
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ANON: EXPLORING THE ADAPTIVITY OF OPTIMIZERS
AND BEYOND

Anonymous authors
Paper under double-blind review

ABSTRACT

Adaptive optimizers such as Adam have achieved great success in training large-
scale models like large language models and diffusion models. However, they
often generalize worse than non-adaptive methods, such as SGD on classical archi-
tectures like CNNs. We identify a key cause of this performance gap: adaptivity
in pre-conditioners, which limits the optimizer’s ability to adapt to diverse opti-
mization landscapes. To address this, we propose Anon (Adaptivity Non-restricted
Optimizer with Novel convergence technique), a novel optimizer with continu-
ously tunable adaptivity γ ∈ R, allowing it to interpolate between SGD-like
and Adam-like behaviors and even extrapolate beyond both. To ensure conver-
gence across the entire adaptivity spectrum, we introduce incremental delay update
(IDU), a novel mechanism that is more flexible than AMSGrad’s hard max-tracking
strategy and enhances robustness to gradient noise. We theoretically establish
convergence guarantees under both convex and non-convex settings. Empirically,
Anon consistently outperforms state-of-the-art optimizers on representative image
classification, diffusion, and language modeling tasks. These results demonstrate
that adaptivity can serve as a valuable tunable design principle, and Anon provides
the first unified and reliable framework capable of bridging the gap between classi-
cal and modern optimizers and surpassing their advantageous properties. Our code
is available at https://anonymous.4open.science/r/Anon-6511/.

1 INTRODUCTION

Modern deep learning models rely heavily on optimization algorithms for effective training. Despite
the wide success of adaptive optimizers such as Adam (Kingma & Ba, 2014) in large-scale models
like diffusion networks (Nichol & Dhariwal, 2021; Rombach et al., 2022) and large language models
(LLMs) (Brown et al., 2020; Touvron et al., 2023), they are often outperformed by non-adaptive
methods such as SGD (Robbins & Monro, 1951) in classical architectures like CNNs (Wilson et al.,
2017). These discrepancies raise a critical question: Why do existing optimizers fail to generalize
across diverse model families?

We identify a key cause of this performance gap as adaptivity in pre-conditioners (i.e., the matrix
that rescales the gradient before the step; SGD uses the identity, while Adam uses a data-dependent
diagonal matrix). Whereas SGD applies fixed step sizes, adaptive optimizers such as Adam scale
updates by gradient statistics, implicitly encoding an adaptivity level A throughout training. This
A, fixed without considering task-specific gradient distributions, can create a mismatch between the
optimizer’s adaptivity and the task’s optimization landscape, potentially degrading generalization
performance and rendering optimizers overly specialized. This motivates us to formalize and analyze
adaptivity as a first-class property of optimizers.

To address this, we introduce a unified view of adaptivity, defined as the log-sensitivity of the pre-
conditioner to global gradient scaling (§2.2). Existing optimizers correspond to fixed points on this
adaptivity spectrum: SGD (A = 0), RMSProp (Graves, 2013) (A ≈ 1), and Adam (A ≈ 1). However,
no method supports continuous control across A ∈ R with guaranteed stability.

We propose Anon, an Adaptivity Non-restricted Optimizer with Novel convergence technique that
enables real-valued, tunable adaptivity via a hyperparameter γ ∈ R. Anon interpolates between
SGD-like and Adam-like updates and even extrapolates beyond them. We note that such adaptivity
comes with an important tradeoff: extreme adaptivity (e.g., γ < 0 or γ > 1) risks instability and

1

https://anonymous.4open.science/r/Anon-6511/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

divergence. To tackle this tradeoff, we design a new convergence technique named incremental
delay update (IDU), which replaces hard max-tracking (e.g., in AMSGrad) with a soft, multi-scale
accumulator that is provably stable.

Our contributions are as follows:

• We define a formal notion of adaptivity as a continuous control variable that unifies SGD, Adam,
and beyond, offering a unifying lens to guide the design of future optimizers (§2.2).

• Through our analysis, we propose Anon, a novel universal optimizer which has tunable adaptivity.
Anon’s extensive range of adaptivity and adjustment endows the optimizer with the capability to
surpass the performance ceiling inherent in previous optimizers. (§3.1).

• We propose a novel technique named incremental delay update, which eliminates the non-
convergence risks in Anon arising from excessive range of adaptivity adjustment and anomalous
negative adaptivity that may be set. We theoretically establish the convergence of Anon in both
online convex and non-convex stochastic settings. In addition, we show that IDU can address
convergence issues more effectively than AMSGrad’s max-tracking approach. (§3.3).

• We conduct extensive experiments in image classification, language, and generative modeling,
where Anon consistently outperforms strong baselines across tasks and architectures. (§4).

This work advocates for viewing adaptivity as a tunable principle and delivers the first provably
stable, unified optimization framework that spans the full adaptivity spectrum.

2 PRELIMINARIES

2.1 REVIEW OF THE FRAME OF OPTIMIZERS

Algorithm 1: Generic Optimizer Method Frame
1 Input: θ, η, {ϕt, ψt}∞t=1
2 while θt not converged do
3 gt ← ∇ft(θt)
4 mt ← (ϕt(g1:t,1), ..., ϕt(g1:t,d))

⊤

5 St ← diag(ψt(g1:t,1), ..., ψt(g1:t,d))
6 θt ← ΠF,St(θt−1 − η(t)St−1mt)
7 end while

We focus on first-order optimizers,
which are widely used to train deep
learning models. To facilitate a unified
understanding of their differences and
commonalities, we introduce a generic
framework, summarized in Algorithm 1.
Here, F denotes the convex feasible set.
θ ∈ F is the parameter to be optimal.
Define f(θ) as a vector-valued function
to minimize. St is a diagonal matrix
where St,i,i := ψt(g1:t,i). ψt is the pre-conditioner function.

∏
F,S(y) = argminx∈F∥S1/2(x−y)∥

denotes the projection of y onto F under the scaling matrix S. The scheduler η controls the learn-
ing rate at each step, which can be constant or scheduled via strategies such as cosine annealing
(Loshchilov & Hutter, 2016). gt is the gradient at step t. mt is a vector where mt,i := ϕt(g1:t,i).
The momentum operator ϕt : Rt → R is typically implemented as a moving average of past gradients.
The two common variants are:

EMA(x1:t;β) =
1− β

(1− βt)

t∑
i=1

βt−ixi , M(x1:t;β) =

t∑
i=1

βt−ixi , (1)

where EMA denotes the exponential moving average with bias correction. M refers to the classical
momentum without normalization. Both operators serve to smooth the gradient history. Since the
smoothing behavior of ϕ is similar across optimizers, the key differentiator lies in the design of
the pre-conditioner ψ. Thus, we focus our subsequent analysis on the properties and effects of ψ.

While the momentum functions ϕt are largely similar across optimizers, the pre-conditioner functions
ψt : Rt → R+ differ significantly and play a crucial role in shaping the optimizer’s behavior. We
summarize the designs of ϕ and ψ for representative optimizers in Table 1.

As shown in Table 1, the momentum components ϕ exhibit similar behaviors across different
optimizers. This observation highlights that the key distinction among optimizers arises from the
design of ψ rather than ϕ. In fact, if we omit the bias correction factor 1/(1 − βt) in EMA, it
effectively reduces to a classical momentum M up to a constant scaling factor 1− β. Therefore, for
the remainder of this paper, we primarily focus on analyzing the properties of the pre-conditioner ψ,
assuming a shared momentum ϕ across optimizers unless otherwise noted.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Summary of momentum functions and pre-conditioners for representative optimizers (Polyak,
1964; Luo et al., 2019; Zhuang et al., 2020). For full expressions of complex terms (AAMSGrad

t ,
AAdaBound
t , AAdaBelief

t) AAnon
t), please refer to Appendix B.

Optimizer ϕt(x) ψt(x) At(ψ,x)
SGD xt 1 0

SGDM M(x;β) 1 0

RMSProp xt
√

EMA(x2;β2) + ϵ 1

1+ϵ/
√

EMA(x2;β2)

Adam EMA(x;β1) ψRMSProp
t ARMSProp

t

AMSGrad ϕAdam
t maxi∈[t]{ψRMSProp

i } [0, 1]

AdaBound ϕAdam
t Clip(ψRMSProp

t , fl(t), fu(t)) [0, 1]

AdaBelief ϕAdam
t

√
EMA((x− ϕAdam)2 + ϵ/(1− β2);β2) + ϵ [0, 1]

Anon ϕAdam
t ψAnon

t (equation 5) ≈ γ

Extensive empirical evidence has shown that SGD and SGDM often achieve better generalization
than Adam in classical architectures such as ResNet (He et al., 2016), whereas Adam typically out-
performs SGD in more complex architectures such as transformers. Understanding the fundamental
causes behind this divergence remains an important question, with significant implications for the
development of more effective optimizers. Several hypotheses have been proposed, including that
Adam can escape saddle points more efficiently than SGD (Staib et al., 2019), and that SGD tends to
find flatter minima whereas Adam is biased toward sharper minima, leading to superior generalization
for SGD (Wilson et al., 2017). Regardless of the specific explanations, we hypothesize that the
ultimate cause lies in how optimizers scale the loss landscape, a property we refer to as adaptivity. We
will study how adaptivity affects optimization in § 3.2. Before that, we first give a formal definition
of adaptivity.

2.2 THE ADAPTIVITY OF EXISTING OPTIMIZERS

We formalize the concept of adaptivity based on the framework described in Algorithm 1.

Definition 1. Suppose the pre-conditioner ψn is continuous. For any optimizer following Algorithm 1,
we define the adaptivity A of its pre-conditioner ψ as

An(ψ,x1:n) = ∇k lnψn(kx1:n)
∣∣
k=1

.

Furthermore, we define two pre-conditioners ψ and ψ′ are equivalent if and only if An(ψ,x1:n) =
An(ψ

′,x1:n) for all x1:n ∈ Rn and n ∈ N+.

Intuitively, larger adaptivity flattens sharp valleys and sharpens flat plains on the loss landscape.
When A = 0, the optimizer does not alter the landscape’s geometry, which is a behavior exemplified
by SGD and SGDM. Notably, according to Definition 1, the adaptivity A depends not only on the
functional form of ψ, but also on the sequence of historical gradients g1:t. This dependence reflects
the fact that pre-conditioning is inherently dynamic: even for a fixed ψ, its adaptivity can vary during
training as the distribution of gradients evolves. Separately, we introduce an important equivalence
notion between pre-conditioners: even if two optimizers use different ψ functions, they may be
essentially equivalent from an adaptivity perspective.

Theorem 1. If ψ and ψ′ are from the same equivalence class, there is a function f : N+ → R+ that
makes ψn(x1:n) = ψ′

n(x1:n)f(n) for any x1:n ∈ Rn and any n ∈ N+.

Decoupling from Scheduler. Theorem 1 shows that if two pre-conditioners yield the same adaptiv-
ity for any input, then they are equivalent. Specifically, if there exists a scheduler adjustment that can
eliminate the difference between two pre-conditioners (e.g., ψ′ = kψ corresponds to η′(t) = kη(t)),
we regard them as equivalent strategies. The proof of Theorem 1 is deferred to Appendix E.

Based on these definitions, we can characterize the adaptivity of several widely used optimizers:

For SGD(M), the adaptivity is A = 0 in all dimensions, indicating no explicit scaling of the
loss landscape. In contrast, for Adam and its variants (e.g., RMSProp, AdaBelief), the adaptivity

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

is approximately A = 1, as the contribution of the small ϵ term is negligible compared to the
accumulated gradient statistics most of the time. A more intricate case is AdaBound (Luo et al.,
2019), whose adaptivity transitions dynamically from A ≈ 1 toward A ≈ 0 as training proceeds.
Specifically, AdaBound clamps the pre-conditioner ψt between shrinking bounds ηl(t) and ηu(t):

At(ψ
AdaBound,x) =

{
ARMSProp
t , if ηl(t) < ψRMSProp

t < ηu(t),
0, otherwise.

(2)

As the bounds tighten over time, AdaBound behaves increasingly like SGD. This is supported by both
evidence from Zhuang et al. (2020) and our experiments (Table 5), which indicates that AdaBound
struggles in tasks such as GAN and diffusion model training, where high adaptivity is critical. These
observations suggest the following: Optimizers with A = 0 (e.g., SGD) tend to generalize better on
classical architectures such as CNNs, while those with A = 1 (e.g., Adam) perform better in complex
modern architectures. However, whether A = 0, A = 1, or other values yield better performance
remains an open question, which we explore in the next section.

2.3 THE OPTIMAL ADAPTIVITY FOR TASKS

We have observed that different tasks favor different levels of adaptivity A. This naturally raises a
critical question: Is A = 0 or A = 1 truly the optimal adaptivity for these tasks?

As shown in Table 1, although mainstream adaptive optimizers typically have adaptivity close to 1, it
is possible to adjust adaptivity by tuning hyperparameters such as ϵ. For instance, by setting a large
ϵ much greater than the accumulated moving average, the adaptivity of Adam and its variants can
effectively approach 0. Indeed, prior works (Zaheer et al., 2018; Zhuang et al., 2020) have adopted
this trick to align Adam’s generalization performance more closely with SGD. Padam (Chen & Gu,
2018) offers another perspective by modifying the pre-conditioner as

ψPadam = (ψAMSGrad)
2p
, At(ψ

Padam,x) =
2p

1 + ϵ
/
maxi∈[t]

√
EMA(x2

1:i;β2)
. (3)

By adjusting p ∈ [0, 0.5], Padam interpolates adaptivity between 0 and 1 while maintaining a small ϵ.
However, experiments from Chen & Gu (2018); Zhuang et al. (2020) show that Padam’s performance
typically lies between Adam and SGD, and only marginally surpasses them in limited scenarios. This
observation raises a broader question: Could adaptivity values beyond the [0, 1] interval lead to even
better performance?

At first glance, one might attempt to extend adaptivity beyond [0, 1] by simple functional modifications.
However, expanding the adaptivity range is non-trivial. The convergence of most adaptive optimizers
relies on the assumption:

ψt(g1:t+1,i)

η(t+ 1)
≥ ψt(g1:t,i)

η(t)
, ∀i ∈ [d], ∀t ∈ N+, (4)

which guarantees that the optimizer does not diverge even in the worst-case scenarios.

While in practice, the convergence condition is not strictly verified, optimizers like Adam typically
exhibit stable behavior under standard training settings, suggesting that this assumption is likely
satisfied. If we attempt to construct optimizers with negative adaptivity, new challenges arise. For
example, setting ψ = (ψAdam)γ with γ < 0 produces a negative adaptivity. However, setting the
pre-conditioner to a negative power likely causes its value to decrease over time, thereby violating
the critical convergence assumption. AMSGrad (Reddi et al., 2019) was introduced to address
convergence issues inherent in Adam by enforcing a non-decreasing sequence in the denominator.
Even with such safeguards, prior works (Chen & Gu, 2018; Chen et al., 2018) have shown that Padam,
when extending adaptivity beyond [0, 1], can still suffer from divergence in practice. Therefore,
designing stable optimizers with tunable adaptivity beyond the classical range remains an open and
challenging problem.

3 EXTEND TO ALL REAL NUMBERS

3.1 ADAPTIVITY TUNABLE OPTIMIZER AND BEYOND

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2: The Anon Optimizer
1 Input: η, β1, β2, ϵ, γ
2 Initialize θ0,m0 ← 0 , s0 ← 0, t← 0, k ← −1
3 while θt not converged do
4 t← t+ 1
5 gt ← ∇ft(θt)
6 mt ← β1mt−1 + (1− β1)gt
7 m̂t ← mt

1−βt
2

8 st ← β2st−1 + (1− β2)g2t
9 if k + 1 = log2 t do

10 k ← k + 1

11 σk ← st/(1− βmax(t/2,1)
2) + ϵ

12 vk ←
√
2/(1

v2
k−1

+ σγk) if k > 0 else σ−γ/2
k

13 st ← 0
14 Vk ← diag(vk,1, ..., vk,d)
15 end if
16 θt ← ΠF,V −1

k
(θt−1 − η(t)Vkm̂t)

17 end while

In §2.2 and §2.3, we have shown that
extending adaptivity beyond [0, 1]
could be beneficial. However, achiev-
ing tunable adaptivity across all real
numbers while ensuring convergence
remains challenging. We propose
a new technique called incremen-
tal delay update (IDU), which can
ensure the convergence of an op-
timizer regardless of the value of
its adaptivity. We will elaborate
the technique in §3.3. Leveraging
this technique, we design a novel
optimizer Anon (Adaptivity Non-
restricted Optimizer with Novel con-
vergence technique) with tunable
adaptivity and extend the allowable
range of adaptivity to all real num-
bers. The pseudocode of Anon is
presented in Algorithm 2, and all the
operations are element-wise. Here,
m̂t corresponds tomt in Algorithm 1. Vk corresponds to S−1

t in Algorithm 1. st,σk,vk, and k are
intermediate variables. γ is a hyperparameter to adjust adaptivity A. ϵ is a small hyperparameter to
avoid division by 0. β1, β2 are hyperparameters for EMA, 0 ≤ β1, β2 < 1, typically set as 0.9 and
0.999. Let {an} is a increasing sequence and a1 = 1 (specially, let a0 = 0). Let ãn =

∑
i>0 1ai≤n,

so ã1 = 1. The pre-conditioner of Anon can be written as equation 5 (β3 = 0.5, an = 2n−1):

ψAnon
t (x) =

√√√√ ãt∑
j=1

βãt−j3 (1− β31j>1)EMAγ(x2
aj−1+1:aj

+ ϵ;β2) . (5)

Theorem 2. For the optimizer Anon described in Algorithm 2, the adaptivity of Anon in i-th dimension
is ∈ [γ(1− k), γ), where k = ϵ/minj∈[ãt] EMA(g2aj−1+1:aj ,i

;β2).

According to Theorem 2, since we also set a small ϵ by default, we can adjust the adaptivity A of
Anon by adjusting the hyperparameter γ (A ≈ γ). The proof of Theorem 2 is shown in Appendix F.

3.2 HOW ADAPTIVITY INFLUENCES BEHAVIORS OF OPTIMIZERS

Empirical Validations To show how adaptivity influences the behaviors of optimizers, we conduct
a simple experiment in the loss function f(x, y) = ln(1 + Beale(x, y))/10, where Beale (Beale,
1955) is a commonly used function to test optimizer performance. We apply appropriate learning
rates for SGDM, Adam, AdaBelief, and Anon, and draw the optimization trajectories. We also show
the loss landscapes in the view of Anon by scaling the loss landscape according to the pre-conditioner
of Anon in epoch 100. The trajectories and loss landscapes after scaling are shown in Figure 1.

(a) γ = 1.5 (b) γ = 0.5 (c) γ = −0.5

Figure 1: Trajectories of SGDM, Adam, AdaBelief, and Anon. The color change from deep red
to deep blue represents the loss from high to low. And the loss landscape displayed is the result of
scaling by Anon. More empirical experiments are shown in Appendix D.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Effect of Scaling By changing γ from 1.5 to −0.5, the adaptivity also changes from 1.5 to −0.5
referring to Theorem 2. We can find that when γ = 1.5, Anon takes a shorter path to descend along
the y-axis. When γ = 0.5, the path is between Adam and SGDM. And when γ = −0.5, the Anon
descends along the x-axis and arrives at the optimal point. We can find that in the progress of γ’s
decreasing, the scale of the x-axis is smaller and smaller than that of the y-axis, so that Anon can
choose the right path to reach the optimal point. This example implies that the optimization path of
Anon in deep learning training may be greatly different from other optimizers, helping reach a new
parameter region that makes the model achieve better performance.

The Meaning of Negative Adaptivity We have discussed negative adaptivity in previous sections,
but what does it actually signify? Positive adaptivity means that the optimizer will take big step sizes
when gradients are small and take small step sizes when gradients are large, which is considered to
help the optimizer escape from saddle points. So it is easy to understand that the negative Adaptivity
will apply the opposite strategy. In addition, if an optimizer has a lower negative adaptivity, its step
sizes will be larger when facing larger gradients, enabling the optimizer to escape from sharp minima
more easily. Intuitively, higher adaptivity drives the optimizer toward steeper minima, whereas
lower adaptivity favors flatter ones. Thus, adaptivity influences the optimizer not only through
the optimization path, but also through the preference for specific types of minima. From this
perspective, neither A=0 (SGD) nor A=1 (Adam) carries any particular significance, suggesting that
restricting adaptivity to the binary choices (0,1) is unlikely to be the most suitable design. From the
extensive experimental results, we observe that negative adaptivity plays a more significant role in
classical and simple models, whereas positive adaptivity tends to be more suitable for advanced and
complex models.

3.3 INCREMENTAL DELAY UPDATE

As we state in § 2.3, it is challenging to guarantee the convergence when adaptivity is allowed to
take any value. So we propose a new technique incremental delay update (IDU), which can be seen
as using a new function U(x;ψold) to replace the old pre-conditioner function ψ. We describe the
function U as follows:

Ut(x;ψ
old
t , {an}, β3) =

√√√√ ãt∑
j=1

βãt−j3

(
1− β31j>1

)(
ψold
aj−aj−1

(xaj−1+1:aj)
)2

. (6)

Line 9~15 of Algorithm 2 are the recursive formulas for IDU used in Anon where β3 = 0.5,
an = 2n−1 and ψold = EMAγ(x2 + ϵ;β2). We show the convergence of Anon in Theorem 3 (convex
cases) and Theorem 4 (non-convex cases). And the proofs are provided in Appendix G and H.

Theorem 3. (Convergence analysis for online convex optimization) Let {θt} and {vk} be
the sequence obtained by Algorithm 2, γ ∈ R, β1 ∈ [0, 1), β2 ∈ [0, 1), β1t+1 ∈ [0, β1],
β11 = β1, η(t) = η0√

t
, for ∀t ∈ [T]. Assume that ∥x − y∥∞ ≤ D∞ for ∀x, y ∈ F . Suppose

f(θ) is a convex function, ∥gt∥∞ ≤ G∞ , for ∀t ∈ [T], θ ∈ F . Let Cl = min(G−γ
∞ , ϵ−γ),

Cu = max(G−γ
∞ , ϵ−γ), where ϵ ∈ R+ is a very number set in Algorithm 2. The opti-

mal point of f is denoted as θ∗. For {θt} generated by Anon, there is a bound on the regret:

T∑
t=1

[ft(θt)− ft(θ∗)] ≤
dD2

∞c
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+
T−1∑
t=1

[
β1t+11β1t+1>β1tD

2
∞

2Clηt+1(1− β1)2

]

+
D2

∞
2Clη1(1− β1)

+
dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞Cuη0
1− β1

√
T (7)

Corollary 3.1. Suppose β1,t = β1λ
t, 0 < λ < 1 in Theorem 3, then we have:

T∑
t=1

[ft(θt)− ft(θ∗)] ≤
dD2

∞c
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

D2
∞

2Clη1(1− β1)

+
dD∞G∞β1

(1− β1)(1− λ)
+
dG2

∞Cuη0
1− β1

√
T (8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

For the convex case, Theorem 3 implies the regret of Anon is upper-bounded by O(
√
T) when

an = 2n−1.

Theorem 4. (Convergence analysis for non-convex stochastic optimization) The update of θt can be
described as θt+1 = θt − ηtV⌊log2 t⌋mt, and mt = β1mt−1 + (1− β1)gt.
Under the assumptions:

• f is differentiable and f∗ ≤ f ≤ F . ∇f(x) is L-Lipschitz continuous, i.e. ∥∇f(x)−∇f(y)∥ ≤
L∥x− y∥, ∀x, y.

• The noisy gradient is unbias and its infinity norm is bounded by N, i.e. Egt = ∇f(x), ∥gt∥∞ ≤ N .

The hyperparameters are set as: ηt = η0t
−p, η0 > 0, p ∈ (0, 1) where the bounds are ClI ⪯

V⌊log2 t⌋ ⪯ CuI , and 0 < Cl < Cu (A ⪯ B means B − A is a positive semi-definite matrix). And
the ϵ and N ensure Cl and Cu exist. For sequence {θt} generated by Anon, we have:

1
T

∑T
t=1

∥∥∥∇f(xt)∥∥∥2 ≤ 1
η0Cl

T p−1
(
F − f∗ +K

∫ T
1
t−2p dt+ J +K

)
, (9)

where

J =
β2
1d

4L(1−β1)2
N2 + 3dN2

1−β1
η0Cu

∑ãt
k=1 (ak − 1k ̸=1)

−p
, K =

(
1

1−β1
+ 1

2

)
Lη20N

2C2
ud

Theorem 4 shows when p = 0.5 and an = 2n−1, Anon has a convergence rate of O(lnT/
√
T) for

non-convex cases. Note that the convergence rates shown in Theorem 3 and Theorem 4 are the same
as mainstream adaptive optimizers under the strong assumption equation 4 or using the technique
of AMSGrad. And the assumptions and boundedness conditions are standard in the literature and
consistent with those adopted in previous works like Luo et al. (2019) and Zhuang et al. (2020).

Better Noise Robustness Other convergence guarantee techniques typically employ alternative
methods to ensure equation 4 holds, thereby guaranteeing optimizer convergence. Noise in the
early training stage can greatly influence their performance, making it difficult for these methods
to use the information of the latest gradients. As we know, IDU is the first technique that makes
optimizers converge and allows equation 4 to not hold, which will offer Anon (IDU) better noise
robustness and flexibility. To evaluate the robustness of IDU against noise, we do further experiments
where we compare Anon (IDU) and AMSGrad. Slightly different from the Table 1, AMSGrad is
usually implemented in practice in the form: maxi∈[t]{ψRMSProp

i

√
1− βi2}/

√
1− βt2 (we apply in

experiments). But regardless of the first form or the second form, we can extrapolate that AMSGrad’s
strategy of persistently applying the max operation is highly susceptible to noise interference. We
conduct empirical experiments to prove it, and the relevant function settings include:

ft(x) =

{
1010x, if t mod 101 = 1
−10x, otherwise , Nt =

{
500/et−1, if t mod 2 = 1
−500/et−1, otherwise (10)

with the constraint set F = [−1, 1]. The ft(x) is the example provided in Reddi et al. (2019), which
can make Adam diverge. And Nt is the noise added to the gradients gt. We can observe that the
noisy gradient is unbiased and its influence on gradients approaches 0 with the increase of t. The
results of experiments are shown in Figure 2. Note that we set γ = 1 to make the adaptivity of Anon
equivalent to AMSGrad and Adam, and their other hyperparameters are the same. Therefore, we can
compare the performances of the two convergence guarantee techniques fairly.

(a) β1 = 0.5, β2 = 0.75 (b) β1 = 0.5, β2 = 0.75 (c) β1 = 0.9, β2 = 0.99 (d) β1 = 0.9, β2 = 0.99

Figure 2: Comparison of Adam, AMSGrad, and Anon on a simple convex problem with noise. The
setting of hyperparameters follows β1 <

√
β2 and η(t) = 0.1/

√
t (Reddi et al., 2019).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

From Figure 2(a)(c), we can see that the regrets divided by t of Anon and AMSGrad approach 0
gradually, meaning they converge. And those of Adam approach a constant, meaning it diverges.
Although both Anon and AMSGrad can converge, Figure 2(b)(d) shows that Anon can reach the
optimal point x = −1 fast, but AMSGrad converges to the optimal point much slower due to the
noise, especially when β2 is small. The result proves that Anon (IDU) has better noise robustness
than AMSGrad, as we have inferred. It forms the theoretical backbone of Anon and opens new
avenues for designing flexible optimizers.

4 EXPERIMENTS

In this section, we compare Anon with 13 baseline optimizers, including SGD(M), Adam, AdamW
(Loshchilov & Hutter, 2017), Yogi (Zaheer et al., 2018), AdaBound, RAdam (Liu et al., 2019),
SWA (Izmailov et al., 2018), Lookahead (Zhang et al., 2019), AdaBelief, Adai (Xie et al., 2022)
Lookaround (Zhang et al., 2023), Sophia (Liu et al., 2023), AGD (Yue et al., 2023) and HVAdam
(Zhang et al., 2025) by validating Anon in various tasks including image classification tasks on
ResNet, image generation on diffusion model and natural language processing tasks on LLMs.
Except for experiments on the diffusion model, all the benchmarks are from the data presented in the
paper. Therefore, the hyperparameters of other optimizers have been extensively searched.

Image Classification with CNN We conduct experiments on ImageNet (Russakovsky et al., 2015)
with ResNet18 and ResNet50. We use the official implementation of AdaBound, AdaBelief and
Lookaound, so the replication is exact. For ResNet50, the top-1 accuracy is reported in Table 3.
And for ResNet18, the top-1 accuracy is shown in Table 2. We set 1 learning rate for Anon, which
corresponds to 0.1 learning rate and 0.9 momentum setting of SGDM, because EMA(x; 0.9) ≈
M(x; 0.9)/10 according to equation 1. We set γ = −0.1 for Anon (A = −0.1), and it surpasses the
performance of SGDM (A = 0). These results prove our guess that the negative adaptivity is more
suitable for classical models like CNNs.

Table 2: Top-1 accuracy (%) of ResNet18 on ImageNet. † from Chen & Gu (2018), ‡ from Liu et al.
(2019), ∗ from Zhuang et al. (2020).
Anon SGDM AMSGradW AdaBelief AdaBound† Yogi† Adam‡ MSVAG∗ RAdam‡

70.06 69.94 68.78 69.42 68.13 68.23 66.54 65.99 67.62

Table 3: Top-1 accuracy (%) of ResNet50 on ImageNet. † from Xie et al. (2022), ‡ from Zhang et al.
(2023), ∗ from Zhang et al. (2025).

Anon SGDM Lookaround Adam† Adai† SWA‡ Lookahead‡ HVAdam∗

77.25 76.23 76.77 72.87 76.80 76.78 76.52 77.22

Table 4: Validation loss and training time on OpenWebText.
Model Optimizer Validation Loss Time (h)

GPT2-small
Anonγ=1.1 2.93283 26.17554
AdamW 2.95614 26.88118
Sophia-G 2.95143 28.98702

GPT2-medium
Anonγ=1 2.69017 36.91487
AdamW 2.70994 36.83633
Sophia-G 2.70653 41.02486

Language Modeling We train au-
toregressive models on OpenWebText
(Gokaslan & Cohen, 2019) using the
official implementation of Sophia (Liu
et al., 2023). Our experiments fol-
low the exact experimental setup and
hyperparameter configurations of Liu
et al. (2023). We set γ ≥ 1 and use
other optimizers’ learning rate setting
for Anon. The results of experiments
are presented in Table 4, and Anon obtains the lowest validation losses in GPT2-small and GPT2-
medium, demonstrating strong performance on LLM training. Note that through our experiments, we
find that many variants of Adam are slower than Adam because they introduce extra calculations. But
from Table 4 we can see that Anon obtains the compared and even faster speed than Adam. This is
because when iterations approach infinity, for the average time cost per iteration, we have

E(tAdam − tAnon) ≈ tvector-Div + tvector-Sqrt − tvector-Mul − C log2 Iters

Iters
> 0 (Iters→∞) , (11)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

and C is the time cost of the operations in line 9~15 of Algorithm 2 per iteration. From equation 11
we can find that the Adam’s time cost of per iteration is more than Anon’s, since the vector division
is slower than vector multiplication. Furthermore, IDU makes the big time cost of vector power
operation related to γ ∈ R used in Anon (covered in C) approach 0, which greatly improved the
practical value of Anon.

Image Generation with Diffusion Model We conduct image generation experiments on
CIFAR-10 (Krizhevsky et al., 2009) with diffusion model. We search the learning rate in
{0.1, 0.01, 0.001, 0.0001, 0.00001} for AdamW, AMSGrad, Anon, SGDM, and AdaBound. The
code and the settings of other hyperparameters are consistent with the official implementation of
Nichol & Dhariwal (2021). The results are reported in Table 5. When set learning rate 0.0001 (also
the most suitable value for Adam) and γ = 1.01, Anon achieves SOTA and proves that the adaptivity
higher than 1 is a better choice for complex models.

Table 5: FID scores of diffusion models on CIFAR-10 (lower is better).

Adam AMSGrad SGDM AdaBound Anonγ=1 Anonγ=1.01

9.11 8.12 12.84 12.13 8.03 7.75

Figure 3: Hyperparameter sensitivity anal-
ysis of ResNet20 on CIFAR-10

Comprehensive Analysis and Robustness From the
results on CNNs, we observe that setting the learning
rate corresponding to SGDM and applying a negative
adaptivity leads to better generalization and higher accu-
racy. In contrast, setting the learning rate equivalent to
Adam and using a positive adaptivity (γ ≥ 1) achieves
SOTA results in diffusion models and LLMs. This ob-
servation aligns well with our analysis in Section 2.3,
highlighting that adaptivity is a key factor in model-
specific optimizer behavior. Additionally, our results
demonstrate the practical benefits of the proposed IDU
mechanism in improving training efficiency: it acceler-
ates computation by transforming expensive operations
into negligible cost as shown in equation 11, and this
benefit can extend to other optimizers as well. We also
show the FID of setting of γ = 1 (the same as Adam) in
Table 5 and Table 4 which means the only difference is the inclusion of IDU in Anon, and it also
outperforms other optimizers, presenting the improvement brought by IDU. Furthermore, we assess
the robustness of Anon to hyperparameter choices. As illustrated in Figure 3, Anon maintains high
performance across a broad range of learning rates and γ values. Notably, unlike many adaptive
optimizers that require tuning of β1, β2, and ϵ per task, we use fixed settings (β1 = 0.9, β2 = 0.999,
ϵ = 10−16) throughout all experiments. Despite this, Anon consistently achieves SOTA, validating
its robustness and the practical applicability of our proposed design.

5 CONCLUSION

We propose Anon, a novel optimizer that obtains tunable non-restricted adaptivity and IDU conver-
gence guarantee technique. The results of deep learning experiments show that Anon outperforms
almost all other optimizers, which demonstrates the superiority of Anon and verifies the correctness of
our idea about adaptivity. And we prove that Anon’s convergence rate in both convex and nonconvex
cases can achieve the convergence rate of mainstream optimizers under the strong assumption or with
AMSGrad’s technique. And the experimental results and theoretical analysis show IDU matches
AMSGrad’s convergence rate and memory cost. In addition, IDU offers better noise robustness,
more flexibility, and even accelerates certain operations in practice. Therefore, we believe that IDU
is overall superior to the convergence technique of AMSGrad. And follow the settings of those
original papers, the experiments use many techniques like cosine annealing, decoupled weight decay
regularization, and gradient clipping by default, so it means Anon is perfectly compatible with these
widely used techniques. Thus, we expect Anon can become the preferred optimizer in extensive fields
of deep learning due to its great performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Evelyn ML Beale. On minimizing a convex function subject to linear inequalities. Journal of the
Royal Statistical Society: Series B (Methodological), 17(2):173–184, 1955.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jinghui Chen and Quanquan Gu. Closing the generalization gap of adaptive gradient methods in
training deep neural networks. arXiv preprint arXiv:1806.06763, 2018.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. arXiv preprint arXiv:1808.02941, 2018.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Pavel Izmailov, D. A. Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. Conference on Uncertainty in
Artificial Intelligence, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. arXiv preprint arXiv:1002.4908, 2010.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computa-
tional mathematics and mathematical physics, 4(5):1–17, 1964.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

10

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252, 2015.

Matthew Staib, Sashank Reddi, Satyen Kale, Sanjiv Kumar, and Suvrit Sra. Escaping saddle points
with adaptive gradient methods. In International Conference on Machine Learning, pp. 5956–5965.
PMLR, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information processing
systems, 30, 2017.

Zeke Xie, Xinrui Wang, Huishuai Zhang, Issei Sato, and Masashi Sugiyama. Adaptive inertia:
Disentangling the effects of adaptive learning rate and momentum. In International Conference on
Machine Learning, pp. 24430–24459. PMLR, 2022.

Yun Yue, Zhiling Ye, Jiadi Jiang, Yongchao Liu, and Ke Zhang. Agd: an auto-switchable optimizer
using stepwise gradient difference for preconditioning matrix. Advances in Neural Information
Processing Systems, 36:45812–45832, 2023.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. In Advances in neural information processing systems, pp. 9793–9803,
2018.

Jiangtao Zhang, Shunyu Liu, Jie Song, Tongtian Zhu, Zhengqi Xu, and Mingli Song. Lookaround
optimizer: k steps around, 1 step average. In Advances in Neural Information Processing Systems,
2023.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. In Advances in Neural Information Processing Systems, pp. 9593–9604,
2019.

Yiheng Zhang, Shaowu Wu, Yuanzhuo Xu, Jiajun Wu, Shang Xu, Steve Drew, and Xiaoguang Niu.
Hvadam: A full-dimension adaptive optimizer. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 22623–22631, 2025.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in neural information processing systems, 33:18795–18806, 2020.

Juntang Zhuang, Yifan Ding, Tommy Tang, Nicha Dvornek, Sekhar C Tatikonda, and James Duncan.
Momentum centering and asynchronous update for adaptive gradient methods. Advances in Neural
Information Processing Systems, 34:28249–28260, 2021.

APPENDIX

A LIMITATION AND FUTRUE WORK

Although we prove that the adaptivity is an important attribute for first-order optimizers, there are a
small number of first-order optimizers not covered by our Adaptivity Definition 1 such as HVAdam
which does not conform to the frame outlined in Algorithm 1. For this situation, we will try to
give a more general adaptivity definition in the future. And limited by computational resources,
our hyperparameter search for Anon was incomplete. For example, in diffusion model trials, a

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

learning rate of 0.0001 with adaptivity 1.02 caused the early training loss hard to decrease, whereas a
learning rate of 10−5 allowed higher adaptivity such as 1.15. Regrettably, time constraints prevented
further exploration of these observations so further investigation is needed to fully explore Anon’s
potential. We also hope this work can contribute to exploring the design of deep learning models,
as our experiments reveal distinct adaptivity preferences across different model architectures. This
observation suggests that certain "ineffective" modifications proposed for neural networks might
simply stem from usual optimal adaptivity (i.e., values deviating from the conventional [0, 1] range),
rather than inherent flaws in the design concept. In such scenarios, Anon’s extensive adaptivity tuning
capacity could potentially unlock the latent capabilities of these architectures.

B ADAPTIVITY OF OPTIMIZERS

We present the full adaptivity table of some optimizers mentioned in the main paper in Table 6.
Table 6: Summary of adaptivity for representative optimizers.

Optimizer At(ψ,x)
SGD 0

SGDM 0
RMSProp 1

1+ϵ/
√

EMA(x2;β2)

Adam ARMSProp
t

AMSGrad 1

1+ϵ
/

maxi∈[t]

√
EMA(x2

1:i;β2)

Padam 2p

1+ϵ
/

maxi∈[t]

√
EMA(x2

1:i;β2)

AdaBound
{
ARMSProp
t , if ηl(t) < ψRMSProp

t < ηu(t),
0, otherwise.

AdaBelief 1

1+ϵ·
[

1
1−β2

+
√

EMA((x−ϕAdam)2+ϵ/(1−β2);β2)
]
/EMA((x−ϕAdam)2;β2)

Anon equation 13 (≈ γ)

C DETAILS OF EXPERIMENTS AND MORE EXPERIMENTS

C.1 IMAGE CLASSIFICATION

ResNet20 and ResNet32 We also do experiments on CIFAR-10 (Russakovsky et al., 2015) with
ResNet20 and ResNet32 and achieve the SOTA. The results are presented in Table 7 (all other
optimizers’ data is from Yue et al. (2023)), and the detailed setting is shown in Appendix C. We report
the results of all other optimizers from AGD (Yue et al., 2023) and adopt the same experimental setup
as in the official implementation1. And do hyperparameters searching for Anon as Figure 3 in the
main paper (η ∈ [0.1, 10], γ ∈ [−0.24, 0.24]) and finally select η = 1, γ = −0.08 for ResNet20
and η = 0.5, γ = −0.17 for ResNet32. Like the default setting for AdamW, AGD and AdaHessian
in the two experiments, we use the decoupled weight decay for Anon.

Table 7: Top-1 accuracy(%) comparison on CIFAR-10 (ResNet models)

Model Optimizers

SGD Adam AdamW AdaBelief AdaHessian AGD Anon
ResNet20 92.14±.14 90.46±.20 92.12±.14 92.19±.15 92.27±.27 92.35±.24 92.47±.05
ResNet32 93.10±.07 91.54±.12 92.72±.01 92.90±.13 92.91±.14 93.12±.18 93.20±.08

ResNet18 We report the results from the sources stated in the main paper. We adopt the same
experimental setup as in the official implementation2, and reproduce the results of SGDM, AdaBelief
under the official recommended hyperparameter setting. We search learning rate in {0.1, 0.01, 0.001

1https://github.com/amirgholami/adahessian
2https://github.com/juntang-zhuang/Adabelief-Optimizer

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

} for AMSGrad with decoupled weight decay, and the best value is 0.01. We set learning rate as 1
and search γ in {-0.1, -0.05, 0, 0.05} for Anon and the best value is -0.1.

ResNet50 We report the results from the sources stated in the main paper. We adopt the same ex-
perimental setup as in the official implementation3, and reproduce the results of SGDM, LookAround
under the official recommended hyperparameter setting. Due to the heavy calculation burden, we do
not do much searching and simply set η = 1 and γ = −0.1 for Anon.

C.2 IMAGE GENERATION

Diffusion Model We adopt the same experimental setup as in the official implementation4 (Uncon-
ditional CIFAR-10 with L_hybrid objective and cosine noise schedule). And search learning rate
in {0.1, 0.01, ... , 0.00001} for all optimizers and search γ in {1, 1.1, 1.01} for Anon. The optimal
choice is η = 0.0001 and γ = 1.01.

C.3 LANGUAGE MODELING

GPT2 We refer to the experimental setup in the official implementation56 and set nproc_per_node=4
due to limited computational resources. Under this setting, we find that when apply the same learning
rate scheduler as Sophia in GPT2-medium, AdamW can get lower loss, so we apply this new setting
for AdamW and Anon. We set γ = 1 for Anon. And all the optimizers use decoupled weight decay.

D EMPIRICAL EXPERIMENTS

To better understand how different optimizers behave in complex landscapes, we visualize their
trajectories on two classical benchmark functions: Rosenbrock and Rastrigin. These functions are
used to evaluate the optimizer’s ability to escape saddle points, navigate flat valleys, and avoid local
minima. Rosenbrock tests the optimizer’s capacity to follow narrow curved paths toward a global
minimum, while Rastrigin challenges it with a rugged landscape filled with deceptive local minima.

(a) Rastrigin Function (b) Rosenbrock Function

Figure 4: 3D visualization of benchmark functions
Rastrigin: A highly non-convex function with many local minima. The global minimum is at (0, 0).

Rosenbrock: A narrow, curved valley with the global minimum at (1, 1). It’s commonly used to
evaluate optimizer stability and curvature sensitivity.

3https://github.com/Ardcy/Lookaround
4https://github.com/openai/improved-diffusion
5https://github.com/Liuhong99/Sophia
6https://github.com/karpathy/nanoGPT

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 5: Optimization trajectories comparison under different hyperparameters (searched for each
optimizers). The first 10 figures show the optimization trajectories of Anon under different γ
selections, while the remaining 14 figures display the trajectories of other optimizers.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

E THEOREM 1 IN MAIN PAPER

Theorem 5. If ψ and ψ′ are from the same equivalence class, there is a function f : N+ → R+ that
makes ψn(x1:n) = ψ′

n(x1:n)f(n) for any x1:n ∈ Rn and any n ∈ N+.

Proof. Let h(k; g
01:n) = lnψn(kg01:n) − lnψ′

n(kg01:n), h : R → R. Because ψn and ψ′
n are

continuous, h is continuous.

When k ̸= 0, we have

h
′
(k;x

01:n) = lim
∆k→0

lnψn((k +∆k)x01:n)− lnψ′
n((k +∆k)x01:n)− lnψn(kx01:n) + lnψ′

n(kx01:n)

∆k

=
1

k
lim

∆k→0

lnψn((1 + ∆k/k)kx01:n)− lnψ′
n((1 + ∆k/k)kx01:n)− lnψn(kx01:n) + lnψ′

n(kx01:n)

∆k/k

=
1

k
lim

∆k→0

[lnψn((1 + ∆k/k)kx
01:n)− lnψn(kx01:n)]− [lnψ′

n((1 + ∆k/k)kx
01:n)− lnψ′

n(kx01:n)]

∆k/k

=
1

k

[
An(ψ, x01:n)−An(ψ′, x

01:n)
]

=
1

k
· 0

(
Since ψ and ψ′ are in the same class

)
=0 (12)

So h(k;x
01:n) = C1 when k > 0, h(k;x

01:n) = C2 when k < 0. And because h is continuous, we
have C1 = C2 = h(0;x01:n) = ln ψn(0)

ψ′
n(0)

.

Therefore, we have ψn(kx01:n)

ψ′
n(kx01:n)

= ψn(0)
ψ′

n(0)
for ∀k ∈ R.

And since x
01:n can be any vector ∈ Rn and any n ∈ N+, we have ψn(x1:n)

ψ′
n(x1:n)

= ψn(0)
ψ′

n(0)
for ∀x1:n ∈

Rn, ∀n ∈ N+.

Let f(n) = ψn(0)
ψ′

n(0)
, we have ψn(x1:n) = ψ′

n(x1:n)f(n) for any x1:n ∈ Rn and any n ∈ N+.

F THEOREM 2 IN MAIN PAPER

Theorem 6. For the optimizer Anon described in Algorithm 2, the adaptivity of Anon in i-th dimension
is ∈ [γ(1− k), γ), where k = ϵ/minj∈[ãt] EMA(g2aj−1+1:aj ,i

;β2).

Proof. We let fn,γ(x) = β−n
3 (1− β31n>1)EMAγ(x2

an−1+1:an + ϵ;β2), so we have

A(ψ, g1:t,i) = ∇k ln

(
ãt∑
j=1

βãt3 fj,γ(kg1:t,i)

)1/2∣∣∣∣∣
k=1

=
γ
∑ãt
j=1 β

ãt
3 fj,γ−1(g1:t,i)EMA(g2aj−1+1:aj ,i

;β2)∑ãt
j=1 β

ãt
3 fj,γ(g1:t,i)

=
γ
∑ãt
j=1 β

ãt
3 fj,γ−1(g1:t,i)[EMA(g2aj−1+1:aj ,i

+ ϵ;β2)− ϵ]∑ãt
j=1 β

ãt
3 fj,γ(g1:t,i)

=
γ
∑ãt
j=1 β

ãt
3 fj,γ(g1:t,i)− γϵ

∑ãt
j=1 β

ãt
3 fj,γ−1(g1:t,i)∑ãt

j=1 β
ãt
3 fj,γ(g1:t,i)

= γ

(
1− ϵ ·

∑ãt
j=1 β

ãt
3 fj,γ−1(g1:t,i)∑ãt

j=1 β
ãt
3 fj,γ(g1:t,i)

)

= γ

(
1− ϵ ·

∑ãt
j=1 fj,γ−1(g1:t,i)∑ãt
j=1 fj,γ(g1:t,i)

)
(13)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

≥ γ(1− k)
(
Since k = ϵ/ min

j∈[ãt]
EMA(g2aj−1+1:aj ,i;β2)

)
(14)

G THEOREM 3 IN MAIN PAPER

For simplicity, we omit the debiasing step in theoretical analysis as in Reddi et al. (2019). It is easy
to prove that the analysis also applys to the de-biased version.
Lemma 7. (McMahan & Streeter, 2010) For any Q ∈ Sd+ and convex feasible set F ⊂ Rd, suppose

u1 = minx∈F

∥∥∥Q1/2(x−z1)
∥∥∥ and u2 = minx∈F

∥∥∥Q1/2(x−z2)
∥∥∥, then we have

∥∥∥Q1/2(u1−u2)
∥∥∥ ≤∥∥∥Q1/2(z1 − z2)

∥∥∥.

Theorem 8. (Convergence analysis for online convex optimization) Let {θt} and {vk} be
the sequence obtained by Algorithm 2, γ ∈ R, β1 ∈ [0, 1), β2 ∈ [0, 1), β1t+1 ∈ [0, β1t],
β11 = β1, η(t) = η0√

t
, for ∀t ∈ [T]. Assume that ∥x − y∥∞ ≤ D∞ for ∀x, y ∈ F . Suppose

f(θ) is a convex function, ∥gt∥∞ ≤ G∞ , for ∀t ∈ [T], θ ∈ F . Let cl = min(G−γ
∞ , ϵ−γ),

cu = max(G−γ
∞ , ϵ−γ), where ϵ ∈ R+ is a very number set in Algorithm 2. The opti-

mal point of f is denoted as θ∗. For {θt} generated by Anon, there is a bound on the regret:

T∑
t=1

[ft(θt)− ft(θ∗)] ≤
(1− 2

√
2)D2

∞

(1−
√
2)(1− β1)clη0

√
T +

T−1∑
t=1

[
β1t+1Iβ1t+1>β1t

D2
∞

2clηt+1(1− β1)2

]

+
D2

∞
2clη1(1− β1)

+
dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

Proof.

vk =

√
2/(

1

v2k−1

+ σγk) if k > 0 else σ−γ/2
k

1

v2k
=

1
v2
k−1

+ σγk

2
if k > 0 else σγk

1

v2k
=

k∑
i=0

σγi
2min(k−i+1,k)

1

v2k
=

k∑
i=0

EMAγ(g2⌊2k−1+1⌋:2k + ϵ;β2)

2min(k−i+1,k)
(15)

Since ∥gt∥∞ ≤ G∞, cl = min(G−γ
∞ , ϵ−γ) and cu = max(G−γ

∞ , ϵ−γ), from 15, we have:

1

v2k,i
∈

[
k∑
i=0

c−2
u

2min(k−i+1,k)
,

k∑
i=0

c−2
l

2min(k−i+1,k)

]
1

v2k,i
∈
[
c−2
u , c−2

l

]
vk,i ∈ [cl, cu] (16)

Let ηt = η(t).

θt+1 =
∏

F,V −1
ãt

(θt − ηtVãtmt) = min
θ∈F

∥∥∥V −1/2
ãt

(θ − (θt − ηtVãtmt))
∥∥∥

Note that
∏

F,V −1
ãt

(θ∗) = θ∗ since θ∗ ∈ F . Use θ∗i and θt,i to denote the i-th dimension of θ∗ and θt
respectively. From lemma equation 7, using u1 = θt+1 and u2 = θ∗, we have:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

∥∥∥V −1/2
ãt

(θt+1 − θ∗)
∥∥∥2 ≤∥∥∥V −1/2

ãt
(θt − ηtVãtmt − θ∗)

∥∥∥2
=
∥∥∥V −1/2

ãt
(θt − θ∗)

∥∥∥2 + η2t

∥∥∥V 1/2
ãt

mt

∥∥∥2 − 2ηt⟨mt, θt − θ∗⟩

=
∥∥∥V −1/2

ãt
(θt − θ∗)

∥∥∥2 + η2t

∥∥∥V 1/2
ãt

mt

∥∥∥2
− 2ηt⟨β1tmt−1 + (1− β1t)gt, θt − θ∗⟩ (17)

Note that β1 ∈ [0, 1) and β2 ∈ [0, 1), rearranging inequality equation 17, we have:

⟨gt, θt − θ∗⟩ ≤
1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+

ηt
2(1− β1t)

∥∥∥V 1/2
ãt

mt

∥∥∥2 + β1t
1− β1t

⟨mt−1, θ
∗ − θt⟩

≤ 1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+

ηt
2(1− β1t)

∥∥∥V 1/2
ãt

mt

∥∥∥2 + β1t
1− β1t

∥∥∥mt−1

∥∥∥∥∥∥θ∗ − θt∥∥∥(
Cauchy-Schwartz’s inequality: ⟨u, v⟩ ≤

∥∥∥u∥∥∥v∥∥∥)
≤ 1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+

ηt
2(1− β1t)

∥∥∥V 1/2
ãt

mt

∥∥∥2 + β1t
1− β1t

∥∥∥mt−1

∥∥∥√dD∞(
Since ∥x− y∥∞ ≤ D∞, for ∀x, y ∈ F

)
=

1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+

ηt
2(1− β1t)

∥∥∥V 1/2
ãt

mt

∥∥∥2 + β1t
√
dD∞

1− β1t

√√√√ d∑
i=1

EMA2(g1:t−1,i;β2)

≤ 1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+

ηt
2(1− β1t)

∥∥∥V 1/2
ãt

mt

∥∥∥2 + β1t
√
dD∞

1− β1t

√√√√ d∑
i=1

G2
∞(

Since ∥gt∥∞ ≤ G∞

)
≤ 1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+

ηt
2(1− β1t)

∥∥∥V 1/2
ãt

mt

∥∥∥2 + β1tdD∞

1− β1t
G∞

=
1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+
β1tdD∞G∞

1− β1t
+

ηt
2(1− β1t)

m⊤
t Vãtmt

=
1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+
β1tdD∞G∞

1− β1t
+

ηt
2(1− β1t)

d∑
i=1

m2
t,ivãt,i

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

≤ 1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+
β1tdD∞G∞

1− β1t
+

ηt
2(1− β1t)

d∑
i=1

m2
t,icu(

Apply formula equation 16
)

≤ 1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+
β1tdD∞G∞

1− β1t
+
dG2

∞cuηt
2(1− β1t)

(18)

By convexity of f , we have:

T∑
t=1

ft(θt)− ft(θ∗) ≤
T∑
t=1

⟨gt, θt − θ∗⟩

≤
T∑
t=1

[
1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)
+
β1tdD∞G∞

1− β1t
+
dG2

∞cuηt
2(1− β1t)

]
(

By formula equation 18
)

≤
T∑
t=1

[
1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)]

+
1

1− β1

T∑
t=1

(
β1tdD∞G∞ +

dG2
∞cuηt
2

)
(

Since 0 ≤ β1t ≤ β1 < 1
)

=

T∑
t=1

[
1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)]

+
1

1− β1

T∑
t=1

(
β1tdD∞G∞ +

dG2
∞cuη0

2
√
t

)

≤
T∑
t=1

[
1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)]

+
dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

∫ T

0

1

2
√
t
dt(

Since ηt = η0/
√
t
)

=

T∑
t=1

[
1

2ηt(1− β1t)

(∥∥∥V −1/2
ãt

(θt − θ∗)
∥∥∥2 − ∥∥∥V −1/2

ãt
(θt+1 − θ∗)

∥∥∥2)]

+
dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

≤
T−1∑
t=1

[
1

2ηt+1(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2 − 1

2ηt(1− β1t)

∥∥∥V −1/2
ãt

(θt+1 − θ∗)
∥∥∥2]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

=

T−1∑
t=1

[
1

2ηt+1(1− β1t)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2 − 1

2ηt(1− β1t)

∥∥∥V −1/2
ãt

(θt+1 − θ∗)
∥∥∥2

+
β1t+1 − β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

=

T−1∑
t=1

{
1

2(1− β1t)

[
(θt+1 − θ∗)⊤

(
V −1
ãt+1

ηt+1
−
V −1
ãt

ηt

)
(θt+1 − θ∗)

]}

+

T−1∑
t=1

[
β1t+1 − β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1t)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

=

ãT∑
k=1

min(T,ak+1)−1∑
t=ak

{
1

2(1− β1t)

[
(θt+1 − θ∗)⊤

(
V −1
ãt+1

ηt+1
−
V −1
ãt

ηt

)
(θt+1 − θ∗)

]}

+

T−1∑
t=1

[
β1t+1 − β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

=

ãT∑
k=1

min(T,ak+1)−2∑
t=ak

{
1

2(1− β1t)

[
(θt+1 − θ∗)⊤

(
V −1
ãt+1

ηt+1
−
V −1
ãt

ηt

)
(θt+1 − θ∗)

]}

+

ãT−1∑
k=1

{
1

2(1− β1ak+1−1)

[
(θak+1

− θ∗)⊤
(
V −1
k+1

ηak+1

−
V −1
k

ηak+1−1

)
(θak+1

− θ∗)

]}

+

T−1∑
t=1

[
β1t+1 − β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

=

ãT∑
k=1

min(T,ak+1)−2∑
t=ak

{
1

2(1− β1t)

[
(θt+1 − θ∗)⊤

(
V −1
k

ηt+1
−
V −1
k

ηt

)
(θt+1 − θ∗)

]}

+

ãT−1∑
k=1

{
1

2(1− β1ak+1−1)

[
(θak+1

− θ∗)⊤
(
V −1
k+1

ηak+1

−
V −1
k

ηak+1−1

)
(θak+1

− θ∗)

]}

+

T−1∑
t=1

[
β1t+1 − β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

≤
ãT∑
k=1

min(T,ak+1)−2∑
t=ak

{
1

2(1− β1)

[
D∞e

⊤
d

(
V −1
k

ηt+1
−
V −1
k

ηt

)
D∞ed

]}

+

ãT−1∑
k=1

{
1

2(1− β1)

[
D∞e

⊤
d

(
c−1
l Id
ηak+1

)
D∞ed

]}

+

T−1∑
t=1

[
β1t+1 − β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T(

Since ηt = η0/
√
t, and 0 ≤ β1t ≤ β1 < 1

)
=

ãT−1∑
k=1

{
1

2(1− β1)

[
D∞e

⊤
d

(
V −1
k

ηak+1−1
−
V −1
k

ηak

)
D∞ed

]}

+
1

2(1− β1)

[
D∞e

⊤
d

(
V −1
ãT

ηT
−
V −1
ãT

ηaãT

)
D∞ed

]

+

ãT−1∑
k=1

{
1

2(1− β1)

[
D∞e

⊤
d

(
c−1
l Id
ηak+1

)
D∞ed

]}

+

T−1∑
t=1

[
β1t+1 − β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

≤2
ãT−1∑
k=1

{
1

2(1− β1)

[
D∞e

⊤
d

(
c−1
l Id
ηak+1

)
D∞ed

]}

+
1

2(1− β1)

[
D∞e

⊤
d

(
c−1
l Id
ηT

)
D∞ed

]

+

T−1∑
t=1

[
β1t+1 − β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

≤
dD2

∞c
−1
l

(1− β1)η0

ãT−1∑
k=1

√
ak+1

+
dD2

∞c
−1
l

(1− β1)η0

√
T

+

T−1∑
t=1

[
β1t+1 − β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

≤
dD2

∞c
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

+

T−1∑
t=1

[
β1t+1 − β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

∥∥∥V −1/2
1 (θ1 − θ∗)

∥∥∥2 + dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

≤
dD2

∞c
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

T−1∑
t=1

[
β1t+1 − β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
1

2η1(1− β1)

(
D∞e

⊤
d V

−1
1 D∞ed

)
+
dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

≤
dD2

∞c
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

T−1∑
t=1

[
β1t+1 − β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
dD2

∞c
−1
l

2η1(1− β1)
+
dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

≤
dD2

∞c
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

T−1∑
t=1

[
β1t+1Iβ1t+1>β1t

2ηt+1(1− β1t)(1− β1t+1)

∥∥∥V −1/2
ãt+1

(θt+1 − θ∗)
∥∥∥2]

+
dD2

∞c
−1
l

2η1(1− β1)
+
dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

≤
dD2

∞c
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

T−1∑
t=1

[
β1t+11β1t+1>β1t

2ηt+1(1− β1)2

(
D∞e

⊤
d c

−1
l IdD∞ed

)]

+
dD2

∞c
−1
l

2η1(1− β1)
+
dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T

≤
dD2

∞c
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

T−1∑
t=1

[
β1t+11β1t+1>β1t

dD2
∞

2clηt+1(1− β1)2

]

+
dD2

∞
2clη1(1− β1)

+
dD∞G∞

1− β1

T∑
t=1

β1t +
dG2

∞cuη0
1− β1

√
T (19)

Corollary 8.1. Suppose β1,t = β1λ
t, 0 < λ < 1 in Theorem 8, then we have:

T∑
t=1

ft(θt)− ft(θ∗) ≤
dD2

∞c
−1
l

(1− β1)η0

(√
T +

ãT−1∑
k=1

√
ak+1

)
+

dD2
∞

2clη1(1− β1)

+
dD∞G∞β1

(1− β1)(1− λ)
+
dG2

∞cuη0
1− β1

√
T (20)

Proof. It is easy to prove using:

T∑
t=1

β1t =

T∑
t=1

β1λ
t−1 <

∞∑
t=1

β1λ
t−1 ≤ β1

1− λ
(21)

Plugging equation 21 into equation 19, we can derive the results above.

Corollary 8.2. Suppose an = 2n−1, β3 = 1
2 in equation 20, then we have:

T∑
t=1

ft(θt)− ft(θ∗) ≤
(1− 2

√
2)D2

∞

(1−
√
2)(1− β1)clη0

√
T +

D2
∞

2clη1(1− β1)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

+
dD∞G∞β1

(1− β1)(1− λ)
+
dG2

∞cuη0
1− β1

√
T (22)

Proof. It is easy to prove using:

T∑
t=1

at−1 =
1− aT

1− a
(23)

H THEOREM 4 IN MAIN PAPER

Lemma 9. (Zhuang et al., 2021) Let mt = β1mt−1 + (1− β1)gt, let Qt ∈ Rd, then〈
Qt, gt

〉
=

1

1− β1

(〈
Qt,mt

〉
−
〈
Qt−1,mt−1

〉)
+
〈
Qt−1,mt−1

〉
+

β1
1− β1

〈
Qt−1−Qt,mt−1

〉
(24)

Theorem 10. (Convergence analysis for non-convex stochastic optimization) The update of θt can
be described as θt+1 = θt − ηtVãtmt, and mt = β1mt−1 + (1− β1)gt.
Under the assumptions:

• f is differentiable and f∗ ≤ f ≤ F . ∇f(x) is L-Lipschitz continuous, i.e. ∥∇f(x)−∇f(y)∥ ≤
L∥x− y∥, ∀x, y.

• The noisy gradient is unbias and its infinity norm is bounded by N, i.e. Egt = ∇f(x), ∥gt∥∞ ≤ N .

The hyperparameters are set as: ηt = η0t
−p, η0 > 0, p ∈ (0, 1) where the bounds are ClI ⪯ Vãt ⪯

CuI , and 0 < Cl < Cu (A ⪯ B means B −A is a positive semi-definite matrix). And the ϵ and N
ensure Cl and Cu exist. For sequence {θt} generated by Anon, we have:

1
T

∑T
t=1

∥∥∥∇f(xt)∥∥∥2 ≤ 1
η0Cl

T p−1
(
F − f∗ +K

∫ T
1
t−2p dt+ J +K

)
where

J =
β2
1d

4L(1−β1)2
N2 + 3dN2

1−β1
η0Cu

∑ãt
k=1 (ak − 1k ̸=1)

−p
, K =

(
1

1−β1
+ 1

2

)
Lη20N

2C2
ud

Proof. Let At = Vãt , Qt = ηtAt∇f(xt) and let Q0 = Q1, we have

T∑
t=1

〈
Qt, gt

〉
=

1

1− β1

〈
QT ,mT

〉
+

T∑
t=1

〈
Qt−1,mt−1

〉
+

β1
1− β1

T∑
t=1

〈
Qt−1 −Qt,mt−1

〉
=

β1
1− β1

〈
QT ,mT

〉
+

T∑
t=1

〈
Qt,mt

〉
+

β1
1− β1

T−1∑
t=0

〈
Qt −Qt+1,mt

〉
(25)

First we derive a lower bound for equation 25.〈
Qt, gt

〉
=
〈
ηtAt∇f(xt), gt

〉
=
〈
ηt−1At−1∇f(xt), gt

〉
−
〈
(ηt−1At−1 − ηtAt)∇f(xt), gt

〉
≥
〈
ηt−1At−1∇f(xt), gt

〉
−
∥∥∥∇f(xt)∥∥∥

∞
d
∥∥∥ηt−1At−1 − ηtAt

∥∥∥
1

∥∥∥gt∥∥∥
∞(

By Hölder’s inequality
)

≥
〈
ηt−1At−1∇f(xt), gt

〉
− dN21t̸=aãt

(∥∥∥ηt−1At−1

∥∥∥− ∥∥∥ηtAt∥∥∥
1

)
− dN21t=aãt

(∥∥∥ηt−1At−1 − ηtAt
∥∥∥
1

)
(26)(

Since
∥∥∥gt∥∥∥

∞
≤ N, ηt−1 ≥ ηt > 0, At−1 = At when t ̸= aãt

)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Perform telescope sum, we have
T∑
t=1

〈
Qt, gt

〉
≥

T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
− dN2

ãT−1∑
k=1

(∥∥∥ηakAak∥∥∥
1
−
∥∥∥ηak+1−1Aak+1−1

∥∥∥
1

)
− dN2

ãT∑
k=1

∥∥∥ηak−1Aak−1 − ηakAak
∥∥∥
1
− dN2

(∥∥∥ηaãt
Aaãt

∥∥∥
1
−
∥∥∥ηTAT∥∥∥

1

)
≥

T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
− dN2

ãT−1∑
k=1

∥∥∥ηakAak∥∥∥
1

− dN2
ãT∑
k=1

∥∥∥ηak−1Aak−1 − ηakAak
∥∥∥
1
− dN2

∥∥∥ηaãt
Aaãt

∥∥∥
1

≥
T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
− dN2

ãT∑
k=1

∥∥∥ηakAak∥∥∥
1

− dN2
ãT∑
k=1

(∥∥∥ηak−1Aak−1

∥∥∥
1
+
∥∥∥ηakAak∥∥∥

1

)
=

T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
− 2dN2

ãT∑
k=1

∥∥∥ηakAak∥∥∥
1
− dN2

ãT∑
k=1

∥∥∥ηak−1Aak−1

∥∥∥
1

≥
T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
− 3dN2

ãT∑
k=1

ηak−1Cu (27)

Next, we derive an upper bound for
∑T
t=1

〈
Qt, gt

〉
by deriving an upper-bound for the RHS of

equation 25. We derive an upper bound for each part.

〈
Qt,mt

〉
=
〈
ηtAt∇f(xt),mt

〉
=
〈
∇f(xt), ηtAtmt

〉
=
〈
∇f(xt), xt − xt+1

〉
≤ f(xt)− f(xt+1) +

L

2

∥∥∥xt+1 − xt
∥∥∥2 (28)(

By L-smoothness of f
)

Perform telescope sum, we have
T∑
t=1

〈
Qt,mt

〉
≤ f(x1)− f(xT+1) +

L

2

T∑
t=1

∥∥∥ηtAtmt

∥∥∥2 (29)

〈
Qt −Qt+1,mt

〉
=
〈
ηtAt∇f(xt)− ηt+1At+1∇f(xt+1),mt

〉
=
〈
ηtAt∇f(xt)− ηtAt∇f(xt+1),mt⟩

+
〈
ηtAt∇f(xt+1)− ηt+1At+1∇f(xt+1),mt⟩

=
〈
∇f(xt)−∇f(xt+1), ηtAtmt

〉
+
〈
(ηtAt − ηt+1At+1)∇f(xt),mt

〉
=
〈
∇f(xt)−∇f(xt+1), xt − xt+1

〉
+
〈
∇f(xt), (ηtAt − ηt+1At+1)mt

〉
≤L
∥∥∥xt+1 − xt

∥∥∥2 + 〈∇f(xt), (ηtAt − ηt+1At+1)mt

〉
(

By smoothness of f
)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

≤L
∥∥∥xt+1 − xt

∥∥∥2 + ∥∥∥∇f(xt)∥∥∥
∞
d
∥∥∥ηtAt − ηt+1At+1

∥∥∥
1

∥∥∥mt

∥∥∥
∞(

By Hölder’s inequality
)

≤L
∥∥∥xt+1 − xt

∥∥∥2 + dN21t+1̸=aãt+1

(∥∥∥ηtAt∥∥∥
1
−
∥∥∥ηt+1At+1

∥∥∥
1

)
+ dN21t+1=aãt+1

(∥∥∥ηtAt − ηt+1At+1

∥∥∥
1

)
(30)(

Since ηt+1 ≥ ηt > 0, At+1 = At when t ̸= aãt

)
Perform telescope sum, we have
T−1∑
t=1

〈
Qt −Qt+1,mt⟩ ≤L

T−1∑
t=1

∥∥∥ηtAtmt

∥∥∥2 + dN2
ãT−1∑
k=1

(∥∥∥ηakAak∥∥∥
1
−
∥∥∥ηak+1−1Aak+1−1

∥∥∥
1

)
+ dN2

ãT−1∑
k=1

∥∥∥ηak+1−1Aak+1−1 − ηak+1
Aak+1

∥∥∥
1

+ dN2
(∥∥∥ηaãT

AaãT

∥∥∥
1
−
∥∥∥ηTAT∥∥∥

1

)
≤L

T−1∑
t=1

∥∥∥ηtAtmt

∥∥∥2 + dN2
ãT−1∑
k=1

∥∥∥ηakAak∥∥∥
1

+ dN2
ãT−1∑
k=1

(∥∥∥ηak+1−1Aak+1−1

∥∥∥
1
+
∥∥∥ηak+1

Aak+1

∥∥∥
1

)
+ dN2

∥∥∥ηaãT
AaãT

∥∥∥
1

≤L
T−1∑
t=1

∥∥∥ηtAtmt

∥∥∥2 + dN2
ãT∑
k=1

∥∥∥ηakAak∥∥∥
1

+ dN2
ãT−1∑
k=1

(∥∥∥ηak+1−1Aak+1−1

∥∥∥
1
+
∥∥∥ηak+1

Aak+1

∥∥∥
1

)
≤L

T−1∑
t=1

∥∥∥ηtAtmt

∥∥∥2 + 2dN2
ãT∑
k=1

∥∥∥ηakAak∥∥∥
1

+ dN2
ãT−1∑
k=1

∥∥∥ηak+1−1Aak+1−1

∥∥∥
1

≤L
T−1∑
t=1

∥∥∥ηtAtmt

∥∥∥2 + 3dN2
ãT∑
k=1

ηak−1Cu (31)

We also have 〈
QT ,mT

〉
=
〈
ηTAT∇f(xT),mT

〉
=
〈
∇f(xT), ηTATmT

〉
≤L1− β1

β1

∥∥∥ηTATmT

∥∥∥2 + β1
4L(1− β1)

∥∥∥∇f(xT)∥∥∥2(
By Young’s inequality

)
≤L1− β1

β1

∥∥∥ηTATmT

∥∥∥2 + β1d

4L(1− β1)
N2 (32)

Combine equation 29, equation 31 and equation 32 into equation 25, we have
T∑
t=1

〈
Qt, gt

〉
≤L
∥∥∥ηTATmT

∥∥∥2 + β2
1d

4L(1− β1)2
N2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

+ f(x1)− f(xT+1) +
L

2

T∑
t=1

∥∥∥ηtAtmt

∥∥∥2
+

β1
1− β1

L

T−1∑
t=1

∥∥∥ηtAtmt

∥∥∥2 + 3β1
1− β1

dN2
ãT∑
k=1

ηak−1Cu

≤f(x1)− f(xT+1) +
(1

1− β1
+

1

2

)
L

T∑
t=1

∥∥∥ηtAtmt

∥∥∥2
+

β2
1d

4L(1− β1)2
N2 +

3β1
1− β1

dN2
ãT∑
k=1

ηak−1Cu (33)

Combine equation 27 and equation 33, we have

T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
−3dN2

ãt∑
k=1

ηak−1Cu ≤
T∑
t=1

〈
Qt, gt

〉
≤f(x1)− f(xT+1) +

(1

1− β1
+

1

2

)
L

T∑
t=1

∥∥∥ηtAtmt

∥∥∥2
+

β2
1d

4L(1− β1)2
N2 +

3β1
1− β1

dN2
ãT∑
k=1

ηak−1Cu (34)

Hence we have

T∑
t=1

〈
ηt−1At−1∇f(xt), gt

〉
≤f(x1)− f(xT+1) +

(1

1− β1
+

1

2

)
L

T∑
t=1

∥∥∥ηtAtmt

∥∥∥2
+

β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1

ãt∑
k=1

ηak−1Cu

≤f(x1)− f∗ +
(1

1− β1
+

1

2

)
Lη20N

2C2
ud

T∑
t=1

t−2p

+
β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1
η0Cu

ãt∑
k=1

(ak − 1k ̸=1)
−p

≤f(x1)− f∗ +
(1

1− β1
+

1

2

)
Lη20N

2C2
ud
(
1 +

∫ T

1

t−2p dt
)

+
β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1
η0Cu

ãt∑
k=1

(ak − 1k ̸=1)
−p

≤f(x1)− f∗ +
(1

1− β1
+

1

2

)
Lη20N

2C2
ud

∫ T

1

t−2p dt

+
β2
1d

4L(1− β1)2
N2 +

3dN2

1− β1
η0Cu

ãt∑
k=1

(ak − 1k ̸=1)
−p

︸ ︷︷ ︸
J

+
(1

1− β1
+

1

2

)
Lη20N

2C2
ud︸ ︷︷ ︸

K

≤f(x1)− f∗ +K

∫ T

1

t−2p dt+ J +K (35)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Take expectations on both sides, we have

T∑
t=1

〈
ηt−1At−1∇f(xt),∇f(xt)

〉
≤Ef(x1)− f∗ +K

∫ T

1

t−2p dt+ J +K

≤F − f∗ +K

∫ T

1

t−2p dt+ J +K (36)

Note that we have ηt decays monotonically with t, hence

T∑
t=1

〈
ηt−1At−1∇f(xt),∇f(xt)

〉
≥ η0T−p

T∑
t=1

〈
At−1∇f(xt),∇f(xt)

〉
(37)

≥ η0T 1−pCl
1

T

T∑
t=1

∥∥∥∇f(xt)∥∥∥2 (38)

Combine equation 36 and equation 38, assume f is upper bounded by Mf , we have

1

T

T∑
t=1

∥∥∥∇f(xt)∥∥∥2 ≤ 1

η0Cl
T p−1

(
F − f∗ +K

∫ T

1

t−2p dt+ J +K
)

(39)

And it is easy to proved when an = 2n−1, we have

J ≤ β2
1d

4L(1− β1)2
dN2 +

3dN2

1− β1
η0Cu(2 +

1

1− 2−p
) (40)

26

	Introduction
	Preliminaries
	Review of the Frame of Optimizers
	The Adaptivity of Existing Optimizers
	The Optimal Adaptivity for Tasks

	Extend to All Real Numbers
	Adaptivity Tunable Optimizer and Beyond
	How Adaptivity Influences Behaviors of Optimizers
	Incremental Delay Update

	Experiments
	Conclusion
	Limitation and Futrue Work
	Adaptivity of Optimizers
	Details of Experiments and More Experiments
	Image Classification
	Image Generation
	Language Modeling

	Empirical Experiments
	Theorem 1 in main paper
	Theorem 2 in main paper
	Theorem 3 in main paper
	Theorem 4 in main paper

