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ABSTRACT

Robust information representation and its persistent maintenance are fundamen-
tal for higher cognitive functions. Existing models employ distinct neural mech-
anisms to separately address noise-resistant processing or information mainte-
nance, yet a unified framework integrating both operations remains elusive—a
critical gap in understanding cortical computation. Here, we introduce a recur-
rent neural circuit that combines divisive normalization with self-excitation to
achieve both robust encoding and stable retention of normalized inputs. Math-
ematical analysis shows that, for suitable parameter regimes, the system forms a
continuous attractor with two key properties: (1) input-proportional stabilization
during stimulus presentation; and (2) self-sustained memory states persisting after
stimulus offset. We demonstrate the model’s versatility in two canonical tasks:
(a) noise-robust encoding in a random-dot kinematogram (RDK) paradigm; and
(b) approximate Bayesian belief updating in a probabilistic Wisconsin Card Sort-
ing Test (pWCST). This work establishes a unified mathematical framework that
bridges noise suppression, working memory, and approximate Bayesian inference
within a single cortical microcircuit, offering fresh insights into the brain’s canon-
ical computation and guiding the design of biologically plausible artificial neural
architectures.

1 INTRODUCTION

Biological intelligence has garnered widespread attention due to its ability to efficiently and reliably
process information in complex, dynamic, and uncertain environments. This capability enables the
performance of intricate cognitive tasks, allowing for flexible and efficient adaptation to changing
circumstances. In order to achieve a reliable understanding of the external environment and plan
subsequent decisions and actions, the brain must effectively perform at least two critical cognitive
computations: (i) Noise-resistant neural coding, which filters out irrelevant variability and preserves
key signal features for further processing, and (ii) Stable maintenance of information, which ensures
that information is held and represented over time to support memory and planning. For example, in
perceptual tasks the brain must denoise noisy sensory inputs to form reliable estimates of motion or
contrast (Simoncelli & Heeger, 1998; Deneve et al., 2001), while in working memory and cognitive
control it must sustain internal representations of stimuli, rules, or values across delays (Wang, 1999;
Compte et al., 2000; Behrens et al., 2007).

Noise suppression in the brain has been most extensively studied in sensory cortices (Simoncelli &
Heeger, 1998; Lee & Mumford, 2003; Sawada & Petrov, 2017; Heeger & Zemlianova, 2020; Burg
et al., 2021; Ernst et al., 2021; Weiss et al., 2023). While there exists different perspectives, three
major mechanisms contribute to noise suppression. Divisive normalization accept that neurons’ re-
sponses are divided by the activity of a local population (Simoncelli & Heeger, 1998; Sawada &
Petrov, 2017; Heeger & Zemlianova, 2020), while Bayesian approach consider the neuron popula-
tion performing Bayesian inference (Lee & Mumford, 2003; Pouget et al., 2003; Knill & Pouget,
2004; Ma et al., 2006). Besides this, attractor networks are also considered to be noise resistant
(Hopfield, 1982; Deneve et al., 2001), making it a candidate model for noise suppression.
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On the other hand, persistent maintenance or working memory has been modeled primarily using
recurrent attractor networks (Wang, 2002; 2012; Murray et al., 2017; Bouchacourt & Buschman,
2019), or built into network connections through the dynamics of synapses (Compte et al., 2000;
Mongillo et al., 2008; Morrison et al., 2008; Wu et al., 2008). Discrete attractors can be used
for discrimination or classification, thus also act as decision-making models (Wang, 2002; 2008),
while continuous attractors are usually considered as representational manifolds, acting as relatively
sensitive working memory models.

Despite these advances, noise-resistant encoding and persistent maintenance have remained largely
separate modeling domains: normalization circuits focus on feedforward gain control and noise fil-
tering but fade after input removal Heeger & Zemlianova (2020), whereas attractor models preserve
persistent activities yet exhibit limited adaptability, hindering their extension to novel tasks. This
dichotomy prompts a pivotal question: by what microcircuit architectures and dynamics does the
cerebral cortex reconcile transient noise filtering with flexible, self-sustained representations?

In this paper, we bridge this gap by proposing a Recurrent Divisive Normalization (RDN) circuit
model: each excitatory neuron combines its external drive with self-excitation and then divides by a
global inhibitory pool. We prove that, under proper parameter conditions, the model not only com-
putes exactly normalized representations of its inputs (robust to noise and gain changes) but also
forms a continuous attractor that persistently maintains those representations after input withdrawn.
With some conceptual perceptual (random dot kinematogram) and cognitive (probabilistic Wiscon-
sin Card Sorting Test) tasks, we demonstrated the model’s versatility. By unifying two canonical
mechanisms—divisive normalization and attractor dynamics—this work offers a principled frame-
work for understanding how the brain performs both robust filtering and flexible memory within a
single circuit motif, demonstrating the power of this simple model, and could open up new avenues
for bio-inspired artificial intelligence.

2 A RECURRENT DIVISIVE NORMALIZATION MODEL

We present a firing-rate model that accomplish divisive normalization and self-excitatory recurrent
connection. Consider N excitatory units Ri coupled to a single inhibitory pool G (Fig. 1A), where
the dynamics of the network is defined by ordinary differential equations:

τR
dRi

dt
= −Ri +

βRi + Ii
η +G

, i = 1, · · · , N (1)

τG
dG

dt
= −G+

N∑
i=1

wiRi. (2)

Key parameters include: Ii ≥ 0 (external input to unit i), β ≥ 0 (self-excitation strength), η > 0
(semi-saturation constant), wj > 0 (excitatory-to-inhibitory weights), and τR, τG > 0 (time con-
stants).

When β = 0, the model reduces to the classical divisive normalization (Heeger, 1992; Simoncelli
& Heeger, 1998; Keung et al., 2020), and β = 1 lead to a model similar to some well-known recur-
rent divisive normalization models Heeger & Mackey (2019); Heeger & Zemlianova (2020); Rawat
et al. (2024), making our model as a generalization of divisive normalization model. Despite its
structural simplicity, our model exhibits remarkable dynamical properties (Fig. 1). Under appropri-
ate parameter configurations, it forms a continuous attractor networks capable of executing diverse
neurocomputational functions, including noise-resistant information processing, persistent memory
maintenance, and dynamic learning adaptation.

3 MODEL ANALYSIS

3.1 STEADY-STATE SOLUTIONS

Setting Ṙi = Ġ = 0. From Eq. equation 1, we have

R∗
i (η +G∗) = βR∗

i + Ii, R∗
i =

Ii
η − β +G∗ .

2
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Figure 1: The Recurrent Divisive Normalization (RDN) model and its dynamics. A. Schematic of
the recurrent divisive normalization circuit; Each excitatory unit Ri combines its external input Ii
with a feedback term βRi, then divides by η + G (Eq. 2). The global pool G aggregates all Ri

outputs (Eq. 1). B–C: Demonstrating the dynamics of a model (N = 3, β = 2, η = 1 and wi = 1)
with and without input. The model is randomly initialized, and become steady after a while; with a
constant input (Ii = 1), the model changes its state to a new fixed point where all Ris are the same,
and keeps the ratio after input removed. Different input (I1 = 0.2, I2 = 0.1, I3 = 0.7) drives the
model to a different fixed point. B. Attractor manifold and the trajectory of Ri with (blue lines) and
without (red lines) input. The colored dots represents the corresponding fixed points. C. Attractor
manifold and the trajectory of Ri/G with (blue lines) and without (red lines) input; Fixed points
align with/without input become the same. D. Dynamics of the model, showing state, gain and the
readout changing with time during input (shadowed) or not. Blue, pink and green represents the 3
excitatory neurons Ri, black represent the inhibitory neuron G.

Substituting into Eq. equation 2, let

T =

N∑
j=1

wjIj ,

thus

G∗ =

N∑
j=1

wjRj =
T

η − β +G∗ , G∗(η − β +G∗) = T.

We obtain a quadratic equation of G∗:

(G∗)2 + (η − β)G∗ − T = 0. (3)

The solution is given by

G∗ =
−(η − β)±

√
(η − β)2 + 4T

2
.

For Ii ≥ 0 and T > 0, the discriminant ∆ = (η − β)2 + 4T > 0, and it is easy to obtain that
Eq. equation 3 has exactly one root satisfying G∗ > 0:

G∗ =
−(η − β) +

√
(η − β)2 + 4T

2
, (4)

with η − β +G∗ > 0 also be satisfied, implying R∗
i ≥ 0. Therefore, the RDN model has a unique

physiologically meaningful steady-state solution (R∗, G∗) ∈ RN+1.

3
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To analyze the stability of the model, We apply the indirect method of Lyapunov at the fixed point
(Strogatz, 2018). Linearize x = (δR1, . . . , δRN , δG). The Jacobian is

J =

[
aIN b
c⊤ −1/τG

]
, (5)

where IN is an N -th order identity matrix, b = (b1, . . . , bN )⊤ and c = (c1, . . . , cN )⊤,

a =
−1 + β/(η +G∗)

τR
, bi = − βR∗

i + Ii
τR(η +G∗)2

, cj =
wj

τG
.

Eigendecomposition of the Jacobian matrix J reveals fixed-point stability (Strogatz, 2018):

1. Eigenvalues with negative real parts indicate contracting dynamics in corresponding state-
space dimensions

2. Positive real parts correspond to expanding dynamics
3. Zero real parts reflect marginal stability.

Stable attractors might be useful for integrating noisy information, or for maintaining state or mem-
ory.

From Theorem 1 (see Appendix), we know that the eigenvalues of J are

λi = a =
−1 + β/(η +G∗)

τR
, (i = 1, . . . , N − 1), (6)

λ± =
(a− 1/τG)±

√
(a+ 1/τG)2 − 4G∗/(η +G∗)/(τRτG)

2
. (7)

To analyse the stability of the fixed point analytically is intractable through the above eigenvalues.
With simplified parameters τR = τG = τ and wi = 1 for all i = 1, . . . , N , where the inhibitory
pool receives the neurons’ inputs equally and have the same time constant with excitatory units, we
next analyze the simplified model with the inputs Ii removed from and exerted to it.

3.2 STABILITY OF THE MODEL WITHOUT INPUTS

With the above settings and Ii ≡ 0, the dynamics of the model is simplified as

τ
dRi

dt
= −Ri +

βRi

η +G
, i = 1, · · · , N (8)

τ
dG

dt
= −G+

N∑
j=1

Rj , (9)

Eq. equation 3 become
G∗(η − β +G∗) = 0.

This solves the fixed point G∗ = R∗
1 = · · · = R∗

N = 0, which is a trivial fixed point, and G∗ =∑N
i=1 R

∗
i = β − η, which forms an N − 1 dimensional continuous attractor manifold (hyperplane)

in the R subspace (Fig. 1B).

For the trivial fixed point G∗ = R∗
1 = · · · = R∗

N = 0, the eigenvalues simplified as

λ1,··· ,N =
β − η

τη
, λN+1 = −1

τ
. (10)

Therefore, the trivial fixed point will be stable and the system will converge if and only if β < η
(Fig. 2, left panel).

For the continuous attractor G∗ =
∑N

i=1 R
∗
i = β − η, eigenvalues λ1,··· ,N−1 = 0, and

λN,N+1 =
−1±

√
4η/β − 3

2τ
. (11)
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Therefore, the continuous attractor will be stable and the system will converge to the continuous
attractor G∗ =

∑N
i=1 R

∗
i = β − η if and only if β > η (Fig. 2, right panel).

Taken together, the dynamical system governed by Eqs. (8–9) exhibits fundamentally distinct at-
tractor structures in phase space and markedly differentiated dynamical characteristics when the
parameters β, η crossing critical point, yields a transcritical bifurcation in the state space (See Fig. 2
for demonstrations, see also Fig. 1B&D the detailed dynamics with 3 excitatory node (N = 3), and
the attractor manifold G∗ =

∑3
i=1 Ri = 1).

B

A

Figure 2: Phase portrait of the model before and after bifurcation (at β = η). A. Phase portrait of the
simplified model Eqs. (8–9) with one excitatory node (N = 1), with β > η, there exist a non-zero
stable fixed point (1, 1), which makes our RDN model fundamentally different from the canonical
divisive normalization model, enabling persistent memory. B. Phase portrait of the simplified RDN
model with two excitatory node (N = 2), showing the same bifurcation properties with the 1-Node
model (A). Number of excitatory neurons can easily extended to fit different kind of tasks, making
the RDN model much more useful compared to other models.

Next we discuss the dynamics when the non-zero inputs are withdrawn from the system, which is
crucial for the working memory capability of the model. Denote S =

∑N
i=1 Ri, ρi = Ri/S, which

satisfies
∑N

i=1 ρi = 1, we can deduce that τdρi/dt = 0 (see Eq. equation 27, Appendix).

When the system converges to the continuous attractor G∗ =
∑N

i=1 R
∗
i = β−η eventually, the firing

rate Ri keeps constant at ρi(β − η), where ρi relies on the state before the inputs are withdrawn.
In other words, the system maintains the last input-normalized pattern indefinitely, implementing
working memory (Fig. 1B&D).

3.3 STABILITY OF THE MODEL WITH INPUTS

With inputs Ii exerted to the system, we have

τ
dRi

dt
= −Ri +

βRi + Ii
η +G

, i = 1, · · · , N (12)

τ
dG

dt
= −G+

N∑
j=1

Rj , (13)

5
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Solve as like in Eq. equation 4, we have the fixed point

R∗
i =

2Ii

(η − β) +
√
(η − β)2 + 4T

, (14)

G∗ =
(β − η) +

√
(η − β)2 + 4T

2
. (15)

which reveals that the system shifts toward a new fixed point while receiving new inputs. Since

Ri

G
=

2Ii√
(η − β)2 + 4T + (η − β)

· 2√
(η − β)2 + 4T − (η − β)

=
4Ii

(η − β)2 + 4T − (η − β)2
=

Ii
T

=
Ii∑n
j=1 Ij

,

(16)

therefore the system eventually evolves to a fixed point proportional to the input, and one can de-
fine a readout rule from the model such that Oi = Ri/G, which essentially normalize the inputs
(Fig. 1C&D).

Given Ii > 0, Eq. equation 7 demonstrates that all eigenvalues satisfy λi < 0 under the condition
β < η+G∗. This inequality is inherently guaranteed by Eq. equation 4. Thus the unique steady-state
forms an attractor (Theorem 2, see Appendix). One can deduce that the firing rate Ri of each neuron
is proportional to the strength of input Ii if the system has converged to the fixed point, following
the procedures described in Eq. (28–29). It is also worth noting that with the inputs withdrawn, the
firing rate Ri will converge to a steady state Ri = ρi(η − β), where ρi relies on the state before the
inputs were withdrawn. Therefore, the system stores the memory of the latest inputs, which might
be attributed to many cognitive tasks.

4 APPLICATION

4.1 PERCEPTUAL DENOSING

Perceptual denoising is critical for sensory processing, enabling the brain to filter out noise while
preserving accurate representations of sensory inputs. To evaluate the denoising and maintenance
capabilities of our Recurrent Divisive Normalization (RDN) model, we employed the Random Dot
Kinematogram (RDK) task, a well-established paradigm for studying sensory perception under
noisy conditions (Williams & Sekuler, 1984).

In the RDK task, a number of dots are randomly, with a subset moving coherently in a dominant
direction (Fig. 3A). Task difficulty is modulated by coherence, defined as the percentage of dots
moving towards the dominant direction. For this study, we simulated a 2-Alternative Foice Choice
(2AFC) motion discrimination task (left vs. right) using two independent Gaussian distributions
with identical variance (σ2) but distinct means (µ1, µ2, Fig. 3C), where the separation between
means was controlled by the coherence parameter:

coherence =
|µ1 − µ2|

σ
(17)

We use RDN model with N = 2 for this task, where RL, RR encode evidence for left/right motion
respectively. The model parameters were set to τ = 50ms, β = 2 and η = 1, with a numerical
simulation time step of dt = 0.1ms. Random input signals were sampled at 100 Hz and simulated
using zero-order hold interpolation. In our simulations, input signals represented motion strength
with means of 0.52 (signal 1) and 0.48 (signal 2) and a shared variance of 0.17 (Fig. 3B, lower panel).
Stimuli were presented for 2 s (onset: 300 ms). The model’s readout signal (Fig. 3B, upper panel)
exhibited noise reduction significantly compared to the raw inputs. Probability density analyses
(Fig. 3C&D) revealed that the original signals were indistinguishable due to noise (d′ = 0.20),
whereas the readout signals showed clear separation (d′ = 1.67). D-prime (d′) is a measure of
sensitivity in signal detection theory, calculated as:

d′ =
µS − µN√

σ2
S+σ2

N

2

, (18)

6
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A B

C D E

Figure 3: The Recurrent Divisive Normalization model exhibits noise reduction, making it useful
in sensory perception task (RDK). A. Paradigm of the RDK task. A large number of randomly
moving dots were presented with a dominant direction (left or right). The percentage of coherently
moving dots (coherence, 0-100%) controls task difficulty. Lower coherence trials are more difficult
with more noises. B. The model filters noise and gives denoised signals. Two inputs, “signal 1” and
“signal 2” (lower panel), were used to simulate motion strength of the RDK task, corresponding to
leftward and rightward motion of 10% coherence level. These signals are input to The stimuli was
given at 300 ms and last for 2000 ms. Readout represents the model’s state, showing the processed
signals (upper panel). C. Probability density of the input signal, due to noise, the two signals are
difficult to distinguish (d′ = 0.20). D. Distribution of the “readout” signal from the model, showing
much reduced noises. The processed signals can be better distinguished compared to the input
signal(d′ = 1.67). E. Relationship between coherence of the RDK task and the accuracy of a simple
discriminator using the processed signal (denoised representations) for choice. Each coherence level
is sampled 100 times. Error bars represent the 95% confidence intervals (CIs).

where µS and µN are the means of the signal and noise, σ2
S and σ2

N are their variances.

The readout maintained stable mean values with reduced variance, demonstrating robust noise sup-
pression. Moreover, the model sustained its representation after stimulus offset (Fig. 3B), highlight-
ing its capacity of persistence memory.

To quantify representational accuracy across coherence levels, we simulated 100 coherence levels (1-
100%). The readout state was assessed 1 s post-stimulus, with correctness determined by alignment
to the ground-truth distribution (100 samples/condition). Accuracy increased monotonically with
coherence, reaching 100% at 20% coherence (Fig.3E), consistent with primate neurophysiological
data (Britten et al. (1992); Wang (2002), e.g., MT/LIP activity).

In summary, the RDN model achieves effective noise filtering and stable representation maintenance
through divisive normalization and β-mediated feedback. Its performance aligns with psychophys-
ical curves observed in primate dorsal stream areas, underscoring its utility for sensory decision-
making under uncertainty.

4.2 PROBABILISTIC INFERENCE

Probabilistic inference is fundamental to adaptive behavior, particularly in tasks requiring flexible
rule learning and switching (Behrens et al., 2007; 2008; Boorman et al., 2009). Cognitive flexibility

7
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Figure 4: The Recurrent Divisive Normalization Model performs probabilistic inference in classical
and probabilistic WCST task. A. The WCST task paradigm and its flexible changing structure: A
reference card and some candidate cards are presented. Choices are evaluated based on matching
shape (Rule 1), number (Rule 2), or color (Rule 3), with feedback indicating correctness or error
according to the current rule, which should be used to learn the randomly switching rule. B. Rule
design of a classical WCST task and the learned belief by the RDN model. Each block in the
classic WCST employs a single, fixed rule for discrimination, comprising 9, 10, or 11 trials with a
1-second interval between trials. Different blocks are separated by gray vertical lines. Rule Sample
refers to the rule used for discrimination, (Rule 1: blue circle, Rule 2: pink triangle, Rule 3: green
pentagram). the model selects the rule with the highest belief as the basis for its choice in each
trial (marked with the same symbols) and update belief based on feedback. C. Correct rate after
change point show that the tested RDN model makes optimal rule learning and switching, i.e., win-
stay, loss-shift. Gray circles represent simulated sampling data, purple circles indicate the model’s
accuracy. Error bars denote the standard error of the mean (SEM). D. Rule design of a probabilistic
WCST (pWCST) task and model performance in the task. Each block employs probabilistic rules
for discrimination, with a dominant rule having a probability of 0.7, making it impossible to relay
on single feedback. The RDN model can learn and track the rule switch very well. Notations are
consistent with B. E. Correct rate after probability change point show that the tested RDN model
works well on the pWCST task. Note that to ensure accurate switch timing, the first and last trial of
each block are fixed to the dominant rule. Notations are consistent with C.

are often measured using tasks like the Wisconsin Card Sorting Test (WCST) (Stemme et al., 2007),
which can be modeled as probabilistic inference (D’Alessandro et al., 2020) or flexible gating (Liu
& Wang, 2024). To evaluate the RDN model’s capacity for belief updating, we examined its perfor-
mance in both the classical and probabilistic versions of WCST. The classical WCST task assesses
executive functions, including cognitive flexibility and attentional control. Participants match candi-
date cards to a reference card based on a latent rule (e.g., shape number or color; Fig. 4A). Feedback
indicates correctness, and rules switch pseudorandomly, demanding rapid adaptation.

In our simulations (Fig. 4B), the RDN model comprised three excitatory units, encoding the belief
of the corresponding rules. We use τ = 50ms, β = 2 and η = 1 for this task, and dt = 0.1ms for

8
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numerical simulations. Feedback inputs were set to 1 for unit corresponding to chosen rule and 0
for other units at correct trials, otherwise 0 for the chosen rule and 0.5 for others. Feedback inputs
lasted for 50 ms per trial. Rules persisted for 9–11 trials before switching. The model achieved
rapid rule-switching detection within two trials (Fig. 4B&C), consistent with theoretically optimal
strategy bounds. Analysis of 150 rule blocks (Fig. 4C) confirmed this behavior, demonstrating the
model’s ability to leverage feedback for exact belief updating.

The probabilistic WCST task introduces greater complexity: feedback follows the dominant rule
probabilistically (70%), occasionally adheres to incorrect rules (30%). This requires integration of
historical reward to mitigate stochastic feedback, rather than adopt the “win-stay, loss-shift” strategy.
With τ adjusted to 50 ms (other parameters unchanged), the model maintained robust performance
(Fig. 4D&E). With a 150-block experiment, the accuracy from rule change point stabilized near
the probability of the dominant rule(0.7), reflecting effective longer-term reward integration despite
interference.

The RDN model achieves rapid rule switching in deterministic contexts and sustains performance
under probabilistic feedback, mirroring human adaptive learning. Its success in both WCST vari-
ants underscores its utility for modeling approximate Bayesian inference in dynamic environments
(Behrens et al., 2007).

5 DISCUSSION AND CONCLUSION

Our study presents a unified cortical circuit model that integrates divisive normalization with self-
excitation to achieve both robust sensory processing and stable memory maintenance. This work
bridges two fundamental but traditionally separate lines of research: normalization as a canonical
cortical operation for noise-resistant encoding (Carandini & Heeger, 2011), and attractor dynamics
for persistent information storage (Compte et al., 2000; Wang, 2002). The model’s mathematical
framework demonstrates how these mechanisms coexist within a single microcircuit, offering a
parsimonious alternative to modular architectures requiring specialized subsystems. Functionally, it
replicates both noise-robust sensory encoding (Britten et al., 1992) and cognitive flexibility in rule-
switching tasks (Liu & Wang, 2024), suggesting common computational principles may underlie
diverse neural functions.

The model resolves a critical theoretical gap. While divisive normalization has been formalized
as a fundamental nonlinear operation (Kouh & Poggio, 2008), and attractor networks are well-
established for memory maintenance (Constantinidis & Klingberg, 2016), their integration remained
unexplored. Our framework reveals that normalization not only suppresses noise but also stabi-
lizes attractor dynamics against input fluctuations—a prediction testable through combined elec-
trophysiology and perturbation experiments. While aligning with the emerging concept of cortical
“canonical computations” (Heeger, 2017) our work uniquely demonstrates how these computations
synergize within a minimal circuit architecture, while may represent a plausible neural-circuit im-
plementation of the Bayesian brain hypothesis (Knill & Pouget, 2004; Friston, 2009).

Several limitations highlight future directions. First, while the model captures core phenomena,
predictions like persistent normalization during memory delays await experimental validation—a
challenge shared by many theoretical studies (Sreenivasan et al., 2014). Second, rate-based dynam-
ics simplify biological details such as spiking neurons and dendritic computations (Larkum et al.,
2022). Third, pre-tuned weights omit developmental plasticity, though this simplification is common
in foundational work (Stemme et al., 2007).

Future research should pursue: Experimental tests of neural signatures (e.g., normalized firing in
prefrontal memory tasks, brain region specific parameters emphasis different functions); Introduce
nonlinear activation functions to enable the model to exhibit richer dynamic properties and perform
more cognitive tasks; Spiking implementations to assess temporal precision; Plasticity mechanisms
for self-organized circuit tuning.

By unifying noise suppression and memory maintenance in a single architecture, this work chal-
lenges modular brain views and offers new principles for bio-inspired AI. The demonstrated syn-
ergy of canonical computations opens avenues to understand cortical efficiency and design adaptive
neural systems.
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A APPENDIX

A.1 EIGENVALUES OF A TYPE OF ARROWHEAD MATRIX

Theorem 1. Consider the following N + 1 dimensional arrowhead matrix:

M =

[
aIN v
w⊤ b

]
, (19)

where a, b ∈ R are scalars, IN is an N -th order identity matrix, and v,w are N -dimensional
vectors, w ̸= 0. The eigenvalues of matrix M are given explicitly by:

1. λ = a with multiplicity N − 1;

2. Two distinct eigenvalues:

λ± =
(a+ b)±

√
(a− b)2 + 4w⊤v

2
. (20)

which are real if (a− b)2 + 4w⊤v ≥ 0, and form a complex conjugate pair otherwise.

Proof. Define a (N − 1)-dimensional subspace

V⊥ = {u ∈ Rn | w⊤u = 0} (21)

For any u ∈ V⊥, the vector [u, 0]⊤ satisfies

J

[
u
0

]
=

[
aINu+ v · 0
w⊤u+ b · 0

]
= a

[
u
0

]
which refers to (N − 1)-fold eigenvalues corresponding to the eigenvector [u, 0]⊤.

Let the remaining eigenvectors have the form [mv, n]T , with m,n ∈ R and substitute it into the
eigen equation, we have {

mav + nv = λmv

mw⊤v + bn = λn.

Simplify to obtain
n = m(λ− a),

m(w⊤v) + n(b− λ) = 0

and after eliminating n, we obtain

m(w⊤v) +m(λ− a)(b− λ) = 0

which can be decompsed into a trivial equation m = 0 and equation

(λ− a)(λ− b)−w⊤v = 0 (22)

Solving this quadratic equation explicitly, we obtain the remaining two eigenvalues:

λ± =
(a+ b)±

√
(a− b)2 + 4w⊤v

2
.

Note that the discriminant
∆ = (a− b)2 + 4w⊤v

may be negative. In that case, the two nontrivial eigenvalues λ± form a complex conjugate pair.

Therefore, the eigenvalues of M are fully characterized by:

{a, . . . , a︸ ︷︷ ︸
N−1

, λ+, λ−}.

This completes the proof.
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A.2 STABILITY OF THE SIMPLIFIED MODEL WITH INPUTS

Theorem 2. Given dynamic system defined with Eqs. (12–13), For any parameters τ > 0, β > 0,
η > 0 and input Ii > 0, the unique steady-state (R∗, G∗) is an attractor.

Proof. From Eq. (6–7), the eigenvalues of the system is given by

λi = a =
−1 + β/(η +G∗)

τ
, (i = 1, . . . , N − 1), (23)

λ+ =
(a− 1/τ) +

√
(a+ 1/τ)2 − 4G∗/(η +G∗)/τ2

2
, (24)

λ− =
(a− 1/τ)−

√
(a+ 1/τ)2 − 4G∗/(η +G∗)/τ2

2
, (25)

It is obviously, λi = a < 0 and ℜ(λ−) < 0 if β < η +G∗, while from Eq. equation 4, we have

G∗ + η − β =
−(η − β) +

√
(η − β)2 + 4T

2
+ η − β

=
(η − β) +

√
(η − β)2 + 4T

2

>
(η − β) + |η − β|

2
≥ 0,

(26)

always hold for T > 0. To proof ℜ(λ+) < 0, we simplify Eq. equation 24 as

2λ+ = a− 1

τ
+

√
(a+

1

τ
)2 − 4G∗

τ2(η +G∗)

= −2

τ
+

β

τ(η +G∗)
+

√
β2

τ2(η +G∗)2
− 4G

τ2(η +G∗)

=
−2(η +G∗) + β

τ(η +G∗)
+

√
β2 − 4G∗(η +G∗)

τ(η +G∗)

Note that if β2 − 4G∗(η +G∗) < 0, the real part

ℜ(λ+) =
−2(η +G∗) + β

τ(η +G∗)
=

−2(η − β +G∗)− β

τ(η +G∗)
< 0.

If β2 − 4G∗(η +G∗) > 0, we only need to proof

−2(η +G∗) + β +
√
β2 − 4G∗(η +G∗) < 0√
β2 − 4G∗(η +G∗) < 2(η +G∗)− β

β2 − 4G∗(η +G∗) < (2(η +G∗)− β)2

β2 − 4G∗(η +G∗) < 4(η +G∗)2 − 4β(η +G∗) + β2

−4G∗(η +G∗) < 4(η +G∗)2 − 4β(η +G∗)

−G∗ < (η +G∗)− β,

which also be satisfied. Therefore, all eigenvalues have a negative real part, meaning the steady-state
(R∗, G∗) is an attractor.

This completes the proof.
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A.3 FIXED POINT PROPERTIES

With Ii = 0, denote S =
∑N

i=1 wiRi, ρi =
wiRi

S , which satisfies
∑N

i=1 ρi = 1, and we have

τ
dρi
dt

= wi
τ

S

dRi

dt
− wi

τRi

S2

dS

dt

= wi
τ

S

1

τ

(
−Ri +

βRi

η +G

)
− wi

τRi

S2

n∑
j=1

wj
dRj

dt

= wi
τ

S

1

τ

(
−Ri +

βRi

η +G

)
− wi

τRi

S2

1

τ

n∑
j=1

wj

(
−Rj +

βRj

η +G

)

= wi
τ

S

1

τ

(
−Ri +

βRi

η +G

)
− wi

τRi

S2

1

τ

(
−S +

βS

η +G

)
= 0

(27)

With the inputs exerted to the system, we have

τ
dρi
dt

= wi
τ

S

dRi

dt
− wi

τRi

S2

dS

dt

= wi
τ

S

1

τ

(
−Ri +

Ii + βRi

η +G

)
− wi

τRi

S2

n∑
j=1

wj
dRj

dt

= wi
τ

S

1

τ

(
−Ri +

Ii + βRi

η +G

)
− wi

τRi

S2

1

τ

n∑
j=1

wj

(
−Rj +

Ij + βRj

η +G

)

= wi
1

S

(
−Ri +

Ii + βRi

η +G

)
− wi

Ri

S2

−S +
βS

η +G
+

n∑
j=1

wjIj
η +G


= wi

 Ii
S(η +G)

− Ri

S2(η +G)

n∑
j=1

wjIj



(28)

When the system has converged to the fixed point, we have Ii = R∗
i (η +G∗ − β), and

τ
dρi
dt

= wi

 Ii
S(η +G∗)

− R∗
i

S2(η +G∗)

n∑
j=1

wjIj


= wi

(
R∗

i (η +G∗ − β)

S(η +G∗)
−

R∗
i (η +G∗ − β)

∑n
j=1 wjR

∗
j

S2(η +G∗)

)

= wi

(
R∗

i (η +G∗ − β)

S(η +G∗)
− R∗

i (η +G∗ − β)S

S2(η +G∗)

)
= 0

(29)

It means that with inputs exerted to the system, the balances among proportions ρi will initially be
broken, in other words, the previous *memory* of the system will be *destroyed*, and ρi will return
to constant when the system converges to a new fixed point, forming a new representation of inputs.

15


	Introduction
	A recurrent divisive normalization model
	Model analysis
	Steady-state solutions
	Stability of the model without inputs
	Stability of the model with inputs

	Application
	Perceptual denosing
	Probabilistic inference

	Discussion and conclusion
	Appendix
	Eigenvalues of a type of arrowhead matrix
	Stability of the simplified model with inputs
	Fixed point properties


