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ABSTRACT

Adaptive optimizers such as Adam have achieved great success in training large-
scale models like large language models and diffusion models. However, they
often generalize worse than non-adaptive methods, such as SGD on classical archi-
tectures like CNNs. We identify a key cause of this performance gap: adaptivity
in pre-conditioners, which limits the optimizer’s ability to adapt to diverse opti-
mization landscapes. To address this, we propose Anon (Adaptivity Non-restricted
Optimizer with Novel convergence technique), a novel optimizer with continu-
ously tunable adaptivity v € R, allowing it to interpolate between SGD-like
and Adam-like behaviors and even extrapolate beyond both. To ensure conver-
gence across the entire adaptivity spectrum, we introduce incremental delay update
(IDU), a novel mechanism that is more flexible than AMSGrad’s hard max-tracking
strategy and enhances robustness to gradient noise. We theoretically establish
convergence guarantees under both convex and non-convex settings. Empirically,
Anon consistently outperforms state-of-the-art optimizers on representative image
classification, diffusion, and language modeling tasks. These results demonstrate
that adaptivity can serve as a valuable tunable design principle, and Anon provides
the first unified and reliable framework capable of bridging the gap between classi-
cal and modern optimizers and surpassing their advantageous properties. Our code
is available at https://anonymous.4open.science/r/Anon-6511/.

1 INTRODUCTION

Modern deep learning models rely heavily on optimization algorithms for effective training. Despite
the wide success of adaptive optimizers such as Adam (Kingma & Bal [2014)) in large-scale models
like diffusion networks (Nichol & Dhariwall 2021} |[Rombach et al.,|2022)) and large language models
(LLMs) (Brown et al., [2020; Touvron et al.l [2023)), they are often outperformed by non-adaptive
methods such as SGD (Robbins & Monrol, [1951) in classical architectures like CNNs (Wilson et al.|
2017). These discrepancies raise a critical question: Why do existing optimizers fail to generalize
across diverse model families?

We identify a key cause of this performance gap as adaptivity in pre-conditioners (i.e., the matrix
that rescales the gradient before the step; SGD uses the identity, while Adam uses a data-dependent
diagonal matrix). Whereas SGD applies fixed step sizes, adaptive optimizers such as Adam scale
updates by gradient statistics, implicitly encoding an adaptivity level A throughout training. This
A, fixed without considering task-specific gradient distributions, can create a mismatch between the
optimizer’s adaptivity and the task’s optimization landscape, potentially degrading generalization
performance and rendering optimizers overly specialized. This motivates us to formalize and analyze
adaptivity as a first-class property of optimizers.

To address this, we introduce a unified view of adaptivity, defined as the log-sensitivity of the pre-
conditioner to global gradient scaling (§2.2). Existing optimizers correspond to fixed points on this
adaptivity spectrum: SGD (A = 0), RMSProp (Graves|,2013) (A ~ 1), and Adam (A = 1). However,
no method supports continuous control across A € R with guaranteed stability.

We propose Anon, an Adaptivity Non-restricted Optimizer with Novel convergence technique that
enables real-valued, tunable adaptivity via a hyperparameter v € R. Anon interpolates between
SGD-like and Adam-like updates and even extrapolates beyond them. We note that such adaptivity
comes with an important tradeoff: extreme adaptivity (e.g., ¥ < 0 or v > 1) risks instability and
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divergence. To tackle this tradeoff, we design a new convergence technique named incremental
delay update (IDU), which replaces hard max-tracking (e.g., in AMSGrad) with a soft, multi-scale
accumulator that is provably stable.

Our contributions are as follows:

* We define a formal notion of adaptivity as a continuous control variable that unifies SGD, Adam,
and beyond, offering a unifying lens to guide the design of future optimizers (§2.2).

* Through our analysis, we propose Anon, a novel universal optimizer which has tunable adaptivity.
Anon’s extensive range of adaptivity and adjustment endows the optimizer with the capability to
surpass the performance ceiling inherent in previous optimizers. (§3.1).

* We propose a novel technique named incremental delay update, which eliminates the non-
convergence risks in Anon arising from excessive range of adaptivity adjustment and anomalous
negative adaptivity that may be set. We theoretically establish the convergence of Anon in both
online convex and non-convex stochastic settings. In addition, we show that IDU can address
convergence issues more effectively than AMSGrad’s max-tracking approach. (§3.3).

* We conduct extensive experiments in image classification, language, and generative modeling,
where Anon consistently outperforms strong baselines across tasks and architectures. (§4).

This work advocates for viewing adaptivity as a tunable principle and delivers the first provably
stable, unified optimization framework that spans the full adaptivity spectrum.

2 PRELIMINARIES

2.1 REVIEW OF THE FRAME OF OPTIMIZERS

We focus on first-order optimizers,
which are widely used to train deep
learning models. To facilitate a unified * Input: 6,7, {64, 1172,

understanding of their differences and 2 while 6; not converged do
commonalities, we introduce a generlc gt < V[i(6:)

framework, summarized in Algorithmm4 my < (¢ (glzt,1)7 ey Ot (Sh:t,d))—r
Here, F denotes the convex feasible set.5 Sy« diag(¥i(g1:4,1), - Ye(G1:1,a))
6 € F is the parameter to be optimal.e 6, < IIrg,(0;_1 — n(t)S; 'm;)
Define f(0) as a vector-valued function 7 end while

to minimize. Sy is a diagonal matrix
where St ;i = 11(g1:1,i)- V¢ is the pre-conditioner function. []z 4(y) = argmin, . z||S'/2(x —y)||
denotes the projection of y onto F under the scaling matrix S. The scheduler 1 controls the learn-
ing rate at each step, which can be constant or scheduled via strategies such as cosine annealing
(Loshchilov & Hutter, [2016). g is the gradient at step ¢. 1, is a vector where m, ; = ¢(g1.1,;)-
The momentum operator ¢; : Rt — R is typically implemented as a moving average of past gradients.
The two common variants are:

EMA(x1.4; B) = (1 5 Zﬂf ‘i, (@145 8 Zﬂt ' €]

where EMA denotes the exponential movmg average with bias correctlon M refers to the classical
momentum without normalization. Both operators serve to smooth the gradient history. Since the
smoothing behavior of ¢ is similar across optimizers, the key differentiator lies in the design of
the pre-conditioner ). Thus, we focus our subsequent analysis on the properties and effects of 1.

Algorithm 1: Generic Optimizer Method Frame

While the momentum functions ¢; are largely similar across optimizers, the pre-conditioner functions
1 : R* — R, differ significantly and play a crucial role in shaping the optimizer’s behavior. We
summarize the designs of ¢ and v for representative optimizers in Table[I]

As shown in Table [I} the momentum components ¢ exhibit similar behaviors across different
optimizers. This observation highlights that the key distinction among optimizers arises from the
design of 1 rather than ¢. In fact, if we omit the bias correction factor 1/(1 — ) in EMA, it
effectively reduces to a classical momentum M up to a constant scaling factor 1 — 5. Therefore, for
the remainder of this paper, we primarily focus on analyzing the properties of the pre-conditioner v,
assuming a shared momentum ¢ across optimizers unless otherwise noted.
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Table 1: Summary of momentum functions and pre-conditioners for representative optimizers (Polyak|
1964; [Luo et al., 2019; Zhuang et al., 2020). For full expressions of complex terms (APM>6rad]
AZRdaBound © A AdaBeliely gAnom) "please refer to Appendix

Optimizer Pi(z) Pe(x) Ai(, )
SGD Tt 1 0
SGDM M(x; 5) 1 0
2. 1
RMSProp T VEMA(x2; B2) + € NN Ty
Adam  EMA(z;53) waSP;iSP A
AMSGrad Adam maX;el {o; "} [0,1]
AdaBound Adam Clip(yy, ", fi(t), fu(t)) [0, 1]
AdaBelief ppdam VEMA((z — ¢Aam)2 4 ¢ /(1 — Bo); B2) + € [0,1]
Anon ppdam ypnon (equationlé]) ~

Extensive empirical evidence has shown that SGD and SGDM often achieve better generalization
than Adam in classical architectures such as ResNet (He et al.,|2016), whereas Adam typically out-
performs SGD in more complex architectures such as transformers. Understanding the fundamental
causes behind this divergence remains an important question, with significant implications for the
development of more effective optimizers. Several hypotheses have been proposed, including that
Adam can escape saddle points more efficiently than SGD (Staib et al.,|2019), and that SGD tends to
find flatter minima whereas Adam is biased toward sharper minima, leading to superior generalization
for SGD (Wilson et al.l 2017). Regardless of the specific explanations, we hypothesize that the
ultimate cause lies in how optimizers scale the loss landscape, a property we refer to as adaptivity. We
will study how adaptivity affects optimization in §[3.2] Before that, we first give a formal definition
of adaptivity.

2.2 THE ADAPTIVITY OF EXISTING OPTIMIZERS

We formalize the concept of adaptivity based on the framework described in Algorithm [I]

Definition 1. Suppose the pre-conditioner 1,, is continuous. For any optimizer following Algorithm[l]
we define the adaptivity A of its pre-conditioner v as

An(wy ml:n) = vk In wn(kmlzn) |k:1'

Furthermore, we define two pre-conditioners 1 and ' are equivalent if and only if A, (Y, ®1.,) =
A, (W' x1.y) forall ©1., € R™ and n € Ny.

Intuitively, larger adaptivity flattens sharp valleys and sharpens flat plains on the loss landscape.
When A = 0, the optimizer does not alter the landscape’s geometry, which is a behavior exemplified
by SGD and SGDM. Notably, according to Definition [T} the adaptivity A depends not only on the
functional form of ¢, but also on the sequence of historical gradients g;.;. This dependence reflects
the fact that pre-conditioning is inherently dynamic: even for a fixed v, its adaptivity can vary during
training as the distribution of gradients evolves. Separately, we introduce an important equivalence
notion between pre-conditioners: even if two optimizers use different ¢ functions, they may be
essentially equivalent from an adaptivity perspective.

Theorem 1. If v and v’ are from the same equivalence class, there is a function f : N, — R that
makes p, (€1.) = VL, (x1.0) f(n) for any x1., € R™ and any n € N.

Decoupling from Scheduler. Theorem|l|shows that if two pre-conditioners yield the same adaptiv-
ity for any input, then they are equivalent. Specifically, if there exists a scheduler adjustment that can
eliminate the difference between two pre-conditioners (e.g., 1)’ = ki corresponds to 7' (t) = kn(t)),
we regard them as equivalent strategies. The proof of Theorem [I]is deferred to Appendix [E]

Based on these definitions, we can characterize the adaptivity of several widely used optimizers:

For SGD(M), the adaptivity is A = 0 in all dimensions, indicating no explicit scaling of the
loss landscape. In contrast, for Adam and its variants (e.g., RMSProp, AdaBelief), the adaptivity
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is approximately A = 1, as the contribution of the small ¢ term is negligible compared to the
accumulated gradient statistics most of the time. A more intricate case is AdaBound (Luo et al.,
2019), whose adaptivity transitions dynamically from A = 1 toward A =~ 0 as training proceeds.
Specifically, AdaBound clamps the pre-conditioner 1; between shrinking bounds 7;(¢) and 7,,(t):

RMSProp : RMSProp
AdaBound _\ _ ) Ay ,ifm(t) <y < nu(t),
Ay @) { 0, otherwise. @

As the bounds tighten over time, AdaBound behaves increasingly like SGD. This is supported by both
evidence from Zhuang et al.|(2020) and our experiments (Table[5), which indicates that AdaBound
struggles in tasks such as GAN and diffusion model training, where high adaptivity is critical. These
observations suggest the following: Optimizers with A = 0 (e.g., SGD) tend to generalize better on
classical architectures such as CNNs, while those with A = 1 (e.g., Adam) perform better in complex
modern architectures. However, whether A = 0, A = 1, or other values yield better performance
remains an open question, which we explore in the next section.

2.3 THE OPTIMAL ADAPTIVITY FOR TASKS

We have observed that different tasks favor different levels of adaptivity A. This naturally raises a
critical question: Is A = 0 or A = 1 truly the optimal adaptivity for these tasks?

As shown in Table[T] although mainstream adaptive optimizers typically have adaptivity close to 1, it
is possible to adjust adaptivity by tuning hyperparameters such as e. For instance, by setting a large
€ much greater than the accumulated moving average, the adaptivity of Adam and its variants can
effectively approach 0. Indeed, prior works (Zaheer et al.| 2018} [Zhuang et al.,2020) have adopted
this trick to align Adam’s generalization performance more closely with SGD. Padam (Chen & Gul
2018)) offers another perspective by modifying the pre-conditioner as

2
wPadam _ (wAMSGrad)Qp’ At (,l/}Padam7 :1}) _ 14 (3)

1+ e/ max;ecpy / EMA(27,;; B2)
By adjusting p € [0, 0.5], Padam interpolates adaptivity between 0 and 1 while maintaining a small e.
However, experiments from (Chen & Gu|(2018); Zhuang et al.| (2020) show that Padam’s performance
typically lies between Adam and SGD, and only marginally surpasses them in limited scenarios. This
observation raises a broader question: Could adaptivity values beyond the [0, 1] interval lead to even
better performance?

At first glance, one might attempt to extend adaptivity beyond [0, 1] by simple functional modifications.
However, expanding the adaptivity range is non-trivial. The convergence of most adaptive optimizers
relies on the assumption:

Vi(g1:641,) S Vi(g1:t,1)
nt+1) —  nt)
which guarantees that the optimizer does not diverge even in the worst-case scenarios.

Vi € [d],Vt € Ny, “)

While in practice, the convergence condition is not strictly verified, optimizers like Adam typically
exhibit stable behavior under standard training settings, suggesting that this assumption is likely
satisfied. If we attempt to construct optimizers with negative adaptivity, new challenges arise. For
example, setting ¢ = (1)A%M)7 with v < 0 produces a negative adaptivity. However, setting the
pre-conditioner to a negative power likely causes its value to decrease over time, thereby violating
the critical convergence assumption. AMSGrad (Reddi et al., 2019) was introduced to address
convergence issues inherent in Adam by enforcing a non-decreasing sequence in the denominator.
Even with such safeguards, prior works (Chen & Gu, |2018;|Chen et al.,2018]) have shown that Padam,
when extending adaptivity beyond [0, 1], can still suffer from divergence in practice. Therefore,
designing stable optimizers with tunable adaptivity beyond the classical range remains an open and
challenging problem.

3 EXTEND TO ALL REAL NUMBERS

3.1 ADAPTIVITY TUNABLE OPTIMIZER AND BEYOND
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In §2.2/and §2.3] we have shown that
extending adaptivity beyond [0, 1]
could be beneficial. However, achiev-! InP‘-lt:. n, B1, B2, €,y

ing tunable adaptivity across all real 2 Initialize 8o, 7o < 0, 59 <~ 0, < 0,k ¢ —1
numbers while ensuring convergence * While 8; not converged do

remains challenging. We propose * tettl

a new technique called incremen-5 — 9t < V f:(6:)

tal delay update (IDU), which can® "% < 571nmt—1 + (1= B1)ge

ensure the convergence of an op-7 M <

Algorithm 2: The Anon Optimizer

-5
timizer regardless of the value of s 8¢+ Basi—1 + (1 — B2)g?
its adaptivity. We will elaborate 9 if £+ 1=log,tdo

the technique in §3.3] Leveragingo k+—k+1

this technique, we design a novel11 o s¢/(1 — ﬂ;naX(t/?J)) +e

optimizer Anon (Adaptivity Non- T - /2
restricted Optimizer with Novel con!? v )2/ (vg_l +oy)ifk>0else oy,
vergence technique) with tunable,, s+ 0

adaptivity and extend the allowable,, V. « diag(vg 1, ..., Vk.a)

range of adaptivity to all real num-qs end if

bers. Tho pseudocode of Anon is;q 0, — ny,l(gt_l — n(t) Vi)
presented in Algorithm 2] and all the k
operations are element-wise. Here,
m, corresponds to m; in Algorithm V}; corresponds to S, Yin Algorithm Sy, O, Vg, and k are
intermediate variables. ~ is a hyperparameter to adjust adaptivity A. e is a small hyperparameter to
avoid division by 0. 1, B2 are hyperparameters for EMA, 0 < (1, 52 < 1, typically set as 0.9 and
0.999. Let {a,, } is a increasing sequence and a; = 1 (specially, let ag = 0). Let @, = > ,.  la,<ns
so a1 = 1. The pre-conditioner of Anon can be written as equation (B3 =0.5,a, =271

7 end while

at
é\non(w) = Zﬁgt*](l — 531j>1)EMA7(m2j71+1:% + € 59) . 4
J=1

Theorem 2. For the optimizer Anon described in Algorithm[2] the adaptivity of Anon in i-th dimension
is € [y(1 — k),), where k = ¢/ minj¢a,] EMA(g§j71+1:aj’i; B2).

According to Theorem [2] since we also set a small € by default, we can adjust the adaptivity A of
Anon by adjusting the hyperparameter (A ~ ). The proof of Theorem 2]is shown in Appendix [F}

3.2 How ADAPTIVITY INFLUENCES BEHAVIORS OF OPTIMIZERS

Empirical Validations To show how adaptivity influences the behaviors of optimizers, we conduct
a simple experiment in the loss function f(z,y) = In(1 + Beale(x,y))/10, where Beale
is a commonly used function to test optimizer performance. We apply appropriate learning
rates for SGDM, Adam, AdaBelief, and Anon, and draw the optimization trajectories. We also show
the loss landscapes in the view of Anon by scaling the loss landscape according to the pre-conditioner
of Anon in epoch 100. The trajectories and loss landscapes after scaling are shown in Figure [T}

—— Anon
| == SGD
— - AdaBelief

. = Anon !
@l —-- sGD

~ —. AdaBelief

=+ Adam
Optimal Point

—— Anon

== SGD b
=+ AdaBelief
... Adam

Optimal Point

()y=15 (b)y=0.5 (©)y=-05
Figure 1: Trajectories of SGDM, Adam, AdaBelief, and Anon. The color change from deep red

to deep blue represents the loss from high to low. And the loss landscape displayed is the result of
scaling by Anon. More empirical experiments are shown in Appendix@

5
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Effect of Scaling By changing v from 1.5 to —0.5, the adaptivity also changes from 1.5 to —0.5
referring to Theorem 2] We can find that when v = 1.5, Anon takes a shorter path to descend along
the y-axis. When v = 0.5, the path is between Adam and SGDM. And when v = —0.5, the Anon
descends along the x-axis and arrives at the optimal point. We can find that in the progress of s
decreasing, the scale of the x-axis is smaller and smaller than that of the y-axis, so that Anon can
choose the right path to reach the optimal point. This example implies that the optimization path of
Anon in deep learning training may be greatly different from other optimizers, helping reach a new
parameter region that makes the model achieve better performance.

The Meaning of Negative Adaptivity We have discussed negative adaptivity in previous sections,
but what does it actually signify? Positive adaptivity means that the optimizer will take big step sizes
when gradients are small and take small step sizes when gradients are large, which is considered to
help the optimizer escape from saddle points. So it is easy to understand that the negative Adaptivity
will apply the opposite strategy. In addition, if an optimizer has a lower negative adaptivity, its step
sizes will be larger when facing larger gradients, enabling the optimizer to escape from sharp minima
more easily. Intuitively, higher adaptivity drives the optimizer toward steeper minima, whereas
lower adaptivity favors flatter ones. Thus, adaptivity influences the optimizer not only through
the optimization path, but also through the preference for specific types of minima. From this
perspective, neither A=0 (SGD) nor A=1 (Adam) carries any particular significance, suggesting that
restricting adaptivity to the binary choices (0,1) is unlikely to be the most suitable design. From the
extensive experimental results, we observe that negative adaptivity plays a more significant role in
classical and simple models, whereas positive adaptivity tends to be more suitable for advanced and
complex models.

3.3 INCREMENTAL DELAY UPDATE

As we state in § [2.3] it is challenging to guarantee the convergence when adaptivity is allowed to
take any value. So we propose a new technique incremental delay update (IDU), which can be seen
as using a new function U (z; ¢°'%) to replace the old pre-conditioner function 1. We describe the
function U as follows:

Ui(z; Old Aan}, Bs) = Zﬁat J<1—ﬁ31]>1>< a;—a;_ 1(1’:1] 1+1: aJ)>2. (6)

=271 and y° = EMA™ (x? + ¢; B2). We show the convergence of Anon in Theorem 3|(convex

Llne 9~15 of Algorithm l are the recursive formulas for IDU used in Anon where 83 = 0.5,
g
cases) and Theorem [ (non-convex cases) And the proofs are provided in Appendix [G| an

Theorem 3. (Convergence analysis for online convex optimization) Let {0;} and {vy} be
the sequence obtained by Algorithm 2} v € R, f1 € [0,1), B2 € [0,1), Buq1 € [0,51],
B11 = B, nt) = % for ¥t € [T]. Assume that ||x — ylleo < Do for Vz,y € F. Suppose

f(0) i HoogGoo,fothe[] 0 € F. Let C; = min(G),e "),
Cy, = max(G,e77), where e € Ry is a very number set in Algorithm l The opti-
mal point of f is denoted as 0*. For {0} generated by Anon, there is a bound on the regret:

T " dD Cll ot — /81t+1151f+1>ﬂ1fDoo
;[ft(ot)—ft(‘) )] < (1)<\F+ Z vak“) z; 2C 1 (1 — By)?
D2, | ADxGoo dG 2 Cuno
-5 " 1-8 Zﬁ g, o VT @

Corollary 3.1. Suppose 1+ = S\, 0<A<1lin TheoremE] then we have:

d 0) - f(6" D%t ( i D2,
;ft t) — fe(67)] < ST =80m ( T+ Z \/ak+1> 20 (L= B1)

Yaoaa-n T ios VT

®)
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For the convex case, Theorem [3|implies the regret of Anon is upper-bounded by O(+/T) when
a, =271,

Theorem 4. (Convergence analysis for non-convex stochastic optimization) The update of 6, can be
described as 0y 11 = 0; — 1tV 10g, ¢, and my = Brmy—1 + (1 — B1)g:-

Under the assumptions:

o f is differentiable and f* < f < F. V f(x) is L-Lipschitz continuous, i.e. ||V f(x) — Vf(y)|| <
L||x —yl|, Vz,y.
* The noisy gradient is unbias and its infinity norm is bounded by N, i.e. Bg; = V f(z),

The hyperparameters are set as: 1, = not™?, ng > 0, p € (0,1) where the bounds are C;I <
Vitog, t) = Cul, and 0 < C; < Cy (A =X B means B — A'is a positive semi-definite matrix). And
the € and N ensure C} and C,, exist. For sequence {0;} generated by Anon, we have:

2

AN V@) < sk (P K+ T+ K, ©
where
2d 2 as —
J = e N2+ 3450 Cu SR (ak — L) 7, K = (1fﬂ1 + %)LU8N2CZd

Theorem shows when p = 0.5 and a,, = 2", Anon has a convergence rate of O(InT/v/T) for
non-convex cases. Note that the convergence rates shown in Theorem [3|and Theorem [] are the same
as mainstream adaptive optimizers under the strong assumption equation 4 or using the technique
of AMSGrad. And the assumptions and boundedness conditions are standard in the literature and
consistent with those adopted in previous works like|Luo et al.|(2019) and |Zhuang et al.| (2020).

Better Noise Robustness Other convergence guarantee techniques typically employ alternative
methods to ensure equation [4 holds, thereby guaranteeing optimizer convergence. Noise in the
early training stage can greatly influence their performance, making it difficult for these methods
to use the information of the latest gradients. As we know, IDU is the first technique that makes
optimizers converge and allows equation [ to not hold, which will offer Anon (IDU) better noise
robustness and flexibility. To evaluate the robustness of IDU against noise, we do further experiments
where we compare Anon (IDU) and AMSGrad. Slightly different from the Table [T, AMSGrad is
usually implemented in practice in the form: max; ¢ {pRMSPreP /1 BiY /A /T — B (we apply in
experiments). But regardless of the first form or the second form, we can extrapolate that AMSGrad’s
strategy of persistently applying the max operation is highly susceptible to noise interference. We
conduct empirical experiments to prove it, and the relevant function settings include:

1010z, iftmod 101 =1 500/et=1,  iftmod2 =1
filw) = { —10z, otherwise Ve = { —50/0/et’1, otherwise (10)
with the constraint set 7 = [—1, 1]. The f;(z) is the example provided in Reddi et al.| (2019), which
can make Adam diverge. And IV, is the noise added to the gradients g;. We can observe that the
noisy gradient is unbiased and its influence on gradients approaches 0 with the increase of ¢. The
results of experiments are shown in Figure 2] Note that we set 7 = 1 to make the adaptivity of Anon
equivalent to AMSGrad and Adam, and their other hyperparameters are the same. Therefore, we can
compare the performances of the two convergence guarantee techniques fairly.

10-1 10

18 —— Adam —— Adam 8 —— Adam
6 —— AMSGrad | s —— AWSGrad |, 0s —— AMSGrad
1 —— Anon —— Anon B — Adam —— Anon

11 —— AMSGrad | % oo

08 —— Anon

¥12 o
< X 0.0
1.0
0.8 0.5
-
0.4 1.0

1 2 3 4 5 6 0 1 2 3 ) 5 6 0.0 0.5 1.0 15 2 0.0 0.5 1.0 15 2.0
Iterations 1le6 Iterations le6 Iterations 1le6 Iterations 1le6

(@) B =0.5B =075 (b)B1 =058 =075 (c)B1 =095 =099 (d)B =009,/ =0.99

Figure 2: Comparison of Adam, AMSGrad, and Anon on a simple convex problem with noise. The
setting of hyperparameters follows 3; < /B2 and 7(t) = 0.1/+/t (Reddi et al.,[2019).
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From Figure [2{a)(c), we can see that the regrets divided by ¢ of Anon and AMSGrad approach 0
gradually, meaning they converge. And those of Adam approach a constant, meaning it diverges.
Although both Anon and AMSGrad can converge, Figure 2[b)(d) shows that Anon can reach the
optimal point x = —1 fast, but AMSGrad converges to the optimal point much slower due to the
noise, especially when S5 is small. The result proves that Anon (IDU) has better noise robustness
than AMSGrad, as we have inferred. It forms the theoretical backbone of Anon and opens new
avenues for designing flexible optimizers.

4 EXPERIMENTS

In this section, we compare Anon with 13 baseline optimizers, including SGD(M), Adam, AdamW
(Loshchilov & Hutterl 2017)), Yogi (Zaheer et al., |2018)), AdaBound, RAdam (Liu et al., [2019),
SWA (Izmailov et al.| [2018), Lookahead (Zhang et al.| 2019), AdaBelief, Adai (Xie et al., [2022)
Lookaround (Zhang et al., [2023)), Sophia (Liu et al., [2023)), AGD (Yue et al., [2023)) and HVAdam
(Zhang et al, 2025) by validating Anon in various tasks including image classification tasks on
ResNet, image generation on diffusion model and natural language processing tasks on LLMs.
Except for experiments on the diffusion model, all the benchmarks are from the data presented in the
paper. Therefore, the hyperparameters of other optimizers have been extensively searched.

Image Classification with CNN We conduct experiments on ImageNet (Russakovsky et al, 2015)
with ResNet18 and ResNet50. We use the official implementation of AdaBound, AdaBelief and
Lookaound, so the replication is exact. For ResNet50, the top-1 accuracy is reported in Table 3]
And for ResNet18, the top-1 accuracy is shown in Table 2] We set 1 learning rate for Anon, which
corresponds to 0.1 learning rate and 0.9 momentum setting of SGDM, because EMA(x;0.9) ~
M(x;0.9)/10 according to equation[I] We set v = —0.1 for Anon (A = —0.1), and it surpasses the
performance of SGDM (A = 0). These results prove our guess that the negative adaptivity is more
suitable for classical models like CNNS.

Table 2: Top-1 accuracy (%) of ResNet18 on ImageNet. T from|Chen & Gu|(2018), 1 from [Liu et al.
(2019), * from Zhuang et al.| (2020).
Anon SGDM AMSGradW AdaBelief AdaBound® Yogif Adam* MSVAG* RAdam?

70.06 69.94 68.78 69.42 68.13 68.23  66.54 65.99 67.62

Table 3: Top-1 accuracy (%) of ResNet50 on ImageNet. t from [Xie et al.|(2022),  from Zhang et al.
(2023), * from Zhang et al. _(2025).

Anon SGDM Lookaround Adam' Adait SWA! Lookaheadt HVAdam*
77.25 76.23 76.77 72.87 76.80 76.78 76.52 77.22

Language Modeling We train au- Table 4: Validation loss and training time on OpenWebText.

toregressive models on OpenWebText Model Optimizer  Validation Loss  Time (h)
(Golfas}an & Coheq, 2019)) usipg the Anon.—; 1 2.93283 26.17554
gtfﬁ;‘al;(I)lg‘;megtjr“‘é‘;;;?;pe}ﬁfs M GPTosmall  AdamW 205614 2688118
low tfle exact experimental setup and Sophia-G 295143 28.98702
p p
hyperparameter configurations of |Liu Anon,—; 2.69017 36.91487
et al.| (2023). We set v > 1 and use GPT2-medium AdamW 2.70994 36.83633
other optimizers’ learning rate setting Sophia-G 2.70653 41.02486

for Anon. The results of experiments
are presented in Table[d] and Anon obtains the lowest validation losses in GPT2-small and GPT2-
medium, demonstrating strong performance on LLM training. Note that through our experiments, we
find that many variants of Adam are slower than Adam because they introduce extra calculations. But
from Table [d] we can see that Anon obtains the compared and even faster speed than Adam. This is
because when iterations approach infinity, for the average time cost per iteration, we have

E(tAdam _ tAnon) ~ tvectar—Div + tvector-Sqrt _ tvector-MuZ o 10g2 Iters >0 (Iters — OO) , (11)

Iters
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and C' is the time cost of the operations in line 9~15 of Algorithm [2] per iteration. From equation[TT]
we can find that the Adam’s time cost of per iteration is more than Anon’s, since the vector division
is slower than vector multiplication. Furthermore, IDU makes the big time cost of vector power
operation related to v € R used in Anon (covered in C') approach 0, which greatly improved the
practical value of Anon.

Image Generation with Diffusion Model We conduct image generation experiments on
CIFAR-10 (Krizhevsky et al) 2009) with diffusion model. We search the learning rate in
{0.1,0.01,0.001, 0.0001, 0.00001} for AdamW, AMSGrad, Anon, SGDM, and AdaBound. The
code and the settings of other hyperparameters are consistent with the official implementation of
Nichol & Dhariwall (2021)). The results are reported in Table@ When set learning rate 0.0001 (also
the most suitable value for Adam) and v = 1.01, Anon achieves SOTA and proves that the adaptivity
higher than 1 is a better choice for complex models.

Table 5: FID scores of diffusion models on CIFAR-10 (lower is better).

Adam AMSGrad SGDM AdaBound Anon,—; Anon,—i g1
9.11 8.12 12.84 12.13 8.03 7.75

Comprehensive Analysis and Robustness From the
results on CNNs, we observe that setting the learning
rate corresponding to SGDM and applying a negative
adaptivity leads to better generalization and higher accu-
racy. In contrast, setting the learning rate equivalent to
Adam and using a positive adaptivity (y > 1) achieves
SOTA results in diffusion models and LLMs. This ob-
servation aligns well with our analysis in Section 2.3]
highlighting that adaptivity is a key factor in model-
specific optimizer behavior. Additionally, our results
demonstrate the practical benefits of the proposed IDU
mechanism in improving training efficiency: it acceler-
ates computation by transforming expensive operations
into negligible cost as shown in equation ﬂ;ﬂ, and this . L
benefit can extend to other optimizers as well. We also [1gure 3: Hyperparameter sensitivity anal-
show the FID of setting of 7 = 1 (the same as Adam) in YSis of ResNet20 on CIFAR-10

Table |§| and Table E| which means the only difference is the inclusion of IDU in Anon, and it also
outperforms other optimizers, presenting the improvement brought by IDU. Furthermore, we assess
the robustness of Anon to hyperparameter choices. As illustrated in Figure[3] Anon maintains high
performance across a broad range of learning rates and « values. Notably, unlike many adaptive
optimizers that require tuning of 31, 2, and € per task, we use fixed settings (81 = 0.9, 52 = 0.999,
€ = 10716) throughout all experiments. Despite this, Anon consistently achieves SOTA, validating
its robustness and the practical applicability of our proposed design.
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-60

-50

-40

5 CONCLUSION

We propose Anon, a novel optimizer that obtains tunable non-restricted adaptivity and IDU conver-
gence guarantee technique. The results of deep learning experiments show that Anon outperforms
almost all other optimizers, which demonstrates the superiority of Anon and verifies the correctness of
our idea about adaptivity. And we prove that Anon’s convergence rate in both convex and nonconvex
cases can achieve the convergence rate of mainstream optimizers under the strong assumption or with
AMSGrad’s technique. And the experimental results and theoretical analysis show IDU matches
AMSGrad’s convergence rate and memory cost. In addition, IDU offers better noise robustness,
more flexibility, and even accelerates certain operations in practice. Therefore, we believe that IDU
is overall superior to the convergence technique of AMSGrad. And follow the settings of those
original papers, the experiments use many techniques like cosine annealing, decoupled weight decay
regularization, and gradient clipping by default, so it means Anon is perfectly compatible with these
widely used techniques. Thus, we expect Anon can become the preferred optimizer in extensive fields
of deep learning due to its great performance.
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APPENDIX

A LIMITATION AND FUTRUE WORK

Although we prove that the adaptivity is an important attribute for first-order optimizers, there are a
small number of first-order optimizers not covered by our Adaptivity Definition|l|such as HVAdam
which does not conform to the frame outlined in Algorithm I} For this situation, we will try to
give a more general adaptivity definition in the future. And limited by computational resources,
our hyperparameter search for Anon was incomplete. For example, in diffusion model trials, a
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learning rate of 0.0001 with adaptivity 1.02 caused the early training loss hard to decrease, whereas a
learning rate of 10~° allowed higher adaptivity such as 1.15. Regrettably, time constraints prevented
further exploration of these observations so further investigation is needed to fully explore Anon’s
potential. We also hope this work can contribute to exploring the design of deep learning models,
as our experiments reveal distinct adaptivity preferences across different model architectures. This
observation suggests that certain "ineffective" modifications proposed for neural networks might
simply stem from usual optimal adaptivity (i.e., values deviating from the conventional [0, 1] range),
rather than inherent flaws in the design concept. In such scenarios, Anon’s extensive adaptivity tuning
capacity could potentially unlock the latent capabilities of these architectures.

B ADAPTIVITY OF OPTIMIZERS

We present the full adaptivity table of some optimizers mentioned in the main paper in Table[6]
Table 6: Summary of adaptivity for representative optimizers.

Optimizer Ai(Y,x)
SGD 0
SGDM 0
T
RMSProp NN T
Adam A?Mspmp
AMSGrad 1
1+e/ max;cpy) \/EMA(23,;;82)
Padam Zp

1+e/ max; ¢ v/ EMA(2? ;;82)

RMSP . RMSP
AdaBound AP iy (t) <ty < (),
0, otherwise.
AdaBelief 1
1+te [171/32 +\/EMA((w7¢Adam)2+€/(1*,32)%32)} /EMA((2—¢Adm)2;35)
Anon equation[13[(~ ~)

C DETAILS OF EXPERIMENTS AND MORE EXPERIMENTS

C.1 IMAGE CLASSIFICATION

ResNet20 and ResNet32 We also do experiments on CIFAR-10 (Russakovsky et al.,[2015) with
ResNet20 and ResNet32 and achieve the SOTA. The results are presented in Table [/| (all other
optimizers’ data is from|Yue et al|(2023)), and the detailed setting is shown in Appendix [C} We report
the results of all other optimizers from AGD (Yue et al.,[2023) and adopt the same experimental setup
as in the official implementatimﬂ And do hyperparameters searching for Anon as Figure 3 in the
main paper (7 € [0.1, 10], v € [—0.24, 0.24] ) and finally select n = 1, v = —0.08 for ResNet20
and n = 0.5, v = —0.17 for ResNet32. Like the default setting for AdamW, AGD and AdaHessian
in the two experiments, we use the decoupled weight decay for Anon.

Table 7: Top-1 accuracy(%) comparison on CIFAR-10 (ResNet models)
Optimizers
SGD Adam AdamW AdaBelief AdaHessian  AGD Anon

ResNet20 92.14+.14 90.46+.20 92.12+.14 92.19+.15 92.27+27 92.35+.24 92.47+.05
ResNet32 93.10+.07 91.54+.12 92.72+.01 92.90+.13 9291+.14 93.12+.18 93.20+.08

Model

ResNet18 We report the results from the sources stated in the main paper. We adopt the same
experimental setup as in the official implementatimﬂ and reproduce the results of SGDM, AdaBelief
under the official recommended hyperparameter setting. We search learning rate in {0.1, 0.01, 0.001

"https://github.com/amirgholami/adahessian
“https://github.com/juntang-zhuang/Adabelief-Optimizer
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} for AMSGrad with decoupled weight decay, and the best value is 0.01. We set learning rate as 1
and search v in {-0.1, -0.05, 0, 0.05} for Anon and the best value is -0.1.

ResNet50 We report the results from the sources stated in the main paper. We adopt the same ex-
perimental setup as in the official implementatiorﬂ and reproduce the results of SGDM, LookAround
under the official recommended hyperparameter setting. Due to the heavy calculation burden, we do
not do much searching and simply set = 1 and v = —0.1 for Anon.

C.2 IMAGE GENERATION

Diffusion Model We adopt the same experimental setup as in the official implementatiorﬂ (Uncon-
ditional CIFAR-10 with L_hybrid objective and cosine noise schedule). And search learning rate
in {0.1, 0.01, ..., 0.00001} for all optimizers and search «y in {1, 1.1, 1.01} for Anon. The optimal
choice is n = 0.0001 and v = 1.01.

C.3 LANGUAGE MODELING

GPT2 We refer to the experimental setup in the official implementatiom and set nproc_per_node=4
due to limited computational resources. Under this setting, we find that when apply the same learning
rate scheduler as Sophia in GPT2-medium, AdamW can get lower loss, so we apply this new setting
for AdamW and Anon. We set v = 1 for Anon. And all the optimizers use decoupled weight decay.

D EMPIRICAL EXPERIMENTS

To better understand how different optimizers behave in complex landscapes, we visualize their
trajectories on two classical benchmark functions: Rosenbrock and Rastrigin. These functions are
used to evaluate the optimizer’s ability to escape saddle points, navigate flat valleys, and avoid local
minima. Rosenbrock tests the optimizer’s capacity to follow narrow curved paths toward a global
minimum. while Rastrigin challenees it with a rugged landscape filled with deceptive local minima.

Rastrigin Function Rosenbrock Function

(a) Rastrigin Function (b) Rosenbrock Function

Figure 4: 3D visualization of benchmark functions
Rastrigin: A highly non-convex function with many local minima. The global minimum is at (0, 0).

Rosenbrock: A narrow, curved valley with the global minimum at (1, 1). It’s commonly used to
evaluate optimizer stability and curvature sensitivity.

3https://github.com/Ardcy/Lookaround
*https://github.com/openai/improved-diffusion
>https://github.com/Liuhong99/Sophia
Shttps://github.com/karpathy/nanoGPT
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Rastrigin func: Anon with 501 iterations, I~=1.64783, y=-0.5

Rastrigin func: Anon with 501 iterations, Ir=1.2651. y=0 ck func: Anon with 501 iterations, I=0.2103
¥ N

Rosenbrock func: AdaBlief with 501 iterafions, I=0.308285

Figure 5: Optimization trajectories comparison under different hyperparameters (searched for each
optimizers). The first 10 figures show the optimization trajectories of Anon under different v
selections, while the remaining 14 figures display the trajectories of other optimizers.
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E THEOREM 1 IN MAIN PAPER

Theorem 5. If vy and v’ are from the same equivalence class, there is a function f : N, — R that
makes ), (€1.,) = VL, (x1.0) f(n) for any x1., € R™ and any n € N.

Proof. Let h(k;g,1.n) = nn(kgy1n) — N (kgo1:n), h : R — R. Because v, and 1)/, are
continuous, h is continuous.
When k # 0, we have

— / _ /
B (k) = lim Iny, ((k 4+ Ak)xy10) — In), ((k+ Ak)xy1:m) — Nty (kxg1m) + Ine) (kxy1:0)
© Ak—0 Ak

. In, (1 + Ak/E)kz 1) — Inl (1 + Ak/k) k1) — Intoy (kzg1n) + 0], (kTo1m)
=— lim
Ak—0 Ak/k
1 I ((1+ Ak/k)kz 1) — Inthn (k1)) — [0, ((1+ Ak/k)kag1:0) — In g, (k1))
— lim
Ak—0 Ak‘/k‘

1
k
1
Tk

1 /

:E [An(¢7 Torn) = An(Y' T41:0)
1

Tk

-0 (Since ¥ and Y’ are in the same class)

=0 (12)
So h(k;z,1.n) = Cy when k > 0, h(k; z,1.,) = C when k < 0. And because h is continuous, we

have C; = Cy = h(0;z41.,) =1n izggg

Yn(kTgim) _ 1, (0)
Therefore, we have w;(klem,) = % 0) for Vk € R.

Yn(T1:n) _ Pn(0)
Yr(@in) — PL(0)

And since 1., can be any vector € R™ and any n € N, we have
Rn, Vn S N+.

for Vzq., €

Let f(n) = ://j?ggg, we have ¥, (€1.,) = ¥ (®1.,) f(n) for any x;.,, € R™ and any n € N . O
F THEOREM 2 IN MAIN PAPER

Theorem 6. For the optimizer Anon described in Algorithm[2] the adaptivity of Anon in i-th dimension
is € [y(1 — k), ), where k = ¢/ minca, EMA(GZ | 41.q, . B2)-

Proof. Welet f, (x) = 85" (1 — BsLlys1)EMAY (x2 1., + € B2), so we have

a, 1/2
A, g1:4,i) = ViIn (Z Bgtfj,—y(kglzt,i)>

Jj=1 k=1
B 725;1 5 Fi—1(91:6,0) EMA(G2 4100, 55 2)
B Z?tz1 ﬂg“fm(gu,i)
Y B Fi1(910,0) [EMA(G2, 410, + €6 B2) — €]
- Z?;1 ﬂgtfj,’y(gl:t,i)

_ VY BE Fin(gra) — ve 0ty B fim—1(g1:,i)
B Z?tzl gtfj,v(glzt,i)
=7 (1 —€- Z(]i%l Bgifjwl(gl:m))

Z;ltzl 5 i (g1it,i)

— (1 .. Z?%l fj,wl(glzt,i)> "
Z?:l fj,'v(gl:t,i)

15



Under review as a conference paper at ICLR 2026

>~(1—k) (Smce k=¢/ jrél[gtl] EMA(ng_1+1:aj,i§ ﬂg)) (14)

G THEOREM 3 IN MAIN PAPER

For simplicity, we omit the debiasing step in theoretical analysis as in Reddi et al.|(2019). It is easy
to prove that the analysis also applys to the de-biased version.

Lemma 7. (McMahan & Streeter, 2010) For any @ € Si and convex feasible set F C R?, suppose
Q1/2(U1*U2)H <

then we have

w = minger QY3 (@—2) | anduy = minger QY2 (w—22)|

o=

Theorem 8. (Convergence analysis for online convex optimization) Let {0;} and {v;} be
the sequence obtained by Algorithm 2| v € R, 1 € [0,1), B2 € [0,1), Biut1 € [0, B,
B11 = B, n(t) = % for ¥t € [T]. Assume that ||x — ylleo < Do for Vz,y € F. Suppose

f0) i loo < Goo, for ¥Vt € [T], § € F. Let ¢, = min(G ), e 7),
c = max(G, e ), where e € Ry is a very number set in Algorithm l The opti-
mal point of f is denoted as 0*. For {0;} generated by Anon, there is a bound on the regret:
T T—1
—2v2 D2 I 1t41 11D§o
Z ft gt ft 9*)] ( f) &) \/T+ Z /Blt"l‘l B t+ >ﬁ t >
=1 (1= v2)(1 = Bi)emo —~ | 2an41(1 - B)
D? dDo Goo dG Cuﬁo
+ 2+ + \f
2em(1—B1) = 1- Zﬁ“
Proof.
1 N —/2
v = [2/(—— +o))if k> 0else o,
Vk—1
1wt
— = ————ifk > 0else o]
Ch 2
k
1
;]3 - ; 2m1n(k z+1 k)
1 EMA™( g[gk 1y1]:2k + € f2) 5
;}% ;0 omin(k—i+1,k) (15)
Since [|g¢]|c < Goo, ¢ = min(G5Y,e77) and ¢, = max(G',e~7), from[15] we have:
k _ k =)
1 e’ q
V2 . € [Z gmin(k—i+1,k)’ Z 2min(ki+17k)]
ki i=0 i=0
1
5 € {Clz’cfﬂ
Uk.i
Uk, € e, cul (16)
Let n, = n(t).
Or41 = H 1(9 ntVa, me) = 19%15__1 _1/ (0 — (0 — TItVatmt))H
FV;,

Note that [] - v 1(0*) = 6* since 0* € F. Use 0 and 0 ; to denote the i-th dimension of #* and 6,

respectively. From lemma equation[7} using u; = 6441 and uy = 6*, we have:
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2
_1/2(0t+ — 9 ~ 1/2(9t — ﬂtV&tmt — 0*)H
2 2
Vi 20— 07|+ 2 ||V 2| = 2mema, 0, — 07)
2
S S e [
=20 (Bremy—1 + (1 — Bre)ge, 0 — 07) o))

Note that 5, € [0,1) and 82 € [0,1),

1
0y <—ov-—o
) “2n(1 — Bur)
Ui

<gta et -

* 2(1 — Bue)

1
<7
“2n(1 — Bur)

Ui

* 2(1 — Bue)

rearranging inequality equation[T7] we have:

( V20, — 0 z ’ VY2(0,00 — %) 2)
|va/>m, 4 - fl};u (M1, 0" — 0,)
( v, 20, - 0) = PO — 07) 2)
o 2o

(Cauchy-Schwartz’s inequality: (u,v) < HUHUH)

1
< -
T 2n:(1 = Bur)

Mt

T3 2(1 — Bre)

(Jvz 26 -] = |vie 6 -0 )
Vel 4 £ 25 e VD

(Since |z — ylloo < Doo, forVa,y € .7:)

*; —-1/2 * 2 —-1/2 N 2
727715(1 - /Blt)( Va, (6 —67) s (Opy1 — 6 )H )
d
il 1/2 Bufo , |
* 2(1 — Bue) Va, th 1-5, ZEMA (g1:¢—1.i3 B2)
i=1

1 71/2 * 2 71/2 y 2
S5 13 a - ~ —
~2n.(1 *Bu)( Va, (00— 07) ‘Va,, (041 — 0 )H )

d
dD
+ L‘ ;/2 . ﬁltf ZG%O
2(1 — Byg) Il 1-58, -
(Since Jlgll < G-

1 ~1/2 2 ~1/2 2
<gatt =g 0= 0] o)
~2m(1 _/Blt)( Va, " (6 ) G, (Opp1 —07) )

M lyrr2 H2 B1:d D
+ Va"*m + Go
2(1 — By ll7ae 1By,
1 —1/2 2 —1/2
“an(i— ) e all
2n:(1 = Bue) ( Va, " (6 ) (Or41 —0%) )
61thOOGoo e T
T m; Va,m

1= B 2(1— Byy) t

! —1/2 2 —1/2 2
o0 1 _ 2\ a — 6 " _ px

27715(1 — Blt) (’ Vat (et ) Qs (9t+1 0 ) )
BlthooGoo N d 5
m "Uat,i
1= P 2(1 — Bt ; b
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—1/2 915 H

Sm( 1/2 (041 —07) H )

51thooGoo t 9
+ =+ my ;C
1— P 2(1 — Bre) ; t,iCu

(Apply formula equation )

2

Va:1/2(9t_9*)H . Va71/2(9t+1—9*)H2>

<;(
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H THEOREM 4 IN MAIN PAPER
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ensure Cy and C, exist. For sequence {0;} generated by Anon, we have:

FEL V@)

_ . T, _
< T (F =+ K [Tt T+ K)
where

2d 2 a —
J = g N2+ 285m0, Y0 (ak — Lis) 7 K = (ﬁ + %)Lngl\ﬂcﬁd

Proof. Let Ay = Vz,, Qr = m AV f(a¢) and let Qo = Q1, we have

T ) T 5
> <Qt79t> = 1_751<QT, mT> + tz:; <Qt—lamt—l> + ) > <Qt—1 — Q1 mt—1>

= =1
=1 ?151 <QT7mT> + tzT; <Qt,mt> +
First we derive a lower bound for equation_@
(Quu9e) =(mAVF (). 90)
<m 14:1V f (), gt> <(77t—1At—1 —mAt)Vf(xt)7gt>
<77t 141V f () gt> - HVf (@)
(
>(

T-1

<Qt - Qt+1>mt> (25)
=0

M—1Ai—1 — N Ay

d

|

Ni—1A4:-1V f(24), 9 > — dN?Liq,, (Hnt—lAt—lH - HUtAtHl)
— N1, (| ) (26)

(Since HgtH <N, moy>2m>0,A1 = Ay whent # adt)

gt
o0

By Holder’s znequaltty)

77t71At71 - 77tAt

22



Under review as a conference paper at ICLR 2026

Perform telescope sum, we have

T T ar—1
> Qo) =Y (mo1Aia Vi @) ge) = dN* 7 ([[nada|, |
=1 P =1
ar
—dN? Z ‘ Nar—1Aar—1 = Nay, Aay - dN2( Naa, Aaat
=1
T ar—1
> <77t71At71Vf(-rt)7gt> —dN? Y |4y Aa,
=1 k=1
ar
- dN2 Z ‘ nak—lAak—l - WakAak 1 - dN2 na@tAaat 1
k=1
T ar
>3 (mo1 A1 Vi), ge) —dN® Y nAu, |
=1 =1
ar
15 (], ]
T ar ar
_ ; <nt,1At,1Vf(xt),gt> — 2dN? kz_:l ‘ oy Ay || = dNV? kz_:l ‘

M=

> <7]t—1At—1Vf($t)7gt> _3dNQZnak—ICu
k=1

&~
Il
-

el

77%+1—1Aak+1—1H1>

nakflAakfl
1

27)

Next, we derive an upper bound for Z;T:l <Qt, gt> by deriving an upper-bound for the RHS of

equation[23] We derive an upper bound for each part.
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Take expectations on both sides, we have
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