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Abstract
The Mamba model has gained significant attention for its computational advantages over Transformer-
based models, while achieving comparable performance across a wide range of language tasks. Like
Transformers, Mamba exhibits in-context learning (ICL) capabilities, i.e., making predictions for
new tasks based on a prompt containing input-label pairs and a query, without requiring fine-tuning.
Despite its empirical success, the theoretical understanding of Mamba remains limited, largely
due to the nonlinearity introduced by its gating mechanism. To the best of our knowledge, this
paper presents the first theoretical analysis of the training dynamics of a one-layer Mamba model,
which consists of a linear attention component followed by a nonlinear gating layer, and its ICL
generalization on unseen binary classification tasks, even when the prompt includes additive outliers.
Our analysis shows that Mamba leverages the linear attention layer to select informative context
examples and uses the nonlinear gating layer to suppress the influence of outliers. By establishing
and comparing to the analysis of linear Transformers under the same setting, we show that although
Mamba may require more training iterations to converge, it maintains accurate predictions even
when the proportion of outliers exceeds the threshold that a linear Transformer can tolerate. These
theoretical findings are supported by empirical experiments.

1. Introduction
Transformer-based large language models (LLMs) [10, 29, 65, 72] have demonstrated remarkable
capabilities across a wide range of language, vision, and reasoning tasks. However, they face effi-
ciency challenges when processing long sequences due to the quadratic time and memory complexity
of the self-attention mechanism with respect to sequence length [20, 26]. To address this, many
efficient alternative architectures have been proposed, including state space models (SSMs) such
as S4 [27, 28] and H3 [21]. Among them, Mamba [26] has attracted significant attention for its
strong empirical performance, linear computational complexity, and hardware-friendly properties that
enable efficient parallelization. These advantages have sparked growing interest in understanding the
mechanism of Mamba and whether it can match or surpass the capabilities of Transformer models.
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One particularly intriguing property of LLMs is in-context learning (ICL) [10, 23], which allows
a pre-trained model to generalize to new tasks without any parameter updates. By simply augmenting
the input with a prompt containing a few labeled examples from the new task, the model can produce
accurate predictions for unseen tasks. While LLMs have demonstrated impressive ICL generalization,
their performance is sensitive to the quality of the context examples [58, 78]. In particular, ICL
performance can degrade significantly in the presence of outliers or adversarial attacks on prompts,
such as data poisoning, resulting in incorrect predictions [6, 34, 42, 67, 76, 85].

Recent empirical work [7, 24, 30, 39, 66, 75] has demonstrated that Mamba can also perform
ICL on function learning and natural language processing tasks. [24, 66] show that Mamba is
competitive with Transformers of similar size in some ICL tasks and outperforms them in settings
with many outliers, such as regression with corrupted examples. On the other hand, studies such as
[7, 39, 66, 75] identify limitations of Mamba in retrieval-based and long-context reasoning tasks.
Despite these empirical insights, several fundamental questions remain open:

Why and how can a Mamba model be trained to perform in-context generalization to new tasks?
How robust is it to outliers? Under what conditions can Mamba outperform Transformers for ICL?

[56] and [57] analyze Mamba-like architectures, e.g., H3 and gated linear attention, and show that
the global minima of the loss landscapes correspond to models whose outputs, when given a prompt,
are equivalent to those of a model performing a weighted preconditioned gradient descent using the
context examples. This serves as the counterpart to the preconditioned gradient descent interpretation
of ICL in Transformers [1]. [41] shows that continuous SSMs can learn dynamic systems in context.
[9] proves that Mamba is expressive enough to represent optimal Laplacian smoothing. However,
these studies do not address whether practical training methods can reliably yield Mamba models
with ICL capabilities, nor do they provide theoretical guarantees for generalization or robustness in
the presence of outliers.

Table 1: Comparison with existing works on theoretical analysis of Mamba-like models.

Theoretical
Works

Standard
Mamba

Mechanism
Analysis

Convergence
Analysis

Generalization
Guarantee

Outliers in
Context

[56] ✓
[57] ✓
[41] ✓
[9] ✓

Ours ✓ ✓ ✓ ✓ ✓

1.1. Major Contributions
This paper presents the first theoretical analysis of the training dynamics of Mamba models and
their resulting ICL performance, including scenarios where context examples in the prompt contain
outliers. We focus on training Mamba on binary classification tasks in which input data consist of
both relevant patterns, which determine the label, and irrelevant patterns, which do not. Additionally,
context inputs may include additive outliers that perturb the labels. While our analysis is based on
one-layer Mamba architectures, this setting aligns with the scope of state-of-the-art theoretical studies
on the training dynamics and generalization of Transformers and other neural networks, which also
typically focus on one-hidden-layer models [50, 56, 57, 82]. Our main contributions are as follows:
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1. Quantitative analysis of ICL emergence and robustness to outliers in Mamba. We charac-
terize the number of context examples and training iterations required for a Mamba model to acquire
ICL capabilities for new tasks that were not present during training. We prove that when trained with
prompts that may contain a finite number of outlier patterns, Mamba can generalize in-context on
new tasks when the context examples contain unseen outliers that are linear combinations of the
training-time outliers. Furthermore, Mamba can maintain accurate ICL generalization even when the
fraction of outlier-containing context examples approaches 1, demonstrating strong robustness.

2. Theoretical comparison between Mamba and linear Transformers. We provide a theoreti-
cal characterization of the convergence and generalization properties of linear Transformers trained
on the same tasks. While linear Transformers may converge faster with smaller batch sizes, they can
only in-context generalize effectively when the fraction of outlier-containing context examples is less
than 1/2, much less than that for Mamba. Moreover, linear Transformers require significantly more
context examples than Mamba to achieve comparable generalization performance. This highlights
Mamba’s superior robustness to a high density of outliers in ICL.

3.Theoretical characterization of the mechanism by which Mamba implements ICL. We
show that the equivalent linear attention mechanism in Mamba selects context examples that share
the same relevant pattern as the query, while the nonlinear gating mechanism suppresses corrupted
examples and applies an exponential decay in importance based on index distance, emphasizing
examples closer to the query. Together, these mechanisms enable Mamba to suppress irrelevant or
corrupted context examples and focus on informative and nearby ones, achieving effective and robust
ICL.

1.2. Related Works
Theoretical Analysis of ICL. Existing theoretical works of ICL primarily focus on Transformer-
based models. [1, 2, 8, 23, 74] illustrate that Transformers can implement many machine learning
algorithms, such as gradient-based methods, via ICL. [14, 36, 50, 77, 82] provably investigate the
training dynamics and generalization of ICL on single/multi-head Transformers. [44, 63, 81] extend
the analysis to learning complicated nonlinear functions by ICL.

Connections Between Mamba and Transformers. [3] finds that Mamba exhibits explainability
metrics comparable to those of Transformers. [20] shows that SSMs and variants of attention
mechanisms share a large intersection and can be viewed as duals of each other. [34] notes a
similarity between the forget gate in Mamba and the positional encodings in Transformers. The
complementary strengths, Mamba’s computational efficiency and Transformers’ ability to capture
global dependencies, have motivated the development of hybrid architectures [32, 45, 79].

Optimization and Generalization of the Attention Architecture. Some other works focus
on the optimization and generalization of attention-based models without nonlinear gating beyond
the ICL setting. [38, 40, 48, 49, 55, 80] study the generalization of one-layer Transformers in
classification tasks by formulating spatial association, key features, or the semantic structure of the
input. [35, 62, 69] investigate the problem in next-token prediction based on the partial order, bigram,
or semantic association assumption. [14, 33] extend the analysis to multi-head attention networks.

2. Problem Formulation
The learning model, Mamba, is proposed in [25]. Given the input U = (u1, · · · ,um) ∈ Rd0×m,
the model outputs oi recursively through the hidden states hi, i ∈ [m]. Starting from h0 = U , a
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one-layer Mamba can be formulated as

hi =hi−1 ⊙ Ãi + (ui1
⊤
m)⊙ B̃i ∈ Rd0×m, ∀i ∈ [m]

oi =hiCi ∈ Rd+1,
(1)

where 1m is an all-ones vector in Rm, B̃i = 1d0(∆iBi)(exp(∆iA) − Im)(∆iA)−1 ∈ Rd0×m,
Bi = u⊤

i W
⊤
B ∈ R1×m with WB ∈ Rm×d0 , Ãi = 1d0diag(exp(∆iA))⊤ ∈ Rd0×m, Ci =

WCui ∈ Rm with WC ∈ Rm×d0 . ⊙ and exp(·) are element-wise product and exponential
operations, respectively. diag(·) : Rd0×d0 → Rd0 outputs the diagonal of the input as a vector.
σ(·) : z ∈ R 7→ (1 + exp(−z))−1 ∈ R is the sigmoid function. According to [25, 31], we select
A = −Im ∈ Rm×m, ∆i = softplus(w⊤ui) = log(1 + exp(w⊤ui)) ∈ R with w ∈ Rd0 . for
simplicity of analysis.

Following the theoretical setup used in recent in-context learning (ICL) analyses [23, 36, 50,
56, 57], we consider training a model on prompts from a subset of tasks to endow it with ICL
capabilities on unseen tasks. This framework is motivated by the observation [15] that although
LLMs are typically trained without supervised labels, natural text often contains implicit input-
output pairs, i.e., phrases following similar templates, that resemble the prompt-query format used
in our setup. Specifically, we consider a set of binary classification tasks T , where for a certain
task f ∈ T , the label z ∈ {+1,−1} of a given input query xquery ∈ Rd is determined by
z = f(xquery) ∈ {+1,−1}. Then, the prompt P for xquery is constructed as

P =

(
x1 x2 · · · xl xquery
y1 y2 · · · yl 0

)
:=(p1,p2, · · · ,pquery) ∈ R(d+1)×(l+1),

(2)

where yi = f(xi), i ∈ [l]. With the prompt P in (2) as the input to the Mamba model in (1) with
m = l + 1 and d0 = d+ 1, the output of one-layer Mamba can be rewritten as

F (Ψ;P ) =e⊤d+1ol+1 =

l+1∑
i=1

Gi,l+1(w)yip
⊤
i W

⊤
BWCpquery,

where Gi,l+1(w) =

{
Πl+1
j=i+1(1− σ(w⊤pj))σ(w

⊤pi), i < l + 1,

σ(w⊤pquery), i = l + 1,

(3)

where ed+1 = (0, · · · , 0, 1)⊤ ∈ Rd+1 and Ψ = {WB,WC ,w} is the set of trainable parameters.
The derivation of (3) can be found in Appendix F.1. From (3), one can observe that a one-layer
Mamba is equivalent to a linear attention layer parameterized by WB and WC followed by a
nonlinear gating layer Gi,l+1(w) for i ∈ [l + 1]. Specifically, WB and WC can be respectively
interpreted as the key and query parameters in a Transformer model. Therefore, a Transformer with
linear attention, commonly studied in the context of ICL [82], can be viewed as a special case of the
formulation in (3) by removing the nonlinear gating, i.e., setting Gi,l+1(w) = 1 for all i ∈ [l + 1].
We adopt this simplified formulation when comparing Mamba and Transformers in Section A.3.

Given N training examples consisting of prompt-label pairs (P n, zn)Nn=1, the model is trained
by solving the empirical risk minimization problem using the hinge loss:

min
Ψ

RN (Ψ) :=
1

N

N∑
n=1

ℓ(Ψ;P n, zn) =
1

N

N∑
n=1

max{0, 1− zn · F (Ψ;P n)}. (4)

4



UNDERSTANDING MAMBA IN IN-CONTEXT LEARNING

Each prompt P n is generated from a distribution D, where the query xnquery and all context inputs xni
are sampled independently, and the associated task fn is drawn from a set of training tasks Ttr ⊂ T .

Training Algorithm: The model is trained using stochastic gradient descent (SGD) with step
size η with batch size B, summarized in Algorithm 1. W

(0)
B and W

(0)
C are initialized such that

the first d diagonal entries of W
(0)
B and W

(0)
C are set as δ ∈ (0, 0.2]. w(0) follows Gaussian

N (0, Id+1/(d+ 1)).
ICL Generalization in the Presence of Outliers: The testing prompt P ′ follows an unknown

distribution D′, which is different from the training prompt P and may contain outliers. Then, the
ICL generalization of the model Ψ is computed as the classification error across all tasks in T ,
including those never appear during the training stage, i.e.,

L0−1
f∈T ,P ′∼D′(Ψ;P ′, z) = Ef∈T ,P ′∼D′

[
1[z · F (Ψ;P ′) < 0]

]
. (5)

3. Main Theoretical Insights
We formulate a class of binary classification tasks where the labels in each task are determined by
two selected relevant patterns. The model is trained on a subset of these tasks using prompts that may
include context examples corrupted by additive outliers. We then evaluate the model’s performance
on unseen tasks, where the prompts can contain outliers not observed during training.

P1. Theoretical Characterization of Learning Dynamics, ICL Generalization, and Robust-
ness to Outliers in Mamba Models. We provide quantitative guarantees that training with prompts
can lead to favorable ICL generalization on unseen tasks, and these results hold even in the presence
of outliers (Theorems 1 and 2). Specifically, if a fraction pa ∈ [0, 1) of the context examples in the
training prompts contain additive outliers, we prove the learned model still generalizes accurately
at test time, as long as the fraction of outliers in the testing prompt, denoted by α, is less than
min{1, pa · ltr/lts} where ltr and lts are the number of examples in the training and testing prompts,
respectively. Notably, the outliers in the test prompt may be previously unseen and can be formed as
almost arbitrary positive linear combinations of a finite set of outlier patterns seen during training.

P2. A Comparison Between Mamba and Linear Transformer Models. We theoretically
analyze the convergence and ICL generalization of a one-layer linear Transformer (Theorems 3
and 4) for comparison. Our results show that linear Transformers require smaller batch sizes, fewer
iterations, and can tolerate larger-magnitude outliers for successful training convergence compared
to Mamba. However, linear Transformers can only generalize well when the test prompt has an
outlier fraction α < 1/2, whereas Mamba could maintain accurate generalization even if α goes to 1.
Moreover, even when both models can achieve ICL, e.g., when α is close to 1/2, linear Transformers
require significantly more context examples to achieve comparable performance. Thus, despite
requiring more effort during training, Mamba models demonstrate superior robustness to outliers
during ICL.

P3. Mechanism of Mamba Models in Implementing ICL. Our analysis shows that the linear
attention layer in Mamba selectively emphasizes context examples that share the same relevant
pattern as the query, while the nonlinear gating layer promotes examples that are both close to the
query and free of additive outliers. This dual mechanism enables the trained Mamba to suppress
irrelevant or corrupted context examples and focus on informative examples close to the query, thus
achieving successful and robust ICL.

The details of main theoretical results and experiments can be found in Appendices A and B.
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4. Conclusion, Limitations, and Future Works
This paper theoretically studies the learning dynamics, ICL generalization, and the robustness to
outliers of Mamba models, together with a characterization of how different components of Mamba
contribute to the ICL mechanism. Our analysis also provides a theoretical comparison between
Mamba and linear Transformer models. Although based on a one-layer Mamba structure on binary
classification tasks, this work provides a deeper theoretical understanding and provable advantages
of Mamba. Future directions include designing general Mamba-based language/multi-modal models.
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Appendix A. Main Theoretical Results

We first summarize insights of our theoretical results in Section 3. Then, we introduce our formu-
lation for analysis in Section A.1. Section A.2 presents the theoretical results of learning for ICL
generalization with Mamba. Section A.3 analyzes linear Transformers for a comparison with Mamba
models. We finally characterize the ICL mechanism by the trained Mamba in Section A.4.

A.1. Data and Tasks Modeling
We follow the definition of tasks in [11, 40, 48]. Specifically, there are M1 relevant patterns {µj}M1

j=1

and M2 irrelevant patterns {νk}M2
k=1 with M1 +M2 < d. All the patterns from {µj}M1

j=1 ∪ {νk}M2
k=1

are orthogonal to each other, with ∥µj∥ = ∥νk∥ = β for j ∈ [M1], k ∈ [M2], and the constant
β ≥ 1. Each input x contains one relevant pattern that determines the label, and one irrelevant
pattern that does not affect the label. We consider a set of binary classification tasks in T where the
binary labels are determined by the relevant patterns. For instance, for a task f that is determined by
(µa,µb), a, b ∈ [M1], the label of xquery is z = 1 (or z = −1) if the input xquery contains µa (or
µb), respectively.

Training Stage: For a given task f , we consider learning with a pa ∈ [0, 1) fraction of examples
containing additive outliers {v∗

r}Vr=1 that can affect the label of corresponding examples in each
prompt, where v∗

s ⊥ µj , v∗
s ⊥ νk for any j ∈ [M1], k ∈ [M2], and s ∈ [V ]. The input of each

context example satisfies

x =

{
µj + κνk + κav

∗
s , with a probability of pa

µj + κνk, with a probability of 1− pa,
(6)

for some s ∈ [V ], where j ∈ [M1] and k ∈ [M2] are arbitrarily selected. κ follows a uniform
distribution U(−K,K) with K ≤ 1/2. v∗

s is uniformly sampled from {v∗
r}Vr=1. No additive outliers

exist in xquery. We then present the definition of training prompts.

Definition 1 (Training prompts) Given a task f ∈ T with µa and µb as the two different decisive
patterns, a training prompt P ∼ D with ltr context examples is constructed as follows.

• xquery follows the second line of (6) with j equally selected from {a, b} and contains no v∗
s .

• Each xi contains µa or µb with equal probability i ∈ [ltr], following (6).

• yi = +1 (or yi = −1) if the relevant pattern of xi is µa (or µb), and xi does not contain any v∗
s .

yi is selected from {+1,−1} with equal probability if xi contains a certain v∗
s for s ∈ [V ].

We include outliers in the training prompt ( pa ≥ 0) to encourage the model to learn to ignore
examples containing outliers. This improves robustness during inference when prompts may also
include such outliers. Our motivation stems from noise-aware training to mitigate data poisoning
or hijacking attacks in ICL [34, 67, 76], where prompts are corrupted with noisy or random labels.
When pa = 0, the setup reduces to the case where training prompts contain no outliers, aligning with
the theoretical setup in [36, 50, 82].

Inference Stage: During inference, we consider that the outliers in the testing prompt can differ
from those in the training prompt in several ways, including their direction, magnitude, and the
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fraction of examples affected. Specifically, the data input during the testing follow

x =

{
µj + κ′νk + κ′av

∗
s
′, with a probability of α

µj + κ′νk, with a probability of 1− α,
(7)

for some v∗
s
′ ∈ V ′, κ′a > 0, and κ′ ∼ U(−K ′,K ′) with K ′ > 1. α ∈ [0, 1) is the probability of

examples containing the testing additive outliers in V ′.

Definition 2 (Testing prompts) Given a task f ∈ T with µa and µb as the relevant patterns, a
testing P ′ ∼ D′ with lts context examples is constructed as follows. each testing query xquery only
follows the second line of (7) without outliers. Each context input xi, i ∈ [lts], follows (7). If xi does
not contain any v∗

s ∈ V ′, then yi = +1 (or yi = −1) if the relevant pattern of xi is µa (or µb). If xi
contains a certain v∗

s ∈ V ′, then yi can be an arbitrary function that maps xi to {+1,−1}.

The testing prompt P ′ differs from the training prompt P in two key aspects. First, the outlier
patterns, the magnitude of the outliers, and the magnitude of the irrelevant patterns can differ from
those in P . While the training prompts include V distinct outlier patterns, the testing prompts may
contain an unbounded number of outlier variations. Second, the labels associated with examples
containing outliers can be generated by any deterministic or probabilistic function. This flexibility
allows our framework to model a wide range of noisy testing prompts in practice. For instance,

Example 1 Consider a data poisoning attack on a text sentiment classification task in [34, 76]. In
one such attack, whenever the phrase “James Bond” is inserted into the example, the label is always
set to positive, regardless of the original sentiment of the input. This illustrates a case where all
examples containing the outlier are deterministically mapped to a targeted label +1.

A.2. Learning, Generalization, and Sample Complexity Analysis of Mamba Models
To enable the model learned from data in training tasks Ttr to generalize well across all tasks in T ,
we require Condition 3.2 from [50] for Ttr. We restate this condition as Condition 1, along with a
construction of a training task set that satisfies it in the Appendix. The high-level idea is that the
training tasks Ttr should uniformly cover all of the relevant patterns and labels appearing in T such
that no bias from the training tasks is introduced to the learning process.

Following [48, 70], we assume the training labels are balanced, i.e.,
∣∣|{n : zn = +1}| − |{n :

zn = −1}|
∣∣ = O(

√
N). Let BT := max{ϵ−2,M1(1 − pa)

−1} · log ϵ−1. We have the following
result.

Theorem 1 (Convergence and Sample Complexity of Mamba) For any ϵ > 0, of (i) B ≳ BM :=
max{BT , β−4V 2κ−2

a (1− pa)
−2 log ϵ−1}, (ii) V β−4 ≲ κa ≲ V β(1− pa)p

−1
a ϵ−1, and (iii)

p−1
a poly(Mκa

1 ) ≳ ltr ≳ (1− pa)
−1 logM1, (8)

then (iv) after
T ≥ TM = Θ(η−1(1− pa)

−1β−2M1) (9)

iterations with η ≤ 1 and using N = BT samples, we have that

L0−1
f∈T ,P∼D(Ψ

(T );P , z) ≤ ϵ. (10)
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Remark 1 Theorem 1 provides the convergence and sample complexity analysis of training a one-
layer Mamba model to enhance its ICL ability. We characterize the sufficient conditions on the batch
size, the magnitude of additive outliers, the prompt length, and the required number of iterations.
The convergent model has desirable generalization on all tasks in T , including those not appearing
in the training data, when the prompt is constructed in the same way as the training data.

Condition (ii) requires that the magnitude of additive outliers be moderate and scale with V . This
ensures that outliers are neither too small to be easily detectable by the model nor excessively large
(i.e., less than Θ(ϵ−1)), which would diminish the influence of relevant patterns. Conditions (iii) and
(iv) show that the required number of context examples in the prompt and the number of iterations
scale as (1− pa)

−1. This implies that a higher fraction of outlier-containing context examples slows
convergence and requires more context examples.

Remark 2 When pa = 0, Theorem 1 reduces to the case where Mamba is trained with prompts that
contain no outliers and serves as the Mamba counterpart to Theorem 3.3 in [50], which addresses
Transformers. Although [36, 50] analyze ICL training without outliers for Transformers, their
analyses do not directly extend to Mamba due to the significant structural differences between the
two architectures. To the best of our knowledge, we are the first to analyze the training dynamics of
Mamba in the ICL setting, under a more general scenario where prompts may contain outliers.

We then study the generalization performance on testing prompts with distribution-shifted additive
outliers using the trained Mamba.

Theorem 2 (ICL Generalization on Distribution-shifted Prompts with Outliers) During the infer-
ence, if (a) the outlier pattern v∗

s
′ belongs to

V ′ =
{
v
∣∣∣v =

V∑
i=1

λiv
∗
i ,

V∑
i=1

λi ≥ L > 0, ∥v∥ = 1
}
, (11)

(b) the outlier magnitude κ′a ∈ [κa,Θ(V βpa
−1κ−1

a L−1(1 − pa)ϵ
−1)], (c) α < min(1, paltr/lts),

and (d) the number of context examples

α−1poly(Mκa
1 ) ≳ lts ≳ (1− α)−1 logM1, (12)

then for testing prompt P ′ defined by Definition 2, the trained model Ψ(T ) satisfies

L0−1
f∈T ,P ′∼D′(Ψ

(T );P ′, z) ≤ ϵ. (13)

Remark 3
Theorem 2 shows that the model trained under Theorem 1 generalizes well and remains robust

when tested on prompts containing a signification fraction of unseen distribution-shifted outliers.
Each additive outlier in the test prompt can be expressed as a linear combination of the V training
outlier patterns, with coefficients summing to a positive value (Condition (a)). This formulation
captures a wide range of possible outlier patterns at test time. Notably, the fraction of examples
with outliers α in the test prompt is less than min(1, paltr/lts), which can be close to 1 if the prompt
length is selected in a way such that paltr/lts ≥ 1 (Condition (c)). Thus, Mamba can be trained to
maintain ICL generalization in the presence of a large fraction of outlier examples.
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Conditions (b) and (d) impose mild requirements on the outlier magnitude and the context length,
respectively. Condition (b) requires that the magnitude of test-time outliers be at least as large as
that of the training outliers. Condition (d) ensures that the context prompt is sufficiently long to
include enough clean examples for correct prediction, while also imposing an upper bound on the
total number of outliers.

A.3. Theoretical Results for Linear Transformers and A Comparison with Mamba Models
In this section, we compare Mamba with linear Transformer, where the Transformer model is
formulated by setting the nonlinear gating Gi,l+1(w) = 1 in (3) for i ∈ [l + 1], as discussed in
Section 2. Such a comparison can help understand the impact of the nonlinear gating on model
training, in-context generalization, and robustness. 1.

Theorem 3 (Convergence and Sample Complexity for Transformer) As long as (i) B ≳ BT , (ii)
κa ≲ V B(1− pa)p

−1
a ϵ−1, (iii)

ltr ≳ (1− pa)
−2pa logM1, (14)

then (iv) after
T ≥ TT = Θ(η−1(1− pa)

−1β−2l−1
tr M1) (15)

iterations with η ≤ 1 and N = BT samples, we have that

L0−1
f∈T ,P∼D(Ψ

(T );P , z) ≤ ϵ. (16)

Remark 4
Theorem 3 characterizes the sufficient conditions for the convergence and generalization of train-

ing a one-layer Transformer with linear attention using prompts containing outliers as formulated by
Definition 1. Comparing conditions (i)-(iv) with those in Theorem 1 on Mamba models, one can see
that, to achieve a ϵ generalization error, linear Transformers need a smaller batch size, a smaller
number of training iterations, and a less restrictive requirement for the magnitude of additive outliers.
To see this, Theorem 1 indicates that the required batch size for Mamba models is at least BM , which
is defined as the larger of value BT and another constant, while the required batch size for linear
Transformers is BT . The required number of training iterations for Mamba is TM , which equals
Θ(ltr) · TT , and that is larger than that for linear Transformers, TT , by a scaling of Θ(ltr) > 1. The
conditions for κa for Mamba and Transformer models share the same upper bound, but κa has an
extra lower bound for Mamba.

Theorem 4 (Generalization using Transformers) During the inference, if (a) in Theorem 2, (b)
κ′a ≤ Θ(V βpa

−1(1− pa)κ
−1
a L−1ltrϵ

−1), (c) α ∈ [0, 1/2), and (d) the number of context examples

lts ≳ max{Θ((1− α)−1),Θ((
1

2
− α)−2α)} logM1, (17)

then the trained model Ψ(T ) satisfies

L0−1
f∈T ,P ′∼D′(Ψ

(T );P , z) ≤ ϵ. (18)

1. The comparison is made between sufficient conditions for the desired generalization. Given the consistent training
setup and analytical tools used, we still believe this is a fair comparison with the main insights validated empirically in
Section B.1. Although providing necessary conditions would lead to a more rigorous comparison, we leave this as
future work due to its technical difficulty.
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Remark 5
Theorem 4 establishes the conditions under which a Transformer model, trained according

to Theorem 3, can generalize effectively on testing prompts with possible outliers, as defined in
Definition 2. In contrast to Theorem 2 for Mamba, the Transformer guarantees generalization only
when the outlier fraction satisfies α < 1/2, whereas Mamba can remain robust when α goes to 1
(Condition (c)). This highlights that Mamba achieves better in-context generalization performance
in the presence of distribution-shifted additive outliers, particularly when outlier-containing context
examples are in the majority. This conclusion is consistent with the empirical findings of [66], which
observed that Mamba outperforms Transformers in many-outlier regression tasks.

A.4. The Mechanism of Mamba in implementing ICL
We next examine the mechanism by which the trained Mamba model from Theorem 1 performs ICL
on prompts containing additive outliers. This analysis provides deeper insights into the differences
between Mamba and Transformer models. We begin by showing, in Corollary 1, that the linear
attention of the learned Mamba model assigns greater weight to context examples that share the same
relevant pattern as the query.

Corollary 1
Let N1 ⊆ [lts] denote the index sets of context examples that share the same relevant pattern as

the query xquery. Then, for the model trained by Theorem 1 after T ≥ TM iterations in (9), we have
with a high probability, for P ′ defined by Definition 2,∑
i∈N1

p̃⊤
i W

(T )
B

⊤
W

(T )
C p̃query ≥ Θ(1);

∑
i∈[lts]\N1

p̃⊤
i W

(T )
B

⊤
W

(T )
C p̃query ≤ Θ((1− pa)

−1ϵ). (19)

Remark 6
Corollary 1 illustrates that for the testing prompt P ′, the learned Mamba model will let the

attention scores be concentrated on examples with the same relevant pattern as the query, i.e., the
sum of these attention scores will increase to be larger than Θ(1), while the sum of attention score
on examples with other different relevant pattern from the query is upper bounded by a small order
of (1− pa)

−1ϵ. This enforces the model to focus on examples with the same relevant pattern as the
query when making the prediction.

Corollary 1 reveals an insight similar to the “induction head” mechanism [13, 64, 68] observed
in softmax attention layers for ICL. However, our result is established in the context of linear attention,
suggesting that different attention variants may share fundamentally similar internal mechanisms.

We then show that the nonlinear gating mechanism in Mamba models enables ICL by effectively
ignoring context examples containing outliers and focusing on those that are closer to the query.

Corollary 2
For the trained model by Theorem 1 after T ≥ TM iterations in (9), we have that with a high

probability, for p̃i that contain a v∗
s
′ ∈ V ′,

Gi,lts+1(w
(T )) ≤ O(poly(M1)

−1). (20)

Denote h(j) ∈ [lts] (j ≤ lts) as the index of context example that is the j-th closest to the query and
does not contain any v∗

s
′ ∈ V ′. Then, with a high probability, we have

Gh(j),lts+1(w
(T )) ≥ Θ(1/2j−1). (21)

17



UNDERSTANDING MAMBA IN IN-CONTEXT LEARNING

Remark 7
Corollary 2 indicates that the nonlinear gating function Gi,lts+1(w

(T )) serves two main purposes:
(i) filtering out examples containing additive outliers and (ii) inducing a local bias, as observed
in [31], that focuses on examples near the query. Specifically, (20) unveils that on examples with
outliers, Gi,lts+1(w

(T )) is close to 0, effectively suppressing their influence. (21) shows that for
clean examples, the nonlinear gating values decay exponentially with the distance (in index) from the
query. Hence, combing Corollaries 1 and 2, one can see that the model primarily relies on examples
that are close to the query, do not contain outliers, and share the same relevant pattern as the query
for prediction, resulting in desirable ICL performance even in the presence of outliers.

Corollary 2 characterizes the role of the nonlinear gating layer, Mamba’s key structural difference
from the Transformer. This distinction explains their performance gap: while nonlinear gating makes
Mamba more challenging to optimize, it also enables Mamba to suppress outlier-containing examples
more effectively, resulting in superior robustness when handling prompts with many outliers.

Appendix B. Experiment
We generate synthetic data following Section A.1. Let d = 30, M1 = 6, M2 = 10, V = 3. For
generalization with unseen outliers, let v∗

1
′ = 0.7v∗

1 +0.6v∗
2 − 0.4v∗

3 , v∗
2
′ = 0.4v∗

1 +0.7v∗
2 − 0.6v∗

3 ,
v∗
3
′ = −0.7v∗

1 + 0.5v∗
2 + 0.5v∗

3 , with L = 0.3. lts = ltr = 20. Let δ = 0.2, β = 3, κa = 2. The
experiments are conducted on a single NVIDIA RTX A5000 GPU.

B.1. Comparison of One-Layer Mamba and Linear Transformer on ICL with Outliers
The learning model is a one-layer Mamba defined in (3) and a one-layer single-head Transformer by
making Gi,l+1(w) = 1 for i ∈ [l + 1]. We set pa = 0.6. We consider three types of outlier-relevant
labeling functions during inference. If the context examples in a given prompt P′ contains any
additive outlier, the corresponding context label will be (A) flipped, (B) mapping to one targeted label
out of {+1,−1}, or (C) randomly chosen from {+1,−1} with equal probability. Figure 1 shows
that under three different forms of outliers, the classification error of Mamba is smaller than 0.01
even when α is close to 0.8. In contrast, the classification error of linear Transformers is large as
long as α > 1/2. This is consistent with Remark 5: the linear transformer can tolerate at most a 1/2
fraction of outliers in the prompt, whereas Mamba can tolerate a fraction of outliers close to that
seen during training, which can be close to 1.

(A) (B) (C)
Figure 1: ICL classification error of Mamba and linear Transformer against α with different prompt outliers. (A) Label
flipping. (B) Targeted labeling. (C) Random labeling.

B.2. The ICL Mechanism of Multi-Layer Mamba
The learning model is a three-layer Mamba and a three-layer single-head linear Transformer. pa = 0.4.
Figure 2 shows the first-layer attention scores in the testing prompt. The sum of attention scores on
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the examples that share the same pattern as the query is significantly larger than that on examples
with other patterns, and this gap increases during training. This verifies Corollary 1. Figure 3 shows
that the first-layer gating values with α = 0.3 of outlier-containing examples are very small (red
bars), while those of clean examples are relatively large and exhibit an approximately exponential
decay with increasing distance from the query (green bars). This is consistent with (20) and (21) in
Corollary 2. The results of attention scores and gating values in the other two layers exhibit the same
trend as the first layer and are shown in Section C in Appendix due to the space limit.

Next, we study the impact of the positions of context examples with α = 0.5. Table 2 presents
the ICL performance under three different placements of outlier examples: all positioned farthest
from the query (FQ), closest to the query (CQ), or at random positions (R). We find that Mamba
is highly sensitive to the position of outliers, whereas the linear Transformer (LT) is much less
affected. This is because, when outliers are placed close to the query, the clean examples that share
the same pattern as the query are pushed farther away, and the gating values on these examples decay
exponentially according to (21), thereby degrading ICL performance.

Figure 2: The summation of 1st-layer
attention scores on examples with the
same or a different relevant pattern as
the query.

Figure 3: The 1st-layer gating value
of examples with (red) or without
(green) additive outliers.

Mamba LT

FQ 99.84% 78.52%
R 99.04% 78.28%
CQ 73.28% 78.60%

Table 2: ICL accuracy of 3-layer
Mamba and linear Transformers (LT)
with different example arrangement.

Appendix C. Additional Experiments, Related Works, and the Algorithm

We first show the visualization result of the second and the third linear attention and nonlinear gating
layers of the three-layer Mamba analyzed in Section B.2. The conclusions in Figures 4 and 5 are
aligned with Figures 2 and 3, respectively.

(A) (B)
Figure 4: The summation of attention scores in the 2nd and 3rd layers.

We then introduce other related theoretical works on optimization and generalization of neural
networks in this section. Some works [22, 47, 54, 83, 86] study the generalization of neural networks
using the model recovery framework by investigating the local convexity around a ground truth
parameter of the problem. The neural-tangent-kernel (NTK) analyses [4, 5, 12, 16, 37, 46, 71] study
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(A) (B)
Figure 5: The gating values of examples with or without outliers in the 2nd and 3rd layers.

this problem in the overparameterized setting to linearize the neural network around the initialization,
with the resulting generalization performance irrelevant to the feature distribution. Another line of
works [11, 17–19, 43, 48, 51–53, 59, 60, 70, 84] studies the generalization of neural networks by
formulating data that contains discriminative and unimportant features. Our analysis in this work is
aligned with the last framework to probe the generalization of Mamba and Transformers.

We next present the training algorithm introduced in Section 2.

Algorithm 1 Training with Stochastic Gradient Descent (SGD)

1: Hyperparameters: The step size η, the number of iterations T , batch size B.
2: Initialization: W (0)

B and W
(0)
C are initialized such that the first d diagonal entries of W (0)

B and
W

(0)
C are set as δ ∈ (0, 0.2]. w(0) ∼ N (0, Id+1/(d+ 1)).

3: Training by SGD: For each iteration, we independently sample P ∼ D, f ∈ Ttr to form a
batch of training prompt and labels {P n, zn}n∈Bt as introduced in Section A.1. Each relevant
pattern is sampled equally likely in each batch. For each t = 0, 1, · · · , T − 1 and W (t) ∈ Ψ(t),

W (t+1) = W (t) − η · 1

B

∑
n∈Bt

∇W (t)ℓ(Ψ(t);P n, zn). (22)

4: Output: W
(T )
B , W (T )

C , w(T ).

Appendix D. Key Lemmas

We first present Table 3 for a summary of notations used in the proof.

Lemma 1 (Multiplicative Chernoff bounds, Theorem D.4 of [61]) Let X1, · · · , Xm be independent
random variables drawn according to some distribution D with mean p and support included in
[0, 1]. Then, for any γ ∈ [0, 1p − 1], the following inequality holds for p̂ = 1

m

∑m
i=1Xi:

Pr(p̂ ≥ (1 + γ)p) ≤ e−
mpγ2

3 , (23)

Pr(p̂ ≤ (1− γ)p) ≤ e−
mpγ2

2 . (24)

Definition 1 [73] We say X is a sub-Gaussian random variable with sub-Gaussian norm K > 0,
if (E|X|p)

1
p ≤ K

√
p for all p ≥ 1. In addition, the sub-Gaussian norm of X, denoted ∥X∥ψ2 , is

defined as ∥X∥ψ2 = supp≥1 p
− 1

2 (E|X|p)
1
p .
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Table 3: Summary of Notations

Notations Annotation
Ãi, B̃i, Ci Parameters in Mamba.
σ(·) sigmoid function.
xn
s , yns xns is the input data for classification. yns is the label for xns .

P n, zn P n is a prompt that consists of the query and l pairs of
examples of xns and yns , s ∈ [l]. zn ∈ {+1,−1} is the
binary label of pnquery.

F (Ψ;P n), ℓ(Ψ;P n, zn) F (Ψ;P n) is the model output for P n with Ψ as the parame-
ter. ℓ(Ψ;P n, zn) is the loss function given the input P n and
the corresponding label zn.

L0−1
f∈T ,P ′∼D′(Ψ;P ′, z) The classification error of Ψ given P ′ ∼ D′ as the input and

f ∈ T .
µj , νk µj and νk are the relevant and irrelevant patterns in the data

formulation.
M1, M2 M1 is the number of relevant patterns. M2 is the number of

irrelevant patterns.
v∗
s , v∗

s
′, κa, κ′

a v∗
s , s ∈ [V ] is the additive outlier for training. v∗

s
′ is the

additive outlier for testing. κa and κ′a are the magnitudes of
outliers in training and testing.

pa, α pa is the probability of examples containing additive outliers
in training prompts. α is the probability of examples contain-
ing outliers in testing prompts.

Bb Bb is the SGD batch at the b-th iteration. lts is the prompt
length of the testing data.

ltr, lts ltr is the prompt length of the training data. lts is the prompt
length of the testing data.

O(), Ω(), Θ() We follow the convention that f(x) = O(g(x)) (or Ω(g(x)),
Θ(g(x)))) means that f(x) increases at most, at least, or in
the order of g(x), respectively.

≳, ≲ f(x) ≳ g(x) (or f(x) ≲ g(x) ) means that f(x) ≥ Ω(g(x))
(or f(x) ≲ O(g(x))).

Lemma 2 ([73] Proposition 5.1, Hoeffding’s inequality) Let X1, X2, · · · , XN be independent
centered sub-gaussian random variables, and let K = maxi ∥Xi∥ψ2 . Then for every a =
(a1, · · · , aN ) ∈ RN and every t ≥ 0, we have

Pr
(∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t
)
≤ e · exp

(
− ct2

K2∥a∥2

)
, (25)

where c > 0 is an absolute constant.
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Lemma 3 For any j ̸= j′, j′′ ∈ [M1], k ̸= k′ ∈ [M2], and s ∈ [V ], j′′ where µj and µj′′

form a training task, and j′ where µj and µj′ does not form a training task, we have that for
W ∈ {WB,WC}, if B ≳ max{(1− pa)

−1M1 log ϵ
−1, (1− pa)

−2 log ϵ−1},

−(µ⊤
j , 0

⊤)η ·
t+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W (b)
(µ⊤

j , 0
⊤)⊤ ≳ η(t+ 1)

1

M1
(1− pa)β, (26)

∣∣∣(v∗
s
⊤, 0⊤)η ·

t+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W (b)
(µ⊤

j , 0
⊤)⊤

∣∣∣ ≤ ηβ(t+ 1)paκa
M1V

·
√

logB

B
, (27)

−(µj′
⊤, 0⊤)η ·

t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
B

(µ⊤
j , 0

⊤)⊤ = 0, (28)

−(µj′′
⊤, 0⊤)η ·

t+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W (t)
(µ⊤

j , 0
⊤)⊤ ≤ −η(t+ 1)

1

M1
(1− pa)β, (29)

∣∣∣− (νk
⊤, 0⊤)η ·

t+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W (b)
(µ⊤

j , 0
⊤)⊤

∣∣∣ ≤ η(t+ 1)β

M1M2

√
logB

B
, (30)

∣∣∣− (µj
⊤, 0⊤)η ·

t+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W (b)
(ν⊤
k , 0

⊤)⊤
∣∣∣ ≤ η(t+ 1)β

M1M2

√
logB

B
, (31)

∣∣∣− (νk
⊤, 0⊤)η ·

t+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W (b)
(ν⊤
k , 0

⊤)⊤
∣∣∣ ≤ η(t+ 1)β

M2

√
logB

B
, (32)

∣∣∣− (νk′
⊤, 0⊤)η ·

t+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W (b)
(ν⊤
k , 0

⊤)⊤
∣∣∣ ≤ η(t+ 1)β

M2
2

√
logB

B
. (33)

Lemma 4 When t ≲ min{η−1β−2κ−1
a (1− pa)

−1V, η−1M
2
3
1 β

− 2
3κ

− 1
3

a (1− pa)
−1V

1
3 }, as long as

l ≳ (1− pa)
−1 log ϵ−1, (34)

B ≳ β−4κ−2
a (1− pa)

−2V 2 log ϵ−1, (35)

we have that for any s ∈ [V ],

v∗
s
⊤w(t) ≲ −ηβ2tκa(1− pa)

V
− η

t∑
i=1

i2(
η2(1− pa)

3β2

M2
1

)
κa
V

, (36)

(µ⊤
j , 0

⊤)w(t) = Θ

(
−η(1− pa)β

2(t)

M1
−

t−1∑
i=1

i2 · (η
3(1− pa)

3β2

M3
1

)

)
. (37)

For ps that does not contain any v∗
o , o ∈ [V ], and pr that contains a v∗

o , o ∈ [V ], r ̸= s, we have

−η(1− pa)β
2t

M1
−

t∑
i=1

i2 · (η
3(1− pa)

3β2

M3
1

) ≲ w(t)⊤ps < 0, (38)

w(t)⊤pr ≲ −ηtβ2κa(1− pa) < w(t)⊤ps < 0. (39)
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Lemma 5 When t ≳ η−1(1− pa)
−1β−2M1 and κa ≳ V β−4, we have

w(t)⊤pi ≲ − logM1, (40)

for pi that contains a v∗
s , s ∈ [V ], and

w(t)⊤pi ≳ −Θ(1). (41)

for pi that does not contain any v∗
s , s ∈ [V ].

Lemma 6 When t ≲ min{η−1β−2κ−1
a (1 − pa)

−1V, η−1M
2
3
1 ((1 − pa)β)

− 2
3 (κa(1 − pa))

− 1
3V

1
3 },

we have
l∑

i=1

Gi,l+1(w
(t))(l − i+ 1) ≤ Θ(1). (42)

Condition 1 (Condition 3.2 of [50]) For any given j ∈ [M1] and either label +1 or −1, the number
of tasks in Ttr that map µj to that label is |Ttr|/M1(≥ 1).

We introduce a construction of Ttr that satisfies Condition 1 as follows. Let the i-th task function
(i ∈ [M1 − 1]) in Ttr map the queries with µi and µi+1 as the relevant patterns to +1 and −1,
respectively. The M1-th task function maps µM1 and µ1 to +1 and −1, respectively. We can easily
verify that such a Ttr satisfies Condition 1 in this case.

Appendix E. Proof of Main Theorems

E.1. Proof of Theorem 1

Proof We know that there exists gradient noise caused by imbalanced patterns in each batchTherefore,
by Hoeffding’s inequality (25), for any W ∈ Ψ,

Pr

∥∥∥ 1

|Bb|
∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
− E

[
∂ℓ(Ψ;P n, zn)

∂W

] ∥∥∥ ≥
∣∣∣E [∂ℓ(Ψ;P n, zn)

∂W

]
ϵ

 ≤ e−Bϵ
2 ≤ ϵ,

(43)
if B ≳ ϵ−2 log ϵ−1. Combining (35), we require

B ≳ max{β−4κ−2
a (1− pa)

−2, ϵ−2,M1(1− pa)
−1} · log ϵ−1. (44)

When t ≥ T = Θ(η−1(1− pa)
−1β−2M1), we have that for W ∈ {WB,WC} and any j ∈ [M1],

(µ⊤
j , 0

⊤)W (T )(µ⊤
j , 0

⊤)⊤

=(µ⊤
j , 0

⊤)(W (0) − η ·
T∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W (b)
)(µ⊤

j , 0
⊤)⊤

≳1,

(45)
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where the last step comes from (26) in Lemma 3. Then, for pi that shares the same pattern as the
query, we have

p⊤
i W

(T )
B

⊤
W

(T )
C pquery ≳β2(1 + κa1[pi contains any v∗

s ]) + 1− (1− pa)
−1ϵβ−1/M2

− (1− pa)
−1paκaV

−1β−1ϵ1[pi contains any v∗
s ],

(46)

as long as ϵ ∈ (0, 1). (1 − pa)
−1ϵ/M2 comes from the correlation between µj and νk, ν∗ and

between νk and ν∗, and B ≳ ϵ−2 log ϵ−1. For pi that shares a different pattern that does not form a
training task from the query, with a high probability, we have

p⊤
i W

(T )
B

⊤
W

(T )
C pquery ≤ (1− pa)

−1ϵβ−1/M2 + (1− pa)
−1paκaV

−1β−1ϵ1[pi contains any v∗
s ].

(47)
Meanwhile, for pi that contains a v∗

s , s ∈ [V ], we have

Gi,l+1(w
(T )) ≤ σ(w(T )⊤pi) ≲ O(poly(Mκa

1 )−1), (48)

by Lemma 5. We have that for the pi∗ that does not contain any v∗
s , s ∈ [V ] and is the closest to the

query, by Lemma 5,

Gi∗,l+1(w
(T )) ≳(1− 1

poly(Mκa
1 )

)lpaσ(w(T )⊤pi∗)

≳(1− lpa
poly(Mκa

1 )
)σ(w(T )⊤pi∗)

≳(1− lpa
poly(Mκa

1 )
).

(49)

Hence, for P with z = +1, with a high probability, we have

F (Ψ(T ),P )

≳(1− (1− pa)
−1ϵ/M2 − (1− pa)

−1paκaV
−1β−1ϵ) ·

ltr(1−pa)−1∑
i=1

(1

− max
pi contains no v∗

s

{σ(w(T )⊤pi)})i−1 · min
pi contains no v∗

s

{σ(w(T )⊤pi)}

≳
(1− (1−maxpi contains no v∗

s
{σ(w(T )⊤pi)})ltr(1−pa)) ·minpi contains no v∗

s
{σ(w(T )⊤pi)}

maxpi contains no v∗
s
{σ(w(T )⊤pi)}

>Θ(1) · (1− 1

M1
)

>1,

(50)

where the second to last step holds if p−1
a poly(Mκa

1 ) ≳ ltr ≳ (1 − pa)
−1 logM1 and for pi that

contains no v∗
s , σ(w(T )⊤pi) ∈ (0, 1/2). Similarly, we can also derive that for P with z = −1, we

have
F (Ψ(T ),P ) < −1. (51)
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Then, we study in-domain generalization. By (43), for any given testing prompt embedding P
with z = +1, we have that with a high probability of 1− ϵ,

F (Ψ(T );P ) ≥ 1− ϵ, (52)

and if z = −1,
F (Ψ(T );P ) ≤ −1 + ϵ. (53)

Therefore,
L0−1
xquery∼D,f∈T (Ψ

(T );P , z) ≤ ϵ. (54)

E.2. Proof of Theorem 2

Proof
By Lemma 3, we have that for any j ∈ [M1] and k ̸= k′ ∈ [M2],

(νk
⊤, 0⊤)W (T )(µj

⊤, 0⊤)⊤ ≲
ϵ(1− pa)

−1β−1

M2
, (55)

(µj
⊤, 0⊤)W (T )(νk

⊤, 0⊤)⊤ ≲
ϵ(1− pa)

−1β−1

M2
, (56)

(νk
⊤, 0⊤)W (T )(νk

⊤, 0⊤)⊤ ≲
ϵ(1− pa)

−1β−1M1

M2
. (57)

(νk
⊤, 0⊤)W (T )(νk′

⊤, 0⊤)⊤ ≲
ϵ(1− pa)

−1β−1M1

M2
2

. (58)

Meanwhile, we have that for v∗
s
′ ∈ V ′ with v∗

s
′ =

∑V
i=1 λiv

∗
s ,

(v′
s
∗⊤

, 0⊤)W (T )(µj
⊤, 0⊤)⊤ ≲ ϵ(1− pa)

−1paκaV
−1β−1 · L. (59)

Therefore, we have that for pi that shares the same pattern as the query,

p⊤
i W

(T )
B

⊤
W

(T )
C pquery ≳ 1− ϵ(1− pa)

−1 · 1

M2
− ϵ(1− pa)

−1paV
−1κaβ

−1 · κ′aL. (60)

For pi that shares a different pattern from the query, we have

|p⊤
i W

(T )
B

⊤
W

(T )
C pquery| ≲ ϵ(1 + (1− pa)

−1/M2 + (1− pa)
−1paV

−1κaβ
−1 · κ′aL). (61)

Meanwhile, for pi that contains a v∗
s
′ ∈ V ′, we have

Gi,l+1(w
(T )) ≤ σ(w(T )⊤pi) ≲ O(poly(Mκ′a

1 )−1), (62)
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by Lemma 5. We have that for the pi∗ that does not contain any v∗
s
′ ∈ V ′ and is the closest to the

query, by Lemma 5,

Gi∗,l+1(w
(T )) ≳(1− 1

poly(Mκ′a
1 )

)ltsασ(w(T )⊤pi∗)

≳(1− ltsα

poly(Mκ′a
1 )

).

(63)

Hence, for P ′ with z = +1, with a high probability, we have

F (Ψ(T ), g(P ))

≥(1− (1− pa)
−1ϵ/M2 − ϵ(1− pa)

−1paV
−1κaβ

−1 · κ′aL) ·
lts(1−α)−1∑

i=1

(1

− max
pi contains no v∗

s∈V ′
{σ(w(T )⊤pi)})i−1 · min

pi contains no v∗
s∈V ′

{σ(w(T )⊤pi)}

≥Θ((1− (1− pa)
−1ϵ/M2 − ϵ(1− pa)

−1paV
−1κaβ

−1 · (κa + κ′aL− κa))

· (1− ltsα

poly(Mκ′a
1 )

))

=Θ((1− ϵ(1− pa)
−1paV

−1κaβ
−1 · (κ′aL− κa))(1−

ltrpa
poly(Mκa

1 )
)

· (1−

ltsα

poly(Mκ′a
1 )

− ltrpa
poly(Mκa

1 )

1− ltrpa
poly(Mκa

1 )

))

≥Θ(1− ϵ(1− pa)
−1paV

−1κaβ
−1 · (κ′aL− κa)− (

ltsα

poly(Mκ′a
1 )

− ltrpa
poly(Mκa

1 )
))

≥1− (ϵ(1− pa)
−1paV

−1κaβ
−1 · (κ′aL− κa) +

ltsα

poly(Mκ′a
1 )

− ltrpa
poly(Mκa

1 )
),

(64)

where we consider the worst-case order that makes all examples that contain v∗
s
′ ∈ V ′ right before

the query, such that there is a scaling of 1 − ltsα

poly(Mκ′a
1 )

in the second step. The trained model

still selects examples with the same pattern as the query no matter whether there is a certain v′
s
∗

added to the token if κ′a ≲ V βpa
−1(1 − pa)κ

−1
a L−1ϵ−1. Then, flipping the labels of examples

with any of v′
s
∗ can change the model output the most. If lts ≤ α−1poly(Mκa

1 ), κa ≤ κ′a ≤
Θ(L−1(κa+V βpa

−1(1−pa)κ
−1
a ϵ−1)), α ≤ min{1, pa ·ltr/lts}, we have that that with a probability

of 1− logM1,
F (Ψ(T ), g(P )) > 0 (65)

Therefore, we can derive that

L0−1
xquery∼D,f∈T (Ψ

(T );P , z) ≤ ϵ. (66)
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E.3. Proof of Theorem 3

Proof
By the Chernoff bound of Bernoulli distribution in Lemma 1, we can obtain that for any n and

s ∈ [V ],

Pr

(
1

l

l∑
i=1

1[pni contains µa and no any v∗
s ] ≤ (1− c)(1− pa)

1

2

)
≤ e−lc

2 (1−pa)
2 = ϵ, (67)

for some c ∈ (0, 1). Hence, with a high probability,

l ≳ (1− pa)
−1 log ϵ−1. (68)

We know that there exists gradient noise caused by imbalanced patterns in each batchTherefore, by
Hoeffding’s inequality (25), for any W ∈ {WQ,WK},

Pr

∥∥∥ 1

|Bb|
∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
− E

[
∂ℓ(Ψ;P n, zn)

∂W

] ∥∥∥ ≥
∣∣∣E [∂ℓ(Ψ;P n, zn)

∂W

]
ϵ

 ≤ e−Bϵ
2 ≤ ϵ,

(69)
if B ≳ ϵ−2 log ϵ−1. Therefore, we require

B ≳ max{ϵ−2, (1− pa)
−1M1} log ϵ−1. (70)

Let Gi,l+1(w
(T )) = 1 for any i ≤ l + 1. Following the proof in Theorem 1, we have that when

T ≥ Θ(η−1(1− pa)
−1l−1

tr β−1M1), (71)

we have
F (Ψ(T ),P ) ≳(1− (1− pa)

−1ϵ/M2 − (1− pa)
−1paκaV

−1β−1ϵ)

>1.
(72)

Therefore, by Lemma 1,

L0−1
xquery∼D,f∈T (Ψ

(T );P , z)

≲Pr(
1

l

l∑
i=1

1[pi with the same pattern as pquery but a flipped label] >
1

2
)

=Pr(
1

l

l∑
i=1

1[pi with the same pattern as pquery but a flipped label]− pa
2

>
pa
2

· 1− pa
pa

)

≤e−l(1−pa)
2pa

≤ϵ,

(73)

if l ≥ (1− pa)
−2pa log ϵ

−1.
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E.4. Proof of Theorem 4

Proof By setting Gi,l+1(w
(T )) = 1 for any i ≤ l + 1, we have for any j ∈ [M1], k′ ̸= k ∈ [M2]

(νk
⊤, 0⊤)W (T )(µj

⊤, 0⊤)⊤ ≲
ϵβ−1(1− pa)

−1l−1
tr

M2
, (74)

(µj
⊤, 0⊤)W (T )(νk

⊤, 0⊤)⊤ ≲
ϵβ−1(1− pa)

−1l−1
tr

M2
. (75)

(νk
⊤, 0⊤)W (T )(νk

⊤, 0⊤)⊤ ≲
ϵβ−1(1− pa)

−1l−1
tr M1

M2
. (76)

(νk′
⊤, 0⊤)W (T )(νk

⊤, 0⊤)⊤ ≲
ϵβ−1(1− pa)

−1l−1
tr M1

M2
2

. (77)

Meanwhile, we have that for v∗
s
′ ∈ V ′ with v∗

s
′ =

∑V
i=1 λiv

∗
s ,

(v′
s
∗⊤

, 0⊤)W (T )(µ′
j
⊤
, 0⊤)⊤ ≲ ϵβ−1(1− pa)

−1paκaV
−1l−1

tr κ′aL. (78)

Therefore, we have that for pi that shares the same pattern as the query,

p⊤
i W

(T )
B

⊤
W

(T )
C pquery ≳ 1− ϵ · β

−1(1− pa)
−1l−1

tr

M2
− ϵ(1− pa)

−1β−1paκaV
−1l−1

tr Lκ′a. (79)

For pi that shares a different pattern from the query, we have

|p⊤
i W

(T )
B

⊤
W

(T )
C pquery| ≲ ϵ(1+β−1(1−pa)

−1l−1
tr /M2+(1−pa)

−1β−1paκaV
−1l−1

tr κ′aL). (80)

Therefore, the trained model still selects examples with the same pattern as the query no matter
whether there is a certain v′

s
∗ added to the token if κ′a ≲ V βpa

−1(1 − pa)κ
−1
a L−1ltrϵ

−1. Then,
flipping the labels of examples with any of v′

s
∗ can change the model output the most. With α < 1/2,

we can derive that

L0−1
xquery∼D,f∈T (Ψ

(T );P , z)

=Pr(
1

lts

lts∑
i=1

1[pi with the same pattern as pquery but a flipped label]− α

2
>

α

2
·
1
2 − α

α
)

≤e−lts(
1
2
−α)2α

≤ϵ,

(81)

as long as

lts ≥ max{Θ((1− α)−1),Θ((
1

2
− α)−2α)} log ϵ−1. (82)
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E.4.1. PROOF OF COROLLARY 1

Proof The first part of (19) comes from (46) since β ≥ 1 is a constant. The second part of (19)
comes from (47) plus κaV −1β−1 ≥ β−5 with β ≥ 1 as a constant order.

E.4.2. PROOF OF COROLLARY 2

Proof (20) comes from (62) plus κ′a ≥ Θ(1). (21) is derived as follows. By (63), we have

Gh(1),lts+1(w
(T )) ≥ Θ(1). (83)

Then, combining (39) and (20), we have that if ps does not contain any outliers,

1− σ(w(T )⊤ps) ≥
1

2
. (84)

Then, with a high probability

Gh(j),lts+1(w
(T )) ≥Gh(j),lts+1(w

(T )) · 1

2j−1
· (1−Θ(poly(M1)

−1))ltsα ·Θ(1)

≥ Θ(
1

2j−1
).

(85)

Appendix F. Proof of Supportive Lemmas

F.1. Derivation of (3)

Proof
By formulation in Section 2, we have

Ãi =1d0diag(exp(∆iA))⊤

=1d0diag(e−Il+1∆i)⊤

=1d0diag(e−Il+1 log(1+e
w⊤xi ))⊤

=1d01l+1(
1

1 + ew⊤xi
)⊤

=1d01
⊤
l+1(1− σ(w⊤xi)) ∈ Rd0×(l+1), σ(·) : sigmoid function

(86)

B̃i =1d0(∆iBi)(exp(∆iA)− I)(∆iA)−1

=1d0Bi(Il+1
1

1 + ew⊤xi
− Il+1)(−Il+1)

=1d0σ(w
⊤xi)Bi

:=siBi ∈ Rd0×(l+1),

(87)
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with si = 1d0σ(w
⊤xi). Therefore,

hi =hi−1 ⊙ Ãi + (pi1
⊤
l+1)B̃i

=hi−1 ⊙ Ãi + (pi ⊙ si)Bi

=(hi−2 ⊙ Ãi−1 + (pi−1 ⊙ si)Bi−1)⊙ Ãi + piBi

=hi−2 ⊙ Ãi−1 ⊙ Ãi + (pi−1 ⊙ si)Bi−1 ⊙ Ãi + (pi ⊙ si)Bi

= · · ·

=h0 ⊙ Ã1 ⊙ · · · ⊙ Ãi +
i∑

j=1

(pj ⊙ sj)Bj ⊙ Ãj+1 · · · ⊙ Ãi + (pi ⊙ si)Bi

=

i∑
j=1

(pj ⊙ sj)Bj ⊙ (Ãi ⊙ · · · ⊙ Ãj+1) + (pi ⊙ si)Bi,

(88)

Then, given WC ∈ R(l+1)×d0 , we have

oi =hiCi

=hiWCpi

=

i∑
j=1

(pj ⊙ sj)Bj(Ãi ⊙ · · · ⊙ Ãj+1)WCpi + (pi ⊙ si)BiWCpi

=
i∑

j=1

pjp
⊤
j W

⊤
B

i∏
k=j+1

(1− σ(w⊤pk)) · σ(w⊤pj)WCpi + pjp
⊤
i W

⊤
B σ(w⊤pi)WCpi

:=
i∑

j=1

Gj,i(w)pjp
⊤
j W

⊤
BWCpi,

(89)

where

Gj,i(w) :=

{∏i
k=j+1(1− σ(w⊤pj))σ(w

⊤pj), if j < i

σ(w⊤pi), if j = i,
(90)

with σ(·) as the sigmoid function. Therefore, we can obtain (3), i.e.,

F (Ψ;P ) = e⊤d+1ol+1 =

l+1∑
i=1

Gi,l+1(w)yip
⊤
i W

⊤
BWCpquery. (91)

F.2. Proof of Lemma 3

Proof (a) When F (Ψ;P n) ∈ (−1, 1) for some n ∈ [N ], we have

∂ℓ(Ψ;P n, zn)

∂WC
=− zn

l∑
i=1

Gn
i,l+1(w)yni WBp

n
i p

n
query

⊤. (92)
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When t = 0, we know that with high probability,

|w(0)⊤xj | ≲ ξ =
1

d+ 1
, (93)

|σ(w(0)⊤xj)−
1

2
| ≲ |1− e±ξ|

2(1 + e±ξ)
≲ ξ. (94)

Then,
1

2l+2−i (1− ξ(l + 2− i)) ≤ Gn(0)
i,l+1(w) ≲

1

2l+2−i (1 + ξ(l + 2− i)). (95)

Let the IDR pattern of µnquery be µj , j ∈ [M1]. Note that 1
2 · pa fraction of examples correspond to

µj with poisoned labels. For different f , yf∗ = 1 or −1 with 1/2 probability. By Lemma 1, we have
for any i ∈ l,

Pr
( 1

|Bb|
∑
i∈Bb

1[xni contains µj and no v∗
s ]− (1− pa) ≤ − c

M1
(1− pa)

)
≲ e

−B(1−pa)
M1 ≤ ϵ,

(96)
for some c ∈ (0, 1) and ϵ > 0 if

B ≳ (1− pa)
−1M1 log ϵ

−1. (97)

By (25), let B′
b = {i : i ∈ Bb,xni contains µj and ν∗

s , s ∈ [V ]}we have

Pr
(∣∣∣ 1

|B′
b|
∑
i∈B′

b

(1[yni = zn]− 1[yni = −zn])
∣∣∣ ≥√ logB

B

)
≤ M−C

1 , (98)

for some c ∈ (0, 1) and C > 1. Therefore, we have

− (µ⊤
j , 0

⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
C

(µ⊤
j , 0

⊤)⊤

=(µ⊤
j , 0

⊤)
η

|Bb|
∑
n∈Bb

zn
l∑

i=1

Gn
i,l+1(w

(0))yni W
(0)
B pni p

n
query

⊤(µ⊤
j , 0

⊤)⊤

· 1[xni does not contain any v∗
s ] + (µ⊤

j , 0
⊤)

η

|Bb|
∑
n∈Bb

zn
l∑

i=1

Gn
i,l+1(w

(0))

· yni W
(0)
B pni p

n
query

⊤(µ⊤
j , 0

⊤)⊤1[xni contains any v∗
s ]

≳η · 1

2M1
(1− pa)

l∑
i=1

Gn
i,l+1(w

(0))β − η · 1

2M1

l∑
i=1

Gn
i,l+1(w

(0))βpa

√
logB

B

≥η
1

4M1
(1− pa)β(1− ξl),

(99)

where the last step holds if
B ≳ (1− pa)

−2 log ϵ−1. (100)
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For µj′ , j′ ̸= j, that does not form a task in the training set, we have

−(µj′
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
C

(µ⊤
j , 0

⊤)⊤ = 0 (101)

For µj′′ , j′′ ̸= j, that forms a task in the training set, we have

− (µj′′
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
C

(µ⊤
j , 0

⊤)⊤

=(µ⊤
j′′ , 0

⊤)
η

|Bb|
∑
n∈Bb

zn
l∑

i=1

Gn
i,l+1(w

(0))yni W
(0)
B pni p

n
query

⊤(µ⊤
j , 0

⊤)⊤

≲− η · 1

4M1
(1− pa)β(1− ξl).

(102)

For νk, νk′ with k, k′ ∈ [M2], we have

∣∣∣− (νk
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
C

(µ⊤
j , 0

⊤)⊤
∣∣∣ ≤ ηβ

M1M2

√
logB

B
, (103)

∣∣∣− (µj
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
C

(ν⊤
k , 0

⊤)⊤
∣∣∣ ≤ ηβ

M2M1

√
logB

B
. (104)

∣∣∣− (νk′
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
C

(ν⊤
k , 0

⊤)⊤
∣∣∣ ≤ ηβ

M2
2

√
logB

B
. (105)

∣∣∣− (νk
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
C

(ν⊤
k , 0

⊤)⊤
∣∣∣ ≤ ηβ

M2

√
logB

B
. (106)

Since that for xni that contains ν∗
s for a certain s ∈ [V ],

Pr(yni = zn) = Pr(yni = −zn) =
1

2
, (107)

we have ∣∣∣(ν∗
s
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
C

(µ⊤
j , 0

⊤)⊤
∣∣∣

=
∣∣∣(ν∗

s
⊤, 0⊤)

η

|Bb|
∑
n∈Bb

zn
l∑

i=1

Gn
i,l+1(w

(0))yni W
(0)
B pni p

n
query

⊤(µ⊤
j , 0

⊤)⊤
∣∣∣

≤ηβpaκ∗
M1V

·
√

logB

B
,

(108)
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Suppose that the conclusion holds when t = t0. Then, when t = t0 + 1, we have

− (µ⊤
j , 0

⊤)η ·
t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
C

(µ⊤
j , 0

⊤)⊤

=(µ⊤
j , 0

⊤)

t0+1∑
b=1

η

|Bb|
∑
n∈Bb

zn
l∑

i=1

Gn
i,l+1(w

(b))yni W
(b)
B pni p

n
query

⊤(µ⊤
j , 0

⊤)⊤

≳η ·
t0+1∑
b=1

1

2M1
(1− pa)

l∑
i=1

Gn
i,l+1(w

(t0))β

≳η(t0 + 1)
1

M1
(1− pa)β.

(109)

The last step holds since
∑l

i=1G
n
i,l+1(w

(t0)) ≳ 1. Similarly, we have that for any s ∈ [V ],

∣∣∣(ν∗
s
⊤, 0⊤)η ·

t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
C

(µ⊤
j , 0

⊤)⊤
∣∣∣ ≤ ηβ(t0 + 1)paκ∗

M1
·
√

logB

B
, (110)

For µj′ , j′ ̸= j, that forms a task in the training set, we have

−(µj′
⊤, 0⊤)η ·

t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
C

(µ⊤
j , 0

⊤)⊤ = 0 (111)

For µj′′ , j′′ ̸= j, that forms a task in the training set, we have

− (µj′′
⊤, 0⊤)η ·

t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
C

(µ⊤
j , 0

⊤)⊤

≤(µj
⊤, 0⊤)η ·

t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
C

(µ⊤
j , 0

⊤)⊤.

(112)

For νk, νk′ with k ̸= k′ ∈ [M2], we have

∣∣∣− (νk
⊤, 0⊤)η ·

t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
C

(µ⊤
j , 0

⊤)⊤
∣∣∣ ≤ η(t0 + 1)β

M1M2

√
logB

B
, (113)

∣∣∣− (µj
⊤, 0⊤)η ·

t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
C

(ν⊤
k , 0

⊤)⊤
∣∣∣ ≤ η(t0 + 1)β

M1M2

√
logB

B
, (114)

∣∣∣− (νk
⊤, 0⊤)η ·

t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
C

(ν⊤
k , 0

⊤)⊤
∣∣∣ ≤ η(t0 + 1)β

M2

√
logB

B
, (115)

∣∣∣− (νk′
⊤, 0⊤)η ·

t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
C

(ν⊤
k , 0

⊤)⊤
∣∣∣ ≤ η(t0 + 1)β

M2
2

√
logB

B
, (116)
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Then, we complete the induction.
(b) We then characterize the gradient updates of WB . We have that when F (Ψ;P n) ∈ (−1, 1) for
some n ∈ [N ],

∂ℓ(Ψ;P n, zn)

∂WB
=− zn

l+1∑
i=1

Gn
i,l+1(w)yiWCpqueryp

⊤
i . (117)

We also use induction to complete the proof. Similar to the analysis of WC , we have that when
t = 0,

− (µ⊤
j , 0

⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
B

(µ⊤
j , 0

⊤)⊤

=(µ⊤
j , 0

⊤)
η

|Bb|
∑
n∈Bb

zn
l∑

i=1

Gn
i,l+1(w

(0))yni W
(0)
C pnqueryp

n
i
⊤(µ⊤

j , 0
⊤)⊤

≳η · 1

2M1
(1− pa)

l∑
i=1

Gn
i,l+1(w

(0))β − η · 1

2M1

l∑
i=1

Gn
i,l+1(w

(0))βpa

√
logB

B

≥η
1

4M1
(1− pa)β(1− ξl).

(118)

For µj′ , j′ ̸= j, that does not form a task in the training stage, we have

−(µj′
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
B

(µ⊤
j , 0

⊤)⊤ = 0. (119)

For µj′′ , j′′ ̸= j, that forms a task in the training stage, we have

−(µj′′
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
B

(µ⊤
j , 0

⊤)⊤ ≤ −η · 1

4M1
(1− pa)β(1− ξl). (120)

For νk, νk′ with k ̸= k′ ∈ [M2], we have

∣∣∣− (νk
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
B

(µ⊤
j , 0

⊤)⊤
∣∣∣ ≤ ηβ

M1M2

√
logB

B
, (121)

∣∣∣− (µj
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
B

(ν⊤
k , 0

⊤)⊤
∣∣∣ ≤ ηβ

M1M2

√
logB

B
. (122)

∣∣∣− (νk
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
B

(ν⊤
k , 0

⊤)⊤
∣∣∣ ≤ ηβ

M2

√
logB

B
. (123)

∣∣∣− (νk′
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
B

(ν⊤
k , 0

⊤)⊤
∣∣∣ ≤ ηβ

M2
2

√
logB

B
. (124)
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We also have that for any s ∈ [V ],∣∣∣(ν∗
s
⊤, 0⊤)η · 1

|Bb|
∑
n∈Bb

ℓ(Ψ(0);P n, zn)

∂W
(0)
B

(µ⊤
j , 0

⊤)⊤
∣∣∣ ≤ ηβpaκ∗

M1V
·
√

logB

B
, (125)

Therefore, the conclusions hold when t = 0. Suppose that the conclusions also hold when t = t0.
Then, when t = t0 + 1, we have

− (µ⊤
j , 0

⊤)η ·
t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
B

(µ⊤
j , 0

⊤)⊤

≳η ·
t0+1∑
c=1

1

2M1
(1− pa)

l∑
i=1

Gn
i,l+1(w

(t0))β

≳η(t0 + 1)
1

M1
(1− pa)β.

(126)

For µj′ , j′ ̸= j, that does not form a task in the training set, we have

−(µj′
⊤, 0⊤)η ·

t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
B

(µ⊤
j , 0

⊤)⊤ = 0 (127)

For µj′′ , j′′ ̸= j, that forms a task in the training set, we have

− (µj′′
⊤, 0⊤)η ·

t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)
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For νk, νk′ with k ̸= k′ ∈ [M2], we have∣∣∣− (νk
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B
, (129)

∣∣∣− (µj
⊤, 0⊤)η ·
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√
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B
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∣∣∣− (νk
⊤, 0⊤)η ·
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1
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√
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B
. (131)
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√
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B
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We also have that for any s ∈ [V ],∣∣∣(ν∗
s
⊤, 0⊤)η ·

t0+1∑
b=1

1

|Bb|
∑
n∈Bb

ℓ(Ψ(b);P n, zn)

∂W
(b)
B

(µ⊤
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B
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F.3. Proof of Lemma 4

Proof When F (Ψ;P n) ∈ (−1, 1) for some n ∈ [N ],
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∂
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(134)
When t = 1, we have

w(1) =w(0) − η

|B1|
∑
n∈B1

∂ℓ(Ψ;P n, zn)

∂w(0)
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⊤
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(135)
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For pni that contains a v∗
s , the corresponding yni is consistent with zn with a probability of 1/2. Given

Hoeffding’s bound (25), this part generates a gradient update as∥∥∥ η

|B1|
∑
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⊤
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≤η

√
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(136)

by (95) and
∑l

i=1
l
2l

≤ 2. Then, with a high probability, for s ∈ [V ], ξ = 1/(d+ 1),
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∗
s
⊤pni )
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√
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1
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1
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V

≲− ηβ2κa(1− pa)

V
.

(137)

The second step comes from (95) and the fact that

Pr
(∣∣∣ 1

l|B1|
∑
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l∑
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∑
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for some c ∈ (0, 1), and
Bl ≥ (1− pa)

−2 log ϵ−1 (139)

by Lemma 2 since pni contains v∗
s with a probability of pa/V . The last step holds with a high

probability if
B ≳ β−4κ−2

a (1− pa)
−2V 2 log ϵ−1. (140)

We can also derive that for any j ∈ [M1],
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√
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η
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2
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(141)
The second step of (141) comes from the fact that
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(∣∣∣ 1
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≲e−lB(1−pa)2c2

≤M−C
1

(142)

for some c ∈ (0, 1), C > 1, and
Bl ≥ (1− pa)

−2 log ϵ−1 (143)

by Lemma 2 since pni does not contain any v∗
s with a probability of 1− pa.
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The last step of (141) holds if B ≳ β−4 and ξ ≲ 1
M1

. Similarly, we also have
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Hence, the conclusion holds when t = 1. Meanwhile, for any k ∈ [M2],
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√
logB

B
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Suppose that the conclusion holds when t = t0 for t0 ≲ min{η−1β−2κ−1
a (1−pa)
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1 β
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For another pnr , r ̸= s, that contains a v∗

s , s ∈ [V ],

w(t0)⊤pnr ≲ t0 · (0− ηβ2κa(1− pa)) < w(t0)⊤pns < 0. (147)

Then, with a high probability, we have for any s ∈ [V ],
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(148)
where the last step is by (109) and (126). Following our proof idea in the case of t = 1, we have that
for pni that contains a v∗

s , s ∈ [V ], the corresponding yni has a probability of 1/2 to be both binary
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labels. Then, by Hoeffding’ bound (25), we have∥∥∥ η
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where the fourth step follows the idea of (138) since

Gn
i,l+1(w

(t0))(l − i+ 1) ≤ Θ(1), (151)
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for any i ∈ [l] and n ∈ Bb. The last step of (150) follows from
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where the last step holds if
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The second step of (154) comes from (146) and
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v∗
s
⊤w(t0+1)

≤− ηβ2t0κa(1− pa)

V
− η

t0−1∑
i=1

i2(
η2(1− pa)

3β2

M2
1

)
κa
V

+ η

√
logB

B
− η(β2

+
η2t20(1− pa)

2β2

M2
1

) · κa(1− pa)

V

=− ηβ2(t0 + 1)κa(1− pa)

V
− η

t0∑
i=1

i2(
η2(1− pa)

3β2

M2
1

)
κa
V

+ η

√
logB

B

≲− ηβ2(t0 + 1)κa(1− pa)

V
− η

t0∑
i=1

i2(
η2(1− pa)

3β2

M2
1

)
κa
V

,

(158)

41



UNDERSTANDING MAMBA IN IN-CONTEXT LEARNING

where the last step holds given (140) and t0 ≲ min{η−1β−2κ−1
a (1− pa)

−1V, η−1M
2
3
1 β

− 2
3κ

− 1
3

a (1−
pa)

−1V
1
3 }. We can also derive that for any j ∈ [M1],

(µ⊤
j , 0

⊤)w(t)

≤ξ +
η

M1

√
logB

B
− η(1− pa)β

2t0
M1

−
t0−1∑
i=1

i2 · (η
3(1− pa)

3β2

M3
1

)− η

|B1|
∑
n∈Bb

l∑
pn
i does not contain any v∗

s

(β2 +
η2t20(1− pa)

2β2

M2
1

)Gn
i,l+1(w

(t0)) · (
l+1∑
s=i+1

σ(w(t0)⊤pns )

· (µ⊤
j , 0

⊤)pns − (1− σ(w(t0)⊤pni ))(µ
⊤
j , 0

⊤)pni )

≲ξ +
η

M1

√
logB

B
− η(1− pa)β

2t0
M1

−
t0−1∑
i=1

i2 · (η
3(1− pa)

3β2

M3
1

)− η

|B1|
∑
n∈Bb

l∑
i=1

(β2

+
η2t20(1− pa)

2β2

M2
1

) ·Gn
i,l+1(w

(t0))(l − i+ 1) · (1− pa)

M1

≲ξ +
η

M1

√
logB

B
− η(1− pa)β

2t0
M1

−
t0−1∑
i=1

i2 · (η
3(1− pa)

3β2

M3
1

)− η
(1− pa)

M1
(β2

+
η2t20(1− pa)

2β2

M2
1

)

≲ξ +
η

M1

√
logB

B
− η(1− pa)β

2(t0 + 1)

M1
−
t0−1∑
i=1

i2 · (η
3(1− pa)

3β2

M3
1

)

− η(1− pa)

M1
(
η2t20(1− pa)

2β2

M2
1

)

≲− η(1− pa)β
2(t0 + 1)

M1
−

t0∑
i=1

i2 · (η
3(1− pa)

3β2

M3
1

),

(159)

42



UNDERSTANDING MAMBA IN IN-CONTEXT LEARNING

where the second step of (159) follows the second step in (141) using Lemma 2. Meanwhile,
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where the second step is by Lemma 6. Therefore, we complete the induction.

F.4. Proof of Lemma 5

Proof
Let

t0 = Θ(η−1(1− pa)
−1β−2M1). (161)

(a) We first prove that for any s ∈ [V ],

(v∗
s
⊤, 0⊤)w(t) ≤ Θ(− log(2 + tγ1)) (162)

for some γ1 > 0 by induction. When t = min{η−1β−2κ−1
a (1 − pa)

−1V, η−1M
2
3
1 β

− 2
3κ

− 1
3

a (1 −
pa)

−1V
1
3 }, we have

(v∗
s
⊤, 0⊤)w(t) ≲ −Θ(1) ≤ Θ(− log(2 + η−1β− 2

3κ
− 1

3
a M

2
3
1 (1− pa)

−1V
1
3γ1)) (163)

by Lemma 4 for any γ1 > 0, since that 1 + η−1β− 2
3κ

− 1
3

a M
2
3
1 (1− pa)

−1V
1
3γ1 ≥ Θ(1) and γ1 > 0.

Therefore, (162) holds when

t = min{η−1β−2κ−1
a (1− pa)

−1V, η−1M
2
3
1 β

− 2
3κ

− 1
3

a (1− pa)
−1V

1
3 }. (164)

Suppose that when t ≤ t2 with t2 > min{η−1β−2κ−1
a (1−pa)

−1V, η−1M
2
3
1 β

− 2
3κ

− 1
3

a (1−pa)
−1V

1
3 }

and t2 ≤ t0, the conclusion still holds. Then, when t = t2 + 1, we have

(v∗
s
⊤, 0⊤)w(t) ≲− log(2 + t2γ1)−

η(1− pa)κa
V

(β2 +
η2t22(1− pa)

2β2

M2
1

) · 1

1 + elog(2+t2γ1)

=− log(2 + t2γ1)−
η(1− pa)κa

V
(β2 +

η2t22(1− pa)
2β2

M2
1

) · (3 + t2γ1)
−1

≲− log(2 + (t2 + 1)γ1),
(165)
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where the last step comes from the following.
(i)

η(1− pa)β
2κa

V
(3 + t2γ1)

−1 ≳ log(1 +
γ1

2 + t2γ1
)

= log(2 + (t2 + 1)γ1)− log(2 + t2γ1),

(166)

where the first step is from
γ1 ≤ η(1− pa)β

2. (167)

(ii)

η3
(1− pa)

3κa
M2

1V
β2t22(3 + t2γ1)

−1 ≳ log(2 + (t2 + 1)γ1)− log(2 + t2γ1), (168)

which comes from

γ1 ≤
η(1− pa)β

−2κa
V

. (169)

Therefore, (162) can be rewritten as

(v∗
s
⊤, 0⊤)w(t) ≤ Θ(− log(2 + t · η(1− pa)β

2)), (170)

when κa ≥ V β−4, so that the conclusion holds when t = t2 + 1. Thus, the induction can be
completed. We can then derive that when t = t0, we have

(v∗
s
⊤, 0⊤)w(t0) ≤ Θ(− log(2 + t0 · η(1− pa)β

2)) ≲ − log(M1), (171)

and for pi that contains ν∗,

σ(p⊤
i w

(t)) ≲
1

poly(M1)
. (172)

(b) We then prove that

(µ⊤
j , 0

⊤)w(t) ≥ Θ(− log(2 +
tγ2
M1

)) (173)

for j ∈ [M1] and some γ2 > 0 by induction. When t = min{η−1β−2κ−1
a (1−pa)

−1V, η−1M
2
3
1 β

− 2
3κ

− 1
3

a (1−
pa)

−1V
1
3 }, we have

(µ⊤
j , 0

⊤)w(t) ≳ − 1

M1
≥ Θ(− log(2 + η−1β− 2

3κ
− 1

3
a M

− 1
3

1 (1− pa)
−1V

1
3γ2)) (174)

by Lemma 4 for any γ2 > 0, since that 1+ η−1β− 2
3κ

− 1
3

a M
− 1

3
1 (1− pa)

−1V
1
3γ2 ≫ M−1

1 and γ2 ≥ 1.
Therefore, (173) holds when

t = min{η−1β−2κ−1
a (1− pa)

−1V, η−1M
2
3
1 β

− 2
3κ

− 1
3

a (1− pa)
−1V

1
3 }. (175)
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Suppose that when t ≤ t2 with t2 > min{η−1β−2κ−1
a (1−pa)

−1V, η−1M
2
3
1 β

− 2
3κ

− 1
3

a (1−pa)
−1V

1
3 }

and t2 ≤ t0, the conclusion still holds. Then, when t = t2 + 1, we have

(µ⊤
j , 0

⊤)w(t)

≳− log(2 +
t2γ2
M1

)− η
(1− pa)

M1
(β2 +

η2t22(1− pa)
2β2

M2
1

) · 1

1 + e
log(2+

t2γ2
M1

)

=− log(2 +
t2γ2
M1

)− η
(1− pa)

M1
(β2 +

η2t22(1− pa)
2β2

M2
1

) · (3 + t2γ2
M1

)−1

≳− log(2 +
(t2 + 1)γ2

M1
),

(176)

where the last step comes from the following.
(i)

η
(1− pa)

M1
β2(3 +

t2γ2
M1

)−1 ≲ log(1 +

γ2
M1

2 + t2γ2
M1

)

= log(2 +
(t2 + 1)γ2

M1
)− log(2 +

t2γ2
M1

),

(177)

where the first step is from
γ2 ≥ η(1− pa)β

2. (178)

(ii)

η3
(1− pa)

3

M3
1

β2t22(3 +
t2γ2
M1

)−1 ≲ log(2 +
(t2 + 1)γ2

M1
)− log(2 +

t2γ2
M1

), (179)

which comes from
γ2 ≥ η(1− pa)β

−2. (180)

Therefore, (173) can be rewritten as

(µ⊤
j , 0

⊤)w(t) ≥ Θ(− log(2 + t · η(1− pa)β
2

M1
)), (181)

so that the conclusion holds when t = t2 + 1. Thus, the induction can be completed. We can then
derive that when t = t0, we have

(µ⊤
j , 0

⊤)w(t0) ≥ Θ(− log(2 + t0 ·
η(1− pa)β

2

M1
)) ≥ − log(3) ≥ −Θ(1), (182)

and for pi that does not contain ν∗,

σ(p⊤
i w

(t)) ≳ Θ(1). (183)
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F.5. Proof of Lemma 6

Proof Given a prompt P defined in (2) with (x1,x2, · · · ,xl,xquery), let xl+1 = xquery. Define

P̂ i =

(
xi+1 xi+2 · · · xl xl+1 x1 x2 · · · xi
yi+1 yi+2 · · · yl yl+1 y1 y2 · · · yi

)
:=

(
x̂i1 x̂i2 · · · x̂il x̂il+1

ŷi1 ŷi2 · · · ŷil ŷil+1

)
:=(p̂i1, p̂

i
2, · · · , p̂il, p̂il+1),

(184)

which is a rotation of in-context examples for i ∈ [l] ∪ {0}. Therefore, we have

l∑
i=1

Gi,l+1(w
(t))(l − i+ 1)

=

l∑
i=1

G0
i,l+1(w

(t))(l − i+ 1)

≤
l∑

i=1

G0
i,l+1(w

(t)) +
l∑

i=1

Gl
i,l+1(w

(t))(1− σ(w(t)⊤p̂l1)) +
l∑

i=1

Gl−1
i,l+1(w

(t))(1

− σ(w(t)⊤p̂l−1
1 ))(1− σ(w(t)⊤p̂l−1

2 )) + · · ·+
l∑

i=1

G2
i,l+1(w

(t))
l−1∏
j=1

(1− σ(w(t)⊤p̂2
j ))

≤max
j∈[l]

{
l∑

i=1

Gj
i,l+1(w

(t))

}
· (1 + (1− σ(w(t)⊤p̂l1)) + (1− σ(w(t)⊤p̂l−1

1 ))(1

− σ(w(t)⊤p̂l−1
2 )) + · · ·+

l−1∏
j=1

(1− σ(w(t)⊤p̂2
j )))

≤1 + (1− σ(w(t)⊤p̂l1)) + (1− σ(w(t)⊤p̂l−1
1 ))(1− σ(w(t)⊤p̂l−1

2 )) + · · ·

+

l−1∏
j=1

(1− σ(w(t)⊤p̂2
j ))

≤1 + 1− c+ (1− c)2 + · · ·+ (1− c)l−1

≤1

c
≤Θ(1),

(185)

where the third to last step holds since that when t ≲ min{η−1β−2κ−1
a (1− pa)

−1V, η−1M
2
3
1 ((1−

pa)β)
− 2

3 (κa(1 − pa))
− 1

3V
1
3 }, there exists c ∈ (0, 1) and C ∈ (0, 1), C > c, such that c ≤

σ(w(t)⊤pj) ≤ C for any j ∈ [l].
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