Anon-6511/>.

1 INTRODUCTION

Modern deep learning models rely heavily on optimization algorithms for effective training. Despite the wide success of adaptive optimizers such as Adam (Kingma & Ba, 2014) in large-scale models like diffusion networks (Nichol & Dhariwal, 2021; Rombach et al., 2022) and large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023), they are often outperformed by non-adaptive methods such as SGD (Robbins & Monro, 1951) in classical architectures like CNNs (Wilson et al., 2017). These discrepancies raise a critical question: *Why do existing optimizers fail to generalize across diverse model families?*

We identify a key cause of this performance gap as *adaptivity* in pre-conditioners (i.e., the matrix that rescales the gradient before the step; SGD uses the identity, while Adam uses a data-dependent diagonal matrix). Whereas SGD applies fixed step sizes, adaptive optimizers such as Adam scale updates by gradient statistics, implicitly encoding an adaptivity level A throughout training. This A , fixed without considering task-specific gradient distributions, can create a mismatch between the optimizer’s adaptivity and the task’s optimization landscape, potentially degrading generalization performance and rendering optimizers overly specialized. This motivates us to formalize and analyze adaptivity as a first-class property of optimizers.

To address this, we introduce a unified view of adaptivity, defined as the log-sensitivity of the pre-conditioner to global gradient scaling (§2.2). Existing optimizers correspond to fixed points on this adaptivity spectrum: SGD ($A = 0$), RMSProp (Graves, 2013) ($A \approx 1$), and Adam ($A \approx 1$). However, no method supports continuous control across $A \in \mathbb{R}$ with guaranteed stability.

We propose **Anon**, an Adaptivity Non-restricted Optimizer with Novel convergence technique that enables *real-valued, tunable adaptivity* via a hyperparameter $\gamma \in \mathbb{R}$. Anon interpolates between SGD-like and Adam-like updates and even extrapolates beyond them. We note that such adaptivity comes with an important tradeoff: extreme adaptivity (e.g., $\gamma < 0$ or $\gamma > 1$) risks instability and

054 divergence. To tackle this tradeoff, we design a new convergence technique named **incremental**
 055 **delay update** (IDU), which replaces hard max-tracking (e.g., in AMSGrad) with a soft, multi-scale
 056 accumulator that is provably stable.

057 **Our contributions are as follows:**

059 • We define a formal notion of adaptivity as a continuous control variable that unifies SGD, Adam,
 060 and beyond, offering a unifying lens to guide the design of future optimizers (§2.2).

061 • Through our analysis, we propose **Anon**, a novel universal optimizer which has tunable adaptivity.
 062 Anon’s extensive range of adaptivity and adjustment endows the optimizer with the capability to
 063 surpass the performance ceiling inherent in previous optimizers. (§3.1).

064 • We propose a novel technique named *incremental delay update*, which eliminates the non-
 065 convergence risks in Anon arising from excessive range of adaptivity adjustment and anomalous
 066 negative adaptivity that may be set. We theoretically establish the convergence of Anon in both
 067 online convex and non-convex stochastic settings. In addition, we show that IDU can address
 068 convergence issues more effectively than AMSGrad’s max-tracking approach. (§3.3).

069 • We conduct extensive experiments in image classification, language, and generative modeling,
 070 where Anon consistently outperforms strong baselines across tasks and architectures. (§4).

071 This work advocates for viewing adaptivity as a tunable principle and delivers the first provably
 072 stable, unified optimization framework that spans the full adaptivity spectrum.

074 2 PRELIMINARIES

075 2.1 REVIEW OF THE FRAME OF OPTIMIZERS

076 We focus on first-order optimizers, which are widely used to train deep
 077 learning models. To facilitate a unified understanding of their differences and
 078 commonalities, we introduce a generic framework, summarized in Algorithm 1.⁴ Here, \mathcal{F} denotes the convex feasible set.⁵ $\theta \in \mathcal{F}$ is the parameter to be optimal.⁶ Define $f(\theta)$ as a vector-valued function
 079 to minimize. S_t is a diagonal matrix

Algorithm 1: Generic Optimizer Method Frame

1 **Input:** $\theta, \eta, \{\phi_t, \psi_t\}_{t=1}^\infty$
 2 **while** θ_t not converged **do**
 3 $g_t \leftarrow \nabla f_t(\theta_t)$
 4 $m_t \leftarrow (\phi_t(g_{1:t,1}), \dots, \phi_t(g_{1:t,d}))^\top$
 5 $S_t \leftarrow \text{diag}(\psi_t(g_{1:t,1}), \dots, \psi_t(g_{1:t,d}))$
 6 $\theta_t \leftarrow \Pi_{\mathcal{F}, S_t}(\theta_{t-1} - \eta(t) S_t^{-1} m_t)$
 7 **end while**

080 where $S_{t,i,i} := \psi_t(g_{1:t,i})$. ψ_t is the pre-conditioner function. $\Pi_{\mathcal{F}, S}(y) = \text{argmin}_{x \in \mathcal{F}} \|S^{1/2}(x - y)\|$
 081 denotes the projection of y onto \mathcal{F} under the scaling matrix S . The scheduler η controls the learning
 082 rate at each step, which can be constant or scheduled via strategies such as cosine annealing
 083 (Loshchilov & Hutter, 2016). g_t is the gradient at step t . m_t is a vector where $m_{t,i} := \phi_t(g_{1:t,i})$.
 084 The momentum operator $\phi_t : \mathbb{R}^t \rightarrow \mathbb{R}$ is typically implemented as a moving average of past gradients.
 085 The two common variants are:

$$086 \text{EMA}(\mathbf{x}_{1:t}; \beta) = \frac{1 - \beta}{(1 - \beta^t)} \sum_{i=1}^t \beta^{t-i} x_i, M(\mathbf{x}_{1:t}; \beta) = \sum_{i=1}^t \beta^{t-i} x_i, \quad (1)$$

087 where EMA denotes the exponential moving average with bias correction. M refers to the classical
 088 momentum without normalization. Both operators serve to smooth the gradient history. **Since the**
 089 **smoothing behavior of ϕ is similar across optimizers, the key differentiator lies in the design of**
 090 **the pre-conditioner ψ .** Thus, we focus our subsequent analysis on the properties and effects of ψ .

100 While the momentum functions ϕ_t are largely similar across optimizers, the pre-conditioner functions
 101 $\psi_t : \mathbb{R}^t \rightarrow \mathbb{R}_+$ differ significantly and play a crucial role in shaping the optimizer’s behavior. We
 102 summarize the designs of ϕ and ψ for representative optimizers in Table 1.

103 As shown in Table 1, the momentum components ϕ exhibit similar behaviors across different
 104 optimizers. This observation highlights that the key distinction among optimizers arises from the
 105 design of ψ rather than ϕ . In fact, if we omit the bias correction factor $1/(1 - \beta^t)$ in EMA, it
 106 effectively reduces to a classical momentum M up to a constant scaling factor $1 - \beta$. Therefore, for
 107 the remainder of this paper, we primarily focus on analyzing the properties of the pre-conditioner ψ ,
 108 assuming a shared momentum ϕ across optimizers unless otherwise noted.

108 Table 1: Summary of momentum functions and pre-conditioners for representative optimizers (Polyak,
109 1964; Luo et al., 2019; Zhuang et al., 2020). For full expressions of complex terms (A_t^{AMSGrad} ,
110 A_t^{AdaBound} , $A_t^{\text{AdaBelief}}$, A_t^{Anon}), please refer to Table 6 of Appendix B.1.

Optimizer	$\phi_t(x)$	$\psi_t(x)$	$A_t(\psi, x)$
SGD	x_t	1	0
SGDM	$M(\mathbf{x}; \beta)$	1	0
RMSProp	x_t	$\sqrt{EMA(\mathbf{x}^2; \beta_2)} + \epsilon$	$\frac{1}{1+\epsilon/\sqrt{EMA(\mathbf{x}^2; \beta_2)}} (\approx 1)$
Adam	$EMA(\mathbf{x}; \beta_1)$	ψ_t^{RMSProp}	A_t^{RMSProp}
AMSGrad	ϕ_t^{Adam}	$\max_{i \in [t]} \{\psi_i^{\text{RMSProp}}\}$	$[0, 1] (\approx 1)$
AdaBound	ϕ_t^{Adam}	$\text{Clip}(\psi_t^{\text{RMSProp}}, f_l(t), f_u(t))$	$[0, 1] (1 \rightarrow 0)$
AdaBelief	ϕ_t^{Adam}	$\sqrt{EMA((\mathbf{x} - \phi^{\text{Adam}})^2 + \epsilon/(1 - \beta_2); \beta_2)} + \epsilon$	$[0, 1] (\approx 1)$
Anon	ϕ_t^{Adam}	$\psi_t^{\text{Anon}} (\text{equation 5})$	$\approx \gamma$

123 Extensive empirical evidence has shown that SGD and SGDM often achieve better generalization
124 than Adam in classical architectures such as ResNet (He et al., 2016), whereas Adam typically out-
125 performs SGD in more complex architectures such as transformers. Understanding the fundamental
126 causes behind this divergence remains an important question, with significant implications for the
127 development of more effective optimizers. Several hypotheses have been proposed, including that
128 Adam can escape saddle points more efficiently than SGD (Staib et al., 2019), and that SGD tends to
129 find flatter minima whereas Adam is biased toward sharper minima, leading to superior generalization
130 for SGD (Wilson et al., 2017). **Regardless of the specific explanations, we hypothesize that the**
131 **ultimate cause lies in how optimizers scale the loss landscape, a property we refer to as adaptivity.** We
132 will study how adaptivity affects optimization in § 3.2. Before that, we first give a formal definition
133 of adaptivity.

134 2.2 THE ADAPTIVITY OF EXISTING OPTIMIZERS

135 We formalize the concept of adaptivity based on the framework described in Algorithm 1.

136 **Definition 1.** Suppose the pre-conditioner ψ_n is continuous. For any optimizer following Algorithm 1,
137 we define the adaptivity A of its pre-conditioner ψ as

$$138 A_n(\psi, \mathbf{x}_{1:n}) = \nabla_k \ln \psi_n(k \mathbf{x}_{1:n})|_{k=1}.$$

139 **Furthermore, we define two pre-conditioners ψ and ψ' are equivalent if and only if $A_n(\psi, \mathbf{x}_{1:n}) =$
140 $A_n(\psi', \mathbf{x}_{1:n})$ for all $\mathbf{x}_{1:n} \in \mathbb{R}^n$ and $n \in \mathbb{N}_+$.**

141 **Intuition Explanation** A is a measure of the pre-conditioner's "response" to changes in the
142 gradient's scale. $A = 0$ (like SGD) means the pre-conditioner is "non-reactive" and completely
143 ignores the overall gradient scale. $A \approx 1$ (like Adam) means the pre-conditioner is "compensatory",
144 adjusting itself with a strength of 1 to offset changes in gradient scale.

145 Notably, according to Definition 1, the adaptivity A depends not only on the functional form of
146 ψ , but also on the sequence of historical gradients $\mathbf{g}_{1:t}$. This dependence reflects the fact that pre-
147 conditioning is inherently dynamic: even for a fixed ψ , its adaptivity can vary during training as the
148 distribution of gradients evolves. Separately, we introduce an important equivalence notion between
149 pre-conditioners: even if two optimizers use different ψ functions, they may be essentially equivalent
150 from an adaptivity perspective.

151 **Theorem 1.** If ψ and ψ' are from the same equivalence class, there is a function $f : \mathbb{N}_+ \rightarrow \mathbb{R}_+$ that
152 makes $\psi_n(\mathbf{x}_{1:n}) = \psi'_n(\mathbf{x}_{1:n}) f(n)$ for any $\mathbf{x}_{1:n} \in \mathbb{R}^n$ and any $n \in \mathbb{N}_+$.

153 **Decoupling from Scheduler** Theorem 1 shows that if two pre-conditioners yield the same adaptivity
154 for any input, then they are equivalent. Specifically, if there exists a scheduler adjustment that can
155 eliminate the difference between two pre-conditioners (e.g., $\psi' = k\psi$ corresponds to $\eta'(t) = k\eta(t)$),
156 we regard them as equivalent strategies. The proof of Theorem 1 is deferred to Appendix E.

157 Based on these definitions, we can characterize the adaptivity of several widely used optimizers:

162 For SGD(M), the adaptivity is $A = 0$ in all dimensions, indicating no explicit scaling of the
 163 loss landscape. In contrast, for Adam and its variants (e.g., RMSProp, AdaBelief), the adaptivity
 164 is approximately $A = 1$, as the contribution of the small ϵ term is negligible compared to the
 165 accumulated gradient statistics most of the time. A more intricate case is AdaBound (Luo et al.,
 166 2019), whose adaptivity transitions dynamically from $A \approx 1$ toward $A \approx 0$ as training proceeds.
 167 Specifically, AdaBound clamps the pre-conditioner ψ_t between shrinking bounds $\eta_l(t)$ and $\eta_u(t)$:

$$A_t(\psi^{\text{AdaBound}}, \mathbf{x}) = \begin{cases} A_t^{\text{RMSProp}}, & \text{if } \eta_l(t) < \psi_t^{\text{RMSProp}} < \eta_u(t), \\ 0, & \text{otherwise.} \end{cases} \quad (2)$$

170 As the bounds tighten over time, AdaBound behaves increasingly like SGD. This is supported by both
 171 evidence from Zhuang et al. (2020) and our experiments (Table 5), which indicates that AdaBound
 172 struggles in tasks such as GAN and diffusion model training, where high adaptivity is critical. These
 173 observations suggest the following: Optimizers with $A = 0$ (e.g., SGD) tend to generalize better on
 174 classical architectures such as CNNs, while those with $A = 1$ (e.g., Adam) perform better in complex
 175 modern architectures. However, whether $A = 0$, $A = 1$, or other values yield better performance
 176 remains an open question, which we explore in the next section.

178 2.3 THE OPTIMAL ADAPTIVITY FOR TASKS

180 We have observed that different tasks favor different levels of adaptivity A . This naturally raises a
 181 critical question: *Is $A = 0$ or $A = 1$ truly the optimal adaptivity for these tasks?*

182 As shown in Table 1, although mainstream adaptive optimizers typically have adaptivity close to 1, it
 183 is possible to adjust adaptivity by tuning hyperparameters such as ϵ . For instance, by setting a large
 184 ϵ much greater than the accumulated moving average, the adaptivity of Adam and its variants can
 185 effectively approach 0. Indeed, prior works (Zaheer et al., 2018; Zhuang et al., 2020) have adopted
 186 this trick to align Adam’s generalization performance more closely with SGD. Padam (Chen & Gu,
 187 2018) offers another perspective by modifying the pre-conditioner as

$$\psi^{\text{Padam}} = (\psi^{\text{AMSGrad}})^{2p}, \quad A_t(\psi^{\text{Padam}}, \mathbf{x}) = \frac{2p}{1 + \epsilon / \max_{i \in [t]} \sqrt{\text{EMA}(\mathbf{x}_{1:i}^2; \beta_2)}}. \quad (3)$$

190 By adjusting $p \in [0, 0.5]$, Padam interpolates adaptivity between 0 and 1 while maintaining a small ϵ .
 191 However, experiments from Chen & Gu (2018); Zhuang et al. (2020) show that Padam’s performance
 192 typically lies between Adam and SGD, and only marginally surpasses them in limited scenarios. This
 193 observation raises a broader question: *Could adaptivity values beyond the $[0, 1]$ interval lead to even
 194 better performance?*

195 At first glance, one might attempt to extend adaptivity beyond $[0, 1]$ by simple functional modifications.
 196 However, expanding the adaptivity range is non-trivial. The convergence of most adaptive optimizers
 197 relies on the assumption:

$$\frac{\psi_t(g_{1:t+1,i})}{\eta(t+1)} \geq \frac{\psi_t(g_{1:t,i})}{\eta(t)}, \quad \forall i \in [d], \forall t \in \mathbb{N}_+, \quad (4)$$

200 which guarantees that the optimizer does not diverge even in the worst-case scenarios.

202 While in practice, the convergence condition is not strictly verified, optimizers like Adam typically
 203 exhibit stable behavior under standard training settings, suggesting that this assumption is likely
 204 satisfied. If we attempt to construct optimizers with negative adaptivity, new challenges arise. For
 205 example, setting $\psi = (\psi^{\text{Adam}})^\gamma$ with $\gamma < 0$ produces a negative adaptivity. However, setting the
 206 pre-conditioner to a negative power likely causes its value to decrease over time, thereby violating
 207 the critical convergence assumption. AMSGard (Reddi et al., 2019) was introduced to address
 208 convergence issues inherent in Adam by enforcing a non-decreasing sequence in the denominator.
 209 Even with such safeguards, prior works (Chen & Gu, 2018; Chen et al., 2018) have shown that Padam,
 210 when extending adaptivity beyond $[0, 1]$, can still suffer from divergence in practice. Therefore,
 211 designing stable optimizers with tunable adaptivity beyond the classical range remains an open and
 212 challenging problem.

213 3 EXTEND TO ALL REAL NUMBERS

215 3.1 ADAPTIVITY TUNABLE OPTIMIZER AND BEYOND

In §2.2 and §2.3, we have shown that extending adaptivity beyond $[0, 1]$ could be beneficial. However, achieving tunable adaptivity across all real numbers while ensuring convergence remains challenging. We propose a new technique called *incremental delay update (IDU)*, which can ensure the convergence of an optimizer regardless of the value of its adaptivity. We will elaborate the technique in §3.3. Leveraging this technique, we design a novel optimizer *Anon* (Adaptivity Non-restricted Optimizer with Novel convergence technique) with tunable adaptivity and extend the allowable range of adaptivity to all real numbers. The pseudocode of Anon is presented in Algorithm 2, and all the operations are element-wise. Here,

Algorithm 2: The Anon Optimizer

Input: $\eta, \beta_1, \beta_2, \epsilon, \gamma$
Initialize $\theta_0, \mathbf{m}_0 \leftarrow \mathbf{0}, \mathbf{s}_0 \leftarrow \mathbf{0}, t \leftarrow 0, k \leftarrow -1$
while θ_t not converged **do**
 $t \leftarrow t + 1$
 $\mathbf{g}_t \leftarrow \nabla f_t(\theta_t)$
 $\mathbf{m}_t \leftarrow \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1) \mathbf{g}_t$
 $\widehat{\mathbf{m}}_t \leftarrow \frac{\mathbf{m}_t}{1 - \beta_2^t}$
 $\mathbf{s}_t \leftarrow \beta_2 \mathbf{s}_{t-1} + (1 - \beta_2) \mathbf{g}_t^2$
 if $k + 1 = \log_2 t$ **do**
 $k \leftarrow k + 1$
 $\sigma_k \leftarrow \mathbf{s}_t / (1 - \beta_2^{\max(t/2, 1)}) + \epsilon$
 $\mathbf{v}_k \leftarrow \sqrt{2 / (\frac{1}{\mathbf{v}_{k-1}^2} + \sigma_k^\gamma)}$ if $k > 0$ else $\sigma_k^{-\gamma/2}$
 $\mathbf{s}_t \leftarrow \mathbf{0}$
 $\mathbf{V}_k \leftarrow \text{diag}(\mathbf{v}_{k,1}, \dots, \mathbf{v}_{k,d})$
 end if
 $\theta_t \leftarrow \Pi_{\mathcal{F}, \mathbf{V}_k^{-1}}(\theta_{t-1} - \eta(t) \mathbf{V}_k \widehat{\mathbf{m}}_t)$
end while

$\widehat{\mathbf{m}}_t$ corresponds to \mathbf{m}_t in Algorithm 1. \mathbf{V}_k corresponds to \mathbf{S}_t^{-1} in Algorithm 1. $\mathbf{s}_t, \sigma_k, \mathbf{v}_k$, and k are intermediate variables. γ is a hyperparameter to adjust adaptivity A . ϵ is a small hyperparameter to avoid division by 0. β_1, β_2 are hyperparameters for EMA, $0 \leq \beta_1, \beta_2 < 1$, typically set as 0.9 and 0.999. Let $\{a_n\}$ is a increasing sequence and $a_1 = 1$ (specially, let $a_0 = 0$). Let $\tilde{a}_n = \sum_{i>0} \mathbf{1}_{a_i \leq n}$, so $\tilde{a}_1 = 1$. The pre-conditioner of Anon can be written as equation 5 ($\beta_3 = 0.5, a_n = 2^{n-1}$):

$$\psi_t^{\text{Anon}}(\mathbf{x}) = \sqrt{\sum_{j=1}^{\tilde{a}_t} \beta_3^{\tilde{a}_t-j} (1 - \beta_3 \mathbf{1}_{j>1}) \text{EMA}^\gamma(\mathbf{x}_{a_{j-1}+1:a_j}^2 + \epsilon; \beta_2)}. \quad (5)$$

Theorem 2. For the optimizer Anon described in Algorithm 2, the adaptivity of Anon in i -th dimension is $\in [\gamma(1 - k), \gamma]$, where $k = \epsilon / \min_{j \in [\tilde{a}_t]} \text{EMA}(\mathbf{g}_{a_{j-1}+1:a_j, i}^2; \beta_2)$.

According to Theorem 2, since we also set a small ϵ by default, we can adjust the adaptivity A of Anon by adjusting the hyperparameter γ ($A \approx \gamma$). The proof of Theorem 2 is shown in Appendix F.

3.2 HOW ADAPTIVITY INFLUENCES BEHAVIORS OF OPTIMIZERS

Empirical Validations To show how adaptivity influences the behaviors of optimizers, we conduct a simple experiment in the loss function $f(x, y) = \ln(1 + \text{Beale}(x, y)) / 10$, where Beale (Beale, 1955) is a commonly used function to test optimizer performance. We apply appropriate learning rates for SGDM, Adam, AdaBelief, and Anon, and draw the optimization trajectories. We also show the loss landscapes in the view of Anon by scaling the loss landscape according to the pre-conditioner of Anon in epoch 100. The trajectories and loss landscapes after scaling are shown in Figure 1.

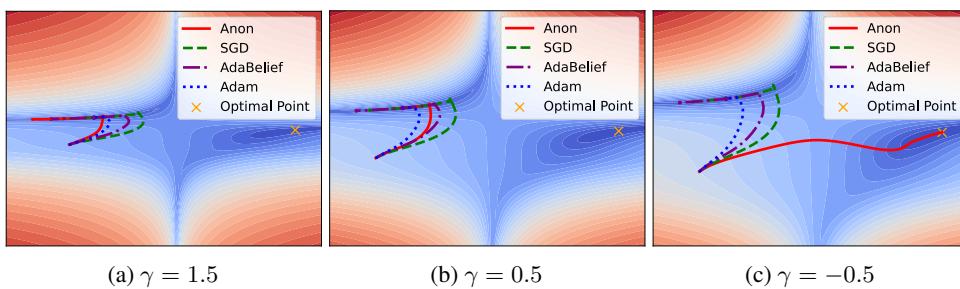


Figure 1: Trajectories of SGDM, Adam, AdaBelief, and Anon. The color change from deep red to deep blue represents the loss from high to low. And the loss landscape displayed is the result of scaling by Anon. More empirical experiments are shown in Appendix B.2 and D.

270 **Effect of Scaling** By changing γ from 1.5 to -0.5 , the adaptivity also changes from 1.5 to -0.5
 271 referring to Theorem 2. We can find that when $\gamma = 1.5$, Anon takes a shorter path to descend along
 272 the y-axis. When $\gamma = 0.5$, the path is between Adam and SGDM. And when $\gamma = -0.5$, the Anon
 273 descends along the x-axis and arrives at the optimal point. We can find that in the progress of γ 's
 274 decreasing, the scale of the x-axis is smaller and smaller than that of the y-axis, so that Anon can
 275 choose the right path to reach the optimal point. This example implies that the optimization path of
 276 Anon in deep learning training may be greatly different from other optimizers, helping reach a new
 277 parameter region that makes the model achieve better performance.

278 **The Meaning of Negative Adaptivity** Positive adaptivity typically reduces step sizes for large
 279 gradients to help escape saddle points. In contrast, negative adaptivity adopts the opposite strategy
 280 by increasing step sizes when gradients are large, which enables the optimizer to escape from sharp
 281 minima. Intuitively, higher adaptivity drives the optimization toward steeper minima, whereas lower
 282 adaptivity favors flatter regions. **Thus, adaptivity influences the optimizer not only through its**
 283 **path but also by altering its preference for specific minima geometries.** This perspective implies
 284 that restricting adaptivity to fixed points like $A=0$ or $A=1$ is insufficient. Empirically, we find that
 285 negative adaptivity is more effective for classical models, while positive adaptivity remains suitable
 286 for complex architectures.

288 3.3 INCREMENTAL DELAY UPDATE

290 As we state in § 2.3, it is challenging to guarantee the convergence when adaptivity is allowed to take
 291 any value. So we propose a new technique *incremental delay update* (IDU), which can be seen as
 292 using a new function $U(\mathbf{x}; \psi^{\text{old}})$ to replace the old pre-conditioner function ψ :

$$294 \quad U_t(\mathbf{x}; \psi_t^{\text{old}}, \{a_n\}, \beta_3) = \sqrt{\sum_{j=1}^{\tilde{a}_t} \beta_3^{\tilde{a}_t-j} (1 - \beta_3 \mathbf{1}_{j>1}) \left(\psi_{a_j-a_{j-1}}^{\text{old}}(\mathbf{x}_{a_{j-1}+1:a_j}) \right)^2}. \quad (6)$$

293 Line 9~15 of Algorithm 2 are the recursive formulas for IDU used in Anon where $\beta_3 = 0.5$,
 294 $a_n = 2^{n-1}$ and $\psi^{\text{old}} = \text{EMA}^\gamma(\mathbf{x}^2 + \epsilon; \beta_2)$. **IDU updates the pre-conditioner using accumulated**
 295 **gradient information only at specific, delayed steps.** This strategy confines unpredictable oscillations
 296 within a manageable range, thereby ensuring theoretical convergence while still permitting the pre-
 297 conditioner to change non-monotonically. We show the convergence of Anon in Theorem 3 (convex
 298 cases) and Theorem 4 (non-convex cases). And the proofs are provided in Appendix G and H.

299 **Theorem 3.** *(Convergence analysis for online convex optimization)* Let $\{\theta_t\}$ and $\{v_k\}$ be
 300 the sequence obtained by Algorithm 2, $\gamma \in \mathbb{R}$, $\beta_1 \in [0, 1)$, $\beta_2 \in [0, 1)$, $\beta_{1,t+1} \in [0, \beta_1]$,
 301 $\beta_{1,1} = \beta_1$, $\eta(t) = \frac{\eta_0}{\sqrt{t}}$, for $\forall t \in [T]$. Assume that $\|\mathbf{x} - \mathbf{y}\|_\infty \leq D_\infty$ for $\forall \mathbf{x}, \mathbf{y} \in \mathcal{F}$. Suppose
 302 $f(\theta)$ is a convex function, $\|g_t\|_\infty \leq G_\infty$, for $\forall t \in [T]$, $\theta \in \mathcal{F}$. Let $C_l = \min(G_\infty^{-\gamma}, \epsilon^{-\gamma})$,
 303 $C_u = \max(G_\infty^{-\gamma}, \epsilon^{-\gamma})$, where $\epsilon \in \mathbb{R}_+$ is a very number set in Algorithm 2. The optim-
 304 al point of f is denoted as θ^* . For $\{\theta_t\}$ generated by Anon, there is a bound on the regret:

$$310 \quad \sum_{t=1}^T [f_t(\theta_t) - f_t(\theta^*)] \leq \frac{dD_\infty^2 c_l^{-1}}{(1 - \beta_1)\eta_0} \left(\sqrt{T} + \sum_{k=1}^{\tilde{a}_T-1} \sqrt{a_{k+1}} \right) + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} \mathbf{1}_{\beta_{1,t+1} > \beta_{1,t}} D_\infty^2}{2C_l \eta_{t+1} (1 - \beta_1)^2} \right] \\ 311 \quad + \frac{D_\infty^2}{2C_l \eta_1 (1 - \beta_1)} + \frac{dD_\infty G_\infty}{1 - \beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1 - \beta_1} \sqrt{T} \quad (7)$$

312 **Corollary 3.1.** Suppose $\beta_{1,t} = \beta_1 \lambda^t$, $0 < \lambda < 1$ in Theorem 3, then we have:

$$313 \quad \sum_{t=1}^T [f_t(\theta_t) - f_t(\theta^*)] \leq \frac{dD_\infty^2 c_l^{-1}}{(1 - \beta_1)\eta_0} \left(\sqrt{T} + \sum_{k=1}^{\tilde{a}_T-1} \sqrt{a_{k+1}} \right) + \frac{D_\infty^2}{2C_l \eta_1 (1 - \beta_1)} \\ 314 \quad + \frac{dD_\infty G_\infty \beta_1}{(1 - \beta_1)(1 - \lambda)} + \frac{dG_\infty^2 C_u \eta_0}{1 - \beta_1} \sqrt{T} \quad (8)$$

315 It implies the regret of Anon is upper-bounded by $O(\sqrt{T})$ for convex case when $a_n = 2^{n-1}$.

324 **Theorem 4.** (Convergence analysis for non-convex stochastic optimization) The update of θ_t can be
 325 described as $\theta_{t+1} = \theta_t - \eta_t V_{[\log_2 t]} m_t$, and $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$.
 326

327 Under the assumptions:

328 • f is differentiable and $f^* \leq f \leq F$. $\nabla f(x)$ is L -Lipschitz continuous, i.e. $\|\nabla f(x) - \nabla f(y)\| \leq$
 329 $L\|x - y\|$, $\forall x, y$.
 330 • The noisy gradient is unbiased and its infinity norm is bounded by N , i.e. $\mathbb{E} g_t = \nabla f(x)$, $\|g_t\|_\infty \leq N$.

331 The hyperparameters are set as: $\eta_t = \eta_0 t^{-p}$, $\eta_0 > 0$, $p \in (0, 1)$ where the bounds are $C_l I \preceq$
 332 $V_{[\log_2 t]} \preceq C_u I$, and $0 < C_l < C_u$ ($A \preceq B$ means $B - A$ is a positive semi-definite matrix). **And ϵ and N ensure C_l and C_u exist.** For sequence $\{\theta_t\}$ generated by Anon, we have:

$$335 \frac{1}{T} \sum_{t=1}^T \left\| \nabla f(x_t) \right\|^2 \leq \frac{1}{\eta_0 C_l} T^{p-1} \left(F - f^* + K \int_1^T t^{-2p} dt + J + K \right), \quad (9)$$

337 where

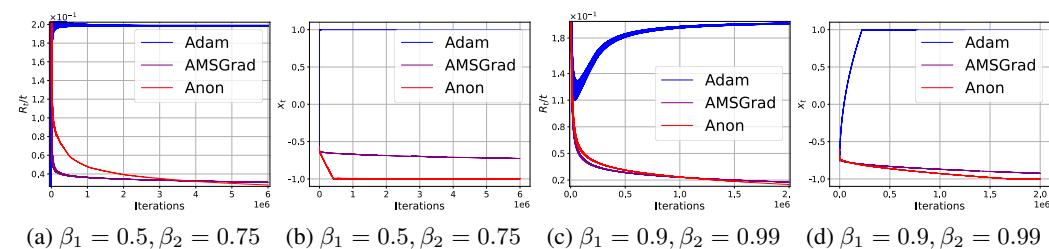
$$338 J = \frac{\beta_1^2 d}{4L(1-\beta_1)^2} N^2 + \frac{3dN^2}{1-\beta_1} \eta_0 C_u \sum_{k=1}^{\tilde{a}_t} (a_k - \mathbf{1}_{k \neq 1})^{-p}, \quad K = \left(\frac{1}{1-\beta_1} + \frac{1}{2} \right) L \eta_0^2 N^2 C_u^2 d$$

340 Theorem 4 shows when $p = 0.5$ and $a_n = 2^{n-1}$, Anon has a convergence rate of $O(\ln T / \sqrt{T})$ for
 341 non-convex cases. Note that the convergence rates shown in Theorem 3 and Theorem 4 are the same
 342 as mainstream adaptive optimizers under the strong assumption equation 4 or using the technique
 343 of AMSGrad. And the assumptions and boundedness conditions are standard in the literature and
 344 consistent with those adopted in previous works like Luo et al. (2019) and Zhuang et al. (2020).

346 **Better Noise Robustness** Other convergence guarantee techniques typically employ alternative
 347 methods to ensure equation 4 holds, thereby guaranteeing optimizer convergence. Noise in the
 348 early training stage can greatly influence their performance, making it difficult for these methods
 349 to use the information of the latest gradients. As we know, IDU is the first technique that makes
 350 optimizers converge and allows equation 4 to not hold, which will offer Anon (IDU) better noise
 351 robustness and flexibility. To evaluate the robustness of IDU against noise, we do further experiments
 352 where we compare Anon (IDU) and AMSGrad. Slightly different from the Table 1, AMSGrad is
 353 usually implemented in practice in the form: $\max_{i \in [t]} \{\psi_i^{\text{RMSProp}} \sqrt{1 - \beta_2^i}\} / \sqrt{1 - \beta_2^t}$ (we apply in
 354 experiments). But regardless of the first form or the second form, we can extrapolate that AMSGrad's
 355 strategy of persistently applying the max operation is highly susceptible to noise interference. We
 356 conduct empirical experiments to prove it, and the relevant function settings include:

$$357 f_t(x) = \begin{cases} 1010x, & \text{if } t \bmod 101 = 1 \\ -10x, & \text{otherwise} \end{cases}, \quad N_t = \begin{cases} 500/e^{t-1}, & \text{if } t \bmod 2 = 1 \\ -500/e^{t-1}, & \text{otherwise} \end{cases} \quad (10)$$

359 with the constraint set $\mathcal{F} = [-1, 1]$. The $f_t(x)$ is the example provided in Reddi et al. (2019), which
 360 can make Adam diverge. And N_t is the noise added to the gradients g_t . We can observe that the
 361 noisy gradient is unbiased and its influence on gradients approaches 0 with the increase of t . The
 362 results of experiments are shown in Figure 2. Note that we set $\gamma = 1$ to make the adaptivity of Anon
 363 equivalent to AMSGrad and Adam, and their other hyperparameters are the same. Therefore, we can
 364 compare the performances of the two convergence guarantee techniques fairly.



374 Figure 2: Comparison of Adam, AMSGrad, and Anon on a simple convex problem with noise. The
 375 setting of hyperparameters follows $\beta_1 < \sqrt{\beta_2}$ and $\eta(t) = 0.1/\sqrt{t}$ (Reddi et al., 2019).
 376

377 From Figure 2(a)(c), we can see that the regrets divided by t of Anon and AMSGrad approach 0
 378 gradually, meaning they converge. And those of Adam approach a constant, meaning it diverges.

378 Although both Anon and AMSGrad can converge, Figure 2(b)(d) shows that Anon can reach the
 379 optimal point $x = -1$ fast, but AMSGrad converges to the optimal point much slower due to the
 380 noise, especially when β_2 is small. The result proves that Anon (IDU) has better noise robustness
 381 than AMSGrad, as we have inferred. It forms the theoretical backbone of Anon and opens new
 382 avenues for designing flexible optimizers.

384 4 EXPERIMENTS

386 In this section, we compare Anon with 13 baseline optimizers, including SGD(M), Adam, AdamW
 387 (Loshchilov & Hutter, 2017), Yogi (Zaheer et al., 2018), AdaBound, RAdam (Liu et al., 2019),
 388 SWA (Izmailov et al., 2018), Lookahead (Zhang et al., 2019), AdaBelief, Adai (Xie et al., 2022)
 389 Lookaround (Zhang et al., 2023), Sophia (Liu et al., 2023), AGD (Yue et al., 2023) and HVAdam
 390 (Zhang et al., 2025) by validating Anon in various tasks including image classification tasks on
 391 ResNet, image generation on diffusion model and natural language processing tasks on LLMs.
 392 **Except for experiments on the diffusion model, all the benchmarks are from the data presented in the**
 393 **paper. Therefore, the hyperparameters of other optimizers have been extensively searched.**

395 **Image Classification with CNN** We conduct experiments on ImageNet (Russakovsky et al., 2015)
 396 with ResNet18 and ResNet50. We use the official implementation of AdaBound, AdaBelief and
 397 Lookaround, so the replication is exact. For ResNet50, the top-1 accuracy is reported in Table 3.
 398 And for ResNet18, the top-1 accuracy is shown in Table 2. We set 1 learning rate for Anon, which
 399 corresponds to 0.1 learning rate and 0.9 momentum setting of SGDM, because $EMA(\mathbf{x}; 0.9) \approx$
 400 $M(\mathbf{x}; 0.9)/10$ according to equation 1. We set $\gamma = -0.1$ for Anon ($A = -0.1$), and it surpasses the
 401 performance of SGDM ($A = 0$). These results prove our guess that the negative adaptivity is more
 402 suitable for classical models like CNNs.

403 Table 2: Top-1 accuracy (%) of ResNet18 on ImageNet. \dagger from Chen & Gu (2018), \ddagger from Liu et al.
 404 (2019), $*$ from Zhuang et al. (2020).

Anon	SGDM	AMSGradW	AdaBelief	AdaBound †	Yogi †	Adam ‡	MSVAG *	RAdam ‡
70.06	69.94	68.78	69.42	68.13	68.23	66.54	65.99	67.62

409 Table 3: Top-1 accuracy (%) of ResNet50 on ImageNet. \dagger from Xie et al. (2022), \ddagger from Zhang et al.
 410 (2023), $*$ from Zhang et al. (2025).

Anon	SGDM	Lookaround	Adam †	Adai †	SWA ‡	Lookahead ‡	HVAdam *
77.25	76.23	76.77	72.87	76.80	76.78	76.52	77.22

416 **Language Modeling** We train au-
 417 toregressive models on OpenWebText
 418 (Gokaslan & Cohen, 2019) using the
 419 official implementation of Sophia (Liu
 420 et al., 2023). Our experiments fol-
 421 low the exact experimental setup and
 422 hyperparameter configurations of Liu
 423 et al. (2023). We set $\gamma \geq 1$ and use
 424 other optimizers’ learning rate setting
 425 for Anon. The results of experiments

416 Table 4: Validation loss and training time on OpenWebText.

Model	Optimizer	Validation Loss	Time (h)
GPT2-small	Anon $_{\gamma=1.1}$	2.93283	26.17554
	AdamW	2.95614	26.88118
	Sophia-G	2.95143	28.98702
GPT2-medium	Anon $_{\gamma=1}$	2.69017	36.91487
	AdamW	2.70994	36.83633
	Sophia-G	2.70653	41.02486

426 are presented in Table 4, and Anon obtains the lowest validation losses in GPT2-small and GPT2-
 427 medium, demonstrating strong performance on LLM training. Note that through our experiments, we
 428 find that many variants of Adam are slower than Adam because they introduce extra calculations. But
 429 from Table 4 we can see that Anon obtains the compared and even faster speed than Adam. This is
 430 because when iterations approach infinity, for the average time cost per iteration, we have

$$431 E(t^{\text{Adam}} - t^{\text{Anon}}) \approx t^{\text{vector-Div}} + t^{\text{vector-Sqrt}} - t^{\text{vector-Mul}} - C \frac{\log_2 \text{Iters}}{\text{Iters}} > 0 \quad (\text{Iters} \rightarrow \infty), \quad (11)$$

432 and C is the time cost of the operations in line 9~15 of Algorithm 2 per iteration. From equation 11
 433 we can find that the Adam’s time cost of per iteration is more than Anon’s, since the vector division
 434 is slower than vector multiplication. Furthermore, IDU makes the big time cost of vector power
 435 operation related to $\gamma \in \mathbb{R}$ used in Anon (covered in C) approach 0, which greatly improved the
 436 practical value of Anon.
 437

438 **Image Generation with Diffusion Model** We conduct image generation experiments on
 439 CIFAR-10 (Krizhevsky et al., 2009) with diffusion model. We search the learning rate in
 440 $\{0.1, 0.01, 0.001, 0.0001, 0.00001\}$ for AdamW, AMSGrad, Anon, SGDM, and AdaBound. The
 441 code and the settings of other hyperparameters are consistent with the official implementation of
 442 Nichol & Dhariwal (2021). The results are reported in Table 5. When set learning rate 0.0001 (also
 443 the most suitable value for Adam) and $\gamma = 1.01$, Anon achieves SOTA and proves that the adaptivity
 444 higher than 1 is a better choice for complex models.
 445

Table 5: FID scores of diffusion models on CIFAR-10 (lower is better).

Adam	AMSGrad	SGDM	AdaBound	Anon $_{\gamma=1}$	Anon $_{\gamma=1.01}$
9.11	8.12	12.84	12.13	8.03	7.75

450 **Comprehensive Analysis and Robustness** From the
 451 results on CNNs, we observe that setting the learning
 452 rate corresponding to SGDM and applying a negative
 453 adaptivity leads to better generalization and higher accu-
 454 racy. In contrast, setting the learning rate equivalent to
 455 Adam and using a positive adaptivity ($\gamma \geq 1$) achieves
 456 SOTA results in diffusion models and LLMs. This ob-
 457 servation aligns well with our analysis in Section 2.3,
 458 highlighting that adaptivity is a key factor in model-
 459 specific optimizer behavior. Additionally, our results
 460 demonstrate the practical benefits of the proposed IDU
 461 mechanism in improving training efficiency: it acceler-
 462 ates computation by transforming expensive operations
 463 into negligible cost as shown in equation 11, and this
 464 benefit can extend to other optimizers as well. We also
 465 show the FID of setting of $\gamma = 1$ (the same as Adam) in
 466 Table 5 and Table 4 which means the only difference is the inclusion of IDU in Anon, and it also
 467 outperforms other optimizers, presenting the **improvement brought by IDU**. Furthermore, we assess
 468 the robustness of Anon to hyperparameter choices. As illustrated in Figure 3, Anon maintains high
 469 performance across a broad range of learning rates and γ values. Notably, unlike many adaptive
 470 optimizers that require tuning of β_1 , β_2 , and ϵ per task, we use fixed settings ($\beta_1 = 0.9$, $\beta_2 = 0.999$,
 471 $\epsilon = 10^{-16}$) throughout all experiments. Despite this, Anon consistently achieves SOTA, validating
 472 its robustness and the practical applicability of our proposed design.
 473

5 CONCLUSION

474 We propose Anon, a novel optimizer that obtains tunable non-restricted adaptivity and IDU conver-
 475 gence guarantee technique. The results of deep learning experiments show that Anon outperforms
 476 almost all other optimizers, which demonstrates the superiority of Anon and verifies the correctness of
 477 our idea about adaptivity. And we prove that Anon’s convergence rate in both convex and nonconvex
 478 cases can achieve the convergence rate of mainstream optimizers under the strong assumption or with
 479 AMSGrad’s technique. And the experimental results and theoretical analysis show IDU matches
 480 AMSGrad’s convergence rate and memory cost. In addition, IDU offers better noise robustness,
 481 more flexibility, and even accelerates certain operations in practice. Therefore, we believe that IDU
 482 is overall superior to the convergence technique of AMSGrad. And follow the settings of those
 483 original papers, the experiments use many techniques like cosine annealing, decoupled weight decay
 484 regularization, and gradient clipping by default, so it means Anon is perfectly compatible with these
 485 widely used techniques. Thus, we expect Anon can become the preferred optimizer in extensive fields
 of deep learning due to its great performance.

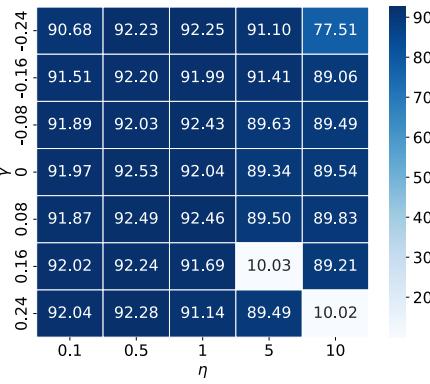


Figure 3: Hyperparameter sensitivity analysis of ResNet20 on CIFAR-10

486 REFERENCES
487

488 Evelyn ML Beale. On minimizing a convex function subject to linear inequalities. *Journal of the*
489 *Royal Statistical Society: Series B (Methodological)*, 17(2):173–184, 1955.

490 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
491 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
492 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

493 Jinghui Chen and Quanquan Gu. Closing the generalization gap of adaptive gradient methods in
494 training deep neural networks. *arXiv preprint arXiv:1806.06763*, 2018.

495 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,
496 Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of
497 optimization algorithms, 2023. URL <https://arxiv.org/abs/2302.06675>.

498 Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
499 algorithms for non-convex optimization. *arXiv preprint arXiv:1808.02941*, 2018.

500 Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. [http://Skylion007.github.io/
501 OpenWebTextCorpus](http://Skylion007.github.io/OpenWebTextCorpus), 2019.

502 Alex Graves. Generating sequences with recurrent neural networks. *arXiv preprint arXiv:1308.0850*,
503 2013.

504 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
505 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
506 pp. 770–778, 2016.

507 Pavel Izmailov, D. A. Podoprikin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
508 Averaging weights leads to wider optima and better generalization. *Conference on Uncertainty in
509 Artificial Intelligence*, 2018.

510 Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
511 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.

512 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
513 arXiv:1412.6980*, 2014.

514 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

515 Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
516 second-order optimizer for language model pre-training. *arXiv preprint arXiv:2305.14342*, 2023.

517 Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
518 Han. On the variance of the adaptive learning rate and beyond. *arXiv preprint arXiv:1908.03265*,
519 2019.

520 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv
521 preprint arXiv:1608.03983*, 2016.

522 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
523 arXiv:1711.05101*, 2017.

524 Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
525 bound of learning rate. *arXiv preprint arXiv:1902.09843*, 2019.

526 H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
527 mization. *arXiv preprint arXiv:1002.4908*, 2010.

528 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
529 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

540 Boris T Polyak. Some methods of speeding up the convergence of iteration methods. *Ussr computational mathematics and mathematical physics*, 4(5):1–17, 1964.

541

542

543 Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. *arXiv preprint arXiv:1904.09237*, 2019.

544

545 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical statistics*, pp. 400–407, 1951.

546

547

548 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
549 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.

550

551 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
552 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
553 challenge. *International journal of computer vision*, 115(3):211–252, 2015.

554

555 Matthew Staib, Sashank Reddi, Satyen Kale, Sanjiv Kumar, and Suvrit Sra. Escaping saddle points
556 with adaptive gradient methods. In *International Conference on Machine Learning*, pp. 5956–5965.
557 PMLR, 2019.

558

559 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
560 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

561

562 Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
563 value of adaptive gradient methods in machine learning. *Advances in neural information processing systems*, 30, 2017.

564

565 Zeke Xie, Xinrui Wang, Huishuai Zhang, Issei Sato, and Masashi Sugiyama. Adaptive inertia:
566 Disentangling the effects of adaptive learning rate and momentum. In *International Conference on
567 Machine Learning*, pp. 24430–24459. PMLR, 2022.

568

569 Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
570 Adahessian: An adaptive second order optimizer for machine learning. In *proceedings of the AAAI
conference on artificial intelligence*, volume 35, pp. 10665–10673, 2021.

571

572 Yun Yue, Zhiling Ye, Jiadi Jiang, Yongchao Liu, and Ke Zhang. Agd: an auto-switchable optimizer
573 using stepwise gradient difference for preconditioning matrix. *Advances in Neural Information
574 Processing Systems*, 36:45812–45832, 2023.

575

576 Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
577 for nonconvex optimization. In *Advances in neural information processing systems*, pp. 9793–9803,
2018.

578

579 Jiangtao Zhang, Shunyu Liu, Jie Song, Tongtian Zhu, Zhengqi Xu, and Mingli Song. Lookaround
580 optimizer: k steps around, 1 step average. In *Advances in Neural Information Processing Systems*,
2023.

581

582 Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
583 forward, 1 step back. In *Advances in Neural Information Processing Systems*, pp. 9593–9604,
2019.

584

585 Yiheng Zhang, Shaowu Wu, Yuanzhuo Xu, Jiajun Wu, Shang Xu, Steve Drew, and Xiaoguang Niu.
586 Hvadam: A full-dimension adaptive optimizer. In *Proceedings of the AAAI Conference on Artificial
587 Intelligence*, volume 39, pp. 22623–22631, 2025.

588

589 Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
590 pademetrис, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
591 gradients. *Advances in neural information processing systems*, 33:18795–18806, 2020.

592

593 Juntang Zhuang, Yifan Ding, Tommy Tang, Nicha Dvornek, Sekhar C Tatikonda, and James Duncan.
Momentum centering and asynchronous update for adaptive gradient methods. *Advances in Neural
Information Processing Systems*, 34:28249–28260, 2021.

594 **APPENDIX**
 595
 596
 597

598 **A LIMITATION AND FUTURE WORK**
 599
 600
 601

602 Although we prove that the adaptivity is an important attribute for first-order optimizers, there are a
 603 small number of first-order optimizers not covered by our Adaptivity Definition 1 such as HVAdam
 604 which does not conform to the frame outlined in Algorithm 1. For this situation, we will try to
 605 give a more general adaptivity definition in the future. And limited by computational resources,
 606 our hyperparameter search for Anon was incomplete. For example, in diffusion model trials, a
 607 learning rate of 0.0001 with adaptivity 1.02 caused the early training loss hard to decrease, whereas a
 608 learning rate of 10^{-5} allowed higher adaptivity such as 1.15. Regrettably, time constraints prevented
 609 further exploration of these observations so further investigation is needed to fully explore Anon’s
 610 potential. We also hope this work can contribute to exploring the design of deep learning models,
 611 as our experiments reveal distinct adaptivity preferences across different model architectures. This
 612 observation suggests that certain “ineffective” modifications proposed for neural networks might
 613 simply stem from usual optimal adaptivity (i.e., values deviating from the conventional [0, 1] range),
 614 rather than inherent flaws in the design concept. In such scenarios, Anon’s extensive adaptivity tuning
 615 capacity could potentially unlock the latent capabilities of these architectures.
 616
 617

618 **B ADAPTIVITY OF OPTIMIZERS**
 619
 620
 621

622 **B.1 THE ADAPTIVITY OF OPTIMIZERS**
 623

624 We present the full adaptivity table of some optimizers mentioned in the main paper in Table 6.
 625

626
 627
 628 **Table 6: Summary of adaptivity for representative optimizers.**
 629

Optimizer	$A_t(\psi, x)$
SGD	0
SGDM	0
RMSProp	$\frac{1}{1 + \epsilon / \sqrt{EMA(\mathbf{x}^2; \beta_2)}}$
Adam	A_t^{RMSProp}
AMSGrad	$\frac{1}{1 + \epsilon / \max_{i \in [t]} \sqrt{EMA(\mathbf{x}_{1:i}^2; \beta_2)}}$
Padam	$\frac{1}{2p + \max_{i \in [t]} \sqrt{EMA(\mathbf{x}_{1:i}^2; \beta_2)}}$
AdaBound	$\begin{cases} A_t^{\text{RMSProp}}, & \text{if } \eta_l(t) < \psi_t^{\text{RMSProp}} < \eta_u(t), \\ 0, & \text{otherwise.} \end{cases}$
AdaBelief	$\frac{1}{1 + \epsilon \cdot \left[\frac{1}{1 - \beta_2} + \sqrt{EMA((\mathbf{x} - \phi^{\text{Adam}})^2 + \epsilon / (1 - \beta_2); \beta_2)} \right] / EMA((\mathbf{x} - \phi^{\text{Adam}})^2; \beta_2)}$
Anon	equation 13 ($\approx \gamma$)

644
 645
 646
 647 For Algorithm 2, we provide an equivalent formulation that, while yielding no speedup, offers a
 648 clearer representation of its underlying mechanism in Algorithm 3.

648
649 **Algorithm 3:** The Anon Optimizer
650 **1** **Input:** $\eta, \beta_1, \beta_2, \epsilon, \gamma$
651 **2** **Initialize** $\theta_0, \mathbf{m}_0 \leftarrow \mathbf{0}, s_0 \leftarrow 0, t \leftarrow 0, k \leftarrow 0, a \leftarrow 0$
652 **3** **while** θ_t not converged **do**
653 **4** $t \leftarrow t + 1$
654 **5** $\mathbf{g}_t \leftarrow \nabla f_t(\theta_t)$
655 **6** $\mathbf{m}_t \leftarrow \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1) \mathbf{g}_t$
656 **7** $\widehat{\mathbf{m}}_t \leftarrow \frac{\mathbf{m}_t}{1 - \beta_2^t}$
657 **8** $s_t \leftarrow \beta_2 s_{t-1} + (1 - \beta_2) \mathbf{g}_t^2$
658 **9** **if** $t = 2^k$ **do**
659 **10** $\sigma_k \leftarrow s_t / (1 - \beta_2^{2^k - a}) + \epsilon$
660 **11** $a \leftarrow 2^k$
661 **12** $\mathbf{v}_k \leftarrow \frac{\mathbf{v}_{k-1}^2 + \sigma_k^\gamma}{2}$ **if** $k > 1$ **else** σ_k^γ
662 **13** $\mathbf{s}_t \leftarrow \mathbf{0}$
663 **14** $\mathbf{V}_k \leftarrow \text{diag}(\sqrt{v_{k,1}}, \dots, \sqrt{v_{k,d}})$
664 **15** $k \leftarrow k + 1$
665 **16** **end if**
666 **17** $\theta_t \leftarrow \Pi_{\mathcal{F}, \mathbf{V}_{k-1}}(\theta_{t-1} - \eta(t) \mathbf{V}_{k-1}^{-1} \widehat{\mathbf{m}}_t)$
667 **18** **end while**
668

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691 **B.2 THE EFFECT OF ADAPTIVITY**
692
693
694
695
696
697
698
699
700
701

To intuitively illustrate the impact of adaptivity, we present a visualization in Figure 4.

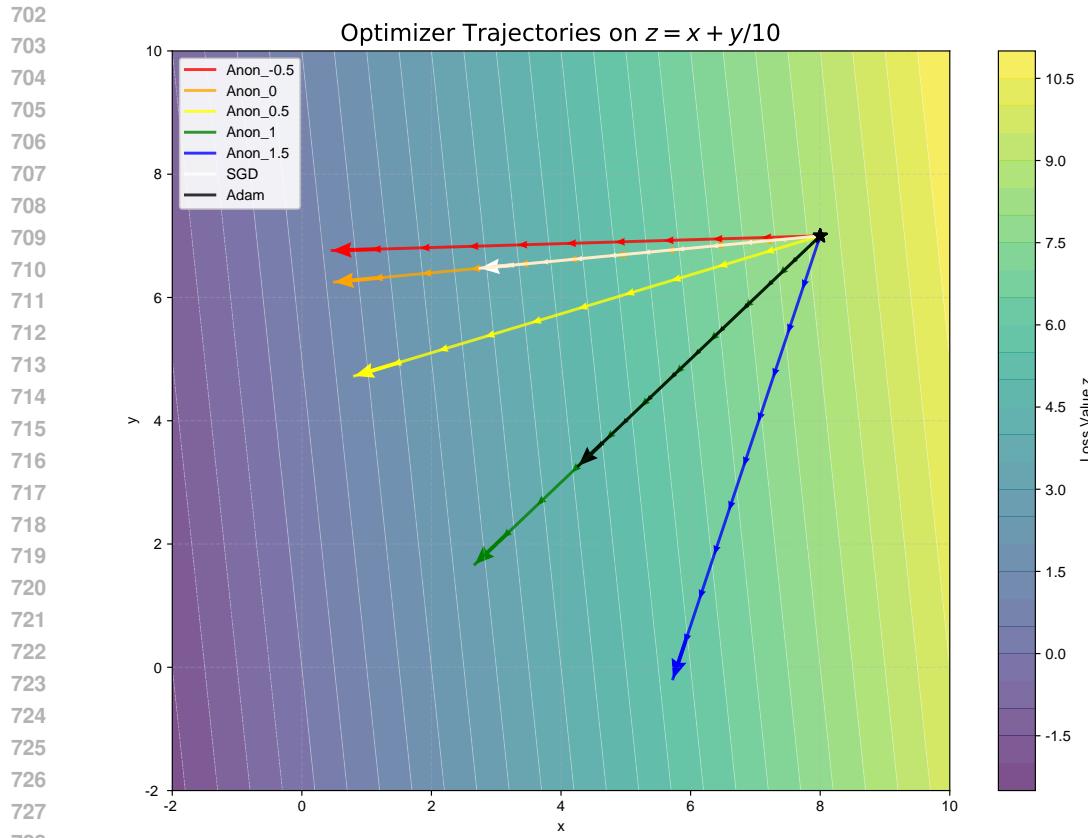


Figure 4: Optimization trajectories of SGDM, Adam, and Anon with varying γ . The gradient from yellow to purple indicates decreasing loss values. Different learning rates are applied to clearly visualize the distinct update directions.

We further demonstrate that varying adaptivity drives optimizers toward distinct regions of the parameter space by training GPT2-small on OpenWebText. The validation loss results are presented in Table 7. Additionally, we analyze the cosine similarity of the trained model parameters in Table 8. Notably, Anon with $\gamma = 1.15$ exhibits the lowest similarity when compared to Adam, Lion (Chen et al., 2023), and Muon (Jordan et al., 2024), suggesting it discovers a unique solution.

Table 7: Validation loss on OpenWebText.

	Anon $_{\gamma=1}$	Anon $_{\gamma=1.1}$	Anon $_{\gamma=1.15}$	Adam	Lion	Muon
Loss	2.937	2.927	2.932	2.934	2.992	3.092

756
 757 Table 8: Cosine similarity on OpenWebText. The upper number in each cell represents the cosine
 758 similarity of **all parameters**, while the lower number represents the cosine similarity of the **weights**
only.

	Anon $_{\gamma=1}$	Anon $_{\gamma=1.1}$	Anon $_{\gamma=1.15}$	Adam	Lion	Muon
Anon $_{\gamma=1}$	1	0.597	0.355	0.914	0.857	0.901
	1	0.317	0.201	0.511	0.161	0.194
Anon $_{\gamma=1.1}$	0.597	1	0.425	0.573	0.522	0.539
	0.317	1	0.328	0.248	0.088	0.098
Anon $_{\gamma=1.15}$	0.335	0.425	1	0.335	0.299	0.306
	0.201	0.328	1	0.156	0.056	0.063
Adam	0.914	0.573	0.355	1	0.880	0.923
	0.511	0.248	0.156	1	0.191	0.222
Lion	0.857	0.522	0.299	0.880	1	0.925
	0.161	0.088	0.056	0.191	1	0.132
Muon	0.901	0.539	0.306	0.923	0.925	1
	0.194	0.098	0.063	0.222	0.132	1

777 C DETAILS OF EXPERIMENTS AND MORE EXPERIMENTS

779 C.1 IMAGE CLASSIFICATION

781 **ResNet20 and ResNet32** We also do experiments on CIFAR-10 (Russakovsky et al., 2015) with
 782 ResNet20 and ResNet32 and achieve the SOTA. The results are presented in Table 9 (all other
 783 optimizers’ data is from Yue et al. (2023)), and the detailed setting is shown in Appendix C. We report
 784 the results of all other optimizers from AGD (Yue et al., 2023) and adopt the same experimental
 785 setup as in the official implementation¹. And do hyperparameters searching for Anon as Figure 3
 786 in the main paper ($\eta \in [0.1, 10]$, $\gamma \in [-0.24, 0.24]$) and finally select $\eta = 1$, $\gamma = -0.08$ for
 787 ResNet20 and $\eta = 0.5$, $\gamma = -0.17$ for ResNet32. Like the default setting for AdamW, AGD and
 788 AdaHessian (Yao et al., 2021) in the two experiments, we use the decoupled weight decay for Anon.

789 Table 9: Top-1 accuracy(%) comparison on CIFAR-10 (ResNet models)

Model	Optimizers						
	SGD	Adam	AdamW	AdaBelief	AdaHessian	AGD	Anon
ResNet20	92.14 \pm .14	90.46 \pm .20	92.12 \pm .14	92.19 \pm .15	92.27 \pm .27	92.35 \pm .24	92.47\pm.05
ResNet32	93.10 \pm .07	91.54 \pm .12	92.72 \pm .01	92.90 \pm .13	92.91 \pm .14	93.12 \pm .18	93.20\pm.08

797 **ResNet18** We report the results from the sources stated in the main paper. We adopt the same
 798 experimental setup as in the official implementation², and reproduce the results of SGDM, AdaBelief
 799 under the official recommended hyperparameter setting. We search learning rate in {0.1, 0.01, 0.001
 800 } for AMSGrad with decoupled weight decay, and the best value is 0.01. We set learning rate as 1
 801 and search γ in {-0.1, -0.05, 0, 0.05} for Anon and the best value is -0.1.

802 **ResNet50** We report the results from the sources stated in the main paper. We adopt the same ex-
 803 perimental setup as in the official implementation³, and reproduce the results of SGDM, LookAround
 804 under the official recommended hyperparameter setting. Due to the heavy calculation burden, we do
 805 not do much searching and simply set $\eta = 1$ and $\gamma = -0.1$ for Anon.

808 ¹<https://github.com/amirgholami/adahessian>

809 ²<https://github.com/juntang-zhuang/Adabelief-Optimizer>

810 ³<https://github.com/Ardcy/Lookaround>

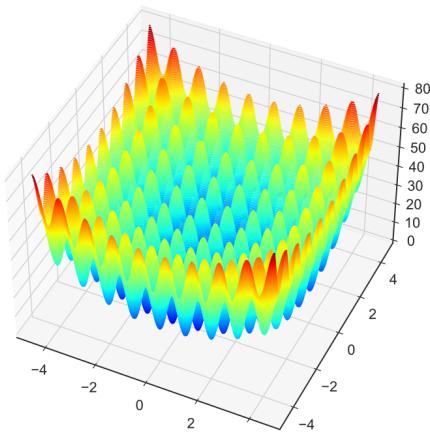
810 C.2 IMAGE GENERATION
811812
813 **Diffusion Model** We adopt the same experimental setup as in the official implementation⁴ (Uncon-
814 ditional CIFAR-10 with L_hybrid objective and cosine noise schedule). And search learning rate
815 in $\{0.1, 0.01, \dots, 0.00001\}$ for all optimizers and search γ in $\{1, 1.1, 1.01\}$ for Anon. The optimal
816 choice is $\eta = 0.0001$ and $\gamma = 1.01$.
817
818819 C.3 LANGUAGE MODELING
820821
822 **GPT2** We refer to the experimental setup in the official implementation⁵ and set nproc_per_node=4
823 due to limited computational resources. Under this setting, we find that when apply the same learning
824 rate scheduler as Sophia in GPT2-medium, AdamW can get lower loss, so we apply this new setting
825 for AdamW and Anon. We set $\gamma = 1$ for Anon. And all the optimizers use decoupled weight decay.
826
827
828829 C.4 ABLATION STUDY ON IDU HYPERPARAMETERS
830831 We conduct an ablation study to investigate the impact of the hyperparameters $\{a_n\}$ and β_3 in IDU.
832 The experiments are performed using ResNet20 on the CIFAR-10 dataset, with results summarized
833 in Table 10. **These results demonstrate that IDU is robust to hyperparameter variations;**
834 **indeed, certain configurations (e.g., $\beta_3 = 0.3, a_n = 4^{n-1}$) even outperform our default setting**
835 **($\beta_3 = 0.5, a_n = 2^{n-1}$).**
836
837838 Table 10: Ablation study on the hyperparameters $\{a_n\}$ and β_3 of IDU.

	$\beta_3 = 0.1$	$\beta_3 = 0.3$	$\beta_3 = 0.5$	$\beta_3 = 0.7$	$\beta_3 = 0.9$
$a_n = 2^{n-1}$	91.76	91.98	92.42	92.43	92.16
$a_n = 3^{n-1}$	92.26	92.23	92.28	92.34	92.38
$a_n = 4^{n-1}$	91.97	92.44	92.25	92.12	92.31

844 D EMPIRICAL EXPERIMENTS
845
846
847
848
849850
851
852
853 To better understand how different optimizers behave in complex landscapes, we visualize their
854 trajectories on two classical benchmark functions: Rosenbrock and Rastrigin. These functions are
855 used to evaluate the optimizer’s ability to escape saddle points, navigate flat valleys, and avoid local
856 minima. Rosenbrock tests the optimizer’s capacity to follow narrow curved paths toward a global
857 minimum, while Rastrigin challenges it with a rugged landscape filled with deceptive local minima.
858
859
860
861862 ⁴<https://github.com/openai/improved-diffusion>863 ⁵<https://github.com/Liuhong99/Sophia>864 ⁶<https://github.com/karpathy/nanoGPT>

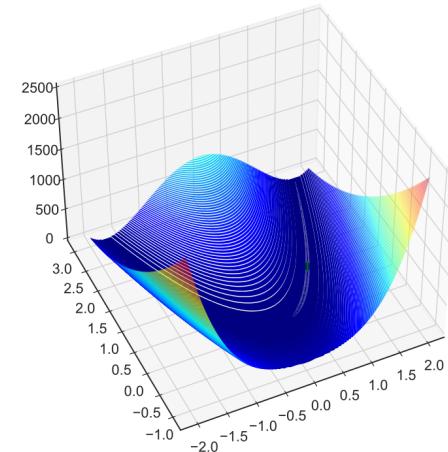
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

Rastrigin Function



(a) Rastrigin Function

Rosenbrock Function



(b) Rosenbrock Function

Figure 5: 3D visualization of benchmark functions

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

915 Rastrigin: A highly non-convex function with many local minima. The global minimum is at (0, 0).
916

917 Rosenbrock: A narrow, curved valley with the global minimum at (1, 1). It's commonly used to
evaluate optimizer stability and curvature sensitivity.

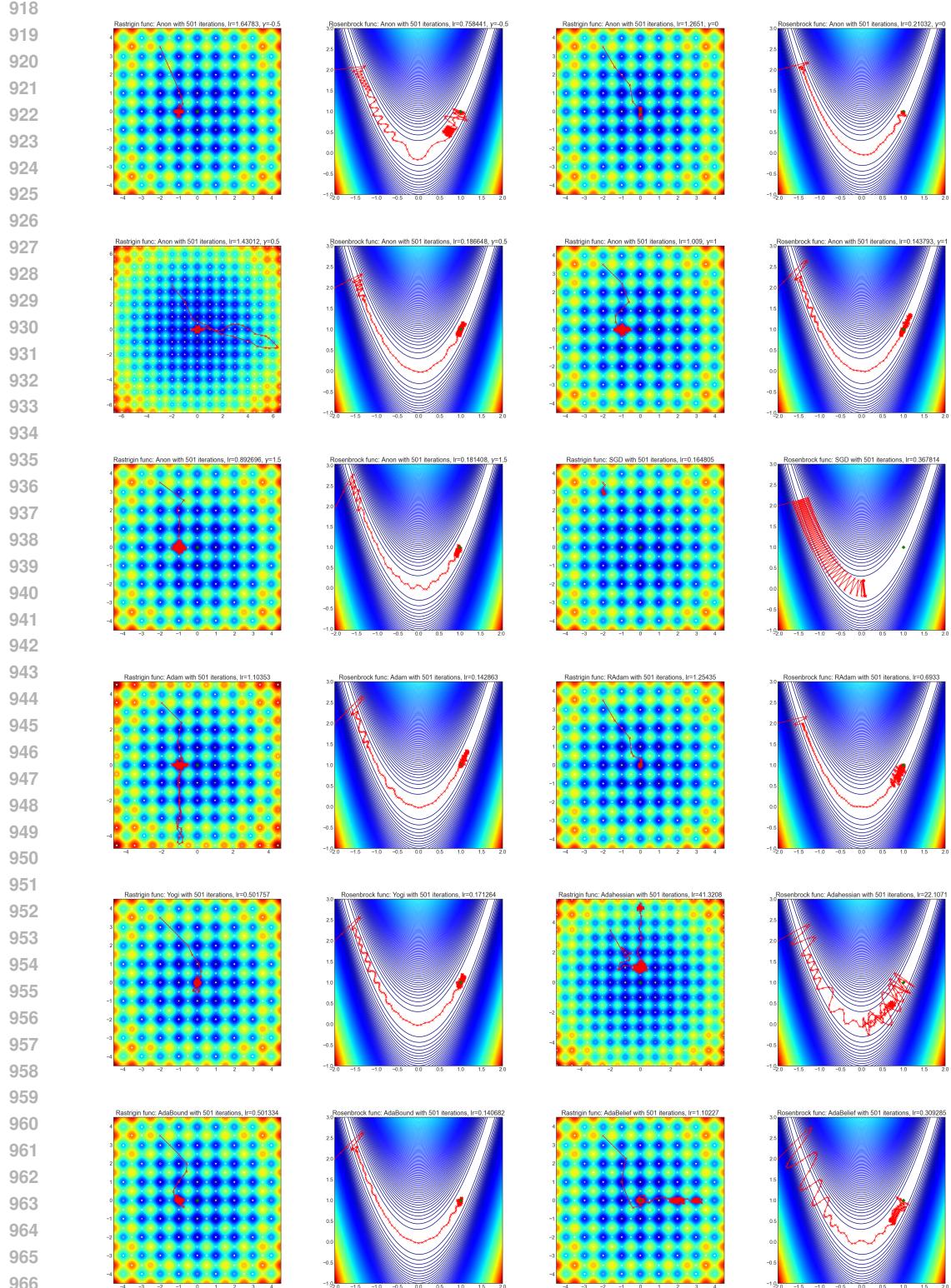


Figure 6: Optimization trajectories comparison under different hyperparameters (searched for each optimizers). The first 10 figures show the optimization trajectories of Anon under different γ selections, while the remaining 14 figures display the trajectories of other optimizers.

972 E THEOREM 1 IN MAIN PAPER
973974 **Theorem 5.** If ψ and ψ' are from the same equivalence class, there is a function $f : \mathbb{N}_+ \rightarrow \mathbb{R}_+$ that
975 makes $\psi_n(\mathbf{x}_{1:n}) = \psi'_n(\mathbf{x}_{1:n})f(n)$ for any $\mathbf{x}_{1:n} \in \mathbb{R}^n$ and any $n \in \mathbb{N}_+$.
976977 *Proof.* Let $h(k; \mathbf{g}_{1:n}) = \ln \psi_n(k\mathbf{g}_{1:n}) - \ln \psi'_n(k\mathbf{g}_{1:n})$, $h : \mathbb{R} \rightarrow \mathbb{R}$. Because ψ_n and ψ'_n are continuous,
978 h is continuous.
979980 When $k \neq 0$, we have
981

$$\begin{aligned}
h'(k; \mathbf{x}_{1:n}) &= \lim_{\Delta k \rightarrow 0} \frac{\ln \psi_n((k + \Delta k)\mathbf{x}_{1:n}) - \ln \psi'_n((k + \Delta k)\mathbf{x}_{1:n}) - \ln \psi_n(k\mathbf{x}_{1:n}) + \ln \psi'_n(k\mathbf{x}_{1:n})}{\Delta k} \\
&= \frac{1}{k} \lim_{\Delta k \rightarrow 0} \frac{\ln \psi_n((1 + \Delta k/k)k\mathbf{x}_{1:n}) - \ln \psi'_n((1 + \Delta k/k)k\mathbf{x}_{1:n}) - \ln \psi_n(k\mathbf{x}_{1:n}) + \ln \psi'_n(k\mathbf{x}_{1:n})}{\Delta k/k} \\
&= \frac{1}{k} \lim_{\Delta k \rightarrow 0} \frac{[\ln \psi_n((1 + \Delta k/k)k\mathbf{x}_{1:n}) - \ln \psi_n(k\mathbf{x}_{1:n})] - [\ln \psi'_n((1 + \Delta k/k)k\mathbf{x}_{1:n}) - \ln \psi'_n(k\mathbf{x}_{1:n})]}{\Delta k/k} \\
&= \frac{1}{k} \left[A_n(\psi, \mathbf{x}_{1:n}) - A_n(\psi', \mathbf{x}_{1:n}) \right] \\
&= \frac{1}{k} \cdot 0 \quad \left(\text{Since } \psi \text{ and } \psi' \text{ are in the same class} \right) \\
&= 0
\end{aligned} \tag{12}$$

993 So $h(k; \mathbf{x}_{1:n}) = C_1$ when $k > 0$, $h(k; \mathbf{x}_{1:n}) = C_2$ when $k < 0$. And because h is continuous, we
994 have $C_1 = C_2 = h(0; \mathbf{x}_{1:n}) = \ln \frac{\psi_n(0)}{\psi'_n(0)}$.
995996 Therefore, we have $\frac{\psi_n(k\mathbf{x}_{1:n})}{\psi'_n(k\mathbf{x}_{1:n})} = \frac{\psi_n(0)}{\psi'_n(0)}$ for $\forall k \in \mathbb{R}$.
997998 And since $\mathbf{x}_{1:n}$ can be any vector $\in \mathbb{R}^n$ and any $n \in \mathbb{N}_+$, we have $\frac{\psi_n(\mathbf{x}_{1:n})}{\psi'_n(\mathbf{x}_{1:n})} = \frac{\psi_n(0)}{\psi'_n(0)}$ for $\forall \mathbf{x}_{1:n} \in \mathbb{R}^n$, $\forall n \in \mathbb{N}_+$.
9991000 Let $f(n) = \frac{\psi_n(0)}{\psi'_n(0)}$, we have $\psi_n(\mathbf{x}_{1:n}) = \psi'_n(\mathbf{x}_{1:n})f(n)$ for any $\mathbf{x}_{1:n} \in \mathbb{R}^n$ and any $n \in \mathbb{N}_+$. \square
10011002 F THEOREM 2 IN MAIN PAPER
10031004 **Theorem 6.** For the optimizer Anon described in Algorithm 2, the adaptivity of Anon in i -th dimension
1005 is $\in [\gamma(1 - k), \gamma]$, where $k = \epsilon / \min_{j \in [\tilde{a}_t]} \text{EMA}(\mathbf{g}_{a_{j-1}+1:a_j, i}^2; \beta_2)$.
10061007 *Proof.* We let $f_{n,\gamma}(\mathbf{x}) = \beta_3^{-n}(1 - \beta_3 \mathbf{1}_{n>1}) \text{EMA}^\gamma(\mathbf{x}_{a_{n-1}+1:a_n}^2 + \epsilon; \beta_2)$, so we have
1008

$$\begin{aligned}
A(\psi, \mathbf{g}_{1:t,i}) &= \nabla_k \ln \left(\sum_{j=1}^{\tilde{a}_t} \beta_3^{\tilde{a}_t} f_{j,\gamma}(k\mathbf{g}_{1:t,i}) \right)^{1/2} \Big|_{k=1} \\
&= \frac{\gamma \sum_{j=1}^{\tilde{a}_t} \beta_3^{\tilde{a}_t} f_{j,\gamma-1}(\mathbf{g}_{1:t,i}) \text{EMA}(\mathbf{g}_{a_{j-1}+1:a_j, i}^2; \beta_2)}{\sum_{j=1}^{\tilde{a}_t} \beta_3^{\tilde{a}_t} f_{j,\gamma}(\mathbf{g}_{1:t,i})} \\
&= \frac{\gamma \sum_{j=1}^{\tilde{a}_t} \beta_3^{\tilde{a}_t} f_{j,\gamma-1}(\mathbf{g}_{1:t,i}) [\text{EMA}(\mathbf{g}_{a_{j-1}+1:a_j, i}^2 + \epsilon; \beta_2) - \epsilon]}{\sum_{j=1}^{\tilde{a}_t} \beta_3^{\tilde{a}_t} f_{j,\gamma}(\mathbf{g}_{1:t,i})} \\
&= \frac{\gamma \sum_{j=1}^{\tilde{a}_t} \beta_3^{\tilde{a}_t} f_{j,\gamma}(\mathbf{g}_{1:t,i}) - \gamma \epsilon \sum_{j=1}^{\tilde{a}_t} \beta_3^{\tilde{a}_t} f_{j,\gamma-1}(\mathbf{g}_{1:t,i})}{\sum_{j=1}^{\tilde{a}_t} \beta_3^{\tilde{a}_t} f_{j,\gamma}(\mathbf{g}_{1:t,i})} \\
&= \gamma \left(1 - \epsilon \cdot \frac{\sum_{j=1}^{\tilde{a}_t} \beta_3^{\tilde{a}_t} f_{j,\gamma-1}(\mathbf{g}_{1:t,i})}{\sum_{j=1}^{\tilde{a}_t} \beta_3^{\tilde{a}_t} f_{j,\gamma}(\mathbf{g}_{1:t,i})} \right) \\
&= \gamma \left(1 - \epsilon \cdot \frac{\sum_{j=1}^{\tilde{a}_t} f_{j,\gamma-1}(\mathbf{g}_{1:t,i})}{\sum_{j=1}^{\tilde{a}_t} f_{j,\gamma}(\mathbf{g}_{1:t,i})} \right)
\end{aligned} \tag{13}$$

1026 $\geq \gamma(1 - k) \quad \left(\text{Since } k = \epsilon / \min_{j \in [\tilde{a}_t]} \text{EMA}(\mathbf{g}_{a_{j-1}+1:a_j,i}^2; \beta_2) \right) \quad (14)$

□

1030 **G THEOREM 3 IN MAIN PAPER**

1033 For simplicity, we omit the debiasing step in theoretical analysis as in Reddi et al. (2019). It is easy
1034 to prove that the analysis also applies to the de-biased version.

1035 **Lemma 7.** (McMahan & Streeter, 2010) For any $Q \in S_+^d$ and convex feasible set $\mathcal{F} \subset \mathbb{R}^d$, suppose
1036 $u_1 = \min_{x \in \mathcal{F}} \|Q^{1/2}(x - z_1)\|$ and $u_2 = \min_{x \in \mathcal{F}} \|Q^{1/2}(x - z_2)\|$, then we have $\|Q^{1/2}(u_1 - u_2)\| \leq$
1037 $\|Q^{1/2}(z_1 - z_2)\|$.

1038 **Theorem 8.** (Convergence analysis for online convex optimization) Let $\{\theta_t\}$ and $\{v_k\}$ be
1039 the sequence obtained by Algorithm 2, $\gamma \in \mathbb{R}$, $\beta_1 \in [0, 1]$, $\beta_2 \in [0, 1)$, $\beta_{1,t+1} \in [0, \beta_{1,t}]$,
1040 $\beta_{1,1} = \beta_1$, $\eta(t) = \frac{\eta_0}{\sqrt{t}}$, for $\forall t \in [T]$. Assume that $\|x - y\|_\infty \leq D_\infty$ for $\forall x, y \in \mathcal{F}$. Suppose
1041 $f(\theta)$ is a convex function, $\|g_t\|_\infty \leq G_\infty$, for $\forall t \in [T]$, $\theta \in \mathcal{F}$. Let $C_l = \min(G_\infty^{-\gamma}, \epsilon^{-\gamma})$,
1042 $C_u = \max(G_\infty^{-\gamma}, \epsilon^{-\gamma})$, where $\epsilon \in \mathbb{R}_+$ is a very small number set in Algorithm 2. The optimal
1043 point of f is denoted as θ^* . For $\{\theta_t\}$ generated by Anon, there is a bound on the regret:
1044

$$\begin{aligned} \sum_{t=1}^T [f_t(\theta_t) - f_t(\theta^*)] &\leq \frac{(1 - 2\sqrt{2})D_\infty^2}{(1 - \sqrt{2})(1 - \beta_1)C_l\eta_0} \sqrt{T} + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} \mathbb{I}_{\beta_{1,t+1} > \beta_{1,t}} D_\infty^2}{2C_l\eta_{t+1}(1 - \beta_1)^2} \right] \\ &\quad + \frac{D_\infty^2}{2C_l\eta_1(1 - \beta_1)} + \frac{dD_\infty G_\infty}{1 - \beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1 - \beta_1} \sqrt{T} \end{aligned}$$

1052 *Proof.*

$$\begin{aligned} \mathbf{v}_k &= \sqrt{2 / \left(\frac{1}{\mathbf{v}_{k-1}^2} + \sigma_k^\gamma \right)} \text{ if } k > 0 \text{ else } \sigma_k^{-\gamma/2} \\ \frac{1}{\mathbf{v}_k^2} &= \frac{\frac{1}{\mathbf{v}_{k-1}^2} + \sigma_k^\gamma}{2} \text{ if } k > 0 \text{ else } \sigma_k^\gamma \\ \frac{1}{\mathbf{v}_k^2} &= \sum_{i=0}^k \frac{\sigma_i^\gamma}{2^{\min(k-i+1, k)}} \\ \frac{1}{\mathbf{v}_k^2} &= \sum_{i=0}^k \frac{\text{EMA}^\gamma(\mathbf{g}_{[2^{k-1}+1]:2^k}^2 + \epsilon; \beta_2)}{2^{\min(k-i+1, k)}} \end{aligned} \quad (15)$$

1066 Since $\|g_t\|_\infty \leq G_\infty$, $C_l = \min(G_\infty^{-\gamma}, \epsilon^{-\gamma})$ and $C_u = \max(G_\infty^{-\gamma}, \epsilon^{-\gamma})$, from 15, we have:

$$\begin{aligned} \frac{1}{v_{k,i}^2} &\in \left[\sum_{i=0}^k \frac{C_u^{-2}}{2^{\min(k-i+1, k)}}, \sum_{i=0}^k \frac{C_l^{-2}}{2^{\min(k-i+1, k)}} \right] \\ \frac{1}{v_{k,i}^2} &\in [C_u^{-2}, C_l^{-2}] \\ v_{k,i} &\in [C_l, C_u] \end{aligned} \quad (16)$$

1074 Let $\eta_t = \eta(t)$.

$$\theta_{t+1} = \prod_{\mathcal{F}, V_{\tilde{a}_t}^{-1}} (\theta_t - \eta_t V_{\tilde{a}_t} m_t) = \min_{\theta \in \mathcal{F}} \|V_{\tilde{a}_t}^{-1/2}(\theta - (\theta_t - \eta_t V_{\tilde{a}_t} m_t))\|$$

1078 Note that $\prod_{\mathcal{F}, V_{\tilde{a}_t}^{-1}}(\theta^*) = \theta^*$ since $\theta^* \in \mathcal{F}$. Use θ_i^* and $\theta_{t,i}$ to denote the i -th dimension of θ^* and θ_t
1079 respectively. From lemma equation 7, using $u_1 = \theta_{t+1}$ and $u_2 = \theta^*$, we have:

$$\begin{aligned}
& \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \leq \left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \eta_t V_{\tilde{a}_t} m_t - \theta^*) \right\|^2 \\
& = \left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 + \eta_t^2 \left\| V_{\tilde{a}_t}^{1/2} m_t \right\|^2 - 2\eta_t \langle m_t, \theta_t - \theta^* \rangle \\
& = \left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 + \eta_t^2 \left\| V_{\tilde{a}_t}^{1/2} m_t \right\|^2 \\
& \quad - 2\eta_t \langle \beta_{1,t} m_{t-1} + (1 - \beta_{1,t}) g_t, \theta_t - \theta^* \rangle
\end{aligned} \tag{17}$$

Note that $\beta_1 \in [0, 1]$ and $\beta_2 \in [0, 1]$, rearranging inequality equation 17, we have:

$$\begin{aligned}
& \langle g_t, \theta_t - \theta^* \rangle \leq \frac{1}{2\eta_t(1 - \beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \\
& \quad + \frac{\eta_t}{2(1 - \beta_{1,t})} \left\| V_{\tilde{a}_t}^{1/2} m_t \right\|^2 + \frac{\beta_{1,t}}{1 - \beta_{1,t}} \langle m_{t-1}, \theta^* - \theta_t \rangle \\
& \leq \frac{1}{2\eta_t(1 - \beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \\
& \quad + \frac{\eta_t}{2(1 - \beta_{1,t})} \left\| V_{\tilde{a}_t}^{1/2} m_t \right\|^2 + \frac{\beta_{1,t}}{1 - \beta_{1,t}} \left\| m_{t-1} \right\| \left\| \theta^* - \theta_t \right\| \\
& \quad \left(\text{Cauchy-Schwartz's inequality: } \langle u, v \rangle \leq \|u\| \|v\| \right) \\
& \leq \frac{1}{2\eta_t(1 - \beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \\
& \quad + \frac{\eta_t}{2(1 - \beta_{1,t})} \left\| V_{\tilde{a}_t}^{1/2} m_t \right\|^2 + \frac{\beta_{1,t}}{1 - \beta_{1,t}} \left\| m_{t-1} \right\| \sqrt{d} D_\infty \\
& \quad \left(\text{since } \|x - y\|_\infty \leq D_\infty, \text{ for } \forall x, y \in \mathcal{F} \right) \\
& = \frac{1}{2\eta_t(1 - \beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \\
& \quad + \frac{\eta_t}{2(1 - \beta_{1,t})} \left\| V_{\tilde{a}_t}^{1/2} m_t \right\|^2 + \frac{\beta_{1,t} \sqrt{d} D_\infty}{1 - \beta_{1,t}} \sqrt{\sum_{i=1}^d \text{EMA}^2(g_{1:t-1,i}; \beta_2)} \\
& \leq \frac{1}{2\eta_t(1 - \beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \\
& \quad + \frac{\eta_t}{2(1 - \beta_{1,t})} \left\| V_{\tilde{a}_t}^{1/2} m_t \right\|^2 + \frac{\beta_{1,t} \sqrt{d} D_\infty}{1 - \beta_{1,t}} \sqrt{\sum_{i=1}^d G_\infty^2} \\
& \quad \left(\text{since } \|g_t\|_\infty \leq G_\infty \right) \\
& \leq \frac{1}{2\eta_t(1 - \beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \\
& \quad + \frac{\eta_t}{2(1 - \beta_{1,t})} \left\| V_{\tilde{a}_t}^{1/2} m_t \right\|^2 + \frac{\beta_{1,t} d D_\infty}{1 - \beta_{1,t}} G_\infty \\
& = \frac{1}{2\eta_t(1 - \beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \\
& \quad + \frac{\beta_{1,t} d D_\infty G_\infty}{1 - \beta_{1,t}} + \frac{\eta_t}{2(1 - \beta_{1,t})} m_t^\top V_{\tilde{a}_t} m_t \\
& = \frac{1}{2\eta_t(1 - \beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \\
& \quad + \frac{\beta_{1,t} d D_\infty G_\infty}{1 - \beta_{1,t}} + \frac{\eta_t}{2(1 - \beta_{1,t})} \sum_{i=1}^d m_{t,i}^2 v_{\tilde{a}_t, i}
\end{aligned}$$

$$\begin{aligned}
& \leq \frac{1}{2\eta_t(1-\beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \\
& \quad + \frac{\beta_{1,t} d D_\infty G_\infty}{1-\beta_{1,t}} + \frac{\eta_t}{2(1-\beta_{1,t})} \sum_{i=1}^d m_{t,i}^2 C_u \\
& \quad \left(\text{Apply formula equation 16} \right) \\
& \leq \frac{1}{2\eta_t(1-\beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \\
& \quad + \frac{\beta_{1,t} d D_\infty G_\infty}{1-\beta_{1,t}} + \frac{d G_\infty^2 C_u \eta_t}{2(1-\beta_{1,t})} \tag{18}
\end{aligned}$$

By convexity of f , we have:

$$\begin{aligned}
& \sum_{t=1}^T f_t(\theta_t) - f_t(\theta^*) \leq \sum_{t=1}^T \langle g_t, \theta_t - \theta^* \rangle \\
& \leq \sum_{t=1}^T \left[\frac{1}{2\eta_t(1-\beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \right. \\
& \quad \left. + \frac{\beta_{1,t} d D_\infty G_\infty}{1-\beta_{1,t}} + \frac{d G_\infty^2 C_u \eta_t}{2(1-\beta_{1,t})} \right] \\
& \quad \left(\text{By formula equation 18} \right) \\
& \leq \sum_{t=1}^T \left[\frac{1}{2\eta_t(1-\beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \right. \\
& \quad \left. + \frac{1}{1-\beta_1} \sum_{t=1}^T \left(\beta_{1,t} d D_\infty G_\infty + \frac{d G_\infty^2 C_u \eta_t}{2} \right) \right. \\
& \quad \left. \left(\text{Since } 0 \leq \beta_{1,t} \leq \beta_1 < 1 \right) \right. \\
& = \sum_{t=1}^T \left[\frac{1}{2\eta_t(1-\beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \right. \\
& \quad \left. + \frac{1}{1-\beta_1} \sum_{t=1}^T \left(\beta_{1,t} d D_\infty G_\infty + \frac{d G_\infty^2 C_u \eta_0}{2\sqrt{t}} \right) \right. \\
& \quad \left. \left(\text{Since } \eta_t = \eta_0/\sqrt{t} \right) \right. \\
& = \sum_{t=1}^T \left[\frac{1}{2\eta_t(1-\beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \right. \\
& \quad \left. + \frac{d D_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{d G_\infty^2 C_u \eta_0}{1-\beta_1} \int_0^T \frac{1}{2\sqrt{t}} dt \right. \\
& \quad \left. \left(\text{Since } \eta_t = \eta_0/\sqrt{t} \right) \right. \\
& = \sum_{t=1}^T \left[\frac{1}{2\eta_t(1-\beta_{1,t})} \left(\left\| V_{\tilde{a}_t}^{-1/2}(\theta_t - \theta^*) \right\|^2 - \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right) \right. \\
& \quad \left. + \frac{d D_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{d G_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \right. \\
& \quad \left. \leq \sum_{t=1}^{T-1} \left[\frac{1}{2\eta_{t+1}(1-\beta_{1,t+1})} \left\| V_{\tilde{a}_{t+1}}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 - \frac{1}{2\eta_t(1-\beta_{1,t})} \left\| V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right]
\end{aligned}$$

$$\begin{aligned}
& + \frac{1}{2\eta_1(1-\beta_1)} \|V_1^{-1/2}(\theta_1 - \theta^*)\|^2 + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& = \sum_{t=1}^{T-1} \left[\frac{1}{2\eta_{t+1}(1-\beta_{1,t})} \|V_{\tilde{a}_{t+1}}^{-1/2}(\theta_{t+1} - \theta^*)\|^2 - \frac{1}{2\eta_t(1-\beta_{1,t})} \|V_{\tilde{a}_t}^{-1/2}(\theta_{t+1} - \theta^*)\|^2 \right. \\
& \quad \left. + \frac{\beta_{1,t+1} - \beta_{1,t}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \|V_{\tilde{a}_{t+1}}^{-1/2}(\theta_{t+1} - \theta^*)\|^2 \right] \\
& \quad + \frac{1}{2\eta_1(1-\beta_1)} \|V_1^{-1/2}(\theta_1 - \theta^*)\|^2 + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& = \sum_{t=1}^{T-1} \left\{ \frac{1}{2(1-\beta_{1,t})} \left[(\theta_{t+1} - \theta^*)^\top \left(\frac{V_{\tilde{a}_{t+1}}^{-1}}{\eta_{t+1}} - \frac{V_{\tilde{a}_t}^{-1}}{\eta_t} \right) (\theta_{t+1} - \theta^*) \right] \right\} \\
& \quad + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} - \beta_{1,t}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \|V_{\tilde{a}_{t+1}}^{-1/2}(\theta_{t+1} - \theta^*)\|^2 \right] \\
& \quad + \frac{1}{2\eta_1(1-\beta_{1,t})} \|V_1^{-1/2}(\theta_1 - \theta^*)\|^2 + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& = \sum_{k=1}^{\tilde{a}_T} \sum_{t=a_k}^{\min(T, a_{k+1})-1} \left\{ \frac{1}{2(1-\beta_{1,t})} \left[(\theta_{t+1} - \theta^*)^\top \left(\frac{V_{\tilde{a}_{t+1}}^{-1}}{\eta_{t+1}} - \frac{V_{\tilde{a}_t}^{-1}}{\eta_t} \right) (\theta_{t+1} - \theta^*) \right] \right\} \\
& \quad + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} - \beta_{1,t}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \|V_{\tilde{a}_{t+1}}^{-1/2}(\theta_{t+1} - \theta^*)\|^2 \right] \\
& \quad + \frac{1}{2\eta_1(1-\beta_1)} \|V_1^{-1/2}(\theta_1 - \theta^*)\|^2 + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& = \sum_{k=1}^{\tilde{a}_T} \sum_{t=a_k}^{\min(T, a_{k+1})-2} \left\{ \frac{1}{2(1-\beta_{1,t})} \left[(\theta_{t+1} - \theta^*)^\top \left(\frac{V_{\tilde{a}_{t+1}}^{-1}}{\eta_{t+1}} - \frac{V_{\tilde{a}_t}^{-1}}{\eta_t} \right) (\theta_{t+1} - \theta^*) \right] \right\} \\
& \quad + \sum_{k=1}^{\tilde{a}_T-1} \left\{ \frac{1}{2(1-\beta_{1,a_{k+1}-1})} \left[(\theta_{a_{k+1}} - \theta^*)^\top \left(\frac{V_{k+1}^{-1}}{\eta_{a_{k+1}}} - \frac{V_k^{-1}}{\eta_{a_{k+1}-1}} \right) (\theta_{a_{k+1}} - \theta^*) \right] \right\} \\
& \quad + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} - \beta_{1,t}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \|V_{\tilde{a}_{t+1}}^{-1/2}(\theta_{t+1} - \theta^*)\|^2 \right] \\
& \quad + \frac{1}{2\eta_1(1-\beta_1)} \|V_1^{-1/2}(\theta_1 - \theta^*)\|^2 + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& = \sum_{k=1}^{\tilde{a}_T} \sum_{t=a_k}^{\min(T, a_{k+1})-2} \left\{ \frac{1}{2(1-\beta_{1,t})} \left[(\theta_{t+1} - \theta^*)^\top \left(\frac{V_k^{-1}}{\eta_{t+1}} - \frac{V_k^{-1}}{\eta_t} \right) (\theta_{t+1} - \theta^*) \right] \right\} \\
& \quad + \sum_{k=1}^{\tilde{a}_T-1} \left\{ \frac{1}{2(1-\beta_{1,a_{k+1}-1})} \left[(\theta_{a_{k+1}} - \theta^*)^\top \left(\frac{V_{k+1}^{-1}}{\eta_{a_{k+1}}} - \frac{V_k^{-1}}{\eta_{a_{k+1}-1}} \right) (\theta_{a_{k+1}} - \theta^*) \right] \right\} \\
& \quad + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} - \beta_{1,t}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \|V_{\tilde{a}_{t+1}}^{-1/2}(\theta_{t+1} - \theta^*)\|^2 \right] \\
& \quad + \frac{1}{2\eta_1(1-\beta_1)} \|V_1^{-1/2}(\theta_1 - \theta^*)\|^2 + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T}
\end{aligned}$$

$$\begin{aligned}
& \leq \sum_{k=1}^{\tilde{a}_T} \sum_{t=a_k}^{\min(T, a_{k+1})-2} \left\{ \frac{1}{2(1-\beta_1)} \left[D_\infty e_d^\top \left(\frac{V_k^{-1}}{\eta_{t+1}} - \frac{V_k^{-1}}{\eta_t} \right) D_\infty e_d \right] \right\} \\
& \quad + \sum_{k=1}^{\tilde{a}_T-1} \left\{ \frac{1}{2(1-\beta_1)} \left[D_\infty e_d^\top \left(\frac{C_l^{-1} \mathbf{I}_d}{\eta_{a_{k+1}}} \right) D_\infty e_d \right] \right\} \\
& \quad + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} - \beta_{1,t}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \left\| V_{\tilde{a}_{t+1}}^{-1/2} (\theta_{t+1} - \theta^*) \right\|^2 \right] \\
& \quad + \frac{1}{2\eta_1(1-\beta_1)} \left\| V_1^{-1/2} (\theta_1 - \theta^*) \right\|^2 + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& \quad \left(\text{Since } \eta_t = \eta_0 / \sqrt{t}, \text{ and } 0 \leq \beta_{1,t} \leq \beta_1 < 1 \right) \\
& = \sum_{k=1}^{\tilde{a}_T-1} \left\{ \frac{1}{2(1-\beta_1)} \left[D_\infty e_d^\top \left(\frac{V_k^{-1}}{\eta_{a_{k+1}-1}} - \frac{V_k^{-1}}{\eta_{a_k}} \right) D_\infty e_d \right] \right\} \\
& \quad + \frac{1}{2(1-\beta_1)} \left[D_\infty e_d^\top \left(\frac{V_{\tilde{a}_T}^{-1}}{\eta_T} - \frac{V_{\tilde{a}_T}^{-1}}{\eta_{a_{\tilde{a}_T}}} \right) D_\infty e_d \right] \\
& \quad + \sum_{k=1}^{\tilde{a}_T-1} \left\{ \frac{1}{2(1-\beta_1)} \left[D_\infty e_d^\top \left(\frac{C_l^{-1} \mathbf{I}_d}{\eta_{a_{k+1}}} \right) D_\infty e_d \right] \right\} \\
& \quad + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} - \beta_{1,t}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \left\| V_{\tilde{a}_{t+1}}^{-1/2} (\theta_{t+1} - \theta^*) \right\|^2 \right] \\
& \quad + \frac{1}{2\eta_1(1-\beta_1)} \left\| V_1^{-1/2} (\theta_1 - \theta^*) \right\|^2 + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& \leq 2 \sum_{k=1}^{\tilde{a}_T-1} \left\{ \frac{1}{2(1-\beta_1)} \left[D_\infty e_d^\top \left(\frac{C_l^{-1} \mathbf{I}_d}{\eta_{a_{k+1}}} \right) D_\infty e_d \right] \right\} \\
& \quad + \frac{1}{2(1-\beta_1)} \left[D_\infty e_d^\top \left(\frac{C_l^{-1} \mathbf{I}_d}{\eta_T} \right) D_\infty e_d \right] \\
& \quad + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} - \beta_{1,t}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \left\| V_{\tilde{a}_{t+1}}^{-1/2} (\theta_{t+1} - \theta^*) \right\|^2 \right] \\
& \quad + \frac{1}{2\eta_1(1-\beta_1)} \left\| V_1^{-1/2} (\theta_1 - \theta^*) \right\|^2 + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& \leq \frac{dD_\infty^2 C_l^{-1}}{(1-\beta_1)\eta_0} \sum_{k=1}^{\tilde{a}_T-1} \sqrt{a_{k+1}} \\
& \quad + \frac{dD_\infty^2 C_l^{-1}}{(1-\beta_1)\eta_0} \sqrt{T} \\
& \quad + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} - \beta_{1,t}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \left\| V_{\tilde{a}_{t+1}}^{-1/2} (\theta_{t+1} - \theta^*) \right\|^2 \right] \\
& \quad + \frac{1}{2\eta_1(1-\beta_1)} \left\| V_1^{-1/2} (\theta_1 - \theta^*) \right\|^2 + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& \leq \frac{dD_\infty^2 C_l^{-1}}{(1-\beta_1)\eta_0} \left(\sqrt{T} + \sum_{k=1}^{\tilde{a}_T-1} \sqrt{a_{k+1}} \right)
\end{aligned}$$

$$\begin{aligned}
& + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} - \beta_{1,t}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \left\| V_{\tilde{a}_{t+1}}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right] \\
& + \frac{1}{2\eta_1(1-\beta_1)} \left\| V_1^{-1/2}(\theta_1 - \theta^*) \right\|^2 + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& \leq \frac{dD_\infty^2 C_l^{-1}}{(1-\beta_1)\eta_0} \left(\sqrt{T} + \sum_{k=1}^{\tilde{a}_T-1} \sqrt{a_{k+1}} \right) + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} - \beta_{1,t}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \left\| V_{\tilde{a}_{t+1}}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right] \\
& + \frac{1}{2\eta_1(1-\beta_1)} \left(D_\infty e_d^\top V_1^{-1} D_\infty e_d \right) + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& \leq \frac{dD_\infty^2 C_l^{-1}}{(1-\beta_1)\eta_0} \left(\sqrt{T} + \sum_{k=1}^{\tilde{a}_T-1} \sqrt{a_{k+1}} \right) + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} - \beta_{1,t}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \left\| V_{\tilde{a}_{t+1}}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right] \\
& + \frac{dD_\infty^2 C_l^{-1}}{2\eta_1(1-\beta_1)} + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& \leq \frac{dD_\infty^2 C_l^{-1}}{(1-\beta_1)\eta_0} \left(\sqrt{T} + \sum_{k=1}^{\tilde{a}_T-1} \sqrt{a_{k+1}} \right) + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} \mathbf{1}_{\beta_{1,t+1} > \beta_{1,t}}}{2\eta_{t+1}(1-\beta_{1,t})(1-\beta_{1,t+1})} \left\| V_{\tilde{a}_{t+1}}^{-1/2}(\theta_{t+1} - \theta^*) \right\|^2 \right] \\
& + \frac{dD_\infty^2 C_l^{-1}}{2\eta_1(1-\beta_1)} + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& \leq \frac{dD_\infty^2 C_l^{-1}}{(1-\beta_1)\eta_0} \left(\sqrt{T} + \sum_{k=1}^{\tilde{a}_T-1} \sqrt{a_{k+1}} \right) + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} \mathbf{1}_{\beta_{1,t+1} > \beta_{1,t}}}{2\eta_{t+1}(1-\beta_{1,t})^2} \left(D_\infty e_d^\top C_l^{-1} I_d D_\infty e_d \right) \right] \\
& + \frac{dD_\infty^2 C_l^{-1}}{2\eta_1(1-\beta_1)} + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \\
& \leq \frac{dD_\infty^2 C_l^{-1}}{(1-\beta_1)\eta_0} \left(\sqrt{T} + \sum_{k=1}^{\tilde{a}_T-1} \sqrt{a_{k+1}} \right) + \sum_{t=1}^{T-1} \left[\frac{\beta_{1,t+1} \mathbf{1}_{\beta_{1,t+1} > \beta_{1,t}} dD_\infty^2}{2C_l \eta_{t+1} (1-\beta_1)^2} \right] \\
& + \frac{dD_\infty^2}{2C_l \eta_1 (1-\beta_1)} + \frac{dD_\infty G_\infty}{1-\beta_1} \sum_{t=1}^T \beta_{1,t} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \tag{19}
\end{aligned}$$

□

Corollary 8.1. Suppose $\beta_{1,t} = \beta_1 \lambda^t$, $0 < \lambda < 1$ in Theorem 8, then we have:

$$\begin{aligned}
\sum_{t=1}^T f_t(\theta_t) - f_t(\theta^*) & \leq \frac{dD_\infty^2 C_l^{-1}}{(1-\beta_1)\eta_0} \left(\sqrt{T} + \sum_{k=1}^{\tilde{a}_T-1} \sqrt{a_{k+1}} \right) + \frac{dD_\infty^2}{2C_l \eta_1 (1-\beta_1)} \\
& + \frac{dD_\infty G_\infty \beta_1}{(1-\beta_1)(1-\lambda)} + \frac{dG_\infty^2 C_u \eta_0}{1-\beta_1} \sqrt{T} \tag{20}
\end{aligned}$$

Proof. It is easy to prove using:

$$\sum_{t=1}^T \beta_{1,t} = \sum_{t=1}^T \beta_1 \lambda^{t-1} < \sum_{t=1}^{\infty} \beta_1 \lambda^{t-1} \leq \frac{\beta_1}{1-\lambda} \tag{21}$$

Plugging equation 21 into equation 19, we can derive the results above. □

Corollary 8.2. Suppose $a_n = 2^{n-1}$, $\beta_3 = \frac{1}{2}$ in equation 20, then we have:

$$\sum_{t=1}^T f_t(\theta_t) - f_t(\theta^*) \leq \frac{(1-2\sqrt{2})D_\infty^2}{(1-\sqrt{2})(1-\beta_1)C_l \eta_0} \sqrt{T} + \frac{D_\infty^2}{2C_l \eta_1 (1-\beta_1)} \tag{22}$$

$$1350 \quad + \frac{dD_\infty G_\infty \beta_1}{(1 - \beta_1)(1 - \lambda)} + \frac{dG_\infty^2 C_u \eta_0}{1 - \beta_1} \sqrt{T} \quad (22)$$

1353 *Proof.* It is easy to prove using:

$$1354 \quad \sum_{t=1}^T a^{t-1} = \frac{1 - a^T}{1 - a} \quad (23)$$

1358 \square

1360 H THEOREM 4 IN MAIN PAPER

1362 **Lemma 9.** (Zhuang et al., 2021) Let $m_t = \beta_1 m_{t-1} + (1 - \beta_1)g_t$, let $Q_t \in \mathbb{R}^d$, then

$$1364 \quad \langle Q_t, g_t \rangle = \frac{1}{1 - \beta_1} \left(\langle Q_t, m_t \rangle - \langle Q_{t-1}, m_{t-1} \rangle \right) + \langle Q_{t-1}, m_{t-1} \rangle + \frac{\beta_1}{1 - \beta_1} \langle Q_{t-1} - Q_t, m_{t-1} \rangle \quad (24)$$

1366 **Theorem 10.** (Convergence analysis for non-convex stochastic optimization) The update of θ_t can
1367 be described as $\theta_{t+1} = \theta_t - \eta_t V_{\tilde{a}_t} m_t$, and $m_t = \beta_1 m_{t-1} + (1 - \beta_1)g_t$.
1368 Under the assumptions:

- 1370 • f is differentiable and $f^* \leq f \leq F$. $\nabla f(x)$ is L -Lipschitz continuous, i.e. $\|\nabla f(x) - \nabla f(y)\| \leq$
1371 $L\|x - y\|$, $\forall x, y$.
- 1372 • The noisy gradient is unbiased and its infinity norm is bounded by N , i.e. $\mathbb{E} g_t = \nabla f(x)$, $\|g_t\|_\infty \leq N$.

1373 The hyperparameters are set as: $\eta_t = \eta_0 t^{-p}$, $\eta_0 > 0$, $p \in (0, 1)$ where the bounds are $C_l I \preceq V_{\tilde{a}_t} \preceq$
1374 $C_u I$, and $0 < C_l < C_u$ ($A \preceq B$ means $B - A$ is a positive semi-definite matrix). And the ϵ and N
1375 ensure C_l and C_u exist. For sequence $\{\theta_t\}$ generated by Anon, we have:

$$1377 \quad \frac{1}{T} \sum_{t=1}^T \left\| \nabla f(x_t) \right\|^2 \leq \frac{1}{\eta_0 C_l} T^{p-1} \left(F - f^* + K \int_1^T t^{-2p} dt + J + K \right)$$

1379 where

$$1380 \quad J = \frac{\beta_1^2 d}{4L(1-\beta_1)^2} N^2 + \frac{3dN^2}{1-\beta_1} \eta_0 C_u \sum_{k=1}^{\tilde{a}_t} (a_k - \mathbf{1}_{k \neq 1})^{-p}, \quad K = \left(\frac{1}{1-\beta_1} + \frac{1}{2} \right) L \eta_0^2 N^2 C_u^2 d$$

1382 *Proof.* Let $A_t = V_{\tilde{a}_t}$, $Q_t = \eta_t A_t \nabla f(x_t)$ and let $Q_0 = Q_1$, we have

$$1384 \quad \sum_{t=1}^T \langle Q_t, g_t \rangle = \frac{1}{1 - \beta_1} \langle Q_T, m_T \rangle + \sum_{t=1}^T \langle Q_{t-1}, m_{t-1} \rangle + \frac{\beta_1}{1 - \beta_1} \sum_{t=1}^T \langle Q_{t-1} - Q_t, m_{t-1} \rangle$$

$$1385 \quad = \frac{\beta_1}{1 - \beta_1} \langle Q_T, m_T \rangle + \sum_{t=1}^T \langle Q_t, m_t \rangle + \frac{\beta_1}{1 - \beta_1} \sum_{t=0}^{T-1} \langle Q_t - Q_{t+1}, m_t \rangle \quad (25)$$

1390 First we derive a lower bound for equation 25.

$$1392 \quad \begin{aligned} \langle Q_t, g_t \rangle &= \langle \eta_t A_t \nabla f(x_t), g_t \rangle \\ 1393 &= \langle \eta_{t-1} A_{t-1} \nabla f(x_t), g_t \rangle - \langle (\eta_{t-1} A_{t-1} - \eta_t A_t) \nabla f(x_t), g_t \rangle \\ 1394 &\geq \langle \eta_{t-1} A_{t-1} \nabla f(x_t), g_t \rangle - \left\| \nabla f(x_t) \right\|_\infty d \left\| \eta_{t-1} A_{t-1} - \eta_t A_t \right\|_1 \left\| g_t \right\|_\infty \\ 1395 &\quad \left(\text{By H\"older's inequality} \right) \\ 1396 &\geq \langle \eta_{t-1} A_{t-1} \nabla f(x_t), g_t \rangle - dN^2 \mathbf{1}_{t \neq a_{\tilde{a}_t}} \left(\left\| \eta_{t-1} A_{t-1} \right\| - \left\| \eta_t A_t \right\|_1 \right) \\ 1397 &\quad - dN^2 \mathbf{1}_{t=a_{\tilde{a}_t}} \left(\left\| \eta_{t-1} A_{t-1} - \eta_t A_t \right\|_1 \right) \quad (26) \\ 1398 &\quad \left(\text{Since } \left\| g_t \right\|_\infty \leq N, \eta_{t-1} \geq \eta_t > 0, A_{t-1} = A_t \text{ when } t \neq a_{\tilde{a}_t} \right) \end{aligned}$$

1404 Perform telescope sum, we have
1405

$$\begin{aligned}
1406 \sum_{t=1}^T \langle Q_t, g_t \rangle &\geq \sum_{t=1}^T \langle \eta_{t-1} A_{t-1} \nabla f(x_t), g_t \rangle - dN^2 \sum_{k=1}^{\tilde{a}_T-1} \left(\|\eta_{a_k} A_{a_k}\|_1 - \|\eta_{a_{k+1}-1} A_{a_{k+1}-1}\|_1 \right) \\
1407 &\quad - dN^2 \sum_{k=1}^{\tilde{a}_T} \|\eta_{a_k-1} A_{a_k-1} - \eta_{a_k} A_{a_k}\|_1 - dN^2 \left(\|\eta_{a_{\tilde{a}_T}} A_{a_{\tilde{a}_T}}\|_1 - \|\eta_T A_T\|_1 \right) \\
1408 &\geq \sum_{t=1}^T \langle \eta_{t-1} A_{t-1} \nabla f(x_t), g_t \rangle - dN^2 \sum_{k=1}^{\tilde{a}_T-1} \|\eta_{a_k} A_{a_k}\|_1 \\
1409 &\quad - dN^2 \sum_{k=1}^{\tilde{a}_T} \|\eta_{a_k-1} A_{a_k-1} - \eta_{a_k} A_{a_k}\|_1 - dN^2 \|\eta_{a_{\tilde{a}_T}} A_{a_{\tilde{a}_T}}\|_1 \\
1410 &\geq \sum_{t=1}^T \langle \eta_{t-1} A_{t-1} \nabla f(x_t), g_t \rangle - dN^2 \sum_{k=1}^{\tilde{a}_T} \|\eta_{a_k} A_{a_k}\|_1 \\
1411 &\quad - dN^2 \sum_{k=1}^{\tilde{a}_T} \left(\|\eta_{a_k-1} A_{a_k-1}\|_1 + \|\eta_{a_k} A_{a_k}\|_1 \right) \\
1412 &= \sum_{t=1}^T \langle \eta_{t-1} A_{t-1} \nabla f(x_t), g_t \rangle - 2dN^2 \sum_{k=1}^{\tilde{a}_T} \|\eta_{a_k} A_{a_k}\|_1 - dN^2 \sum_{k=1}^{\tilde{a}_T} \|\eta_{a_k-1} A_{a_k-1}\|_1 \\
1413 &\geq \sum_{t=1}^T \langle \eta_{t-1} A_{t-1} \nabla f(x_t), g_t \rangle - 3dN^2 \sum_{k=1}^{\tilde{a}_T} \eta_{a_k-1} C_u
\end{aligned} \tag{27}$$

1429 Next, we derive an upper bound for $\sum_{t=1}^T \langle Q_t, g_t \rangle$ by deriving an upper-bound for the RHS of
1430 equation 25. We derive an upper bound for each part.
1431

1432

$$\begin{aligned}
1433 \langle Q_t, m_t \rangle &= \langle \eta_t A_t \nabla f(x_t), m_t \rangle = \langle \nabla f(x_t), \eta_t A_t m_t \rangle \\
1434 &= \langle \nabla f(x_t), x_t - x_{t+1} \rangle \\
1435 &\leq f(x_t) - f(x_{t+1}) + \frac{L}{2} \|x_{t+1} - x_t\|^2 \\
1436 &\quad \left(\text{By } L\text{-smoothness of } f \right)
\end{aligned} \tag{28}$$

1441 Perform telescope sum, we have
1442

$$\sum_{t=1}^T \langle Q_t, m_t \rangle \leq f(x_1) - f(x_{T+1}) + \frac{L}{2} \sum_{t=1}^T \|\eta_t A_t m_t\|^2 \tag{29}$$

$$\begin{aligned}
1443 \langle Q_t - Q_{t+1}, m_t \rangle &= \langle \eta_t A_t \nabla f(x_t) - \eta_{t+1} A_{t+1} \nabla f(x_{t+1}), m_t \rangle \\
1444 &= \langle \eta_t A_t \nabla f(x_t) - \eta_t A_t \nabla f(x_{t+1}), m_t \rangle \\
1445 &\quad + \langle \eta_t A_t \nabla f(x_{t+1}) - \eta_{t+1} A_{t+1} \nabla f(x_{t+1}), m_t \rangle \\
1446 &= \langle \nabla f(x_t) - \nabla f(x_{t+1}), \eta_t A_t m_t \rangle + \langle (\eta_t A_t - \eta_{t+1} A_{t+1}) \nabla f(x_t), m_t \rangle \\
1447 &= \langle \nabla f(x_t) - \nabla f(x_{t+1}), x_t - x_{t+1} \rangle + \langle \nabla f(x_t), (\eta_t A_t - \eta_{t+1} A_{t+1}) m_t \rangle \\
1448 &\leq L \|x_{t+1} - x_t\|^2 + \langle \nabla f(x_t), (\eta_t A_t - \eta_{t+1} A_{t+1}) m_t \rangle \\
1449 &\quad \left(\text{By smoothness of } f \right)
\end{aligned}$$

$$\begin{aligned}
&\leq L \|x_{t+1} - x_t\|^2 + \|\nabla f(x_t)\|_\infty d \|\eta_t A_t - \eta_{t+1} A_{t+1}\|_1 \|m_t\|_\infty \\
&\quad \left(\text{By Hölder's inequality} \right) \\
&\leq L \|x_{t+1} - x_t\|^2 + dN^2 \mathbf{1}_{t+1 \neq a_{\tilde{a}_{t+1}}} (\|\eta_t A_t\|_1 - \|\eta_{t+1} A_{t+1}\|_1) \\
&\quad + dN^2 \mathbf{1}_{t+1 = a_{\tilde{a}_{t+1}}} (\|\eta_t A_t - \eta_{t+1} A_{t+1}\|_1) \\
&\quad \left(\text{Since } \eta_{t+1} \geq \eta_t > 0, A_{t+1} = A_t \text{ when } t \neq a_{\tilde{a}_t} \right)
\end{aligned} \tag{30}$$

Perform telescope sum, we have

$$\begin{aligned}
\sum_{t=1}^{T-1} \langle Q_t - Q_{t+1}, m_t \rangle &\leq L \sum_{t=1}^{T-1} \|\eta_t A_t m_t\|^2 + dN^2 \sum_{k=1}^{\tilde{a}_T-1} (\|\eta_{a_k} A_{a_k}\|_1 - \|\eta_{a_{k+1}-1} A_{a_{k+1}-1}\|_1) \\
&\quad + dN^2 \sum_{k=1}^{\tilde{a}_T-1} \|\eta_{a_{k+1}-1} A_{a_{k+1}-1} - \eta_{a_{k+1}} A_{a_{k+1}}\|_1 \\
&\quad + dN^2 (\|\eta_{a_{\tilde{a}_T}} A_{a_{\tilde{a}_T}}\|_1 - \|\eta_T A_T\|_1) \\
&\leq L \sum_{t=1}^{T-1} \|\eta_t A_t m_t\|^2 + dN^2 \sum_{k=1}^{\tilde{a}_T-1} \|\eta_{a_k} A_{a_k}\|_1 \\
&\quad + dN^2 \sum_{k=1}^{\tilde{a}_T-1} (\|\eta_{a_{k+1}-1} A_{a_{k+1}-1}\|_1 + \|\eta_{a_{k+1}} A_{a_{k+1}}\|_1) \\
&\quad + dN^2 \|\eta_{a_{\tilde{a}_T}} A_{a_{\tilde{a}_T}}\|_1 \\
&\leq L \sum_{t=1}^{T-1} \|\eta_t A_t m_t\|^2 + dN^2 \sum_{k=1}^{\tilde{a}_T} \|\eta_{a_k} A_{a_k}\|_1 \\
&\quad + dN^2 \sum_{k=1}^{\tilde{a}_T-1} (\|\eta_{a_{k+1}-1} A_{a_{k+1}-1}\|_1 + \|\eta_{a_{k+1}} A_{a_{k+1}}\|_1) \\
&\leq L \sum_{t=1}^{T-1} \|\eta_t A_t m_t\|^2 + 2dN^2 \sum_{k=1}^{\tilde{a}_T} \|\eta_{a_k} A_{a_k}\|_1 \\
&\quad + dN^2 \sum_{k=1}^{\tilde{a}_T-1} \|\eta_{a_{k+1}-1} A_{a_{k+1}-1}\|_1 \\
&\leq L \sum_{t=1}^{T-1} \|\eta_t A_t m_t\|^2 + 3dN^2 \sum_{k=1}^{\tilde{a}_T} \eta_{a_k-1} C_u
\end{aligned} \tag{31}$$

We also have

$$\begin{aligned}
\langle Q_T, m_T \rangle &= \langle \eta_T A_T \nabla f(x_T), m_T \rangle = \langle \nabla f(x_T), \eta_T A_T m_T \rangle \\
&\leq L \frac{1-\beta_1}{\beta_1} \|\eta_T A_T m_T\|^2 + \frac{\beta_1}{4L(1-\beta_1)} \|\nabla f(x_T)\|^2 \\
&\quad \left(\text{By Young's inequality} \right) \\
&\leq L \frac{1-\beta_1}{\beta_1} \|\eta_T A_T m_T\|^2 + \frac{\beta_1 d}{4L(1-\beta_1)} N^2
\end{aligned} \tag{32}$$

Combine equation 29, equation 31 and equation 32 into equation 25, we have

$$\sum_{t=1}^T \langle Q_t, g_t \rangle \leq L \|\eta_T A_T m_T\|^2 + \frac{\beta_1^2 d}{4L(1-\beta_1)^2} N^2$$

$$\begin{aligned}
& + f(x_1) - f(x_{T+1}) + \frac{L}{2} \sum_{t=1}^T \left\| \eta_t A_t m_t \right\|^2 \\
& + \frac{\beta_1}{1 - \beta_1} L \sum_{t=1}^{T-1} \left\| \eta_t A_t m_t \right\|^2 + \frac{3\beta_1}{1 - \beta_1} dN^2 \sum_{k=1}^{\tilde{a}_T} \eta_{a_k-1} C_u \\
& \leq f(x_1) - f(x_{T+1}) + \left(\frac{1}{1 - \beta_1} + \frac{1}{2} \right) L \sum_{t=1}^T \left\| \eta_t A_t m_t \right\|^2 \\
& + \frac{\beta_1^2 d}{4L(1 - \beta_1)^2} N^2 + \frac{3\beta_1}{1 - \beta_1} dN^2 \sum_{k=1}^{\tilde{a}_T} \eta_{a_k-1} C_u
\end{aligned} \tag{33}$$

Combine equation 27 and equation 33, we have

$$\begin{aligned}
& \sum_{t=1}^T \left\langle \eta_{t-1} A_{t-1} \nabla f(x_t), g_t \right\rangle - 3dN^2 \sum_{k=1}^{\tilde{a}_T} \eta_{a_k-1} C_u \leq \sum_{t=1}^T \left\langle Q_t, g_t \right\rangle \\
& \leq f(x_1) - f(x_{T+1}) + \left(\frac{1}{1 - \beta_1} + \frac{1}{2} \right) L \sum_{t=1}^T \left\| \eta_t A_t m_t \right\|^2 \\
& + \frac{\beta_1^2 d}{4L(1 - \beta_1)^2} N^2 + \frac{3\beta_1}{1 - \beta_1} dN^2 \sum_{k=1}^{\tilde{a}_T} \eta_{a_k-1} C_u
\end{aligned} \tag{34}$$

Hence we have

$$\begin{aligned}
& \sum_{t=1}^T \left\langle \eta_{t-1} A_{t-1} \nabla f(x_t), g_t \right\rangle \leq f(x_1) - f(x_{T+1}) + \left(\frac{1}{1 - \beta_1} + \frac{1}{2} \right) L \sum_{t=1}^T \left\| \eta_t A_t m_t \right\|^2 \\
& + \frac{\beta_1^2 d}{4L(1 - \beta_1)^2} N^2 + \frac{3dN^2}{1 - \beta_1} \sum_{k=1}^{\tilde{a}_T} \eta_{a_k-1} C_u \\
& \leq f(x_1) - f^* + \left(\frac{1}{1 - \beta_1} + \frac{1}{2} \right) L \eta_0^2 N^2 C_u^2 d \sum_{t=1}^T t^{-2p} \\
& + \frac{\beta_1^2 d}{4L(1 - \beta_1)^2} N^2 + \frac{3dN^2}{1 - \beta_1} \eta_0 C_u \sum_{k=1}^{\tilde{a}_T} (a_k - \mathbf{1}_{k \neq 1})^{-p} \\
& \leq f(x_1) - f^* + \left(\frac{1}{1 - \beta_1} + \frac{1}{2} \right) L \eta_0^2 N^2 C_u^2 d \left(1 + \int_1^T t^{-2p} dt \right) \\
& + \frac{\beta_1^2 d}{4L(1 - \beta_1)^2} N^2 + \frac{3dN^2}{1 - \beta_1} \eta_0 C_u \sum_{k=1}^{\tilde{a}_T} (a_k - \mathbf{1}_{k \neq 1})^{-p} \\
& \leq f(x_1) - f^* + \left(\frac{1}{1 - \beta_1} + \frac{1}{2} \right) L \eta_0^2 N^2 C_u^2 d \int_1^T t^{-2p} dt \\
& + \underbrace{\frac{\beta_1^2 d}{4L(1 - \beta_1)^2} N^2 + \frac{3dN^2}{1 - \beta_1} \eta_0 C_u \sum_{k=1}^{\tilde{a}_T} (a_k - \mathbf{1}_{k \neq 1})^{-p}}_J \\
& + \underbrace{\left(\frac{1}{1 - \beta_1} + \frac{1}{2} \right) L \eta_0^2 N^2 C_u^2 d}_K \\
& \leq f(x_1) - f^* + K \int_1^T t^{-2p} dt + J + K
\end{aligned} \tag{35}$$

1566 Take expectations on both sides, we have
 1567

$$\begin{aligned} 1568 \sum_{t=1}^T \langle \eta_{t-1} A_{t-1} \nabla f(x_t), \nabla f(x_t) \rangle &\leq \mathbb{E} f(x_1) - f^* + K \int_1^T t^{-2p} dt + J + K \\ 1569 \\ 1570 \\ 1571 &\leq F - f^* + K \int_1^T t^{-2p} dt + J + K \end{aligned} \quad (36)$$

1573 Note that we have η_t decays monotonically with t , hence
 1574

$$\begin{aligned} 1575 \sum_{t=1}^T \langle \eta_{t-1} A_{t-1} \nabla f(x_t), \nabla f(x_t) \rangle &\geq \eta_0 T^{-p} \sum_{t=1}^T \langle A_{t-1} \nabla f(x_t), \nabla f(x_t) \rangle \\ 1576 \\ 1577 \end{aligned} \quad (37)$$

$$\begin{aligned} 1578 \geq \eta_0 T^{1-p} C_l \frac{1}{T} \sum_{t=1}^T \|\nabla f(x_t)\|^2 \\ 1579 \\ 1580 \end{aligned} \quad (38)$$

1581 Combine equation 36 and equation 38, assume f is upper bounded by M_f , we have
 1582

$$\begin{aligned} 1583 \frac{1}{T} \sum_{t=1}^T \|\nabla f(x_t)\|^2 &\leq \frac{1}{\eta_0 C_l} T^{p-1} \left(F - f^* + K \int_1^T t^{-2p} dt + J + K \right) \\ 1584 \\ 1585 \end{aligned} \quad (39)$$

1586 And it is easy to proved when $a_n = 2^{n-1}$, we have

$$J = \frac{\beta_1^2 d}{4L(1-\beta_1)^2} N^2 + \frac{3dN^2}{1-\beta_1} \eta_0 C_u \sum_{k=1}^{\tilde{a}_t} (a_k - \mathbf{1}_{k \neq 1})^{-p} \quad (40)$$

$$\leq \frac{\beta_1^2 d}{4L(1-\beta_1)^2} N^2 + \frac{3dN^2}{1-\beta_1} \eta_0 C_u \sum_{k=1}^{\infty} (a_k - \mathbf{1}_{k \neq 1})^{-p} \quad (41)$$

$$= \frac{\beta_1^2 d}{4L(1-\beta_1)^2} N^2 + \frac{3dN^2}{1-\beta_1} \eta_0 C_u \left(1 + \sum_{k=2}^{\infty} (2^{k-1} - \mathbf{1}_{k \neq 1})^{-p} \right) \quad (42)$$

$$\leq \frac{\beta_1^2 d}{4L(1-\beta_1)^2} N^2 + \frac{3dN^2}{1-\beta_1} \eta_0 C_u \left(1 + \sum_{k=2}^{\infty} (2^{k-2})^{-p} \right) \quad (43)$$

$$= \frac{\beta_1^2 d}{4L(1-\beta_1)^2} N^2 + \frac{3dN^2}{1-\beta_1} \eta_0 C_u \left(1 + \sum_{k=1}^{\infty} (2^{-p})^{k-1} \right) \quad (44)$$

$$= \frac{\beta_1^2 d}{4L(1-\beta_1)^2} dN^2 + \frac{3dN^2}{1-\beta_1} \eta_0 C_u \left(1 + \frac{1}{1-2^{-p}} \right) \quad (45)$$

1604 \square
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619