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3Max Planck School of Cognition, Leipzig, Germany
{tingke.shen, surabhi.nath, aenne.brielmann, peter.dayan}
@tuebingen.mpg.de

ABSTRACT

The complexity of visual stimuli plays an important role in many cognitive phe-
nomena, including attention, engagement, memorability, time perception and aes-
thetic evaluation. Despite its importance, complexity is poorly understood and
ironically, previous models of image complexity have been quite complex. There
have been many attempts to find handcrafted features that explain complexity,
but these features are usually dataset specific, and hence fail to generalise. On
the other hand, more recent work has employed deep neural networks to predict
complexity, but these models remain difficult to interpret, and do not guide a the-
oretical understanding of the problem. Here we propose to model complexity
using segment-based representations of images. We use state-of-the-art segmen-
tation models, SAM and FC-CLIP, to quantify the number of segments at multiple
granularities, and the number of classes in an image respectively. We find that
complexity is well-explained by a simple linear model with these two features
across six diverse image-sets of naturalistic scene and art images. This suggests
that the complexity of images can be surprisingly simple.

1 INTRODUCTION

The subjective complexity of sensory stimuli plays an important role in many cognitive phenom-
ena, including attention, engagement, memorability, time perception or aesthetic evaluation Kyle-
Davidson & Evans (2023); Sun & Firestone (2021); Van Geert & Wagemans (2020); Palumbo et al.
(2014), and is relevant to a wide range of real-world applications such as advertising, web design,
and computer graphics Pieters et al. (2010); Wu et al. (2016); Reinecke et al. (2013); King et al.
(2020); Ramanarayanan et al. (2008). It is therefore important to understand the factors and mech-
anisms underlying the perception of complexity. Most empirical and theoretical work concerns
artificial or naturalistic images Chikhman et al. (2012); Gartus & Leder (2017); Nath et al. (2023);
Machado et al. (2015); Nagle & Lavie (2020); Guo et al. (2023); the latter are the focus of our work.

There is by now a range of datasets containing human ratings of the complexity of various sub-
categories of naturalistic images—we consider RSIVL (RSIVL-RS1) Corchs et al. (2016), VISC
(VISC-C) Kyle-Davidson et al. (2023), Savoias Saraee et al. (2020) and IC9600 Feng et al. (2022).
Duly, there has then been a number of attempts to predict these ratings, and thereby understand the
computations concerned. Note, though, that these methods have hitherto largely been applied on
their own, separate, datasets, rather than being directly compared. The methods fall into two broad
categories: using either simple (often linear) combinations of handcrafted image features, or mod-
ern convolutional neural networks (CNNs) as predictors or feature extractors. We advocate a middle
ground, revealing an unexpected degree of simplicity in modelling complexity.

For the first category of methods, several qualitative and quantitative image features have been pro-
posed and shown to predict complexity. These include the number and variety of elements, colour,
edge density, file size, Fourier slope, HOG and information-theoretic measures such as entropy and
information gain Van Geert & Wagemans (2020). Corchs et al. compiled 11 measures based on
spatial, frequency and color properties which were combined linearly to fit perceived complexity
ratings on the RSIVL dataset. They found the number of regions, frequency factor and number of
colours received the largest weights Corchs et al. (2016).
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Equally, Kyle-Davidson et al. proposed measures of clutter (see also Olivia et al. (2004); Rosenholtz
et al. (2007); Fan et al. (2017)), entropy and patch-wise symmetry as determinants of complexity,
showing good performance on the VISC dataset.
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Figure 1: Overview of methods. Our complexity model is shown. Images from across 8 different
scenes and art image-sets are passed through 2 segmentation models–SAM, for segmentation, and
FC-CLIP for semantic segmentation. Example images are shown for 4 image-sets, namely RSIVL,
IC9600 scenes, IC9600 paintings and Savoias Supremantism (Sav. Sup.). The outputs of SAM
are shown as Segmented Images, where the detected segments are highlighted, and the outputs of
FC-CLIP are shown as Semantic Image Classes where the image with detected classes and a list of
classes obtained are shown. For clarity, only a subset of classes detected by FC-CLIP are shown
in each image. The predicted segments and class-instances from SAM and FC-CLIP are counted
and the counts are deemed num seg and num class. These two features are then transformed using
square root function. The resulting

√
num seg and

√
num class features are linearly combined to

estimate complexity.

The advantage of hand-crafted features is that they are largely interpretable. However, they are
often dataset-specific, possibly due to the difficulty of evaluating such rather subjectively-defined
measures in general. Perhaps as a result, a large number of these potentially noisy features seem to
be required to predict subjective complexity well.

More recently, it has become popular to exploit the computational capabilities of deep neural net-
works to extract relevant image features. Analysis on Savoias dataset, comprising of 1400 images
across 7 categories showed that activations from intermediate layers of a CNN pretrained on object
or scene recognition correlated best with human complexity ratings Saraee et al. (2020). These au-
thors also compared unsupervised and supervised methods, suggesting that supervision can improve
prediction.

Feng and colleagues built further on this work, first by introducing a large-scale visual complexity
dataset comprising on 9600 images across 8 semantic categories, and then providing a CNN-based
method predicting scores and activation maps Feng et al. (2022). This model achieved high test
performance, outperforming previous methods.

However, although such CNN-based models perform well, and can even generalise competently to
unseen images, they are hard to interpret (as activation maps do not convey much information, and
can also be unreliable Bilodeau et al. (2024)) and do not guide a theoretical understanding of the
problem.

Here, we benefit from both categories of methods. We use modern foundation models Bommasani
et al. (2021) to evaluate particular hand-crafted features in a way that generalizes across many classes
of images. We then combine these features linearly to predict complexity.
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To choose hand-crafted features, we start from the observation that features that fragment images in
meaningful ways tend to estimate complexity relatively well (for example, clutter in Kyle-Davidson
et al. (2023) or the number of regions in Corchs et al. (2016)). We therefore leverage the capabilities
of state of the art (SOTA) image segmentation models to extract relevant segments from the image at
multiple spatial granularities. Such models are the closest existing approximations to how humans
represent scenes for two main reasons: first, the models are trained using a vast amount of annota-
tions from several humans and hence reflect relevant inductive biases, and second, the architecture
of CNNs and transformers are inspired by the human visual processing systems and generalize sur-
prisingly well to unseen images. With the help of such models, we obtain semantically consistent
segments at different spatial granularities relevant to perceptual image processing Epstein & Baker
(2019). We then derive from them the core components of perceived complexity.

With improved quality of feature extraction and evaluation, we make the central observation that
only few features are necessary to predict complexity well, justifying the claim that complexity can
be surprisingly simple.

2 METHOD

We develop a parsimonious model of the perceived complexity of naturalistic images using two
types of segmented features, namely the number of segments, and the number of named classes,
extracted from SOTA segmentation models. Our method is described in Figure 1. We also use an
additional measure called patch-symmetry (borrowed from Kyle-Davidson et al. (2023)) to address
a main failure mode of our model.

2.1 DATASETS

We use 4 freely available naturalistic image datasets with corresponding subjective complexity rat-
ings, namely RSIVL Corchs et al. (2016), containing 49 scene images; VISC Kyle-Davidson et al.
(2023), containing 800 scene images across 12 sub-categories, Savoias Saraee et al. (2020), contain-
ing 1400 images across 7 categories, and IC9600, containing 9600 images across 8 categories Feng
et al. (2022). We use the mean subjective complexity per image across raters (there were between
10 to 26 raters per image across datasets) as ground truth. We restrict to scenes and art image cat-
egories and omit advertisement (Savoias and IC9600) and visualisation (Savoias) categories since
they contain substantial amounts of text. We combine similar image categories within a dataset to
generate 8 image-sets for analysis: (1) RSIVL, containing all RSIVL-RS1 images; (2) Savoias Scenes
(Sav. Scenes), comprising of Savoias scene and object categories; (3) IC9600 Scenes (IC9. Scenes),
comprising of IC9600 scene, object, person, transportation and architecture categories; (4) Savoias
Art (Sav. Art); (5) Savoias Suprematism (Sav. Suprematism); (6) IC9600 Paintings (IC9. Paintings);
(7) VISC, containing all VISC-C images, and lastly (8) Savoias Interior Design (Sav. Int), which is
considered separately as it contains software-generated 3D-rendered images.

2.2 FINDING SEGMENTS USING A FOUNDATIONAL SEGMENTATION MODEL

We extracted segments in images using the SOTA Segment Anything Model (SAM) Kirillov et al.
(2023). SAM detects blobs of segments in an image at different scales. SAM was trained on the
largest public segmentation dataset to date, is capable of zero-shot generalization, and achieves
SOTA performance. Based on pilot studies, we set the spatial granularity parameter points-per-
side to 64. This allowed the network to find finer segments, and correlated well with ground truth
complexity. We set all other parameters of SAM to their default values and evaluated the total
number of detected segments per image (num seg).

2.3 FINDING CLASSES USING OPEN-VOCABULARY SEMANTIC SEGMENTATION

We found the nameable class instances in an image using FC-CLIP Yu et al. (2023). FC-CLIP is an
open-vocabulary panoptic segmentation algorithm that can find multiple instances of each class, and
achieves SOTA performance Yu et al. (2023). We use panoptic semantic segmentation to predict
classes because multi-scale methods like Semantic SAM Chen et al. (2023) produced many false
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positives. We set all parameters of FC-CLIP to default and evaluated the number of detected classes
(including repeated classes) per image (num class).

Table 1: Model performance on 6 image-sets and comparison with previous models. The models
from previous work are classified as being based on either handcrafted features, or Convolutional
Neural Networks (CNNs). * for supervised methods indicate their own test set. Bold indicates the
best model.

RSIVL Sav. IC9. Sav. Sav. IC9
Model Scenes Scenes Art Suprematism Paintings
Handcrafted features

Corchs 1 (10 features) 0.66 0.62 0.70 0.68 0.80 0.53
Corchs 2 (3 features) 0.77 - - - - -
Kyle-Davidson 1 (2 features) 0.68 0.54 0.54 0.55 0.79 0.49

CNNs
Saraee (transfer) 0.72 0.67 0.59 0.55 0.72 0.58
Kyle-Davidson 2 (supervised) 0.50 0.36 0.41 0.30 0.15 0.33
Feng (supervised) 0.83 0.79 0.94* 0.81 0.84 0.93*

Our method√
num seg 0.78 0.65 0.81 0.67 0.89 0.82√
num class 0.70 0.75 0.73 0.56 0.27 0.67√
num seg +

√
num class 0.83 0.78 0.84 0.73 0.89 0.83

Intuitively, FC-CLIP finds the most salient, lower granularity semantic classes in the image while
SAM finds sub-components of these classes at higher granularities. As a result, num seg is larger
than num class for all images.

2.4 LINEAR REGRESSION MODEL

We estimate subjective complexity using multiple linear regression. A preliminary examination
showed that subjective complexity scales roughly linearly with

√
num seg and

√
num class,

hence, we apply a square-root transformation to our features. We used the statsmodels OLS
function in Python to fit multiple linear regression on each image-set. We perform 3-fold cross-
validation M times, where M is larger for smaller image-sets, and report the average Spearman
correlation over all test sets. We compare our models to six baselines from previous work. These
baselines include three handcrafted feature-based baselines—two from Corchs et al. (2016)–Corchs
1, comprising of their 3 best features M8, M5 and M10 (only tested on RSIVL since we were unable
to implement M8 (number of regions) to apply it for other datasets), Corchs 2 comprising of 10
features M1 to M11 (excluding M8) and one baseline from Kyle-Davidson et al. (2023) comprising
of their clutter and patch-wise symmetry measures. The other three are CNN baselines, namely
the supervised method from Kyle-Davidson et al. (2023), the transfer-learning method from Saraee
et al. (2020) and the supervised method from Feng et al. (2022).

3 RESULTS

3.1 EXCELLENT PERFORMANCE ON NATURAL SCENES AND ART

Table 1 shows the performance of our models and baselines for 6 image-sets. We see that our
linear model with

√
num seg and

√
num class attains a Spearman correlation between 0.73 to 0.89

with human complexity judgments across natural scenes and art image-sets. Notably, our model
performs better than all handcrafted feature baselines, the transfer-learning neural network method
from Saraee et al. (2020) and the supervised neural network from Kyle-Davidson et al. (2023).

It performs similarly to the supervised neural network from Feng et al. (2022). The exceptions
are the test datasets from the same paper and Savoias Art. This neural network directly learns a
high-dimensional mapping from image to complexity, thereby discovering features that best predict
complexity in a supervised way. We show that in many cases, this high-dimensional relationship can
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be distilled down to simply the number of segments and named instances in the image. Hence, we
provide evidence that complexity is computable from segmentation features, rather than requiring
features that are explicitly optimized for complexity.

We also compared the full model with versions restricted to just one of the
√

num seg or
√

num class
terms. We see that both terms contribute to the variance explained for all datasets except Savoias
Suprematism, where

√
num class fails to explain additional variance on top of

√
num seg. This is

because Savoias Suprematism contains abstract art images with geometric shapes, and FC-CLIP
fails to find appropriate nameable classes as in its training set. However, for Savoias Suprematism,
the model with only

√
num seg already explains high variance and achieves performance superior to

all other models, suggesting that the number of segments at multiple granularities drives perceived
complexity in images composed of geometrical shapes that lack overt semantics (at least for art-
novice raters).

Figure 2 shows the images with the highest and lowest predicted complexity from each of the 6
image-sets in Table 1. The highest predicted images are those with many entities and hence high√

num seg and
√

num class. The lowest predicted images have only a few entities and hence low
√

num seg and sometimes zero
√

num class.

RSIVL Sav.
Scenes

IC9.
Scenes

Sav.
Art

Sav.
Suprematism

IC9.
Paintings

G: 89 (100),
P: 86 (100),
S: 449 (100),
C: 18 (80)

G: 89 (99),
P: 110 (100),
S: 467 (100),
C: 66 (100)

G: 100 (100),
P: 96 (100),
S: 571 (100),
C: 67 (100)

G: 100 (100),
P: 101 (100),
S: 276 (100),
C: 30 (100)

G: 100 (100),
P: 104 (100),
S: 119 (100),
C: 4 (84)

G: 84 (100),
P: 88 (100),
S: 420 (100),
C: 32 (98)

G: 7 (0),
P: 13 (0),
S: 2 (0),
C: 2 (8)

G: 10 (3),
P: 10 (0),
S: 50 (11),
C: 0 (0)

G: 24 (1),
P: 26 (0),
S: 11 (0),
C: 0 (0)

G: 0 (0),
P: 12 (0),
S: 23 (9),
C: 0 (0)

G: 3 (7),
P: -15 (0),
S: 1 (0),
C: 1 (0)

G: 4 (0),
P: 22 (0),
S: 4 (0),
C: 2 (4)

Figure 2: Images with the highest (top row) and lowest (bottom row) complexity predictions for the
6 image-sets in Table 1. G = ground truth complexity from 0 to 100, P = predicted complexity, S =
num seg, C = num class. Percentiles of the corresponding values are shown in brackets. The highest
predicted images have many entities and hence high num seg and num class. The lowest predicted
images have only a few entities and hence low num seg and sometimes zero num class.

Figure 3 shows the mean and standard deviation of the ground truth subjective complexity for images
for each bin of

√
num seg and

√
num class on an example image-set, IC9600 Scenes. In general, and

as expected, mean ground truth complexity increases with increasing
√

num class and increasing√
num seg (also well-matched to predictions) showing that a complex image is one with both a

large number of segments and classes. The standard deviation of the subjective complexity, which
contributes markedly to the prediction error, is particularly high in the bins with the greatest and
least

√
num class. This suggests that FC-CLIP might over- or under-predict classes. The largest

discrepancies lie in the bin with the highest
√

num seg and the lowest
√

num class. Here, FC-CLIP
often fails to find any nameable segments at all.
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Figure 3: Mean and standard deviation of the ground truth subjective complexity in different bins
of

√
num seg and

√
num class for IC9600 Scenes. Means show that complexity increases with

√
num seg and

√
num class. Standard deviations reveal that FC-CLIP might over- or under-predict

classes.

3.2 FAILURE MODE: SYMMETRY AND STRUCTURE

The statistics of segments and classes at multiple granularities explain most of the variance in the
datasets we tested. However, the structure in the image, i.e., the spatial and functional relationships
between elements is also known to be an important contributor to complexity (Chipman (1977);
Ichikawa (1985), Gestalt theory of perception). Indeed, we find that segment statistics alone are
not enough to adequately explain complexity judgments in two other image-sets: VISC and Savoias
Interior Design. Figure 4 shows an example from each dataset with the highest prediction errors.
In each case, our model over-predicts complexity because SAM finds too many segments without
accounting for the fact that many segments are arranged in a spatial pattern (books in the top row
and windows in the bottom row). Further, num class does not contribute to reducing complexity in
such cases, either because it is also high (since the uniqueness of classes is not accounted for), or
because the weight of the num class term is learned to be low (for example in VISC) We see that
both of these images have high patch-symmetry (defined in Kyle-Davidson et al. (2023)). Figure
5 illustrates a significant, positive correlation between patch-symmetry and model error (prediction
minus ground truth), showing that our model tends to over-predict when the image is more spatially
symmetric, i.e. has more spatial structure. Table 2 shows that when patch symmetry is added as a
feature to the regression, our model improves in Spearman correlation by atleast 0.12, and becomes
competitive with most baselines.

Figure 5: The relationship be-
tween patch-symmetry and pre-
diction error for Sav. Int.
Model overpredicts when patch-
symmetry is high. Linear regres-
sion reveals a significant Pearson
correlation of 0.51.

VISC Sav.
Model Int.
Handcrafted features

Corchs 1 (10 features) 0.62 0.85
Kyle-Davidson 1 (2 features) 0.60 0.74

Neural network
Saraee (transfer) 0.58 0.75
Kyle-Davidson 2 (supervised) - 0.56
Feng (supervised) 0.72 0.89

Our method√
num seg +

√
num class 0.56 0.61√

num seg +
√

num class + patch symm 0.68 0.80

Table 2: Model performance on VISC and Savoias Interior De-
sign (Sav. Int) datasets with and without the patch symmetry
feature, and comparison with previous models. Bold indicates
the best model. When patch symmetry is added to the regres-
sion, our model improves in performance.
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(a) G: 16, P: 56, Symm: 97 (b) num seg: 204 (78.5) (c) num class: 37 (87)

(d) G: 56, P: 83, Symm: 53 (e) num seg: 538 (100) (f) num class: 3 (9.3)

Figure 4: Example image with one of the highest prediction errors from the VISC (top row) and
Sav. Int (bottom row) datasets. From left to right: original image, SAM output, FC-CLIP output.
G = ground truth complexity from 0 to 100. P = predicted complexity. Symm = patch-symmetry
percentile. Percentiles of num seg and num class are also shown in brackets. SAM finds too many
segments and without accounting for structure this leads to overprediction. In the top image, FC-
CLIP also finds high num class. In the bottom image num class is low but num class does not
contribute significantly to the regression for VISC. However, both images have high patch-symmetry.

4 DISCUSSION

We presented a linear model of complexity using two features extracted using SOTA segmenta-
tion neural networks: num seg and num class. Our model outperforms most baselines achieving
a Spearman correlation between 0.73 to 0.89 with subjective complexity ratings across six tested
image-sets of naturalistic scenes and art. As a result, our model provides a simple explanation of
perceived complexity that generalizes across multiple domains and image types. Our results suggest
that segment-based representations are good proxies for the cognitive processes underlying human
judgments of complexity, a result that could be extended to attention, memorability, aesthetic eval-
uation, etc.

Our model performs better than all handcrafted feature-based baselines. A possible reason for this
is that num seg is a significant improvement over previously suggested features for image fragmen-
tation (such as “number of regions” from Corchs et al. (2016)) that approximate the segments in an
image. Further, to our best knowledge, we are the first to exploit named-segments corresponding to
semantic classes to predict complexity, whose count provides an estimate of the number of lower
granularity segments in an image.

Importantly, the segments and classes are both computed by neural networks trained on large
datasets of human annotations. Therefore, the predictions are likely to be semantically meaning-
ful, reflecting not only pixel information but also the annotator’s prior experiences with the contents
of the images in the training set. The annotations and hence segments also encompass multiple
levels of spatial and semantic granularity, capturing contributions to complexity across scales. This
is in contrast to past works that have tried to approximate spatial granularity and semantic variety
using only sliding windows or pyramid scaling of filters Corchs et al. (2016); Kyle-Davidson et al.
(2023; 2022); Guo et al. (2023).

Our model performance was generally comparable to the supervised neural network of Feng et al.
(2022), which was trained on a large dataset to directly predict complexity. The difference in perfor-
mance can be explained by the fact that the neural network potentially utilizes many more than two
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features and conditionally chooses those features based on the context and distribution of images.
However, we have shown that only two features can explain complexity equally well on multiple
datasets and domains, elucidating a simpler view of complexity.

In addition, unlike the CNN models, our model is highly interpretable. As we demonstrate in Figure
4, we can attribute predictions or diagnose failure cases by visually inspecting the outputs of SAM
and FC-CLIP. Also, the contributions of the segments and classes to the complexity score can be
clearly elucidated (as the square root of their counts).

However, our model has limitations. The accuracy of our model depends on the accuracy of the
segments and classes predicted by SAM and FC-CLIP. Currently, SAM is incapable of detecting
thin, “one-dimensional” patterns. FC-CLIP sometimes misses salient classes or repeated classes
(failing to predict any classes for some images outside its training distribution, e.g. images in Sav.
Suprematism) and doesn’t predict nested classes at multiple granularities (e.g. both the “house”
and its “window”). As the SOTA segmentation models improve, we expect the performance and
interpretability of our model to also increase further.

We also addressed the inability of num seg and num class to account for structure in an image
which reduces perceived complexity. We saw that adding patch-symmetry to the regression led to
competitive performance on VISC and Sav. Int image-sets. However, as part of future works, we
aim to build a more parsimonious model using a segment-based feature of structure. For example,
scene-graphs Chang et al. (2021) or generative programs Sablé-Meyer et al. (2022) can be used to
organize the named entities detected by FC-CLIP by their spatial and semantic relationships, and
image complexity can be derived from the complexity of these representations, for example as their
compressibility Mahon & Lukasiewicz (2023); Dehaene et al. (2022); Karjus et al. (2023).

We modeled subjective complexity ratings which was the mean rating across multiple raters. How-
ever, complexity judgments are known to vary across both individuals or groups (age, cultures, etc.)
Gartus & Leder (2017). For the art datasets, the complexity ratings were given by art-novices and
would likely differ significantly from ratings of art-experts Pihko et al. (2011); Bimler et al. (2019).
These individual differences could be caused by differences in the segments people perceive (the re-
gions of an image they consider to be part of the same segment). For example, different individuals
may segment at different granularities. Individual differences can also be caused by the mapping
from the perceived segments to complexity. Explicitly accounting for individual variability using
subject-specific data (for example by fine-tuning the regression or segmentation models) will be an
important part of future work.

In conclusion, we develop a parsimonious and interpretable account of human perceived complexity
in naturalistic images using segmentation-based methods, showing that complexity can be surpris-
ingly simple given the right image representations.

REFERENCES

Blair Bilodeau, Natasha Jaques, Pang Wei Koh, and Been Kim. Impossibility theorems for feature
attribution. Proceedings of the National Academy of Sciences, 121(2):e2304406120, 2024.

David L Bimler, Megan Snellock, and Galina V Paramei. Art expertise in construing meaning of
representational and abstract artworks. Acta psychologica, 192:11–22, 2019.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Xiaojun Chang, Pengzhen Ren, Pengfei Xu, Zhihui Li, Xiaojiang Chen, and Alex Hauptmann. A
comprehensive survey of scene graphs: Generation and application. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):1–26, 2021.

Jiaqi Chen, Zeyu Yang, and Li Zhang. Semantic segment anything. github.com/fudan-zvg/
Semantic-Segment-Anything, 2023.

Valeriy Chikhman, Valeriya Bondarko, Marina Danilova, Anna Goluzina, and Yuri Shelepin. Com-
plexity of images: Experimental and computational estimates compared. Perception, 41(6):631–
647, 2012.

8

github.com/fudan-zvg/Semantic-Segment-Anything
github.com/fudan-zvg/Semantic-Segment-Anything


To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Susan F Chipman. Complexity and structure in visual patterns. Journal of Experimental Psychology:
General, 106(3):269, 1977.

Silvia Elena Corchs, Gianluigi Ciocca, Emanuela Bricolo, and Francesca Gasparini. Predicting
complexity perception of real world images. PloS one, 11(6):e0157986, 2016.

Stanislas Dehaene, Fosca Al Roumi, Yair Lakretz, Samuel Planton, and Mathias Sablé-Meyer. Sym-
bols and mental programs: a hypothesis about human singularity. Trends in Cognitive Sciences,
2022.

Russell A Epstein and Chris I Baker. Scene perception in the human brain. Annual review of vision
science, 5:373–397, 2019.

Zhen Bao Fan, Yi-Na Li, Jinhui Yu, and Kang Zhang. Visual complexity of chinese ink paintings.
In Proceedings of the ACM Symposium on Applied Perception, pp. 1–8, 2017.

Tinglei Feng, Yingjie Zhai, Jufeng Yang, Jie Liang, Deng-Ping Fan, Jing Zhang, Ling Shao, and
Dacheng Tao. Ic9600: A benchmark dataset for automatic image complexity assessment. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

Andreas Gartus and Helmut Leder. Predicting perceived visual complexity of abstract patterns using
computational measures: The influence of mirror symmetry on complexity perception. PloS one,
12(11):e0185276, 2017.

Xiaoying Guo, Lu Wang, Tao Yan, and Yanfeng Wei. Image visual complexity evaluation based
on deep ordinal regression. In Chinese Conference on Pattern Recognition and Computer Vision
(PRCV), pp. 199–210. Springer, 2023.

Shintchi Ichikawa. Quantitative and structural factors in the judgment of pattern complexity. Per-
ception & psychophysics, 38(2):101–109, 1985.
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