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ABSTRACT

Adaptive optimizers such as Adam have achieved great success in training large-
scale models like large language models and diffusion models. However, they
often generalize worse than non-adaptive methods, such as SGD on classical archi-
tectures like CNNs. We identify a key cause of this performance gap: adaptivity
in pre-conditioners, which limits the optimizer’s ability to adapt to diverse opti-
mization landscapes. To address this, we propose Anon (Adaptivity Non-restricted
Optimizer with Novel convergence technique), a novel optimizer with continu-
ously tunable adaptivity γ ∈ R, allowing it to interpolate between SGD-like
and Adam-like behaviors and even extrapolate beyond both. To ensure conver-
gence across the entire adaptivity spectrum, we introduce incremental delay update
(IDU), a novel mechanism that is more flexible than AMSGrad’s hard max-tracking
strategy and enhances robustness to gradient noise. We theoretically establish
convergence guarantees under both convex and non-convex settings. Empirically,
Anon consistently outperforms state-of-the-art optimizers on representative image
classification, diffusion, and language modeling tasks. These results demonstrate
that adaptivity can serve as a valuable tunable design principle, and Anon provides
the first unified and reliable framework capable of bridging the gap between classi-
cal and modern optimizers and surpassing their advantageous properties. Our code
is available at https://anonymous.4open.science/r/Anon-6511/.

1 INTRODUCTION

Modern deep learning models rely heavily on optimization algorithms for effective training. Despite
the wide success of adaptive optimizers such as Adam (Kingma & Ba, 2014) in large-scale models
like diffusion networks (Nichol & Dhariwal, 2021; Rombach et al., 2022) and large language models
(LLMs) (Brown et al., 2020; Touvron et al., 2023), they are often outperformed by non-adaptive
methods such as SGD (Robbins & Monro, 1951) in classical architectures like CNNs (Wilson et al.,
2017). These discrepancies raise a critical question: Why do existing optimizers fail to generalize
across diverse model families?

We identify a key cause of this performance gap as adaptivity in pre-conditioners (i.e., the matrix
that rescales the gradient before the step; SGD uses the identity, while Adam uses a data-dependent
diagonal matrix). Whereas SGD applies fixed step sizes, adaptive optimizers such as Adam scale
updates by gradient statistics, implicitly encoding an adaptivity level A throughout training. This
A, fixed without considering task-specific gradient distributions, can create a mismatch between the
optimizer’s adaptivity and the task’s optimization landscape, potentially degrading generalization
performance and rendering optimizers overly specialized. This motivates us to formalize and analyze
adaptivity as a first-class property of optimizers.

To address this, we introduce a unified view of adaptivity, defined as the log-sensitivity of the pre-
conditioner to global gradient scaling (§2.2). Existing optimizers correspond to fixed points on this
adaptivity spectrum: SGD (A = 0), RMSProp (Graves, 2013) (A ≈ 1), and Adam (A ≈ 1). However,
no method supports continuous control across A ∈ R with guaranteed stability.

We propose Anon, an Adaptivity Non-restricted Optimizer with Novel convergence technique that
enables real-valued, tunable adaptivity via a hyperparameter γ ∈ R. Anon interpolates between
SGD-like and Adam-like updates and even extrapolates beyond them. We note that such adaptivity
comes with an important tradeoff: extreme adaptivity (e.g., γ < 0 or γ > 1) risks instability and
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divergence. To tackle this tradeoff, we design a new convergence technique named incremental
delay update (IDU), which replaces hard max-tracking (e.g., in AMSGrad) with a soft, multi-scale
accumulator that is provably stable.

Our contributions are as follows:

• We define a formal notion of adaptivity as a continuous control variable that unifies SGD, Adam,
and beyond, offering a unifying lens to guide the design of future optimizers (§2.2).

• Through our analysis, we propose Anon, a novel universal optimizer which has tunable adaptivity.
Anon’s extensive range of adaptivity and adjustment endows the optimizer with the capability to
surpass the performance ceiling inherent in previous optimizers. (§3.1).

• We propose a novel technique named incremental delay update, which eliminates the non-
convergence risks in Anon arising from excessive range of adaptivity adjustment and anomalous
negative adaptivity that may be set. We theoretically establish the convergence of Anon in both
online convex and non-convex stochastic settings. In addition, we show that IDU can address
convergence issues more effectively than AMSGrad’s max-tracking approach. (§3.3).

• We conduct extensive experiments in image classification, language, and generative modeling,
where Anon consistently outperforms strong baselines across tasks and architectures. (§4).

This work advocates for viewing adaptivity as a tunable principle and delivers the first provably
stable, unified optimization framework that spans the full adaptivity spectrum.

2 PRELIMINARIES

2.1 REVIEW OF THE FRAME OF OPTIMIZERS

Algorithm 1: Generic Optimizer Method Frame
1 Input: θ, η, {ϕt, ψt}∞t=1
2 while θt not converged do
3 gt ← ∇ft(θt)
4 mt ← (ϕt(g1:t,1), ..., ϕt(g1:t,d))

⊤

5 St ← diag(ψt(g1:t,1), ..., ψt(g1:t,d))
6 θt ← ΠF,St(θt−1 − η(t)St−1mt)
7 end while

We focus on first-order optimizers,
which are widely used to train deep
learning models. To facilitate a unified
understanding of their differences and
commonalities, we introduce a generic
framework, summarized in Algorithm 1.
Here, F denotes the convex feasible set.
θ ∈ F is the parameter to be optimal.
Define f(θ) as a vector-valued function
to minimize. St is a diagonal matrix
where St,i,i := ψt(g1:t,i). ψt is the pre-conditioner function.

∏
F,S(y) = argminx∈F∥S1/2(x−y)∥

denotes the projection of y onto F under the scaling matrix S. The scheduler η controls the learn-
ing rate at each step, which can be constant or scheduled via strategies such as cosine annealing
(Loshchilov & Hutter, 2016). gt is the gradient at step t. mt is a vector where mt,i := ϕt(g1:t,i).
The momentum operator ϕt : Rt → R is typically implemented as a moving average of past gradients.
The two common variants are:

EMA(x1:t;β) =
1− β

(1− βt)

t∑
i=1

βt−ixi , M(x1:t;β) =

t∑
i=1

βt−ixi , (1)

where EMA denotes the exponential moving average with bias correction. M refers to the classical
momentum without normalization. Both operators serve to smooth the gradient history. Since the
smoothing behavior of ϕ is similar across optimizers, the key differentiator lies in the design of
the pre-conditioner ψ. Thus, we focus our subsequent analysis on the properties and effects of ψ.

While the momentum functions ϕt are largely similar across optimizers, the pre-conditioner functions
ψt : Rt → R+ differ significantly and play a crucial role in shaping the optimizer’s behavior. We
summarize the designs of ϕ and ψ for representative optimizers in Table 1.

As shown in Table 1, the momentum components ϕ exhibit similar behaviors across different
optimizers. This observation highlights that the key distinction among optimizers arises from the
design of ψ rather than ϕ. In fact, if we omit the bias correction factor 1/(1 − βt) in EMA, it
effectively reduces to a classical momentum M up to a constant scaling factor 1− β. Therefore, for
the remainder of this paper, we primarily focus on analyzing the properties of the pre-conditioner ψ,
assuming a shared momentum ϕ across optimizers unless otherwise noted.
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Table 1: Summary of momentum functions and pre-conditioners for representative optimizers (Polyak,
1964; Luo et al., 2019; Zhuang et al., 2020). For full expressions of complex terms (AAMSGrad

t ,
AAdaBound
t , AAdaBelief

t ) AAnon
t ), please refer to Table 6 of Appendix B.1.

Optimizer ϕt(x) ψt(x) At(ψ,x)
SGD xt 1 0

SGDM M(x;β) 1 0

RMSProp xt
√

EMA(x2;β2) + ϵ 1

1+ϵ/
√

EMA(x2;β2)
(≈ 1)

Adam EMA(x;β1) ψRMSProp
t ARMSProp

t

AMSGrad ϕAdam
t maxi∈[t]{ψRMSProp

i } [0, 1] (≈ 1)
AdaBound ϕAdam

t Clip(ψRMSProp
t , fl(t), fu(t)) [0, 1] (1→ 0)

AdaBelief ϕAdam
t

√
EMA((x− ϕAdam)2 + ϵ/(1− β2);β2) + ϵ [0, 1] (≈ 1)

Anon ϕAdam
t ψAnon

t (equation 5) ≈ γ

Extensive empirical evidence has shown that SGD and SGDM often achieve better generalization
than Adam in classical architectures such as ResNet (He et al., 2016), whereas Adam typically out-
performs SGD in more complex architectures such as transformers. Understanding the fundamental
causes behind this divergence remains an important question, with significant implications for the
development of more effective optimizers. Several hypotheses have been proposed, including that
Adam can escape saddle points more efficiently than SGD (Staib et al., 2019), and that SGD tends to
find flatter minima whereas Adam is biased toward sharper minima, leading to superior generalization
for SGD (Wilson et al., 2017). Regardless of the specific explanations, we hypothesize that the
ultimate cause lies in how optimizers scale the loss landscape, a property we refer to as adaptivity. We
will study how adaptivity affects optimization in § 3.2. Before that, we first give a formal definition
of adaptivity.

2.2 THE ADAPTIVITY OF EXISTING OPTIMIZERS

We formalize the concept of adaptivity based on the framework described in Algorithm 1.
Definition 1. Suppose the pre-conditioner ψn is continuous. For any optimizer following Algorithm 1,
we define the adaptivity A of its pre-conditioner ψ as

An(ψ,x1:n) = ∇k lnψn(kx1:n)
∣∣
k=1

.

Furthermore, we define two pre-conditioners ψ and ψ′ are equivalent if and only if An(ψ,x1:n) =
An(ψ

′,x1:n) for all x1:n ∈ Rn and n ∈ N+.

Intuition Explanation A is a measure of the pre-conditioner’s "response" to changes in the
gradient’s scale. A = 0 (like SGD) means the pre-conditioner is "non-reactive" and completely
ignores the overall gradient scale. A ≈ 1 (like Adam) means the pre-conditioner is "compensatory",
adjusting itself with a strength of 1 to offset changes in gradient scale.

Notably, according to Definition 1, the adaptivity A depends not only on the functional form of
ψ, but also on the sequence of historical gradients g1:t. This dependence reflects the fact that pre-
conditioning is inherently dynamic: even for a fixed ψ, its adaptivity can vary during training as the
distribution of gradients evolves. Separately, we introduce an important equivalence notion between
pre-conditioners: even if two optimizers use different ψ functions, they may be essentially equivalent
from an adaptivity perspective.
Theorem 1. If ψ and ψ′ are from the same equivalence class, there is a function f : N+ → R+ that
makes ψn(x1:n) = ψ′

n(x1:n)f(n) for any x1:n ∈ Rn and any n ∈ N+.

Decoupling from Scheduler Theorem 1 shows that if two pre-conditioners yield the same adaptivity
for any input, then they are equivalent. Specifically, if there exists a scheduler adjustment that can
eliminate the difference between two pre-conditioners (e.g., ψ′ = kψ corresponds to η′(t) = kη(t)),
we regard them as equivalent strategies. The proof of Theorem 1 is deferred to Appendix E.

Based on these definitions, we can characterize the adaptivity of several widely used optimizers:

3
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For SGD(M), the adaptivity is A = 0 in all dimensions, indicating no explicit scaling of the
loss landscape. In contrast, for Adam and its variants (e.g., RMSProp, AdaBelief), the adaptivity
is approximately A = 1, as the contribution of the small ϵ term is negligible compared to the
accumulated gradient statistics most of the time. A more intricate case is AdaBound (Luo et al.,
2019), whose adaptivity transitions dynamically from A ≈ 1 toward A ≈ 0 as training proceeds.
Specifically, AdaBound clamps the pre-conditioner ψt between shrinking bounds ηl(t) and ηu(t):

At(ψ
AdaBound,x) =

{
ARMSProp
t , if ηl(t) < ψRMSProp

t < ηu(t),
0, otherwise.

(2)

As the bounds tighten over time, AdaBound behaves increasingly like SGD. This is supported by both
evidence from Zhuang et al. (2020) and our experiments (Table 5), which indicates that AdaBound
struggles in tasks such as GAN and diffusion model training, where high adaptivity is critical. These
observations suggest the following: Optimizers with A = 0 (e.g., SGD) tend to generalize better on
classical architectures such as CNNs, while those with A = 1 (e.g., Adam) perform better in complex
modern architectures. However, whether A = 0, A = 1, or other values yield better performance
remains an open question, which we explore in the next section.

2.3 THE OPTIMAL ADAPTIVITY FOR TASKS

We have observed that different tasks favor different levels of adaptivity A. This naturally raises a
critical question: Is A = 0 or A = 1 truly the optimal adaptivity for these tasks?

As shown in Table 1, although mainstream adaptive optimizers typically have adaptivity close to 1, it
is possible to adjust adaptivity by tuning hyperparameters such as ϵ. For instance, by setting a large
ϵ much greater than the accumulated moving average, the adaptivity of Adam and its variants can
effectively approach 0. Indeed, prior works (Zaheer et al., 2018; Zhuang et al., 2020) have adopted
this trick to align Adam’s generalization performance more closely with SGD. Padam (Chen & Gu,
2018) offers another perspective by modifying the pre-conditioner as

ψPadam = (ψAMSGrad)
2p
, At(ψ

Padam,x) =
2p

1 + ϵ
/
maxi∈[t]

√
EMA(x2

1:i;β2)
. (3)

By adjusting p ∈ [0, 0.5], Padam interpolates adaptivity between 0 and 1 while maintaining a small ϵ.
However, experiments from Chen & Gu (2018); Zhuang et al. (2020) show that Padam’s performance
typically lies between Adam and SGD, and only marginally surpasses them in limited scenarios. This
observation raises a broader question: Could adaptivity values beyond the [0, 1] interval lead to even
better performance?

At first glance, one might attempt to extend adaptivity beyond [0, 1] by simple functional modifications.
However, expanding the adaptivity range is non-trivial. The convergence of most adaptive optimizers
relies on the assumption:

ψt(g1:t+1,i)

η(t+ 1)
≥ ψt(g1:t,i)

η(t)
, ∀i ∈ [d], ∀t ∈ N+, (4)

which guarantees that the optimizer does not diverge even in the worst-case scenarios.

While in practice, the convergence condition is not strictly verified, optimizers like Adam typically
exhibit stable behavior under standard training settings, suggesting that this assumption is likely
satisfied. If we attempt to construct optimizers with negative adaptivity, new challenges arise. For
example, setting ψ = (ψAdam)γ with γ < 0 produces a negative adaptivity. However, setting the
pre-conditioner to a negative power likely causes its value to decrease over time, thereby violating
the critical convergence assumption. AMSGrad (Reddi et al., 2019) was introduced to address
convergence issues inherent in Adam by enforcing a non-decreasing sequence in the denominator.
Even with such safeguards, prior works (Chen & Gu, 2018; Chen et al., 2018) have shown that Padam,
when extending adaptivity beyond [0, 1], can still suffer from divergence in practice. Therefore,
designing stable optimizers with tunable adaptivity beyond the classical range remains an open and
challenging problem.

3 EXTEND TO ALL REAL NUMBERS

3.1 ADAPTIVITY TUNABLE OPTIMIZER AND BEYOND

4
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Algorithm 2: The Anon Optimizer
1 Input: η, β1, β2, ϵ, γ
2 Initialize θ0,m0 ← 0 , s0 ← 0, t← 0, k ← −1
3 while θt not converged do
4 t← t+ 1
5 gt ← ∇ft(θt)
6 mt ← β1mt−1 + (1− β1)gt
7 m̂t ← mt

1−βt
2

8 st ← β2st−1 + (1− β2)g2t
9 if k + 1 = log2 t do

10 k ← k + 1

11 σk ← st/(1− βmax(t/2,1)
2 ) + ϵ

12 vk ←
√
2/( 1

v2
k−1

+ σγk ) if k > 0 else σ−γ/2
k

13 st ← 0
14 Vk ← diag(vk,1, ..., vk,d)
15 end if
16 θt ← ΠF,V −1

k
(θt−1 − η(t)Vkm̂t)

17 end while

In §2.2 and §2.3, we have shown that
extending adaptivity beyond [0, 1]
could be beneficial. However, achiev-
ing tunable adaptivity across all real
numbers while ensuring convergence
remains challenging. We propose
a new technique called incremen-
tal delay update (IDU), which can
ensure the convergence of an op-
timizer regardless of the value of
its adaptivity. We will elaborate
the technique in §3.3. Leveraging
this technique, we design a novel
optimizer Anon (Adaptivity Non-
restricted Optimizer with Novel con-
vergence technique) with tunable
adaptivity and extend the allowable
range of adaptivity to all real num-
bers. The pseudocode of Anon is
presented in Algorithm 2, and all the
operations are element-wise. Here,
m̂t corresponds tomt in Algorithm 1. Vk corresponds to S−1

t in Algorithm 1. st,σk,vk, and k are
intermediate variables. γ is a hyperparameter to adjust adaptivity A. ϵ is a small hyperparameter to
avoid division by 0. β1, β2 are hyperparameters for EMA, 0 ≤ β1, β2 < 1, typically set as 0.9 and
0.999. Let {an} is a increasing sequence and a1 = 1 (specially, let a0 = 0). Let ãn =

∑
i>0 1ai≤n,

so ã1 = 1. The pre-conditioner of Anon can be written as equation 5 (β3 = 0.5, an = 2n−1):

ψAnon
t (x) =

√√√√ ãt∑
j=1

βãt−j3 (1− β31j>1)EMAγ(x2
aj−1+1:aj

+ ϵ;β2) . (5)

Theorem 2. For the optimizer Anon described in Algorithm 2, the adaptivity of Anon in i-th dimension
is ∈ [γ(1− k), γ), where k = ϵ/minj∈[ãt] EMA(g2aj−1+1:aj ,i

;β2).

According to Theorem 2, since we also set a small ϵ by default, we can adjust the adaptivity A of
Anon by adjusting the hyperparameter γ (A ≈ γ). The proof of Theorem 2 is shown in Appendix F.

3.2 HOW ADAPTIVITY INFLUENCES BEHAVIORS OF OPTIMIZERS

Empirical Validations To show how adaptivity influences the behaviors of optimizers, we conduct
a simple experiment in the loss function f(x, y) = ln(1 + Beale(x, y))/10, where Beale (Beale,
1955) is a commonly used function to test optimizer performance. We apply appropriate learning
rates for SGDM, Adam, AdaBelief, and Anon, and draw the optimization trajectories. We also show
the loss landscapes in the view of Anon by scaling the loss landscape according to the pre-conditioner
of Anon in epoch 100. The trajectories and loss landscapes after scaling are shown in Figure 1.

(a) γ = 1.5 (b) γ = 0.5 (c) γ = −0.5

Figure 1: Trajectories of SGDM, Adam, AdaBelief, and Anon. The color change from deep red
to deep blue represents the loss from high to low. And the loss landscape displayed is the result of
scaling by Anon. More empirical experiments are shown in Appendix B.2 and D.
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Effect of Scaling By changing γ from 1.5 to −0.5, the adaptivity also changes from 1.5 to −0.5
referring to Theorem 2. We can find that when γ = 1.5, Anon takes a shorter path to descend along
the y-axis. When γ = 0.5, the path is between Adam and SGDM. And when γ = −0.5, the Anon
descends along the x-axis and arrives at the optimal point. We can find that in the progress of γ’s
decreasing, the scale of the x-axis is smaller and smaller than that of the y-axis, so that Anon can
choose the right path to reach the optimal point. This example implies that the optimization path of
Anon in deep learning training may be greatly different from other optimizers, helping reach a new
parameter region that makes the model achieve better performance.

The Meaning of Negative Adaptivity Positive adaptivity typically reduces step sizes for large
gradients to help escape saddle points. In contrast, negative adaptivity adopts the opposite strategy
by increasing step sizes when gradients are large, which enables the optimizer to escape from sharp
minima. Intuitively, higher adaptivity drives the optimization toward steeper minima, whereas lower
adaptivity favors flatter regions. Thus, adaptivity influences the optimizer not only through its
path but also by altering its preference for specific minima geometries. This perspective implies
that restricting adaptivity to fixed points like A=0 or A=1 is insufficient. Empirically, we find that
negative adaptivity is more effective for classical models, while positive adaptivity remains suitable
for complex architectures.

3.3 INCREMENTAL DELAY UPDATE

As we state in § 2.3, it is challenging to guarantee the convergence when adaptivity is allowed to take
any value. So we propose a new technique incremental delay update (IDU), which can be seen as
using a new function U(x;ψold) to replace the old pre-conditioner function ψ:

Ut(x;ψ
old
t , {an}, β3) =

√√√√ ãt∑
j=1

βãt−j3

(
1− β31j>1

)(
ψold
aj−aj−1

(xaj−1+1:aj )
)2

. (6)

Line 9~15 of Algorithm 2 are the recursive formulas for IDU used in Anon where β3 = 0.5,
an = 2n−1 and ψold = EMAγ(x2 + ϵ;β2). IDU updates the pre-conditioner using accumulated
gradient information only at specific, delayed steps. This strategy confines unpredictable oscillations
within a manageable range, thereby ensuring theoretical convergence while still permitting the pre-
conditioner to change non-monotonically. We show the convergence of Anon in Theorem 3 (convex
cases) and Theorem 4 (non-convex cases). And the proofs are provided in Appendix G and H.

Theorem 3. (Convergence analysis for online convex optimization) Let {θt} and {vk} be
the sequence obtained by Algorithm 2, γ ∈ R, β1 ∈ [0, 1), β2 ∈ [0, 1), β1,t+1 ∈ [0, β1],
β1,1 = β1, η(t) = η0√

t
, for ∀t ∈ [T ]. Assume that ∥x − y∥∞ ≤ D∞ for ∀x, y ∈ F . Suppose

f(θ) is a convex function, ∥gt∥∞ ≤ G∞ , for ∀t ∈ [T ], θ ∈ F . Let Cl = min(G−γ
∞ , ϵ−γ),

Cu = max(G−γ
∞ , ϵ−γ), where ϵ ∈ R+ is a very number set in Algorithm 2. The opti-

mal point of f is denoted as θ∗. For {θt} generated by Anon, there is a bound on the regret:

T∑
t=1

[ft(θt)− ft(θ∗)] ≤
dD2

∞c
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+
T−1∑
t=1

[
β1,t+11β1,t+1>β1,tD

2
∞

2Clηt+1(1− β1)2

]

+
D2

∞
2Clη1(1− β1)

+
dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T (7)

Corollary 3.1. Suppose β1,t = β1λ
t, 0 < λ < 1 in Theorem 3, then we have:

T∑
t=1

[ft(θt)− ft(θ∗)] ≤
dD2

∞c
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

D2
∞

2Clη1(1− β1)

+
dD∞G∞β1

(1− β1)(1− λ)
+
dG2

∞Cuη0
1− β1

√
T (8)

It implies the regret of Anon is upper-bounded by O(
√
T ) for convex case when an = 2n−1.
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Theorem 4. (Convergence analysis for non-convex stochastic optimization) The update of θt can be
described as θt+1 = θt − ηtV⌊log2 t⌋mt, and mt = β1mt−1 + (1− β1)gt.
Under the assumptions:

• f is differentiable and f∗ ≤ f ≤ F . ∇f(x) is L-Lipschitz continuous, i.e. ∥∇f(x)−∇f(y)∥ ≤
L∥x− y∥, ∀x, y.

• The noisy gradient is unbias and its infinity norm is bounded by N, i.e. Egt = ∇f(x), ∥gt∥∞ ≤ N .

The hyperparameters are set as: ηt = η0t
−p, η0 > 0, p ∈ (0, 1) where the bounds are ClI ⪯

V⌊log2 t⌋ ⪯ CuI , and 0 < Cl < Cu (A ⪯ B means B −A is a positive semi-definite matrix). And ϵ
and N ensure Cl and Cu exist. For sequence {θt} generated by Anon, we have:

1
T

∑T
t=1

∥∥∥∇f(xt)∥∥∥2 ≤ 1
η0Cl

T p−1
(
F − f∗ +K

∫ T
1
t−2p dt+ J +K

)
, (9)

where

J =
β2
1d

4L(1−β1)2
N2 + 3dN2

1−β1
η0Cu

∑ãt
k=1 (ak − 1k ̸=1)

−p
, K =

(
1

1−β1
+ 1

2

)
Lη20N

2C2
ud

Theorem 4 shows when p = 0.5 and an = 2n−1, Anon has a convergence rate of O(lnT/
√
T ) for

non-convex cases. Note that the convergence rates shown in Theorem 3 and Theorem 4 are the same
as mainstream adaptive optimizers under the strong assumption equation 4 or using the technique
of AMSGrad. And the assumptions and boundedness conditions are standard in the literature and
consistent with those adopted in previous works like Luo et al. (2019) and Zhuang et al. (2020).

Better Noise Robustness Other convergence guarantee techniques typically employ alternative
methods to ensure equation 4 holds, thereby guaranteeing optimizer convergence. Noise in the
early training stage can greatly influence their performance, making it difficult for these methods
to use the information of the latest gradients. As we know, IDU is the first technique that makes
optimizers converge and allows equation 4 to not hold, which will offer Anon (IDU) better noise
robustness and flexibility. To evaluate the robustness of IDU against noise, we do further experiments
where we compare Anon (IDU) and AMSGrad. Slightly different from the Table 1, AMSGrad is
usually implemented in practice in the form: maxi∈[t]{ψRMSProp

i

√
1− βi2}/

√
1− βt2 (we apply in

experiments). But regardless of the first form or the second form, we can extrapolate that AMSGrad’s
strategy of persistently applying the max operation is highly susceptible to noise interference. We
conduct empirical experiments to prove it, and the relevant function settings include:

ft(x) =

{
1010x, if t mod 101 = 1
−10x, otherwise , Nt =

{
500/et−1, if t mod 2 = 1
−500/et−1, otherwise (10)

with the constraint set F = [−1, 1]. The ft(x) is the example provided in Reddi et al. (2019), which
can make Adam diverge. And Nt is the noise added to the gradients gt. We can observe that the
noisy gradient is unbiased and its influence on gradients approaches 0 with the increase of t. The
results of experiments are shown in Figure 2. Note that we set γ = 1 to make the adaptivity of Anon
equivalent to AMSGrad and Adam, and their other hyperparameters are the same. Therefore, we can
compare the performances of the two convergence guarantee techniques fairly.

(a) β1 = 0.5, β2 = 0.75 (b) β1 = 0.5, β2 = 0.75 (c) β1 = 0.9, β2 = 0.99 (d) β1 = 0.9, β2 = 0.99

Figure 2: Comparison of Adam, AMSGrad, and Anon on a simple convex problem with noise. The
setting of hyperparameters follows β1 <

√
β2 and η(t) = 0.1/

√
t (Reddi et al., 2019).

From Figure 2(a)(c), we can see that the regrets divided by t of Anon and AMSGrad approach 0
gradually, meaning they converge. And those of Adam approach a constant, meaning it diverges.

7
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Although both Anon and AMSGrad can converge, Figure 2(b)(d) shows that Anon can reach the
optimal point x = −1 fast, but AMSGrad converges to the optimal point much slower due to the
noise, especially when β2 is small. The result proves that Anon (IDU) has better noise robustness
than AMSGrad, as we have inferred. It forms the theoretical backbone of Anon and opens new
avenues for designing flexible optimizers.

4 EXPERIMENTS

In this section, we compare Anon with 13 baseline optimizers, including SGD(M), Adam, AdamW
(Loshchilov & Hutter, 2017), Yogi (Zaheer et al., 2018), AdaBound, RAdam (Liu et al., 2019),
SWA (Izmailov et al., 2018), Lookahead (Zhang et al., 2019), AdaBelief, Adai (Xie et al., 2022)
Lookaround (Zhang et al., 2023), Sophia (Liu et al., 2023), AGD (Yue et al., 2023) and HVAdam
(Zhang et al., 2025) by validating Anon in various tasks including image classification tasks on
ResNet, image generation on diffusion model and natural language processing tasks on LLMs.
Except for experiments on the diffusion model, all the benchmarks are from the data presented in the
paper. Therefore, the hyperparameters of other optimizers have been extensively searched.

Image Classification with CNN We conduct experiments on ImageNet (Russakovsky et al., 2015)
with ResNet18 and ResNet50. We use the official implementation of AdaBound, AdaBelief and
Lookaound, so the replication is exact. For ResNet50, the top-1 accuracy is reported in Table 3.
And for ResNet18, the top-1 accuracy is shown in Table 2. We set 1 learning rate for Anon, which
corresponds to 0.1 learning rate and 0.9 momentum setting of SGDM, because EMA(x; 0.9) ≈
M(x; 0.9)/10 according to equation 1. We set γ = −0.1 for Anon (A = −0.1), and it surpasses the
performance of SGDM (A = 0). These results prove our guess that the negative adaptivity is more
suitable for classical models like CNNs.

Table 2: Top-1 accuracy (%) of ResNet18 on ImageNet. † from Chen & Gu (2018), ‡ from Liu et al.
(2019), ∗ from Zhuang et al. (2020).
Anon SGDM AMSGradW AdaBelief AdaBound† Yogi† Adam‡ MSVAG∗ RAdam‡

70.06 69.94 68.78 69.42 68.13 68.23 66.54 65.99 67.62

Table 3: Top-1 accuracy (%) of ResNet50 on ImageNet. † from Xie et al. (2022), ‡ from Zhang et al.
(2023), ∗ from Zhang et al. (2025).

Anon SGDM Lookaround Adam† Adai† SWA‡ Lookahead‡ HVAdam∗

77.25 76.23 76.77 72.87 76.80 76.78 76.52 77.22

Table 4: Validation loss and training time on OpenWebText.
Model Optimizer Validation Loss Time (h)

GPT2-small
Anonγ=1.1 2.93283 26.17554
AdamW 2.95614 26.88118
Sophia-G 2.95143 28.98702

GPT2-medium
Anonγ=1 2.69017 36.91487
AdamW 2.70994 36.83633
Sophia-G 2.70653 41.02486

Language Modeling We train au-
toregressive models on OpenWebText
(Gokaslan & Cohen, 2019) using the
official implementation of Sophia (Liu
et al., 2023). Our experiments fol-
low the exact experimental setup and
hyperparameter configurations of Liu
et al. (2023). We set γ ≥ 1 and use
other optimizers’ learning rate setting
for Anon. The results of experiments
are presented in Table 4, and Anon obtains the lowest validation losses in GPT2-small and GPT2-
medium, demonstrating strong performance on LLM training. Note that through our experiments, we
find that many variants of Adam are slower than Adam because they introduce extra calculations. But
from Table 4 we can see that Anon obtains the compared and even faster speed than Adam. This is
because when iterations approach infinity, for the average time cost per iteration, we have

E(tAdam − tAnon) ≈ tvector-Div + tvector-Sqrt − tvector-Mul − C log2 Iters

Iters
> 0 (Iters→∞) , (11)
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and C is the time cost of the operations in line 9~15 of Algorithm 2 per iteration. From equation 11
we can find that the Adam’s time cost of per iteration is more than Anon’s, since the vector division
is slower than vector multiplication. Furthermore, IDU makes the big time cost of vector power
operation related to γ ∈ R used in Anon (covered in C) approach 0, which greatly improved the
practical value of Anon.

Image Generation with Diffusion Model We conduct image generation experiments on
CIFAR-10 (Krizhevsky et al., 2009) with diffusion model. We search the learning rate in
{0.1, 0.01, 0.001, 0.0001, 0.00001} for AdamW, AMSGrad, Anon, SGDM, and AdaBound. The
code and the settings of other hyperparameters are consistent with the official implementation of
Nichol & Dhariwal (2021). The results are reported in Table 5. When set learning rate 0.0001 (also
the most suitable value for Adam) and γ = 1.01, Anon achieves SOTA and proves that the adaptivity
higher than 1 is a better choice for complex models.

Table 5: FID scores of diffusion models on CIFAR-10 (lower is better).

Adam AMSGrad SGDM AdaBound Anonγ=1 Anonγ=1.01

9.11 8.12 12.84 12.13 8.03 7.75

Figure 3: Hyperparameter sensitivity anal-
ysis of ResNet20 on CIFAR-10

Comprehensive Analysis and Robustness From the
results on CNNs, we observe that setting the learning
rate corresponding to SGDM and applying a negative
adaptivity leads to better generalization and higher accu-
racy. In contrast, setting the learning rate equivalent to
Adam and using a positive adaptivity (γ ≥ 1) achieves
SOTA results in diffusion models and LLMs. This ob-
servation aligns well with our analysis in Section 2.3,
highlighting that adaptivity is a key factor in model-
specific optimizer behavior. Additionally, our results
demonstrate the practical benefits of the proposed IDU
mechanism in improving training efficiency: it acceler-
ates computation by transforming expensive operations
into negligible cost as shown in equation 11, and this
benefit can extend to other optimizers as well. We also
show the FID of setting of γ = 1 (the same as Adam) in
Table 5 and Table 4 which means the only difference is the inclusion of IDU in Anon, and it also
outperforms other optimizers, presenting the improvement brought by IDU. Furthermore, we assess
the robustness of Anon to hyperparameter choices. As illustrated in Figure 3, Anon maintains high
performance across a broad range of learning rates and γ values. Notably, unlike many adaptive
optimizers that require tuning of β1, β2, and ϵ per task, we use fixed settings (β1 = 0.9, β2 = 0.999,
ϵ = 10−16) throughout all experiments. Despite this, Anon consistently achieves SOTA, validating
its robustness and the practical applicability of our proposed design.

5 CONCLUSION

We propose Anon, a novel optimizer that obtains tunable non-restricted adaptivity and IDU conver-
gence guarantee technique. The results of deep learning experiments show that Anon outperforms
almost all other optimizers, which demonstrates the superiority of Anon and verifies the correctness of
our idea about adaptivity. And we prove that Anon’s convergence rate in both convex and nonconvex
cases can achieve the convergence rate of mainstream optimizers under the strong assumption or with
AMSGrad’s technique. And the experimental results and theoretical analysis show IDU matches
AMSGrad’s convergence rate and memory cost. In addition, IDU offers better noise robustness,
more flexibility, and even accelerates certain operations in practice. Therefore, we believe that IDU
is overall superior to the convergence technique of AMSGrad. And follow the settings of those
original papers, the experiments use many techniques like cosine annealing, decoupled weight decay
regularization, and gradient clipping by default, so it means Anon is perfectly compatible with these
widely used techniques. Thus, we expect Anon can become the preferred optimizer in extensive fields
of deep learning due to its great performance.

9
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APPENDIX

A LIMITATION AND FUTRUE WORK

Although we prove that the adaptivity is an important attribute for first-order optimizers, there are a
small number of first-order optimizers not covered by our Adaptivity Definition 1 such as HVAdam
which does not conform to the frame outlined in Algorithm 1. For this situation, we will try to
give a more general adaptivity definition in the future. And limited by computational resources,
our hyperparameter search for Anon was incomplete. For example, in diffusion model trials, a
learning rate of 0.0001 with adaptivity 1.02 caused the early training loss hard to decrease, whereas a
learning rate of 10−5 allowed higher adaptivity such as 1.15. Regrettably, time constraints prevented
further exploration of these observations so further investigation is needed to fully explore Anon’s
potential. We also hope this work can contribute to exploring the design of deep learning models,
as our experiments reveal distinct adaptivity preferences across different model architectures. This
observation suggests that certain "ineffective" modifications proposed for neural networks might
simply stem from usual optimal adaptivity (i.e., values deviating from the conventional [0, 1] range),
rather than inherent flaws in the design concept. In such scenarios, Anon’s extensive adaptivity tuning
capacity could potentially unlock the latent capabilities of these architectures.

B ADAPTIVITY OF OPTIMIZERS

B.1 THE ADAPTIVITY OF OPTIMIZERS

We present the full adaptivity table of some optimizers mentioned in the main paper in Table 6.

Table 6: Summary of adaptivity for representative optimizers.

Optimizer At(ψ,x)
SGD 0

SGDM 0
RMSProp 1

1+ϵ/
√

EMA(x2;β2)

Adam ARMSProp
t

AMSGrad 1

1+ϵ
/

maxi∈[t]

√
EMA(x2

1:i;β2)

Padam 2p

1+ϵ
/

maxi∈[t]

√
EMA(x2

1:i;β2)

AdaBound
{
ARMSProp
t , if ηl(t) < ψRMSProp

t < ηu(t),
0, otherwise.

AdaBelief 1

1+ϵ·
[

1
1−β2

+
√

EMA((x−ϕAdam)2+ϵ/(1−β2);β2)
]
/EMA((x−ϕAdam)2;β2)

Anon equation 13 (≈ γ)

For Algorithm 2, we provide an equivalent formulation that, while yielding no speedup, offers a
clearer representation of its underlying mechanism in Algorithm 3.
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Algorithm 3: The Anon Optimizer
1 Input: η, β1, β2, ϵ, γ
2 Initialize θ0,m0 ← 0 , s0 ← 0, t← 0, k ← 0, a← 0
3 while θt not converged do
4 t← t+ 1
5 gt ← ∇ft(θt)
6 mt ← β1mt−1 + (1− β1)gt
7 m̂t ← mt

1−βt
2

8 st ← β2st−1 + (1− β2)g2t
9 if t = 2k do

10 σk ← st/(1− β2k−a
2 ) + ϵ

11 a← 2k

12 vk ←
v2
k−1+σγ

k

2 if k > 1 else σγk
13 st ← 0
14 Vk ← diag(√vk,1, ...,

√
vk,d)

15 k ← k + 1
16 end if
17 θt ← ΠF,Vk−1

(θt−1 − η(t)V −1
k−1m̂t)

18 end while

B.2 THE EFFECT OF ADAPTIVITY

To intuitively illustrate the impact of adaptivity, we present a visualization in Figure 4.
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Figure 4: Optimization trajectories of SGDM, Adam, and Anon with varying γ. The gradient from
yellow to purple indicates decreasing loss values. Different learning rates are applied to clearly
visualize the distinct update directions.

We further demonstrate that varying adaptivity drives optimizers toward distinct regions of the
parameter space by training GPT2-small on OpenWebText. The validation loss results are presented
in Table 7. Additionally, we analyze the cosine similarity of the trained model parameters in Table 8.
Notably, Anon with γ = 1.15 exhibits the lowest similarity when compared to Adam, Lion (Chen
et al., 2023), and Muon (Jordan et al., 2024), suggesting it discovers a unique solution.

Table 7: Validation loss on OpenWebText.
Anonγ=1 Anonγ=1.1 Anonγ=1.15 Adam Lion Muon

Loss 2.937 2.927 2.932 2.934 2.992 3.092
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Table 8: Cosine similarity on OpenWebText. The upper number in each cell represents the cosine
similarity of all parameters, while the lower number represents the cosine similarity of the weights
only.

Anonγ=1 Anonγ=1.1 Anonγ=1.15 Adam Lion Muon

Anonγ=1
1 0.597 0.355 0.914 0.857 0.901
1 0.317 0.201 0.511 0.161 0.194

Anonγ=1.1
0.597 1 0.425 0.573 0.522 0.539
0.317 1 0.328 0.248 0.088 0.098

Anonγ=1.15
0.335 0.425 1 0.335 0.299 0.306
0.201 0.328 1 0.156 0.056 0.063

Adam 0.914 0.573 0.355 1 0.880 0.923
0.511 0.248 0.156 1 0.191 0.222

Lion 0.857 0.522 0.299 0.880 1 0.925
0.161 0.088 0.056 0.191 1 0.132

Muon 0.901 0.539 0.306 0.923 0.925 1
0.194 0.098 0.063 0.222 0.132 1

C DETAILS OF EXPERIMENTS AND MORE EXPERIMENTS

C.1 IMAGE CLASSIFICATION

ResNet20 and ResNet32 We also do experiments on CIFAR-10 (Russakovsky et al., 2015) with
ResNet20 and ResNet32 and achieve the SOTA. The results are presented in Table 9 (all other
optimizers’ data is from Yue et al. (2023)), and the detailed setting is shown in Appendix C. We report
the results of all other optimizers from AGD (Yue et al., 2023) and adopt the same experimental
setup as in the official implementation1. And do hyperparameters searching for Anon as Figure 3
in the main paper ( η ∈ [0.1, 10], γ ∈ [−0.24, 0.24] ) and finally select η = 1, γ = −0.08 for
ResNet20 and η = 0.5, γ = −0.17 for ResNet32. Like the default setting for AdamW, AGD and
AdaHessian (Yao et al., 2021) in the two experiments, we use the decoupled weight decay for Anon.

Table 9: Top-1 accuracy(%) comparison on CIFAR-10 (ResNet models)

Model Optimizers

SGD Adam AdamW AdaBelief AdaHessian AGD Anon
ResNet20 92.14±.14 90.46±.20 92.12±.14 92.19±.15 92.27±.27 92.35±.24 92.47±.05
ResNet32 93.10±.07 91.54±.12 92.72±.01 92.90±.13 92.91±.14 93.12±.18 93.20±.08

ResNet18 We report the results from the sources stated in the main paper. We adopt the same
experimental setup as in the official implementation2, and reproduce the results of SGDM, AdaBelief
under the official recommended hyperparameter setting. We search learning rate in {0.1, 0.01, 0.001
} for AMSGrad with decoupled weight decay, and the best value is 0.01. We set learning rate as 1
and search γ in {-0.1, -0.05, 0, 0.05} for Anon and the best value is -0.1.

ResNet50 We report the results from the sources stated in the main paper. We adopt the same ex-
perimental setup as in the official implementation3, and reproduce the results of SGDM, LookAround
under the official recommended hyperparameter setting. Due to the heavy calculation burden, we do
not do much searching and simply set η = 1 and γ = −0.1 for Anon.

1https://github.com/amirgholami/adahessian
2https://github.com/juntang-zhuang/Adabelief-Optimizer
3https://github.com/Ardcy/Lookaround
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C.2 IMAGE GENERATION

Diffusion Model We adopt the same experimental setup as in the official implementation4 (Uncon-
ditional CIFAR-10 with L_hybrid objective and cosine noise schedule). And search learning rate
in {0.1, 0.01, ... , 0.00001} for all optimizers and search γ in {1, 1.1, 1.01} for Anon. The optimal
choice is η = 0.0001 and γ = 1.01.

C.3 LANGUAGE MODELING

GPT2 We refer to the experimental setup in the official implementation56 and set nproc_per_node=4
due to limited computational resources. Under this setting, we find that when apply the same learning
rate scheduler as Sophia in GPT2-medium, AdamW can get lower loss, so we apply this new setting
for AdamW and Anon. We set γ = 1 for Anon. And all the optimizers use decoupled weight decay.

C.4 ABLATION STUDY ON IDU HYPERPARAMETERS

We conduct an ablation study to investigate the impact of the hyperparameters {an} and β3 in IDU.
The experiments are performed using ResNet20 on the CIFAR-10 dataset, with results summarized
in Table 10. These results demonstrate that IDU is robust to hyperparameter variations;
indeed, certain configurations (e.g., β3 = 0.3, an = 4n−1) even outperform our default setting
(β3 = 0.5, an = 2n−1).

Table 10: Ablation study on the hyperparameters {an} and β3 of IDU.
β3 = 0.1 β3 = 0.3 β3 = 0.5 β3 = 0.7 β3 = 0.9

an = 2n−1 91.76 91.98 92.42 92.43 92.16
an = 3n−1 92.26 92.23 92.28 92.34 92.38
an = 4n−1 91.97 92.44 92.25 92.12 92.31

D EMPIRICAL EXPERIMENTS

To better understand how different optimizers behave in complex landscapes, we visualize their
trajectories on two classical benchmark functions: Rosenbrock and Rastrigin. These functions are
used to evaluate the optimizer’s ability to escape saddle points, navigate flat valleys, and avoid local
minima. Rosenbrock tests the optimizer’s capacity to follow narrow curved paths toward a global
minimum, while Rastrigin challenges it with a rugged landscape filled with deceptive local minima.

4https://github.com/openai/improved-diffusion
5https://github.com/Liuhong99/Sophia
6https://github.com/karpathy/nanoGPT
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(a) Rastrigin Function (b) Rosenbrock Function

Figure 5: 3D visualization of benchmark functions

Rastrigin: A highly non-convex function with many local minima. The global minimum is at (0, 0).

Rosenbrock: A narrow, curved valley with the global minimum at (1, 1). It’s commonly used to
evaluate optimizer stability and curvature sensitivity.
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Figure 6: Optimization trajectories comparison under different hyperparameters (searched for each
optimizers). The first 10 figures show the optimization trajectories of Anon under different γ
selections, while the remaining 14 figures display the trajectories of other optimizers.
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E THEOREM 1 IN MAIN PAPER

Theorem 5. If ψ and ψ′ are from the same equivalence class, there is a function f : N+ → R+ that
makes ψn(x1:n) = ψ′

n(x1:n)f(n) for any x1:n ∈ Rn and any n ∈ N+.

Proof. Let h(k; g1:n) = lnψn(kg1:n)− lnψ′
n(kg1:n), h : R→ R. Because ψn and ψ′

n are continu-
ous, h is continuous.

When k ̸= 0, we have

h
′
(k;x1:n) = lim

∆k→0

lnψn((k +∆k)x1:n)− lnψ′
n((k +∆k)x1:n)− lnψn(kx1:n) + lnψ′

n(kx1:n)

∆k

=
1

k
lim

∆k→0

lnψn((1 + ∆k/k)kx1:n)− lnψ′
n((1 + ∆k/k)kx1:n)− lnψn(kx1:n) + lnψ′

n(kx1:n)

∆k/k

=
1

k
lim

∆k→0

[lnψn((1 + ∆k/k)kx1:n)− lnψn(kx1:n)]− [lnψ′
n((1 + ∆k/k)kx1:n)− lnψ′

n(kx1:n)]

∆k/k

=
1

k

[
An(ψ,x1:n)−An(ψ′,x1:n)

]
=
1

k
· 0

(
Since ψ and ψ′ are in the same class

)
=0 (12)

So h(k;x1:n) = C1 when k > 0, h(k;x1:n) = C2 when k < 0. And because h is continuous, we
have C1 = C2 = h(0;x1:n) = ln ψn(0)

ψ′
n(0)

.

Therefore, we have ψn(kx1:n)
ψ′

n(kx1:n)
= ψn(0)

ψ′
n(0)

for ∀k ∈ R.

And since x
01:n can be any vector ∈ Rn and any n ∈ N+, we have ψn(x1:n)

ψ′
n(x1:n)

= ψn(0)
ψ′

n(0)
for ∀x1:n ∈

Rn, ∀n ∈ N+.

Let f(n) = ψn(0)
ψ′

n(0)
, we have ψn(x1:n) = ψ′

n(x1:n)f(n) for any x1:n ∈ Rn and any n ∈ N+.

F THEOREM 2 IN MAIN PAPER

Theorem 6. For the optimizer Anon described in Algorithm 2, the adaptivity of Anon in i-th dimension
is ∈ [γ(1− k), γ), where k = ϵ/minj∈[ãt] EMA(g2aj−1+1:aj ,i

;β2).

Proof. We let fn,γ(x) = β−n
3 (1− β31n>1)EMAγ(x2

an−1+1:an + ϵ;β2), so we have

A(ψ, g1:t,i) = ∇k ln

(
ãt∑
j=1

βãt3 fj,γ(kg1:t,i)

)1/2∣∣∣∣∣
k=1

=
γ
∑ãt
j=1 β

ãt
3 fj,γ−1(g1:t,i)EMA(g2aj−1+1:aj ,i

;β2)∑ãt
j=1 β

ãt
3 fj,γ(g1:t,i)

=
γ
∑ãt
j=1 β

ãt
3 fj,γ−1(g1:t,i)[EMA(g2aj−1+1:aj ,i

+ ϵ;β2)− ϵ]∑ãt
j=1 β

ãt
3 fj,γ(g1:t,i)

=
γ
∑ãt
j=1 β

ãt
3 fj,γ(g1:t,i)− γϵ

∑ãt
j=1 β

ãt
3 fj,γ−1(g1:t,i)∑ãt

j=1 β
ãt
3 fj,γ(g1:t,i)

= γ

(
1− ϵ ·

∑ãt
j=1 β

ãt
3 fj,γ−1(g1:t,i)∑ãt

j=1 β
ãt
3 fj,γ(g1:t,i)

)

= γ

(
1− ϵ ·

∑ãt
j=1 fj,γ−1(g1:t,i)∑ãt
j=1 fj,γ(g1:t,i)

)
(13)
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≥ γ(1− k)
(
Since k = ϵ/ min

j∈[ãt]
EMA(g2aj−1+1:aj ,i;β2)

)
(14)

G THEOREM 3 IN MAIN PAPER

For simplicity, we omit the debiasing step in theoretical analysis as in Reddi et al. (2019). It is easy
to prove that the analysis also applys to the de-biased version.
Lemma 7. (McMahan & Streeter, 2010) For any Q ∈ Sd+ and convex feasible set F ⊂ Rd, suppose

u1 = minx∈F

∥∥∥Q1/2(x−z1)
∥∥∥ and u2 = minx∈F

∥∥∥Q1/2(x−z2)
∥∥∥, then we have

∥∥∥Q1/2(u1−u2)
∥∥∥ ≤∥∥∥Q1/2(z1 − z2)

∥∥∥.

Theorem 8. (Convergence analysis for online convex optimization) Let {θt} and {vk} be
the sequence obtained by Algorithm 2, γ ∈ R, β1 ∈ [0, 1), β2 ∈ [0, 1), β1,t+1 ∈ [0, β1,t],
β1,1 = β1, η(t) = η0√

t
, for ∀t ∈ [T ]. Assume that ∥x − y∥∞ ≤ D∞ for ∀x, y ∈ F . Suppose

f(θ) is a convex function, ∥gt∥∞ ≤ G∞ , for ∀t ∈ [T ], θ ∈ F . Let Cl = min(G−γ
∞ , ϵ−γ),

Cu = max(G−γ
∞ , ϵ−γ), where ϵ ∈ R+ is a very number set in Algorithm 2. The opti-

mal point of f is denoted as θ∗. For {θt} generated by Anon, there is a bound on the regret:

T∑
t=1

[ft(θt)− ft(θ∗)] ≤
(1− 2

√
2)D2

∞

(1−
√
2)(1− β1)Clη0

√
T +

T−1∑
t=1

[
β1,t+1Iβ1,t+1>β1,t

D2
∞

2Clηt+1(1− β1)2

]

+
D2

∞
2Clη1(1− β1)

+
dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

Proof.

vk =

√
2/(

1

v2k−1

+ σγk ) if k > 0 else σ−γ/2
k

1

v2k
=

1
v2
k−1

+ σγk

2
if k > 0 else σγk

1

v2k
=

k∑
i=0

σγi
2min(k−i+1,k)

1

v2k
=

k∑
i=0

EMAγ(g2⌊2k−1+1⌋:2k + ϵ;β2)

2min(k−i+1,k)
(15)

Since ∥gt∥∞ ≤ G∞, Cl = min(G−γ
∞ , ϵ−γ) and Cu = max(G−γ

∞ , ϵ−γ), from 15, we have:

1

v2k,i
∈

[
k∑
i=0

C−2
u

2min(k−i+1,k)
,

k∑
i=0

C−2
l

2min(k−i+1,k)

]
1

v2k,i
∈
[
C−2
u , C−2

l

]
vk,i ∈ [Cl, Cu] (16)

Let ηt = η(t).

θt+1 =
∏

F,V −1
ãt

(θt − ηtVãtmt) = min
θ∈F

∥∥∥V −1/2
ãt

(θ − (θt − ηtVãtmt))
∥∥∥

Note that
∏

F,V −1
ãt

(θ∗) = θ∗ since θ∗ ∈ F . Use θ∗i and θt,i to denote the i-th dimension of θ∗ and θt
respectively. From lemma equation 7, using u1 = θt+1 and u2 = θ∗, we have:
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∥∥∥V −1/2
ãt

(θt+1 − θ∗)
∥∥∥2 ≤∥∥∥V −1/2

ãt
(θt − ηtVãtmt − θ∗)

∥∥∥2
=
∥∥∥V −1/2

ãt
(θt − θ∗)

∥∥∥2 + η2t

∥∥∥V 1/2
ãt

mt

∥∥∥2 − 2ηt⟨mt, θt − θ∗⟩

=
∥∥∥V −1/2

ãt
(θt − θ∗)

∥∥∥2 + η2t

∥∥∥V 1/2
ãt

mt

∥∥∥2
− 2ηt⟨β1,tmt−1 + (1− β1,t)gt, θt − θ∗⟩ (17)

Note that β1 ∈ [0, 1) and β2 ∈ [0, 1), rearranging inequality equation 17, we have:

⟨gt, θt − θ∗⟩ ≤
1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+

ηt
2(1− β1,t)

∥∥∥V 1/2
ãt

mt

∥∥∥2 + β1,t
1− β1,t

⟨mt−1, θ
∗ − θt⟩

≤ 1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+

ηt
2(1− β1,t)

∥∥∥V 1/2
ãt

mt

∥∥∥2 + β1,t
1− β1,t

∥∥∥mt−1

∥∥∥∥∥∥θ∗ − θt∥∥∥(
Cauchy-Schwartz’s inequality: ⟨u, v⟩ ≤

∥∥∥u∥∥∥v∥∥∥)
≤ 1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+

ηt
2(1− β1,t)

∥∥∥V 1/2
ãt

mt

∥∥∥2 + β1,t
1− β1,t

∥∥∥mt−1

∥∥∥√dD∞(
Since ∥x− y∥∞ ≤ D∞, for ∀x, y ∈ F

)
=

1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)

+
ηt

2(1− β1,t)

∥∥∥V 1/2
ãt

mt

∥∥∥2 + β1,t
√
dD∞

1− β1,t

√√√√ d∑
i=1

EMA2(g1:t−1,i;β2)

≤ 1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)

+
ηt

2(1− β1,t)

∥∥∥V 1/2
ãt

mt

∥∥∥2 + β1,t
√
dD∞

1− β1,t

√√√√ d∑
i=1

G2
∞(

Since ∥gt∥∞ ≤ G∞

)
≤ 1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+

ηt
2(1− β1,t)

∥∥∥V 1/2
ãt

mt

∥∥∥2 + β1,tdD∞

1− β1,t
G∞

=
1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+
β1,tdD∞G∞

1− β1,t
+

ηt
2(1− β1,t)

m⊤
t Vãtmt

=
1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+
β1,tdD∞G∞

1− β1,t
+

ηt
2(1− β1,t)

d∑
i=1

m2
t,ivãt,i
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≤ 1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+
β1,tdD∞G∞

1− β1,t
+

ηt
2(1− β1,t)

d∑
i=1

m2
t,iCu(

Apply formula equation 16
)

≤ 1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+
β1,tdD∞G∞

1− β1,t
+
dG2

∞Cuηt
2(1− β1,t)

(18)

By convexity of f , we have:

T∑
t=1

ft(θt)− ft(θ∗) ≤
T∑
t=1

⟨gt, θt − θ∗⟩

≤
T∑
t=1

[
1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+
β1,tdD∞G∞

1− β1,t
+
dG2

∞Cuηt
2(1− β1,t)

]
(

By formula equation 18
)

≤
T∑
t=1

[
1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)]

+
1

1− β1

T∑
t=1

(
β1,tdD∞G∞ +

dG2
∞Cuηt
2

)
(

Since 0 ≤ β1,t ≤ β1 < 1
)

=

T∑
t=1

[
1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)]

+
1

1− β1

T∑
t=1

(
β1,tdD∞G∞ +

dG2
∞Cuη0

2
√
t

)

≤
T∑
t=1

[
1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)]

+
dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

∫ T

0

1

2
√
t
dt(

Since ηt = η0/
√
t
)

=

T∑
t=1

[
1

2ηt(1− β1,t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)]

+
dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

≤
T−1∑
t=1

[
1

2ηt+1(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2 − 1

2ηt(1− β1,t)

∥∥∥V −1/2
ãt

(θt+1 − θ∗)
∥∥∥2]
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+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

=

T−1∑
t=1

[
1

2ηt+1(1− β1,t)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2 − 1

2ηt(1− β1,t)

∥∥∥V −1/2
ãt

(θt+1 − θ∗)
∥∥∥2

+
β1,t+1 − β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

=

T−1∑
t=1

{
1

2(1− β1,t)

[
(θt+1 − θ∗)⊤

(
V −1
ãt+1

ηt+1
−
V −1
ãt

ηt

)
(θt+1 − θ∗)

]}

+

T−1∑
t=1

[
β1,t+1 − β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1,t)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

=

ãT∑
k=1

min(T,ak+1)−1∑
t=ak

{
1

2(1− β1,t)

[
(θt+1 − θ∗)⊤

(
V −1
ãt+1

ηt+1
−
V −1
ãt

ηt

)
(θt+1 − θ∗)

]}

+

T−1∑
t=1

[
β1,t+1 − β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

=

ãT∑
k=1

min(T,ak+1)−2∑
t=ak

{
1

2(1− β1,t)

[
(θt+1 − θ∗)⊤

(
V −1
ãt+1

ηt+1
−
V −1
ãt

ηt

)
(θt+1 − θ∗)

]}

+

ãT−1∑
k=1

{
1

2(1− β1ak+1−1)

[
(θak+1

− θ∗)⊤
(
V −1
k+1

ηak+1

−
V −1
k

ηak+1−1

)
(θak+1

− θ∗)

]}

+

T−1∑
t=1

[
β1,t+1 − β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

=

ãT∑
k=1

min(T,ak+1)−2∑
t=ak

{
1

2(1− β1,t)

[
(θt+1 − θ∗)⊤

(
V −1
k

ηt+1
−
V −1
k

ηt

)
(θt+1 − θ∗)

]}

+

ãT−1∑
k=1

{
1

2(1− β1ak+1−1)

[
(θak+1

− θ∗)⊤
(
V −1
k+1

ηak+1

−
V −1
k

ηak+1−1

)
(θak+1

− θ∗)

]}

+

T−1∑
t=1

[
β1,t+1 − β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T
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≤
ãT∑
k=1

min(T,ak+1)−2∑
t=ak

{
1

2(1− β1)

[
D∞e

⊤
d

(
V −1
k

ηt+1
−
V −1
k

ηt

)
D∞ed

]}

+

ãT−1∑
k=1

{
1

2(1− β1)

[
D∞e

⊤
d

(
C−1
l Id
ηak+1

)
D∞ed

]}

+

T−1∑
t=1

[
β1,t+1 − β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T(

Since ηt = η0/
√
t, and 0 ≤ β1,t ≤ β1 < 1

)
=

ãT−1∑
k=1

{
1

2(1− β1)

[
D∞e

⊤
d

(
V −1
k

ηak+1−1
−
V −1
k

ηak

)
D∞ed

]}

+
1

2(1− β1)

[
D∞e

⊤
d

(
V −1
ãT

ηT
−
V −1
ãT

ηaãT

)
D∞ed

]

+

ãT−1∑
k=1

{
1

2(1− β1)

[
D∞e

⊤
d

(
C−1
l Id
ηak+1

)
D∞ed

]}

+

T−1∑
t=1

[
β1,t+1 − β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

≤2
ãT−1∑
k=1

{
1

2(1− β1)

[
D∞e

⊤
d

(
C−1
l Id
ηak+1

)
D∞ed

]}

+
1

2(1− β1)

[
D∞e

⊤
d

(
C−1
l Id
ηT

)
D∞ed

]

+

T−1∑
t=1

[
β1,t+1 − β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

≤
dD2

∞C
−1
l

(1− β1)η0

ãT−1∑
k=1

√
ak+1

+
dD2

∞C
−1
l

(1− β1)η0

√
T

+

T−1∑
t=1

[
β1,t+1 − β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

≤
dD2

∞C
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
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+

T−1∑
t=1

[
β1,t+1 − β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

≤
dD2

∞C
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

T−1∑
t=1

[
β1,t+1 − β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

(
D∞e

⊤
d V

−1
1 D∞ed

)
+
dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

≤
dD2

∞C
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

T−1∑
t=1

[
β1,t+1 − β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
dD2

∞C
−1
l

2η1(1− β1)
+
dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

≤
dD2

∞C
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

T−1∑
t=1

[
β1,t+1Iβ1,t+1>β1,t

2ηt+1(1− β1,t)(1− β1,t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
dD2

∞C
−1
l

2η1(1− β1)
+
dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

≤
dD2

∞C
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

T−1∑
t=1

[
β1,t+11β1,t+1>β1,t

2ηt+1(1− β1)2

(
D∞e

⊤
d C

−1
l IdD∞ed

)]

+
dD2

∞C
−1
l

2η1(1− β1)
+
dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T

≤
dD2

∞C
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

T−1∑
t=1

[
β1,t+11β1,t+1>β1,tdD

2
∞

2Clηt+1(1− β1)2

]

+
dD2

∞
2Clη1(1− β1)

+
dD∞G∞

1− β1

T∑
t=1

β1,t +
dG2

∞Cuη0
1− β1

√
T (19)

Corollary 8.1. Suppose β1,t = β1λ
t, 0 < λ < 1 in Theorem 8, then we have:

T∑
t=1

ft(θt)− ft(θ∗) ≤
dD2

∞C
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

dD2
∞

2Clη1(1− β1)

+
dD∞G∞β1

(1− β1)(1− λ)
+
dG2

∞Cuη0
1− β1

√
T (20)

Proof. It is easy to prove using:

T∑
t=1

β1,t =

T∑
t=1

β1λ
t−1 <

∞∑
t=1

β1λ
t−1 ≤ β1

1− λ
(21)

Plugging equation 21 into equation 19, we can derive the results above.

Corollary 8.2. Suppose an = 2n−1, β3 = 1
2 in equation 20, then we have:

T∑
t=1

ft(θt)− ft(θ∗) ≤
(1− 2

√
2)D2

∞

(1−
√
2)(1− β1)Clη0

√
T +

D2
∞

2Clη1(1− β1)
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+
dD∞G∞β1

(1− β1)(1− λ)
+
dG2

∞Cuη0
1− β1

√
T (22)

Proof. It is easy to prove using:

T∑
t=1

at−1 =
1− aT

1− a
(23)

H THEOREM 4 IN MAIN PAPER

Lemma 9. (Zhuang et al., 2021) Let mt = β1mt−1 + (1− β1)gt, let Qt ∈ Rd, then〈
Qt, gt

〉
=

1

1− β1

(〈
Qt,mt

〉
−
〈
Qt−1,mt−1

〉)
+
〈
Qt−1,mt−1

〉
+

β1
1− β1

〈
Qt−1−Qt,mt−1

〉
(24)

Theorem 10. (Convergence analysis for non-convex stochastic optimization) The update of θt can
be described as θt+1 = θt − ηtVãtmt, and mt = β1mt−1 + (1− β1)gt.
Under the assumptions:

• f is differentiable and f∗ ≤ f ≤ F . ∇f(x) is L-Lipschitz continuous, i.e. ∥∇f(x)−∇f(y)∥ ≤
L∥x− y∥, ∀x, y.

• The noisy gradient is unbias and its infinity norm is bounded by N, i.e. Egt = ∇f(x), ∥gt∥∞ ≤ N .

The hyperparameters are set as: ηt = η0t
−p, η0 > 0, p ∈ (0, 1) where the bounds are ClI ⪯ Vãt ⪯

CuI , and 0 < Cl < Cu (A ⪯ B means B −A is a positive semi-definite matrix). And the ϵ and N
ensure Cl and Cu exist. For sequence {θt} generated by Anon, we have:

1
T

∑T
t=1

∥∥∥∇f(xt)∥∥∥2 ≤ 1
η0Cl

T p−1
(
F − f∗ +K

∫ T
1
t−2p dt+ J +K

)
where

J =
β2
1d

4L(1−β1)2
N2 + 3dN2

1−β1
η0Cu

∑ãt
k=1 (ak − 1k ̸=1)

−p
, K =

(
1

1−β1
+ 1

2

)
Lη20N

2C2
ud

Proof. Let At = Vãt , Qt = ηtAt∇f(xt) and let Q0 = Q1, we have

T∑
t=1

〈
Qt, gt

〉
=

1

1− β1

〈
QT ,mT

〉
+

T∑
t=1

〈
Qt−1,mt−1

〉
+

β1
1− β1

T∑
t=1

〈
Qt−1 −Qt,mt−1

〉
=

β1
1− β1

〈
QT ,mT

〉
+

T∑
t=1

〈
Qt,mt

〉
+

β1
1− β1

T−1∑
t=0

〈
Qt −Qt+1,mt

〉
(25)

First we derive a lower bound for equation 25.〈
Qt, gt

〉
=
〈
ηtAt∇f(xt), gt

〉
=
〈
ηt−1At−1∇f(xt), gt

〉
−
〈
(ηt−1At−1 − ηtAt)∇f(xt), gt

〉
≥
〈
ηt−1At−1∇f(xt), gt

〉
−
∥∥∥∇f(xt)∥∥∥

∞
d
∥∥∥ηt−1At−1 − ηtAt

∥∥∥
1

∥∥∥gt∥∥∥
∞(

By Hölder’s inequality
)

≥
〈
ηt−1At−1∇f(xt), gt

〉
− dN21t̸=aãt

(∥∥∥ηt−1At−1

∥∥∥− ∥∥∥ηtAt∥∥∥
1

)
− dN21t=aãt

(∥∥∥ηt−1At−1 − ηtAt
∥∥∥
1

)
(26)(

Since
∥∥∥gt∥∥∥

∞
≤ N, ηt−1 ≥ ηt > 0, At−1 = At when t ̸= aãt

)
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Perform telescope sum, we have
T∑
t=1

〈
Qt, gt

〉
≥

T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
− dN2

ãT−1∑
k=1

(∥∥∥ηakAak∥∥∥
1
−
∥∥∥ηak+1−1Aak+1−1

∥∥∥
1

)
− dN2

ãT∑
k=1

∥∥∥ηak−1Aak−1 − ηakAak
∥∥∥
1
− dN2

(∥∥∥ηaãt
Aaãt

∥∥∥
1
−
∥∥∥ηTAT∥∥∥

1

)
≥

T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
− dN2

ãT−1∑
k=1

∥∥∥ηakAak∥∥∥
1

− dN2
ãT∑
k=1

∥∥∥ηak−1Aak−1 − ηakAak
∥∥∥
1
− dN2

∥∥∥ηaãt
Aaãt

∥∥∥
1

≥
T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
− dN2

ãT∑
k=1

∥∥∥ηakAak∥∥∥
1

− dN2
ãT∑
k=1

(∥∥∥ηak−1Aak−1

∥∥∥
1
+
∥∥∥ηakAak∥∥∥

1

)
=

T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
− 2dN2

ãT∑
k=1

∥∥∥ηakAak∥∥∥
1
− dN2

ãT∑
k=1

∥∥∥ηak−1Aak−1

∥∥∥
1

≥
T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
− 3dN2

ãT∑
k=1

ηak−1Cu (27)

Next, we derive an upper bound for
∑T
t=1

〈
Qt, gt

〉
by deriving an upper-bound for the RHS of

equation 25. We derive an upper bound for each part.

〈
Qt,mt

〉
=
〈
ηtAt∇f(xt),mt

〉
=
〈
∇f(xt), ηtAtmt

〉
=
〈
∇f(xt), xt − xt+1

〉
≤ f(xt)− f(xt+1) +

L

2

∥∥∥xt+1 − xt
∥∥∥2 (28)(

By L-smoothness of f
)

Perform telescope sum, we have
T∑
t=1

〈
Qt,mt

〉
≤ f(x1)− f(xT+1) +

L

2

T∑
t=1

∥∥∥ηtAtmt

∥∥∥2 (29)

〈
Qt −Qt+1,mt

〉
=
〈
ηtAt∇f(xt)− ηt+1At+1∇f(xt+1),mt

〉
=
〈
ηtAt∇f(xt)− ηtAt∇f(xt+1),mt⟩

+
〈
ηtAt∇f(xt+1)− ηt+1At+1∇f(xt+1),mt⟩

=
〈
∇f(xt)−∇f(xt+1), ηtAtmt

〉
+
〈
(ηtAt − ηt+1At+1)∇f(xt),mt

〉
=
〈
∇f(xt)−∇f(xt+1), xt − xt+1

〉
+
〈
∇f(xt), (ηtAt − ηt+1At+1)mt

〉
≤L
∥∥∥xt+1 − xt

∥∥∥2 + 〈∇f(xt), (ηtAt − ηt+1At+1)mt

〉
(

By smoothness of f
)
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≤L
∥∥∥xt+1 − xt

∥∥∥2 + ∥∥∥∇f(xt)∥∥∥
∞
d
∥∥∥ηtAt − ηt+1At+1

∥∥∥
1

∥∥∥mt

∥∥∥
∞(

By Hölder’s inequality
)

≤L
∥∥∥xt+1 − xt

∥∥∥2 + dN21t+1̸=aãt+1

(∥∥∥ηtAt∥∥∥
1
−
∥∥∥ηt+1At+1

∥∥∥
1

)
+ dN21t+1=aãt+1

(∥∥∥ηtAt − ηt+1At+1

∥∥∥
1

)
(30)(

Since ηt+1 ≥ ηt > 0, At+1 = At when t ̸= aãt

)
Perform telescope sum, we have
T−1∑
t=1

〈
Qt −Qt+1,mt⟩ ≤L

T−1∑
t=1

∥∥∥ηtAtmt

∥∥∥2 + dN2
ãT−1∑
k=1

(∥∥∥ηakAak∥∥∥
1
−
∥∥∥ηak+1−1Aak+1−1

∥∥∥
1

)
+ dN2

ãT−1∑
k=1

∥∥∥ηak+1−1Aak+1−1 − ηak+1
Aak+1

∥∥∥
1

+ dN2
(∥∥∥ηaãT

AaãT

∥∥∥
1
−
∥∥∥ηTAT∥∥∥

1

)
≤L

T−1∑
t=1

∥∥∥ηtAtmt

∥∥∥2 + dN2
ãT−1∑
k=1

∥∥∥ηakAak∥∥∥
1

+ dN2
ãT−1∑
k=1

(∥∥∥ηak+1−1Aak+1−1

∥∥∥
1
+
∥∥∥ηak+1

Aak+1

∥∥∥
1

)
+ dN2

∥∥∥ηaãT
AaãT

∥∥∥
1

≤L
T−1∑
t=1

∥∥∥ηtAtmt

∥∥∥2 + dN2
ãT∑
k=1

∥∥∥ηakAak∥∥∥
1

+ dN2
ãT−1∑
k=1

(∥∥∥ηak+1−1Aak+1−1

∥∥∥
1
+
∥∥∥ηak+1

Aak+1

∥∥∥
1

)
≤L

T−1∑
t=1

∥∥∥ηtAtmt

∥∥∥2 + 2dN2
ãT∑
k=1

∥∥∥ηakAak∥∥∥
1

+ dN2
ãT−1∑
k=1

∥∥∥ηak+1−1Aak+1−1

∥∥∥
1

≤L
T−1∑
t=1

∥∥∥ηtAtmt

∥∥∥2 + 3dN2
ãT∑
k=1

ηak−1Cu (31)

We also have 〈
QT ,mT

〉
=
〈
ηTAT∇f(xT ),mT

〉
=
〈
∇f(xT ), ηTATmT

〉
≤L1− β1

β1

∥∥∥ηTATmT

∥∥∥2 + β1
4L(1− β1)

∥∥∥∇f(xT )∥∥∥2(
By Young’s inequality

)
≤L1− β1

β1

∥∥∥ηTATmT

∥∥∥2 + β1d

4L(1− β1)
N2 (32)

Combine equation 29, equation 31 and equation 32 into equation 25, we have
T∑
t=1

〈
Qt, gt

〉
≤L
∥∥∥ηTATmT

∥∥∥2 + β2
1d

4L(1− β1)2
N2
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+ f(x1)− f(xT+1) +
L

2

T∑
t=1

∥∥∥ηtAtmt

∥∥∥2
+

β1
1− β1

L

T−1∑
t=1

∥∥∥ηtAtmt

∥∥∥2 + 3β1
1− β1

dN2
ãT∑
k=1

ηak−1Cu

≤f(x1)− f(xT+1) +
( 1

1− β1
+

1

2

)
L

T∑
t=1

∥∥∥ηtAtmt

∥∥∥2
+

β2
1d

4L(1− β1)2
N2 +

3β1
1− β1

dN2
ãT∑
k=1

ηak−1Cu (33)

Combine equation 27 and equation 33, we have

T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
−3dN2

ãt∑
k=1

ηak−1Cu ≤
T∑
t=1

〈
Qt, gt

〉
≤f(x1)− f(xT+1) +

( 1

1− β1
+

1

2

)
L

T∑
t=1

∥∥∥ηtAtmt

∥∥∥2
+

β2
1d

4L(1− β1)2
N2 +

3β1
1− β1

dN2
ãT∑
k=1

ηak−1Cu (34)

Hence we have

T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
≤f(x1)− f(xT+1) +

( 1

1− β1
+

1

2

)
L

T∑
t=1

∥∥∥ηtAtmt

∥∥∥2
+

β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1

ãt∑
k=1

ηak−1Cu

≤f(x1)− f∗ +
( 1

1− β1
+

1

2

)
Lη20N

2C2
ud

T∑
t=1

t−2p

+
β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1
η0Cu

ãt∑
k=1

(ak − 1k ̸=1)
−p

≤f(x1)− f∗ +
( 1

1− β1
+

1

2

)
Lη20N

2C2
ud
(
1 +

∫ T

1

t−2p dt
)

+
β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1
η0Cu

ãt∑
k=1

(ak − 1k ̸=1)
−p

≤f(x1)− f∗ +
( 1

1− β1
+

1

2

)
Lη20N

2C2
ud

∫ T

1

t−2p dt

+
β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1
η0Cu

ãt∑
k=1

(ak − 1k ̸=1)
−p

︸ ︷︷ ︸
J

+
( 1

1− β1
+

1

2

)
Lη20N

2C2
ud︸ ︷︷ ︸

K

≤f(x1)− f∗ +K

∫ T

1

t−2p dt+ J +K (35)
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Take expectations on both sides, we have

T∑
t=1

〈
ηt−1At−1∇f(xt),∇f(xt)

〉
≤Ef(x1)− f∗ +K

∫ T

1

t−2p dt+ J +K

≤F − f∗ +K

∫ T

1

t−2p dt+ J +K (36)

Note that we have ηt decays monotonically with t, hence

T∑
t=1

〈
ηt−1At−1∇f(xt),∇f(xt)

〉
≥ η0T−p

T∑
t=1

〈
At−1∇f(xt),∇f(xt)

〉
(37)

≥ η0T 1−pCl
1

T

T∑
t=1

∥∥∥∇f(xt)∥∥∥2 (38)

Combine equation 36 and equation 38, assume f is upper bounded by Mf , we have

1

T

T∑
t=1

∥∥∥∇f(xt)∥∥∥2 ≤ 1

η0Cl
T p−1

(
F − f∗ +K

∫ T

1

t−2p dt+ J +K
)

(39)

And it is easy to proved when an = 2n−1, we have

J =
β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1
η0Cu

ãt∑
k=1

(ak − 1k ̸=1)
−p (40)

≤ β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1
η0Cu

∞∑
k=1

(ak − 1k ̸=1)
−p (41)

=
β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1
η0Cu

(
1 +

∞∑
k=2

(2k−1 − 1k ̸=1)
−p
)

(42)

≤ β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1
η0Cu

(
1 +

∞∑
k=2

(2k−2)
−p
)

(43)

=
β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1
η0Cu

(
1 +

∞∑
k=1

(2−p)
k−1

)
(44)

=
β2
1d

4L(1− β1)2
dN2 +

3dN2

1− β1
η0Cu

(
1 +

1

1− 2−p

)
(45)
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