
Pre-Trained Multi-Goal Transformers with Prompt
Optimization for Efficient Online Adaptation

Haoqi Yuan1 Yuhui Fu1 Feiyang Xie2 Zongqing Lu1,3∗

1School of Computer Science, Peking University
2Yuanpei College, Peking University

3Beijing Academy of Artificial Intelligence

Abstract

Efficiently solving unseen tasks remains a challenge in reinforcement learning (RL),
especially for long-horizon tasks composed of multiple subtasks. Pre-training poli-
cies from task-agnostic datasets has emerged as a promising approach, yet existing
methods still necessitate substantial interactions via RL to learn new tasks. We
introduce MGPO, a method that leverages the power of Transformer-based policies
to model sequences of goals, enabling efficient online adaptation through prompt
optimization. In its pre-training phase, MGPO utilizes hindsight multi-goal rela-
beling and behavior cloning. This combination equips the policy to model diverse
long-horizon behaviors that align with varying goal sequences. During online
adaptation, the goal sequence, conceptualized as a prompt, is optimized to improve
task performance. We adopt a multi-armed bandit framework for this process,
enhancing prompt selection based on the returns from online trajectories. Our
experiments across various environments demonstrate that MGPO holds substantial
advantages in sample efficiency, online adaptation performance, robustness, and
interpretability compared with existing methods.

1 Introduction

In the evolving landscape of deep learning, the paradigm of pre-training followed by fine-tuning has
become a dominant approach for improving learning downstream tasks, particularly in the domain
of computer vision [20, 62, 41] and natural language processing (NLP) [30, 32]. This paradigm
has recently been explored in deep reinforcement learning (RL) [3, 4], addressing the issue of
sample efficiency in RL when solving unseen tasks by leveraging the acquired knowledge during
pre-training. For example, offline meta-RL (OMRL) [33, 59, 56] studies pre-training a policy on
multi-task datasets, which adapts to a new task with limited interactions in this task. However, these
approaches typically require extensive data collection for each specific task. In contrast, given the
relative ease of acquiring large, task-agnostic datasets that contain diverse behaviors, other studies
focus on pre-training policies [4, 54] and skills [38, 47] on task-agnostic datasets and adapt to unseen
tasks with RL finetuning.

Most works [56, 55], especially in the context of OMRL, primarily focus on short-term tasks with
shaped rewards, where information of the unknown task can be inferred within a few steps of online
interactions (e.g., MuJoCo [50] and MetaWorld [58]). These approaches often fall short of tackling
long-horizon tasks which are characterized by a sequence of sub-processes. In our study, we consider
this challenging yet realistic scenario: given a task-agnostic dataset characterized by diverse behaviors
of the agent, we aim to pre-train a policy to facilitate efficient online adaptation to new, long-horizon
tasks.

∗Correspondence to Zongqing Lu <zongqing.lu@pku.edu.cn>.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Recent studies [38, 60] tackle this problem by assuming that diverse short-term skills can be acquired
from task-agnostic datasets, which are sufficient to compose the required behaviors for complex,
long-horizon tasks. These methods pre-train a goal-conditioned policy focused on short-term skills.
During online adaptation, they use RL to train a separate high-level policy that selects goals based on
current states and executes the pre-trained policy for multiple steps. While this approach avoids the
extensive finetuning of the pre-trained policy, it still requires substantial number of interaction steps
for online RL. This limitation arises from the pre-trained policy’s inability to sequentially achieve
multiple goals during a single attempt. The capability to switch goals – deciding at which state to
transition to the next goal – must be developed during the costly online adaptation phase.

Is it feasible to pre-train a policy conditioned on a sequence of goals, capable of autonomously
transitioning between goals while executing long-horizon behaviors aligned with these goals?
Achieving such a policy would pave the way for developing efficient online adaptation algorithms,
eliminating the need for learning a high-level policy for state-conditioned goal switching. However,
the challenge lies in the substantial demand on the policy’s long-term memory capabilities, which
must effectively remember the goal sequence and base action prediction on a long history context.

To tackle this challenge, we draw inspiration from the success of Transformers [51] in language mod-
eling [10, 7], which have demonstrated a remarkable capability to model long sequences and, when
pre-trained on diverse datasets, adapt efficiently to downstream tasks through prompt optimization
[25]. In our proposed Multi-Goal Transformers with Prompt Optimization (MGPO), we pre-train a
Transformer-based policy that takes a goal sequence as a prompt and predicts actions in the following
sequence of environment observations. During online adaptation, we only optimize for the sequence
of goals in the prompt, drawing parallels with the concept of prompt optimization in language models.

In the pre-training stage, we employ hindsight relabeling to construct prompts from goals visited in
the trajectory and train the Transformer policy through behavior cloning. Thus, the policy learns to
produce behaviors consistent with the goal sequence. The number of goals in the prompt modulates
the deterministic or exploratory nature of the policy’s behavior. For online adaptation, we propose a
novel prompt optimization strategy, leveraging the returns of online trajectories to guide the selection
of goal sequences. This process is formulated as a multi-armed bandit problem and we introduce
two approaches through upper confidence bound (UCB) and Bayesian posterior estimation. Figure 1
provides an overview of our framework.

We evaluate MGPO across diverse domains, including maze navigation, the robotic simulation envi-
ronment Kitchen, and the open-world game Crafter. Our results demonstrate that MGPO significantly
surpasses prior methods in terms of sample efficiency and performance during online adaptation.
MGPO adapts to new tasks within a small budget of 100 online episodes in all environments. Com-
parisons to existing prompt optimization methods highlight the interpretability and robustness of our
method.

In summary, our main contributions are:

• We propose pre-training multi-goal Transformers to address the challenge of online adap-
tation in long-horizon tasks. Our approach combines the strengths of Transformers in
sequence modeling and the advantages of goal-conditioned pre-training for task adaptation.

• We introduce novel methods for optimizing goal sequences, offering enhanced interpretabil-
ity and robustness compared to existing prompt optimization methods.

• Our experimental results in diverse, challenging environments demonstrate that MGPO
significantly enhances sample efficiency over existing methods.

2 Preliminaries

2.1 Problem Formulation

A task in an environment is formulated as a partially observable Markov Decision Process (POMDP)
M = ⟨S,O,A, T, ρ, r, γ⟩ representing the state space, the agent’s observation space, the action space,
the transition probability of the environment, the initial state distribution, the reward function, and
the discount factor, respectively. Starting from the initial state, the agent takes an action at each
timestep, and then the environment transitions to the next state and returns a reward. At each timestep

2

Environment
𝑝

Pre-Trained

Transformer

𝜏online , 𝑅

… …𝑜1 𝑎1 𝑜𝐻 𝑎𝐻𝑜2 𝑜𝑖

𝑝~𝜏

Task-Agnostic

Dataset

Multi-Goal Transformer

max𝜃 𝑙𝑜𝑔 𝜋𝜃(𝑎|𝑝, 𝜏)

𝑝 …𝑜1 𝑎1 𝑜𝐻 𝑎𝐻

…ො𝑎1 ො𝑎𝐻

Multi-Goal Relabeling Pre-Training Online Prompt Optimization

𝑔𝑖1 𝑔𝐻𝑔𝑖𝑘…

Figure 1: An overview of MGPO. We pre-train Transformer-based policies on task-agnostic datasets,
leveraging hindsight multi-goal relabeling and behavior cloning to endow policies with the capacity
for modeling long-term behaviors. In unseen tasks, multi-goal Transformers adapt efficiently through
prompt optimization, which searches for a sequence of goals with the aim of maximizing online
returns.

t, the environment provides the agent an observation ot via an emission function ot ∼ E(ot|st). This
process continues until the task either terminates or reaches a maximum timestep H . We denote the
historical observations and actions as ht−1 = {(oi, ai)}t−1

i=1 . Reinforcement learning (RL) aims to
learn a policy π(at|ht−1, ot) to maximize the expected return J(π) = Eat∼π(at|ht−1,ot) [R], where
R =

∑H
t=1 γ

tr(st, at) is the discounted cumulative return of an episode.

We focus on long-horizon tasks that require executing a substantial number of subtasks sequentially.
We define a goal function g = fG(o) that maps an observation to a goal, representing key information
related to task completion, such as the agent’s position in navigation tasks or the states of objects in
robotic scenarios. G denotes the goal space. A goal g is said to be reached at time t if gt = fG(ot).
We assume that the task M in an unknown environment provides a task goal gM , indicating the final
goal to be reached. To optimally solve the long-horizon task, the policy must sequentially reach
multiple goals. As an example, consider an environment resembling rooms with unknown structures
where the task is to navigate to a goal location gM . Under partial egocentric observations, the agent
should learn from trial and error to find the shortest path to the goal location, which involves reaching
several specific waypoints (g1, ..., gk) as necessary goals.

During pre-training, we assume access to a task-agnostic dataset D = {τi}Ni=1 consisting of trajecto-
ries τ = (o1, a1, ..., oH , aH), in which the agent performs diverse behaviors. For online adaptation,
we aim to solve an unseen task M with its goal gM provided, within an online interaction budget of
N episodes. The objective is to find the optimal policy π maximizing the expected return J(π).

2.2 Transformers and Prompt Optimization

Some previous methods [4] pre-train a policy πθ(at|ht−1, ot) parameterized by θ and then finetune
with online RL. This approach is sample-inefficient due to discrepancies between the behaviors
in the dataset and those required for downstream tasks. Other methods [38, 60] pre-train a policy
πθ(at|z, ht−1, ot) conditioned on a variable z to perform diverse short-term skills and then train a
high-level policy πϕ(z|ht, ot) online using RL. As discussed earlier, this approach often results in
limited sample efficiency because the high-level policy must learn when to switch skills z based on
the observations during the online phase.

In this work, we explore pre-training a policy capable of performing diverse long-horizon behaviors,
aiming to develop efficient online adaptation methods that do not require additional RL. To model
such diverse long trajectories, we employ the Transformer architecture in our policy, known for its
effectiveness in sequence modeling tasks. Transformers leverage an attention mechanism [51], en-
abling the model to weigh different parts of the input sequence differently, thus effectively addressing
long-term dependencies.

In pre-training, we aim to develop a Transformer-based policy πθ(at|p, ht−1, ot) parameterized by
θ, taking an additional input variable p. This policy processes inputs in an auto-regressive manner,
where the input is a sequence (p, o1, a1, ..., oH , aH), and outputs an action at at each observation ot.
Here, the input variable p acts similarly to a prompt in language models, guiding the policy’s behavior.
During online adaptation, we keep the model parameters θ fixed and treat p as the optimization

3

variable, transforming the problem into finding an optimal prompt p:

max
p

J (πθ (at|p, ht−1, ot)) . (1)

This approach mirrors the concept of prompt optimization in language models and eliminates the
need to use online RL to train a high-level policy.

3 Method

3.1 Pre-Training Multi-Goal Transformers

We implement a prompt as a sequence of goals, describing an ordered sequence of key states to be
visited, which abstracts the long-term behavior of the agent. Inspired by recent works [28, 60] that
employ hindsight relabeling [1] to generate goals from offline trajectories, we sample a sequence of
goals within the trajectory to construct the prompt.

Using the observations (o1, ..., oH) in a trajectory τ , we construct a sequence of goals g = (g1, ..., gH)
with the same length H , representing the process of agent behavior in this episode. We first uniformly
sample a number k ∼ U [0,K−1] where K is the maximal prompt length, then uniformly sub-sample
the goal sequence to construct a prompt p = (gi1 , ..., gik , gH), where 0 ≤ i1 ≤ ... ≤ ik < H . Since
the trajectory ends at the last goal gH , we keep gH at the last position in the prompt. Using this
sampling mechanism, the prompt can describe behavior in different granularities with its varying
length. We denote the process of sampling a prompt from the trajectory as p ∼ P (p|τ).
Similar to Decision Transformers [8], we adopt a causal Transformer to build the policy
πθ(at|p, ht−1, ot), which takes as input a sequence concatenating the prompt and the trajectory:
(p, τ) = (gi1 , ..., gik , gH , o1, a1, ..., oH , aH). At each input ot, the policy only sees the sub-sequence
from gi1 to ot due to the causal attention mask and predicts the action distribution πθ(at|p, ht−1, ot).
We sample batches of trajectories in D and train the policy using behavior cloning:

max
θ

Eτ∈D, p∼P (p|τ)

[
H∑
t=1

log πθ(at|p, ht−1, ot)

]
. (2)

This training scheme encourages the policy to utilize the information provided in the prompt to reduce
uncertainty in action prediction. After pre-training, it learns to perform behaviors that follow the
sequence of goals in the prompt and seamlessly alter behavior between different goals. Prompts with
different numbers of goals provide varying amounts of information to match behavior [14], thereby
introducing different levels of uncertainty in action, enabling a trade-off between exploration and
exploitation in online adaptation.

AMAGO [15] also adopts a similar multi-goal relabeling strategy to train RL policies. While it
utilizes hindsight relabeling for better exploration, we are the first to use this scheme to pre-train
policies capable of stitching different goals sequentially, thereby facilitating efficient task adaptation.

3.2 Online Prompt Optimization

Given an unseen task with the task goal gM , we start with an initial prompt p0 = (gM) and aim to
find an optimal prompt p∗ with a maximal length of K that maximizes the expected return. The
algorithm can evaluate prompts for N episodes to return an optimized prompt. In principle, we
can employ any black-box optimization approach for this purpose, including discrete prompt search
[9, 40] and continuous prompt-tuning [48, 27] methods. However, prompts optimized in the entire
prompt space GK or even in a continuous space can contain uninterpretable goals and are out of
training distribution. The policy with such prompts may produce unpredictable behaviors.

To enhance interpretability and robustness, we propose a novel method that samples prompts from
online collected trajectories, aligning more closely with the training distribution of prompts. We
assume that, if we condition the policy on prompts sampled from a trajectory with high return, it is
likely to yield high expected returns since it performs similar behavior of this trajectory. Thus, we
propose a method that alternates between exploring online trajectories for high returns and sampling
new prompts from the best seen trajectory of the highest return.

4

Formally, we maintain a buffer B of sampled prompts and their history of returns and the trajectory τ∗

of the highest return R∗. Each iteration involves: (1) selecting a prompt p∗ from B most likely to yield
high returns and collecting a trajectory with π(a|p∗, h, o); (2) sampling a new prompt p′ ∼ P (p|τ∗),
which is then added to the buffer with the return obtained with π(a|p′, h, o). Prompt selection in
(1), which requires acting under uncertainty given observed returns in history, can be modeled as a
multi-arm bandit (MAB) problem. We implement two optional solutions including upper-confidence
bound (UCB) [2] and a method based on Bayesian posterior estimation (BPE) [36], where the former
selects the prompt with the highest UCB of expected return and the latter selects the prompt most
possible to yield return higher than R∗ based on the estimated posterior of its return distribution.

In summary, our method employs several key designs to optimize prompts effectively: (1) Trajectory-
based sampling: Instead of exploring the combinatorial space of goal sequences, we restrict our search
to prompts derived from collected trajectories, ensuring both feasibility and relevance. (2) Reward-
guided exploration: We further refine our prompt search by selecting prompts from trajectories
that have highest returns, thereby enhancing the likelihood of performance improvement. (3) Task-
goal consistency: We maintain the final goal within each prompt as the task goal, ensuring that all
exploration efforts are aligned with task completion.

Our prompt optimization method is detailed in Algorithm 1 in Appendix E.1, where the implementa-
tions of UCB and BPE are also provided.

4 Experiments

In this section, we present experimental results obtained across various domains to evaluate the
efficacy of MGPO. We aim to answer three questions: (1) Does MGPO improve sample efficiency in
solving new tasks compared to previous methods? (2) How does our proposed prompt optimization
method compare with existing methods? (3) How does each component in MGPO contribute to
efficient online adaptation?

4.1 Environments and Datasets

Our evaluation spans multiple domains featuring long-horizon tasks. We collect datasets to pre-train
models and evaluate their online adaptation capabilities on test sets of unseen tasks or environment
configurations. Detailed descriptions of these environments and datasets are available in Appendix C.

MazeRunner: A 2D Maze navigation environment with partial observation as introduced in [15].
The maze has randomly generated walls, where the task is to reach a designated goal position (x, y).
The agent’s observation includes its position and nearby terrain, receiving a reward of +1 for reaching
the goal and a -0.1 penalty for each timestep. We collect the dataset with a handcrafted policy that
explores various goals within each trajectory. Online adaptation requires finding optimal paths in
unknown mazes with limited trials. We test MazeRunner with two maze sizes, 15× 15 and 30× 30,
where the latter has a longer horizon of 500 steps.

Kitchen and GridWorld: Kitchen [16] is a robotic environment with continuous observations and
actions, where a 7-DoF robot arm manipulates diverse objects in a simulated kitchen scene. We
define each long-horizon task as completing a sequence of n subtasks in a specific order, providing
+ 1
n reward when the next correct subtask is completed. The task goal is provided as a set of subtasks

without revealing their order. Other goals are represented as one-hot vectors indicating the next
subtask. We collect the dataset using policies trained with RL. We also introduce GridWorld, a
simplified 2D version of Kitchen, where the agent navigates to switch states of 7 objects located in
different positions in specified orders.

Crafter [18]: A simplified benchmark of the open-world game Minecraft, where the 2D world is
procedurally generated. The agent receives 64× 64 egocentric image observations and takes discrete
actions. The objective is to unlock 22 achievements, each providing a reward of +1. Goals are defined
as one-hot vectors indicating the next achievement. The dataset is collected using policies from
AD [23]. For online adaptation, each task features a unique, unexplored world map.

5

Table 1: Performance of MGPO compared with baseline methods. Each result shows the average
performance on all test tasks in the environment and the standard deviation across 3 random seeds for
online test. Goal-conditioned BC has no error bars since it does not perform online optimization.

Method MazeRunner-15 MazeRunner-30 Kitchen GridWorld Crafter

Goal-conditioned BC -2.63 -27.06 0.09 0.05 11.78
BC-finetune -3.09 ± 0.12 -43.19 ± 2.97 0.00 ± 0.00 0.04 ± 0.00 1.88 ± 0.19
SPiRL -2.62 ± 0.35 -28.94 ± 0.79 0.22 ± 0.05 0.10 ± 0.03 10.96 ± 0.25
PTGM -0.96 ± 0.08 -26.74 ± 1.71 0.25 ± 0.03 0.25 ± 0.03 15.72 ± 0.12

MGPO -0.41 ± 0.10 -14.21 ± 0.19 0.63 ± 0.02 0.58 ± 0.03 15.66 ± 0.14

4.2 Baselines and Main Results

We compare MGPO with previous methods that focus on task-agnostic pre-training. Further details
are provided in Appendix F.

Goal-conditioned BC feeds the task goal gM directly into the pre-trained goal-conditioned policy
for new tasks. Its performance is akin to the initial prompt performance in MGPO without prompt
optimization.

BC-finetune updates the parameters of the pre-trained model with RL based on online collected
trajectories, which is a common method in previous work [4]. Conditioned on the task goal, we
finetune the Transformer parameters using PPO [46].

SPiRL [38] pre-trains short-term skills along with their latent representations and uses online RL to
train a high-level policy for online adaptation. PTGM [60] improves this approach by pre-training a
goal-conditioned policy and discretizing the goal space for the high-level policy.

For each test task, we evaluated each method for 100 episodes of online rollout, measuring per-
formance by the average return of the optimized policy or prompt. Results in Table 1 summarize
the performance of MGPO against all baselines across different environments, where MGPO is
implemented with UCB in online adaptation.

• MGPO’s superiority: MGPO demonstrates superior performance in all environments, showcasing
its efficiency in adapting to new tasks.

• Limitations of BC-finetune: This method underperforms others in most environments due to the
instability and inefficiency of finetuning parameters in the entire model with online RL. It fails to
solve tasks within the small budget of 100 online episodes.

• Comparing SPiRL, PTGM, and MGPO: While SPiRL and PTGM exhibit better sample efficiency
than BC-finetune, they largely underperform MGPO in MazeRunner, Kitchen, and GridWorld.
These approaches are limited by their reliance on learning a high-level RL policy for goal switch-
ing at different states during online adaptation. For example, PTGM trains a high-level policy
π(g|ht, ot) to select goals, which is effectively searching policies in the joint space of OK ×G.
In contrast, MGPO, with its inherent ability to seamlessly switch between goals, optimizes in the
prompt space GK , leading to more efficient adaptation.

• Goal-conditioned BC: The performance of this method highlights MGPO’s capability to refine
and improve upon the initial prompt. Conditioned on a single goal, the performance of Goal-
conditioned BC is sub-optimal due to limitations in dataset quality (e.g., MazeRunner) and the
partial observability in task specifications (Kitchen and GridWorld) and environment layouts
(MazeRunner and Crafter). In contrast, through online exploration, MGPO gathers more task and
environment information in the unseen task and can search for a prompt sequence to stitch different
short-term behaviors learned from data.

• Performance in Crafter: Performance of Goal-conditioned BC, PTGM, and MGPO in Crafter
is similar compared with other environments. This is because, the dataset does not feature great
diversity since the data collection policy always aims at unlocking more achievements, thereby
the pre-trained policy may be less sensitive to the prompt. In contrast, in other environments, the
prompt substantially influences the policy’s behavior and performance.

6

Table 2: Performance of MGPO with different prompt optimization methods. Each result shows the
average performance on all test tasks in the environment and the standard deviation across 3 random
seeds for online test.

Method MazeRunner-15 MazeRunner-30 Kitchen GridWorld Crafter

MGPO-GRIPS -0.56 ± 0.09 -13.01 ± 1.22 0.54 ± 0.09 0.40 ± 0.01 15.53 ± 0.02
MGPO-BBT -0.80 ± 0.16 -12.72 ± 2.22 0.74 ± 0.06 0.42 ± 0.03 16.31 ± 0.03

MGPO-explore -0.71 ± 0.03 -14.74 ± 0.49 0.47 ± 0.05 0.48 ± 0.01 15.82 ± 0.07
MGPO-UCB -0.41 ± 0.10 -14.21 ± 0.19 0.63 ± 0.02 0.58 ± 0.03 15.66 ± 0.14
MGPO-BPE -0.38 ± 0.05 -14.86 ± 1.32 0.65 ± 0.02 0.57 ± 0.01 15.65 ± 0.06

Table 3: Performance of prompts optimized with different methods in Kitchen with noisy observations
or actions. Each result shows the average performance on all test tasks and the decrease compared
with the environment without noise.

Method MGPO-GRIPS MGPO-BBT MGPO-UCB MGPO-BPE

Noisy observations 0.29 (-0.25) 0.42 (-0.32) 0.49 (-0.14) 0.45 (-0.20)
Noisy actions 0.12 (-0.42) 0.19 (-0.55) 0.30 (-0.33) 0.28 (-0.37)

4.3 Prompt Optimization Methods

In exploring prompt optimization methods for the pre-trained multi-goal Transformer, we draw
insights from the area of prompt optimization for language models, including two contemporary
methods to implement MGPO:

GRIPS [40] is a genetic algorithm designed for prompt search within the discrete prompt space.
In our implementations, we start with an initial prompt and generate new prompts to evolve it via
online evaluating all prompts. We implement operations of adding, deleting, and swapping goals for
generating new prompts. The algorithm returns the best-evaluated prompt.

BBT [48] is a black-box optimization method for continuous prompt-tuning. It utilizes a low-
dimensional vector z, which is added to the initial prompt through random projection. This vector is
then optimized using a CMA-ES [19] evolution strategy. Since it extends the prompt into a continuous
space, the optimized prompts may not be interpreted as sequences of discrete goals.

For our proposed method, we investigate the two options for the MAB algorithm: UCB and BPE.
Additionally, we examined an ablation approach dubbed MGPO-explore, which differs from our
MAB formulation by leveraging the most recent prompt sampled from the highest-return trajectory
for further exploration.

Table 2 presents experimental results of MGPO implemented with different prompt optimization
methods. Across all environments, all MGPO methods demonstrate superior performance compared
to the baseline methods in Table 1, showing MGPO’s great compatibility with different prompt
optimization methods.

UCB and BPE consistently outperform MGPO-explore in most environments. This result demon-
strates the efficacy of our MAB formulation in the prompt optimization process. By exploring
and exploiting existing prompts, MAB-based methods yield trajectories with higher returns, thus
improving the overall performance.

UCB and BPE outperform the discrete search method GRIPS in four out of the five environments. This
result highlights the strength of our proposed methods in discrete optimization for multi-goal prompts.
While UCB and BPE outperform BBT in MazeRunner-15 and GridWorld, a reversal occurred in
the other three environments, particularly in Kitchen where BBT surpasses the performance of all
other methods. We speculate that, due to the nature of deterministic and differentiable transitions in
Kitchen, the continuous optimization method BBT may quickly find a local optimum.

The performance of BBT raises critical considerations about the nature of the optimized prompts.
Despite its efficiency, the optimized continuous prompts deviate significantly from the training
distribution, potentially harming the robustness of the policy. We conduct further studies to evaluate
the robustness of the optimized prompts. Table 3 compares the performance of the optimized prompts

7

BBTGRIPSUCB

Figure 2: Visualization of the optimized prompts in four MazeRunner-15 tasks. The prompt with
each method is displayed in a unique color. S and T represent the start position and the task goal
respectively, and g1, g2, ... represents goal positions in the prompt. We display the goals that exceed
the maze boundaries in the gray bar on the right side.

Table 4: Results of ablation study on MGPO with varying maximal prompt length K and hyperpa-
rameter c in UCB.

Ablation MazeRunner-15 MazeRunner-30 Kitchen

K = 1 -2.63±0.00 -27.06±0.00 0.09±0.00
K = 2 -1.13±0.10 -19.57±1.21 0.28±0.00
K = 3 -0.77±0.04 -17.12±0.47 0.48±0.02
K = 5 -0.41±0.10 -14.21±0.19 0.63±0.02

UCB-0 -0.44±0.07 -15.86±0.51 0.63±0.05
UCB-1 -0.41±0.10 -14.21±0.19 0.63±0.02
UCB-10 -0.40±0.04 -14.70±0.66 0.66±0.02

when the robotic environment Kitchen has noisy observations or actions. It reveals that prompts
with BBT and GRIPS are particularly susceptible to environment perturbation, hinting at out-of-
distribution prompts. In contrast, prompts with our proposed methods maintain robust performance
facing perturbation.

Figure 2 visualizes goals in prompts optimized by different methods in MazeRunner-15. It clearly
showcases the interpretability of the prompt with our proposed methods, which represents meaningful
waypoints toward the task goal. In contrast, prompts with GRIPS and BBT lack this level of clarity
and interpretability.

4.4 Ablation Study

In addition to MGPO-explore, we conduct more ablation studies to examine the impact of components
in MGPO. The results of ablation studies are presented in Table 4.

Maximal Prompt Lengths: We study the impact of different maximal prompt lengths K during
online adaptation. Complex tasks often necessitate multiple goals within a prompt to specify varying
behaviors in long-horizon trajectories. We observe that optimizing prompts with increasing length
consistently improves performance. Specifically, a length of K = 5 yields the best results, and
reducing K to 1 results in performance akin to that of Goal-conditioned BC. Appendix B.2 shows
additional results when further increasing K.

UCB Hyperparameters: UCB includes a hyperparameter c that balances exploration and exploitation
(Appendix E.1). In our test with MGPO-UCB under varying values of c, we observe that the
performance exhibits low sensitivity to this hyperparameter’s selection, as shown in Table 4.

Dataset Quality: We also assess the influence of dataset quality on MGPO’s performance. Detailed
results are provided in Appendix B.3.

4.5 Visualization and Case Study

In MazeRunner, we visualize the evolution of MGPO during online adaptation. Figure 3 displays the
progression of both the prompt and policy behavior at various stages. At the beginning, the policy is

8

Episode 1~20 Episode 21~40 Episode 41~60 Episode 61~80 Episode 81~100

Figure 3: Visualization of the optimized prompts and state visitation in the adaptation stage of
MGPO-UCB. Red squares with S, T , gi represent the start positions, task goals, and the optimized
prompts, respectively. We use purple to display the visitation frequency of each location, with darker
shades indicating higher frequencies. In this example, initially, the agent explores the left half of
the maze, aiming for the front-left task goal but is hindered by walls. In exploration, as it discovers
rewarding routes to the right, MGPO-UCB adapts by sampling new prompts from these better paths.
An optimized prompt is achieved after 40 episodes.

conditioned on a short prompt, resulting in high action uncertainty and exploratory behavior, where
the policy explores for diverse trajectories toward the task goal. This exploratory phase is crucial, as
it discovers trajectories with higher returns toward the goal and helps in understanding the unknown
task environment. As the algorithm progresses, the prompts are iteratively refined based on returns
from the environment, and the policy behavior is steered towards more efficient paths. More results
are presented in Appendix B.4.

5 Related Work

Policy Pre-Training for RL is a topic studying learning from datasets to enhance the efficiency of
RL on new tasks. Offline meta-RL (OMRL) focuses on learning to adapt to new tasks with a few
samples, employing context-based learning methods [26, 59, 39] or gradient-based meta-learning
[33]. However, OMRL necessitates multi-task datasets for training, requiring extensive trajectory
collection within each task. On the other hand, task-agnostic pre-training leverages rich behaviors
in task-agnostic datasets, exploring imitation learning [43, 4], offline RL [24, 54], or hierarchical
skill learning [38, 45, 60] for policy pre-training. Our work addresses the challenging setting of
task-agnostic pre-training for long-horizon tasks. Unlike previous methods that rely on RL for online
adaptation, our proposed multi-goal Transformer enables RL-free optimization methods, enhancing
sample efficiency.

Transformers for RL. The Transformer architecture has become increasingly popular in RL for
its ability in sequence modeling and long-term memory. In offline RL, Decision Transformers
[8, 22, 14, 57] recast RL as a sequence modeling problem conditioned on return-to-go. In context-
based meta-RL, Transformers are employed to handle multiple trajectories, modeling task adaptation
as in-context learning [23, 56, 29]. In multi-task RL, large-scale Transformers are adopted with
extensive datasets to address complex robotic domains [6, 5] and generalization to various tasks
[44, 49, 15]. In our work, we utilize Transformers to address the demands of long-term memory in
modeling long-horizon trajectories with multiple goals.

Prompt Optimization for pre-trained Transformer-based language models has demonstrated its
effectiveness in adapting to downstream NLP tasks without tuning model parameters. It optimizes
the prompt, which is a sequence of tokens input to the model specifying the task. In the recent large
language models (LLMs) [7], task adaptation can be easily achieved by prompt design, with the
techniques of in-context learning [11] and chain-of-thought reasoning [52]. For earlier language
models, prompt-tuning methods optimize prompts in a continuous space [25, 27], while prompt
search methods focus on optimizing discrete prompt tokens for interpretability [9, 40]. We adopt
the concept of prompt optimization to address online adaptation in RL, focusing on optimizing the
goal sequence for the pre-trained Transformer. Unlike in NLP tasks, our approach places a unique
emphasis on sample efficiency, a crucial aspect given the necessity of online evaluation.

9

6 Conclusion and Limitations

We propose MGPO, a novel framework for policy pre-training to enhance online adaptation in unseen
long-horizon tasks. By integrating the strengths of Transformer architectures and goal-conditioned
policies during pre-training, MGPO enables an efficient prompt optimization process in the online
adaptation phase. Our extensive experimental results across various environments show MGPO’s
superiority over existing methods. A comparative analysis of different prompt optimization techniques
highlights the advantages on interpretability and robustness of our method over other contemporary
approaches.

The effectiveness of MGPO in solving long-horizon tasks opens new possibilities for real-world
applications where efficient online adaptation is crucial. However, our experiments have been
confined to simulated environments so far. Future research can focus on scaling MGPO to larger
pre-training datasets and testing it in more complex, real-world environments.

Like many offline RL approaches, the performance of MGPO is influenced by the quality of the
dataset used during pre-training. To address this limitation, future work could explore several potential
directions: incorporating online data collection to improve dataset quality, using offline RL methods
such as DT to train the multi-goal Transformer, and integrating MGPO with finetuning methods to
enhance its adaptability.

The prompt-based policy in MGPO, similar to language models, can exhibit unpredictable behavior
when encountering out-of-distribution prompts. Furthermore, even minor alterations to the prompt
may lead to unintended behaviors, raising safety and robustness challenges. Future efforts could
explore enhancing the robustness of prompt-based policies.

Acknowledgments

This work was supported by NSFC under Grant 62450001 and 62476008. The authors would like to
thank the anonymous reviewers for their valuable comments and advice.

References
[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,

Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. Advances in neural information processing systems (NeurIPS), 2017.

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 2002.

[3] Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando De Fre-
itas. Playing hard exploration games by watching youtube. Advances in neural information
processing systems, 2018.

[4] Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 2022.

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818,
2023.

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 2020.

[8] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems (NeurIPS), 2021.

10

[9] Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng
Song, Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforce-
ment learning. arXiv preprint arXiv:2205.12548, 2022.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[11] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing
Xu, and Zhifang Sui. A survey for in-context learning. arXiv preprint arXiv:2301.00234, 2022.

[12] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[13] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[14] Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for
offline hindsight information matching. arXiv preprint arXiv:2111.10364, 2021.

[15] Jake Grigsby, Linxi Fan, and Yuke Zhu. AMAGO: Scalable in-context reinforcement learning
for adaptive agents. In The Twelfth International Conference on Learning Representations,
2024.

[16] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In Conference
on Robot Learning (CORL), 2020.

[17] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, 2018.

[18] Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint
arXiv:2109.06780, 2021.

[19] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary computation, 2001.

[20] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2019.

[21] Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, and Kun Zhang. Adarl: What, where,
and how to adapt in transfer reinforcement learning. In International Conference on Learning
Representations, 2022.

[22] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. Advances in neural information processing systems, 2021.

[23] Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steiger-
wald, DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement
learning with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

[24] Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning (CORL), 2022.

[25] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[26] Lanqing Li, Rui Yang, and Dijun Luo. FOCAL: Efficient fully-offline meta-reinforcement
learning via distance metric learning and behavior regularization. In International Conference
on Learning Representations, 2021.

[27] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

11

[28] Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila McIlraith. Steve-1: A
generative model for text-to-behavior in minecraft. arXiv preprint arXiv:2306.00937, 2023.

[29] Hao Liu and Pieter Abbeel. Emergent agentic transformer from chain of hindsight experience.
arXiv preprint arXiv:2305.16554, 2023.

[30] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 2023.

[31] Shaoteng Liu, Haoqi Yuan, Minda Hu, Yanwei Li, Yukang Chen, Shu Liu, Zongqing Lu,
and Jiaya Jia. Rl-gpt: Integrating reinforcement learning and code-as-policy. arXiv preprint
arXiv:2402.19299, 2024.

[32] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar
Sainz, Eneko Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural language
processing via large pre-trained language models: A survey. ACM Computing Surveys, 2023.

[33] Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, 2021.

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[35] Seungyong Moon, Junyoung Yeom, Bumsoo Park, and Hyun Oh Song. Discovering hi-
erarchical achievements in reinforcement learning via contrastive learning. arXiv preprint
arXiv:2307.03486, 2023.

[36] Kevin P Murphy. Conjugate bayesian analysis of the gaussian distribution. def, 2007.

[37] Jurgis Pasukonis, Timothy Lillicrap, and Danijar Hafner. Evaluating long-term memory in 3d
mazes. arXiv preprint arXiv:2210.13383, 2022.

[38] Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with
learned skill priors. In Conference on Robot Learning (CORL), 2021.

[39] Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey Levine. Offline
meta-reinforcement learning with online self-supervision. In International Conference on
Machine Learning, 2022.

[40] Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based
instruction search for prompting large language models. arXiv preprint arXiv:2203.07281,
2022.

[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
2021.

[42] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

[43] Ram Ramrakhya, Dhruv Batra, Erik Wijmans, and Abhishek Das. Pirlnav: Pretraining with
imitation and rl finetuning for objectnav. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

[44] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

[45] Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard.
Latent plans for task-agnostic offline reinforcement learning. In Conference on Robot Learning
(CORL), 2023.

12

[46] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[47] Lucy Xiaoyang Shi, Joseph J Lim, and Youngwoon Lee. Skill-based model-based reinforcement
learning. In Conference on Robot Learning (CORL), 2023.

[48] Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning
for language-model-as-a-service. In International Conference on Machine Learning, 2022.

[49] Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al.
Human-timescale adaptation in an open-ended task space. arXiv preprint arXiv:2301.07608,
2023.

[50] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, 2012.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems (NeurIPS), 2017.

[52] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 2022.

[53] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 1992.

[54] Zhihui Xie, Zichuan Lin, Deheng Ye, Qiang Fu, Yang Wei, and Shuai Li. Future-conditioned
unsupervised pretraining for decision transformer. In International Conference on Machine
Learning, 2023.

[55] Mengdi Xu, Yuchen Lu, Yikang Shen, Shun Zhang, Ding Zhao, and Chuang Gan. Hyper-
decision transformer for efficient online policy adaptation. arXiv preprint arXiv:2304.08487,
2023.

[56] Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In international
conference on machine learning, 2022.

[57] Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Interna-
tional Conference on Machine Learning, 2023.

[58] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, 2020.

[59] Haoqi Yuan and Zongqing Lu. Robust task representations for offline meta-reinforcement
learning via contrastive learning. In International Conference on Machine Learning, 2022.

[60] Haoqi Yuan, Zhancun Mu, Feiyang Xie, and Zongqing Lu. Pre-training goal-based models for
sample-efficient reinforcement learning. In The Twelfth International Conference on Learning
Representations, 2024.

[61] Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Skill reinforcement learning and planning for open-world long-horizon tasks. arXiv preprint
arXiv:2303.16563, 2023.

[62] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus Cubuk, and
Quoc Le. Rethinking pre-training and self-training. Advances in neural information processing
systems, 2020.

13

A Illustrations of MGPO

wood table wood sword stone coal eat cow

(wood, table, wood

sword, stone, coal,

eatcow)

--

drink -- eat cow -- skeleton zombie--

(drink, eat cow,

skeleton, zombie)

Task: unlock all

achievements in

an unseen world.

Agent: prompt optimization

(…,coal, iron, iron sword, …)
fast adaptation

(1) Pre-training:

learn actions

conditioned on a

goal sequence.

(2) Online adaptation:

search for the optimal

goal sequence for task

completion.

hindsight

multi-goal

relabeling

Figure 4: A running example illustrating MGPO. During the pre-training stage, the agent learns to
complete arbitrary sequences of goals using offline trajectories with hindsight-relabeled goals. In
the online adaptation stage, the agent optimizes the goal sequence to maximize returns in an unseen
environment.

Task: bottom burner → slide cabinet → hinge cabinet → microwave

Prompt Behavior

bottom burner

slide cabinet

hinge cabinet

microwave

slide cabinet

hinge cabinet

microwave

bottom burner

𝑡 = 50 𝑡 = 63 𝑡 = 110 𝑡 = 215𝑡 = 0

𝑡 = 0 𝑡 = 35 𝑡 = 115 𝑡 = 200 𝑡 = 300

Success





Figure 5: An illustration of prompts (goal sequences) and the agent’s behavior in a Kitchen task. The
order of goals within the prompt is crucial for successful task completion.

B Additional Experimental Results

B.1 Learning Curves During Online Adaptation

Figure 6 shows the learning curves of MGPO and baselines during online adaptation. Figure 7 shows
the learning curves of MGPO with different prompt optimization methods during online adaptation.

B.2 Ablation Study on the Maximal Prompt Length

Since we use K = 5 in the pre-training phase and the model has not encountered prompts exceeding
a length of 5, we present results with maximal prompt lengths K ≤ 5 in our main paper. Here, we
present additional results when further increasing K. We pre-train models with K = 10, 20 and 40
to test online adaptation with larger prompt lengths.

14

0 20 40 60 80 100
Episodes

5

4

3

2

1

Pe
rfo

rm
an

ce
MazeRunner-15

0 20 40 60 80 100
Episodes

50

40

30

20

Pe
rfo

rm
an

ce

MazeRunner-30

0 20 40 60 80 100
Episodes

0.0

0.2

0.4

0.6

Pe
rfo

rm
an

ce

Kitchen

0 20 40 60 80 100
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rfo

rm
an

ce

GridWorld

0 20 40 60 80 100
Episodes

0

10
12

14

16

Pe
rfo

rm
an

ce

Crafter

MGPO Goal-conditioned BC BC-finetune PTGM SPiRL

Figure 6: Performance of MGPO compared with baseline methods during online adaptation. The
vertical axis indicates the task performance of the optimized policy and the horizontal axis indicates
the number of online episodes. Each figure shows the average performance on all test tasks in each
environment and the standard deviation across 3 random seeds.

0 20 40 60 80 100
Episodes

4

3

2

1

Pe
rfo

rm
an

ce

MazeRunner-15

0 20 40 60 80 100
Episodes

35

30

25

20

15

10

Pe
rfo

rm
an

ce

MazeRunner-30

0 20 40 60 80 100
Episodes

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce

Kitchen

0 20 40 60 80 100
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rfo

rm
an

ce

GridWorld

0 20 40 60 80 100
Episodes

11
12
13

14

15

16

Pe
rfo

rm
an

ce

Crafter

MGPO-UCB MGPO-BPE MGPO-explore MGPO-GRIPS MGPO-BBT

Figure 7: Performance of MGPO with different prompt optimization methods during online adapta-
tion.

15

Figure 8 shows the results. In MazeRunner-15, setting K = 10 yields the optimal performance.
Increase beyond this value leads to a decline in learning efficiency. In MazeRunner-30, performance
exhibits a slight improvement as K extends to 40. This suggests that for more extended, long-horizon
tasks, the exploration of longer prompts can be advantageous.

0 20 40 60 80 100
Episodes

2.5

2.0

1.5

1.0

0.5
Pe

rfo
rm

an
ce

MazeRunner-15

0 20 40 60 80 100
Episodes

30

25

20

15

10

Pe
rfo

rm
an

ce

MazeRunner-30

K=2 K=3 K=5 K=10 K=20 K=40

Figure 8: Additional results of ablation study on the maximal prompt length K.

B.3 Ablation Study on Dataset Quality

We assess MGPO’s performance with datasets of varying quality in MazeRunner. In Table 5, we
denote datasets collected using an A* algorithm with a maximum of n goal switches per episode
as A*-n, and datasets from a random exploration policy as Random. Results show that MGPO
achieves better performance trained on A*-2 datasets than A*-1, indicating its efficacy with data
containing diverse long-horizon behaviors. The comparatively lower performance on the A*-4 dataset
in MazeRunner-30 and Random datasets suggests MGPO’s reliance on the quality of data collection
policies. Future work could involve integrating offline RL methods to boost performance with
lower-quality datasets.

Table 5: Results of ablation study on varying dataset quality, evaluated with MGPO-UCB.

Dataset MazeRunner-15 MazeRunner-30

Random -1.05±0.01 -17.13±0.52
A*-1 -0.97±0.03 -9.26±0.38
A*-2 -0.36±0.02 -8.66±0.35
A*-4 -0.41±0.10 -14.21±0.19

B.4 Additional Visualization Results

By prompting the pre-trained policy with prompts of varying lengths, MGPO can naturally trade-off
exploration and exploitation during online adaptation. To empirically demonstrate this capability, we
visualize prompts of different lengths and the corresponding behaviors of the pre-trained policy in
Figure 9. We observe that a shorter prompt, by providing less information to the policy, introduces
higher uncertainty and thus encourages more exploratory behaviors. Conversely, a longer prompt,
containing more detailed information from the trajectory, prompts more deterministic and exploitatory
behavior.

Figure 10 shows additional results on the progression of both the prompt and policy behavior at
various stages.

16

Short

Long

Figure 9: Visualization of prompts with different lengths and their state visitation counts in
MazeRunner-15. Each image in the upper row shows a short prompt with a length of 1. Each
image in the bottom row shows a long prompt with a length of 5.

Episode 1~20 Episode 21~40 Episode 41~60 Episode 61~80 Episode 81~100

Figure 10: Additional results on visualization of the optimized prompts and state visitation in the
adaptation stage of MGPO-UCB. Each row represents a task in MazeRunner-15.

17

MazeRunner-15 MazeRunner-30 Kitchen GridWorld Crafter

Figure 11: Environments in our experiments.

C Details for Environments and Data Collection

C.1 MazeRunner

MazeRunner is a 2D maze navigation environment implemented in AMAGO [15] and is mainly
based on Memory Maze [37]. The agent navigates in a grid world of size N × N , where we use
N = 15 and 30 in our experiments. For each task, the unknown structure of walls in the maze is
distinct, and the agent should move to the provided goal location gM = (xM , yM) to accomplish the
task. The agent receives 6-dimensional observations (x, y, d1, d2, d3, d4), where the first two values
are the agent’s position and the last four values are its distances to walls in the four directions. We
use the agent’s positions in observations to represent goals. The discrete action space consists of
moving left, right, forward, backward, and no movement. The reward is +1 when the agent reaches
the task goal and a penalty of −0.1 is given at each step in addition. The task horizon is 64 steps for
MazeRunner-15 and 500 steps for MazeRunner-30. The episode terminates when the agent reaches
the task goal or reaches the task horizon.

For data collection, we implement a rule-based policy that repeatedly samples a goal position in maze
and plan for a path to reach it with A* algorithm. The A* algorithm takes the partial observations of
the agent, estimate a score for each position in the known part of the maze, and returns a shortest path
towards the position with highest score. In each episode, the maze is randomly generated and the
policy samples a new goal when achieving the last goal for 4 times, until achieving all goals or the
environment terminates. We collect 10K trajectories for both MazeRunner-15 and MazeRunner-30.
We sample 50 tasks of different mazes and task goals for test.

C.2 Kitchen

The Kitchen [16] environment is designed to simulate a kitchen scenario for indoor robotics with
several interactive objects. The subtasks used in this paper include activating the bottom bunner,
switching on the light, opening the microwave, sliding the slide cabinet, and opening the hinge cabinet.
The target of each subtask is to adjust the corresponding object to a target pose. The observation
is a 59-dimensional vector, representing positions and velocities of all objects and the 7-DoF robot
arm. The actions are 9-dimensional continuous vectors representing velocities to control the motor
actuators in the robot arm. Each task is defined with a set of n subtasks among the five subtasks and
the order to complete them. The task horizon is set to 500 timesteps. When a subtask is completed in
the correct order, the environment provides a reward of + 1

n . The goal space consists of 5-dimensional
binary vectors representing each subtask in each bit. For the task goal revealed to the agent, bits of the
selected subtasks are set to 1 and other bits are set to 0. Other goals are one-hot vectors representing
the current subtask to complete.

We verified that the Kitchen datasets provided in D4RL [13] do not contain diverse transitions
between the five subtasks. To collect trajectories completing different sets of subtasks, we use PPO
[46] to train a policy for each sub-task using a shaped reward function and varied initial states from
the Kitchen-mixed-v0 dataset [13]. We sample 300 tasks for data collection. In each task, we chain
the policies learned with PPO to sequentially solve subtasks and collect 30 episodes. The whole
dataset consists of 9K trajectories. We sample a test set of 25 tasks, which has no overlap to tasks
used in data collection.

18

C.3 GridWorld

This environment is a 10× 10 grid world with 7 distinct objects at different locations. Each object
has a binary state, which defines a subtask that is completed when the state turned to 1 from the initial
state of 0. The agent observes a 9-dimensional vector representing its location and states of objects.
The discrete action space consists 6 actions: moving to the four directions, flip the object state, and
no operation. Since this environment is a simplified version of Kitchen, tasks and goals are defined
similar to Kitchen’s. The task horizon is 90 in this environment.

We use a rule-based expert policy to collect 13K trajectories and sample a test set of 50 unseen tasks.

C.4 Crafter

Crafter [18] is a research-friendly benchmark mirroring the popular open-world survival game
Minecraft. The 2D world map with infinitely large size is procedurally generated. The observations
are 64× 3 rgb images showing the first-person view of the agent, which contains a 9× 9 part of the
world and the rendered information of inventory and life. The discrete space contains 17 actions,
including movement, attack, tool use, and crafting. There are 22 achievements in the game. When
the agent unlocks each achievement for the first time, it receives a reward of +1. When the agent’s
health increases or decreases by one point, it receives a corresponding reward of +0.1 or −0.1. The
target of the task is to complete all achievements. Different tasks are featured with different generated
world maps, which can be specified with a random seed. Goals are 22 dimensional binary vectors
representing each achievement with each bit. For hindsight relabeling, the task goal is set to the
accomplished achievements in each trajectory. For online test, we set the task goal to all-one to
encourage more achievements. Other goals are one-hot vectors indicating the current achievement to
unlock.

We set the task horizon to 500 steps. We use the policy trained in Achievement Distillation [35] to
collect a dataset of 2K trajectories. We use 50 test task specified with random seeds unused in data
collection. The average episode return in the dataset is 12.3 and our method can increase this to 16 in
online adaptation.

D Training Details

We build our Transformer architecture based on Decision Transformers [8], using a lightweight
backbone of GPT-2 [42] with 0.6M parameters. Input tokens of o, a, and g are transformed into 128-
dimensional embedding vectors using three different linear layers, respectively. We use a positional
embedding that embeds the timestep of each token and adds it to the token embedding, enhancing the
timestep information of inputs. The Transformer then processes the sequence of embeddings and
outputs a sequence with the same dimension and length. We use a linear layer to decode tokens at
positions of the input tokens of observations to predict actions and compute loss. To train on batches
of trajectories, we pad the input prompts and trajectories to lengths of K and H , respectively.

In MazeRunner, we sample prompts from the agent’s locations in the whole trajectory. To augment
the diversity of task goals and trajectory lengths, we truncate the trajectory at a random timestep h
for each sampled trajectory and use oh to represent its task goal. In other environments, goals in
prompts are sampled from the completed subtasks in each trajectory and gH represents the actual set
of subtasks completed at the end of each trajectory.

Table 6 lists the hyperparameters used in pre-training.

All models are trained on a lab machine with a single NVIDIA RTX 4090 GPU and Intel i9 CPUs.
For each environment, the pre-training stage takes about 12 hours.

E Details for Prompt Optimization

E.1 MGPO-UCB and MGPO-BPE

We summarize our proposed prompt optimization algorithm in Algorithm 1.

19

Table 6: Hyperparameters used in pre-training for all environments.

Name Value

Embedding dimension 128
Number of layers 3
Number of attention heads 1
Activation ReLU
Batch size 64
Learning rate 1e-4
Learning rate decay weight 1e-4
Dropout 0.1
Warmup steps 10000

Algorithm 1 Prompt Optimization in MGPO-UCB and MGPO-BPE

Input: pre-trained policy πθ; task goal gM ; interaction budget N
Initialize: prompt buffer B = {(gM) : ∅}; best return R∗ = −∞ and best trajectory τ∗ = ∅
while not exceeding N episodes do

Select p∗ from B with MAB algorithms.
Collect τ and get return R with πθ(a|p∗, h, o).
Update B, R∗, τ∗.
Sample new prompt p′ ∼ τ∗.
Replace the last goal in p′ with gM .
Collect τ and get return R with πθ(a|p′, h, o).
Update R∗, τ∗.
if R > maxp∈B R̄p then

Insert (p′ : {R}) to B.
end if

end while

Here we present the MAB algorithms used in our methods for prompt selection. At each itera-
tion, we have a buffer of prompts B = p, where each prompt p maintains its historical returns
(Rp,1, · · · , Rp,np

). We aim to select a p∗ to collect trajectories of high returns.

UCB: We estimate the upper confidence bound of the expected return for each prompt:

UCB(p) = R̄p + c

√
log(N)

2np
, (3)

where R̄p is the mean return in history, c is a hyperparameter which is set to 1 in our main results,
and N =

∑
p∈B np. The prompt for online exploration is selected with p∗ = argmaxp∈BUCB(p).

BPE: We assume a Gaussian prior distribution N (µ0, σ0) for returns of each prompt. We set
µ0 = 1

2 (Rmin + Rmax) and σ0 = 1
2 (Rmax − Rmin), where Rmin and Rmax are the minimal and

maximal possible returns in the environment, respectively. Given historical returns of each prompt,
we estimate its posterior distribution P̂p(R) = N (R|µp, σp) with a Bayesian approach:

1

σ2
p

=
1

σ2
0

+
np
σ2
Rp

, µp = σ2
p

(
µ0

σ2
0

+
npR̄p
σ2
Rp

)
, (4)

where R̄p is the mean historical return and σRp
is the standard deviation of historical returns. We

select the prompt which has the maximum probability to yield returns exceeding the current highest
return: p∗ = argmaxp∈BP̂p(R > R∗).

20

E.2 GRIPS

GRIPS [40] is a gradient-free, search-based algorithm for prompt optimization. At each iteration, it
performs editing operations on the prompt and evaluates the edited prompts. We implement three
operations to edit the prompt. Add: Randomly sample a goal and insert it into the current prompt at
a random position. Del: Randomly delete a goal in the current prompt. Swap: Randomly select two
goals and swap them in the current prompt.

We initialize the prompt with p0 = (gM) and maintain gM at the last position of the prompt while
editing the preceding goals. In each iteration, we randomly generate n = 5 edited prompts, online
evaluate their performance, and preserve the prompt with the highest return.

We summarize GRIPS in Algorithm 2.

Algorithm 2 GRIPS

Input: pre-trained policy πθ; task goal gM ; interaction budget N ; the number of edited prompts
per iteration n
Initialize: best return R∗ = −∞ and best prompt p∗ = (gM)
while not exceeding N episodes do

Edit p∗ with random operations from {Add, Del, Swap} to generate prompts {pi}ni=1.
Online evaluate each pi with πθ(a|pi, h, o), get return Ri.
i∗ = argmaxiRi.
if Ri∗ > R∗ then
R∗ = Ri∗ , p∗ = pi∗ .

end if
end while

E.3 BBT

BBT [48] is a black-box continuous optimization method for prompt-tuning. We use p = (gM)
to collect a trajectory τ and sample a initial prompt with p0 ∼ τ . In the following iterations, we
optimize z ∈ Rd in a low-dimensional space (d < D, where D is the dimension of prompt) and use a
random projection matrix A ∈ RD×d to project z and add to the initial prompt. Our objective is:

z∗ = argmax
z∈Rd

RAz+p0 , (5)

where R is the expected return of the policy with prompt Az + p0.

BBT uses CMA-ES for optimization. In each iteration t, we sample λ = 10 new vectors z(t+1)

from the multivariate normal distribution z
(t+1)
i ∼ m(t) + σ(t)N (0,C(t)), i = 1, ..., λ, where

m(t) ∈ Rd is the mean vector of the search distribution at iteration t, σ(t) ∈ R+ is a standard
deviation controlling the step length, and C(t) ∈ Rd×d is a covariance matrix that determines the
shape of the distribution. m(t), σ(t), and C(t) are updated to maximize return.

We summarize BBT in Algorithm 3.

Algorithm 3 BBT

Input: pre-trained policy πθ; task goal gM ; interaction budget N ; the population size λ
Initialize: best return R∗ = −∞; best prompt p∗; m(0), σ(0),C(0), and A
Collect an episode τ with p = (gM).
Sample initial prompt p0 ∼ τ .
while not exceeding N episodes do

Sample zi, i = 1, ...λ from the multivariate normal distribution.
Collect τi and get return Ri with πθ(a|Azi + p0, h, o) for each i.
Update R∗ and p∗.
Update m,σ,C with CMA-ES.

end while

21

Table 7: Hyperparameters in BC-finetune.

Name Value

Discount factor γ 0.98
Learning rate α 1e-4
Learning rate decay 1e-4
Batch size n 5

Table 8: Performance of the BC-finetune baseline with different RL algorithms.

Method MazeRunner-15 MazeRunner-30 Kitchen GridWorld Crafter

REINFORCE -2.59 ± 0.24 -44.22 ± 2.75 0.00 ± 0.00 0.06 ± 0.02 0.48 ± 1.09
PPO -3.09 ± 0.12 -43.19 ± 2.97 0.00 ± 0.00 0.04 ± 0.00 1.88 ± 0.19

F Details for Baselines

F.1 BC-finetune

We fix the prompt p = (gM) and finetune the policy parameters using RL algorithms during online
adaptation. We have experimented with the policy gradient method REINFORCE [53] and the modern
actor-critic method PPO [46]. However, we find that both approaches significantly underperform
compared to MGPO. Thus, we only report results using PPO in our main paper. Table 7 lists the
hyperparameters used in our experiments. Table 8 presents the results for BC-finetune using both
REINFORCE and PPO.

F.2 SPiRL and PTGM

These methods pre-trains diverse short-term skills to accelerate online RL by providing temporal
abstractions.

SPiRL [38] pre-trains a skill encoder qµ(z|ht, ot, at:t+k), a skill decoder πθ(at:t+k|ht, ot, z), and
a skill prior pψ(z|ht, ot). qµ and πθ is trained using the framework of conditional variational
autoencoders, while pψ is optimized to match the posterior distribution of qµ. In this approach,
the short term actions at:t+k are encoded into 10-dimensional continuous latent skills z. For each
downstream task, it trains a high-level RL policy πHϕ (z|h, o) with SAC [17]. The policy is regularized
with a KL divergence loss between the policy and the skill prior pψ . Table 9 lists the hyperparameters
used in SPiRL.

Table 9: Hyperparameters in SPiRL.

Hyperparameters Value

Weight for the KL loss 5e-4
Low-level steps 10
Discount factor 0.95
Learning rate 1e-3
Batch size 256
Target network update interval 10

PTGM [60] pre-trains a low-level, goal-conditioned policy πθ(a|g, ht, ot) along with a goal prior
pψ(g|ht, ot). We slightly modify MGPO to implement PTGM. We remove the prompt before the
trajectory and associate each observation with a goal which is obtained via hindsight relabeling. πθ is
optimized via goal-conditioned behavior cloning and pψ is optimized to maximize the log-likelihood

22

of the relabeled goal. In online adaptation, we use the discrete goal space as the high-level action
space. We use DQN [34] to train the high-level policy πHϕ (g|ht, ot). Its architecture is an MLP with 3
layers and hidden layer dimensions of 128. We also incorporate a KL regularization reward between
the policy and the goal prior pψ to accelerate online RL. Table 10 lists the hyperparameters used in
PTGM.

Table 10: Hyperparameters in PTGM.

Hyperparameters Value

Weight for the regularization reward 0.5
Low-level steps 10
Discount factor 0.95
ϵ for ϵ-greedy exploration 0.1
Learning rate 1e-3
Batch size 64
Target network update interval 10

G Comparison with Related Areas

Meta-RL / Offline Meta-RL: Meta-RL approaches [56, 21, 59] typically require access to multiple
trajectories per task and are often limited to short-term tasks due to the challenges of few-shot task
inference. In contrast, our approach focuses on pre-training from task-agnostic, offline datasets and
adapting to long-horizon tasks.

Skill-based RL: Online skill discovery methods [12, 61, 31] primarily focus on learning short-term
skills through online RL. In contrast, our work focuses on offline skill acquisition from diverse,
task-agnostic datasets, as conceptualized in the literature [38, 47, 60]. These methods typically
use hierarchical RL to learn a high-level policy during online adaptation. Our approach differs by
avoiding the inefficiencies of online RL; instead, we utilize a pre-trained Transformer-based policy,
enabling us to streamline the adaptation process through efficient prompt optimization.

H Broader Impacts

This research contributes to the field of pre-training for RL, with the goal of improving the efficiency
of RL agents to learn new tasks. While MGPO offers promising advancements, it also carries inherent
risks such as reward hacking, where agents exploit loopholes in the reward function to achieve
unintended high rewards. This can lead to unsafe or undesirable behaviors, especially in real-world
applications. To mitigate these risks, it is vital to design robust reward functions and incorporate
safety measures during training. Furthermore, the deployment of RL systems, particularly in sensitive
areas like healthcare or autonomous driving, raises significant ethical considerations. Ensuring these
systems are used responsibly is paramount to prevent negative societal impacts.

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contribution and scope is reflected in the introduction and summa-
rized at the end of the introduction.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

24

Justification: No theoretical results.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details of environments, datasets, and methods are presented in Appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

25

Answer: [Yes]

Justification: We have released the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details of experimental settings are provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars for all experimental results, showing the standard devia-
tions across 3 random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details are presented in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our submission conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Discussed in Appendix H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

27

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Papers for the codebase, environments, and datasets are properly cited.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

28

paperswithcode.com/datasets

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Preliminaries
	Problem Formulation
	Transformers and Prompt Optimization

	Method
	Pre-Training Multi-Goal Transformers
	Online Prompt Optimization

	Experiments
	Environments and Datasets
	Baselines and Main Results
	Prompt Optimization Methods
	Ablation Study
	Visualization and Case Study

	Related Work
	Conclusion and Limitations
	Illustrations of MGPO
	Additional Experimental Results
	Learning Curves During Online Adaptation
	Ablation Study on the Maximal Prompt Length
	Ablation Study on Dataset Quality
	Additional Visualization Results

	Details for Environments and Data Collection
	MazeRunner
	Kitchen
	GridWorld
	Crafter

	Training Details
	Details for Prompt Optimization
	MGPO-UCB and MGPO-BPE
	GRIPS
	BBT

	Details for Baselines
	BC-finetune
	SPiRL and PTGM

	Comparison with Related Areas
	Broader Impacts

