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ABSTRACT

Adafactor, a memory-efficient variant of Adam, has emerged as one of the popular
choices for training deep learning tasks, particularly large language models. How-
ever, despite its practical success, there is limited theoretical analysis of Adafactor’s
convergence. In this paper, we present a comprehensive analysis of Adafactor in a
non-convex smooth setting. We show that full-batch Adafactor finds a stationary
point at a rate of Õ(1/

√
T ) with the default setup, which could be accelerated

to Õ(1/T ) with a constant step-size parameter. For stochastic Adafactor without
update clipping, we prove a convergence rate of Õ(1/

√
T ) with the right parame-

ters covering the default setup. We also prove that Adafactor with a time-varying
clipping threshold could also find a stationary point with the rate of Õ(1/

√
T ).

Our theoretical results are further complemented by some experimental results.

1 INTRODUCTION

The adaptive gradient-based methods, such as the well-known AdaGrad (Duchi et al., 2011; Streeter
& McMahan, 2010), RMSProp (Tieleman & Hinton, 2012), Adadelta (Zeiler, 2012), Adam (Kingma
& Ba, 2015), and AMSGrad (Reddi et al., 2018) are one of the preferred approaches in solving the
following unconstrained stochastic optimization problem in deep learning fields:

min
X∈Rn×m

f(X) = EZ∈P [l(X;Z)], (1)

where l is a smooth potentially non-convex function and P denotes a probability distribution. During
the training process, these adaptive methods require storing the historical gradients’ information to
tune their step-sizes adaptively. For example, both Adam and AdamW maintain the exponential
average of gradients and squared gradients, and AdaGrad stores the cumulative of squared gradients.
Despite their effectiveness, these algorithms pose substantial memory challenges for GPUs to save
these additional gradients’ information, especially when training large language models (LLMs),
such as GPT-3 (Brown et al., 2020), which contains over 175 billion parameters.

To address memory constraints, several memory-efficient optimization algorithms have been devel-
oped, e.g., (Shazeer & Stern, 2018; Anil et al., 2019; Luo et al., 2023; Li et al., 2024). One of the
popular optimizers is Adafactor (Shazeer & Stern, 2018), a memory-saved variant of Adam that
employs a rank-1 matrix factorization to approximate the second-moment matrix. For an n × m
weight matrices, this technique reduces memory from O(mn) to O(m + n) by only tracking the
moving averages of the row and column sums of the squared gradients matrix. Additionally, Adafactor
eliminates the first-order momentum used in Adam and incorporates update clipping to enhance
training stability. In real applications, several LLMs including PaLM (Chowdhery et al., 2023)1 and
T5 (Raffel et al., 2020) have included Adafactor into their main optimizers (Zhao et al., 2023).

The empirical results reveal that Adafactor achieves comparable performance to Adam in training
Transformer models (Shazeer & Stern, 2018), even though it sacrifices gradient information to save
the memory. Despite Adafactor’s empirical success, there is limited understanding on its convergence
in theory, especially the explanation for its hyper-parameter setting in experiments. Theoretical
results, e.g., (Zou et al., 2019; Défossez et al., 2022), have proved that Adam could converge to the
stationarity with Õ(1/

√
T ) rate under specific hyper-parameter for non-convex smooth setup. Then,

a natural question arises:
1PaLM applies Adafactor without matrix factorization.
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Could Adafactor still achieve the same order of convergence rate as Adam while sacrificing
gradient information for improved memory efficiency? If so, what’s the requirement for its
hyper-parameters setup?

In this paper, we analyze Adafactor’s convergence for non-convex smooth optimization problems,
considering the typical bounded gradient setting as those for AdaGrad (Li & Orabona, 2019; Ward
et al., 2020) and Adam (Zaheer et al., 2018). We aim to provide a similar convergence rate for
Adafactor which complements the empirical observation that Adafactor could attain comparable
performance to Adam while reducing memory usage. The analysis is non-trivial compared to other
adaptive methods such as AdaGrad and Adam due to the unique matrix factorization and update
clipping mechanisms in Adafactor. In the full-batch case, we rely on the special exponential moving
averages of the row sums and column sums of the squared gradients to lower bound the first-order
term in the Descent Lemma. In the stochastic case, we design a new proxy step-size to compute the
conditional expectation of the first-order term that involved the stochastic gradient and the adaptive
step-sizes. Further, we successfully control the additional error brought by this proxy step-size. We
also extend a standard way in the analysis of SGD with clipping to handle the update clipping. Our
main contributions are summarized as follows.

• We provide a convergence analysis for full-batch Adafactor under bounded gradients and a
broader range of hyper-parameter settings which covers the default one in (Shazeer & Stern,
2018). The result shows that Adafactor can find a stationary point Õ(1/

√
T ) rate with default

step-sizes. This rate can be accelerated to Õ (1/T ) with a constant step-size parameter.

• We further investigate the more realistic stochastic Adafactor. It’s found that a simple variant
of Adafactor, which drops the update clipping, could attain the convergence rate of Õ(1/

√
T )

when the decay rate of the second moment is 1− 1/k. This rate is optimal, matching the lower
bound (Arjevani et al., 2023) up to logarithm factors.

• We extend our study to include a time-varying clipping threshold. Our analysis implies that with
proper selections of clipping threshold and hyper-parameters, Adafactor could also achieve the
best convergence rate of Õ(1/

√
T ).

• We further provide some basic experiments on computer vision and natural language processing
tasks to complement our theoretical results.

The rest of the paper are organized as follows. The next section provides some most relevant works.
Section 3 presents some necessary notations definitions and problem setup. Section 4 reviews
Adafactor and its major differences to Adam. Sections 5 and 6, separately provide convergence
bounds for full-batch Adafactor and stochastic Adafactor (no update clipping) and further discuss
the hyper-parameters’ dependency. Section 7 investigates Adafactor using a time-increasing update
clipping threshold. Section 8 summarizes the main proof challenges brought by Adafactor and our
proof novelty. Section 9 provides experimental results to complement our theory. All the detailed
proofs and some experiments can be found in the appendix.

2 RELATED WORK

Although there are limited works on Adafactor in theory, the convergence for other memory-
unconstraint adaptive methods are widely studied. Here, we briefly list some typical works due to the
page limitation.

Convergence of adaptive methods. Several studies (Li & Orabona, 2019; Ward et al., 2020; Zou
et al., 2019) prove the convergence of AdaGrad in non-convex smooth settings assuming bounded
stochastic gradients. Shi et al. (2020) shows that RMSProp could converge to the stationarity when
the decay rate of the second moment is close to one. Several works (Chen et al., 2019; Zhou et al.,
2020; Alacaoglu et al., 2020) provide convergence bounds for AMSGrad in non-convex smooth
settings. A line of research, e.g., (Zaheer et al., 2018; De et al., 2018; Zou et al., 2019; Défossez et al.,
2022) have investigated the convergence of Adam assuming bounded gradients and noise. Yao et al.
(2021) designed AdaHessian, using Hutchinson’s approximation to estimate the diagonal Hessian.
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Sadiev et al. (2023) provided Scaled SARAH and Scaled L-SVRG to approximate the diagonal
Hessian when the problem is ill-conditioned. Recently, several works focused on the heavy-tail noise,
showing that clipping is also necessary for AdaGrad (Li & Liu, 2023) and Adam (Chezhegov et al.,
2024) as the one for SGD (Gorbunov et al., 2020).

Memory efficient algorithms. As large models are increasingly used in deep learning, memory
constraints have become a central issue during training. Consequently, several memory-efficient
optimizers have been developed to address this challenge.

One approach to saving memory involves applying matrix factorization to optimization algorithms.
For instance, Shazeer et al. (2017) used matrix factorization in the second moment estimator of
gradients in Adam, similar to the concept behind Adafactor. Luo et al. (2023) introduced CAME, a
variant of Adafactor, which incorporates a confidence-guided strategy to mitigate instability caused
by erroneous updates. Zhao et al. (2024) proposed Adapprox, leveraging randomized low-rank
matrix approximation for Adam’s second moment estimator, demonstrating superior performance
and reduced memory usage compared to AdamW.

There are some other techniques to save the memory. For example, Gupta et al. (2018) relied on
a “Shampoo” technique to reduce the storage requirement of full-matrix preconditioning methods.
Notably, their method could be further extended to the more realistic tensor case. Anil et al. (2019)
presented a memory-saved version of AdaGrad, called SM3, by maintaining k sets gradient ac-
cumulator. They proved the convergence guarantee of SM3 on online convex optimization and
the effectiveness in experiments. Recently, Li et al. (2024) built a 4-bit Adam using quantization
techniques to compress the first and second moment estimators in Adam, also reducing memory
usage.

In summary, many existing optimizers, particularly adaptive methods like AdaGrad and Adam, face
memory overhead. In response, the discussed works have designed memory-efficient optimizers that
aim to achieve comparable performance to these existing methods while achieving memory benefits.

3 PROBLEM SETUP

To start with, we introduce some necessary notations.

Notations. The index set [n] denotes {1, 2, · · · , n}. ∥ · ∥F and ∥ · ∥∞ denote the Frobenius norm
and l∞-norm respectively. a ≲ O(b) denotes a ≤ C0b for some positive constant C0. For any two
matrices X = (xij)ij ,Y = (yij)ij ∈ Rn×m, we define ⟨X,Y ⟩ =

∑n
i=1

∑m
j=1 xijyij . X ⊙ Y ,

X
Y and

√
X denote the coordinate-wise product, quotient, and squared root respectively. 0n and

1n denote the zero and one n-dimensional vector respectively, and 1n×m denotes the one n ×m-
dimensional matrix. For a positive sequence {αi}i≥1, we define

∑b
i=a αi = 0 and

∏b
i=a αi = 1 if

a > b. The operator RMS(·) denotes

RMS(X) =

√√√√ 1

mn

n∑
i=1

m∑
j=1

x2
ij .

We consider unconstrained stochastic optimization (1) over Rn×m with the Frobenius norm. The
objective function f : Rn×m → R is differentiable. Given an n×m matrix X , we assume a gradient
oracle that returns a random matrix g(X,Z) ∈ Rn×m dependent on the random sample Z. The
gradient of f at X is denoted by ∇f(X) ∈ Rn×m.

Assumptions. We make the following standard assumptions throughout the paper.

• (A1) L-smoothness: For any X,Y ∈ Rn×m, ∥∇f(Y )−∇f(X)∥F ≤ L∥Y −X∥F ;
• (A2) Bounded below: There exists f∗ > −∞ such that f(X) ≥ f∗,∀X ∈ Rn×m;
• (A3) Unbiased estimator: The gradient oracle provides an unbiased estimator of ∇f(X), i.e.,
E [g(X,Z) | X] = ∇f(X),∀X ∈ Rn×m;

• (A4) Almost surely bounded stochastic gradient: for any X ∈ Rn×m, ∥g(X,Z)∥F ≤ G, a.s..

3
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Combining with (A3) and (A4), it’s easy to verify that ∥∇f(X)∥ ≤ G,∀X ∈ Rn×m. Assumptions
(A1)-(A3) are standard in the non-convex smooth convergence analysis. Although Assumption (A4)
is a bit strong, it’s still commonly used to derive the high probability convergence bound, see e.g.,
(Ward et al., 2020; Kavis et al., 2022), which is a stronger result than an expected convergence.It’s
also commonly appeared in several early convergence results for adaptive methods, e.g., (Kingma &
Ba, 2015; Reddi et al., 2018; Zaheer et al., 2018; Défossez et al., 2022). We note that our analysis
can be extended to the sub-Gaussian noise case, which is commonly used for analyzing adaptive
methods, e.g., (Li & Orabona, 2020; Liu et al., 2023). We will discuss this in detail in Appendix B.4.

4 A REVIEW OF ADAFACTOR

In this section, we briefly introduce Adafactor and highlight its major differences from Adam. The
pseudocode for Adafactor is presented in Algorithm 1.

Algorithm 1 Adafactor

Input: Initialization point X1 ∈ Rn×m, R0 = 0m, C0 = 0⊤
n , relative step-sizes {ρk}k≥1, decay

rate {β2,k}k≥1 ∈ [0, 1), regularization constants ϵ1, ϵ2 > 0, clipping threshold d.
for k = 1, · · · , T do
Gk = g(Xk,Zk);
Rk = β2,kRk−1 + (1− β2,k)(Gk ⊙Gk + ϵ11n1

⊤
m)1m;

Ck = β2,kCk−1 + (1− β2,k)1
⊤
n (Gk ⊙Gk + ϵ11n1

⊤
m);

Wk = (RkCk)/1
⊤
nRk;

Uk = Gk/
√
Wk;

ηk = max{ϵ2,RMS(Xk)}ρk/max{1,RMS(Uk)/d};
Xk+1 = Xk − ηk ·Gk/

√
Wk;

end for

Matrix factorization. Adafactor could be served as a saved-memory version of Adam. Throughout
the training process, Adam maintains two n ×m matrices Mk and Vk using exponential moving
average update,

Mk = β1,kMk−1 + (1− β1,k)Gk, Vk = β2,kVk−1 + (1− β2,k)Gk ⊙Gk, (2)
where β1,k, β2,k ∈ (0, 1), thereby tripling the memory usage. The innovation in Adafactor lies in
its method of approximating Vk by factoring it into two rank-1 matrices, specifically the row sums
and column sums of Vk, thus sufficiently reducing the memory from 2mn to m + n. Although
this factorization sacrifices some information about the squared gradients, Adafactor still delivers
performance comparable to Adam in many real application tasks.

Increasing decay rate. In Adam, corrective terms are introduced into Mk and Vk, resulting in
two increasing-to-one decay rates. Theoretically, it has been demonstrated that a value close to
one for β2,k would ensure the convergence, e.g., (Défossez et al., 2022; Zou et al., 2019; Zhang
et al., 2022). Inspired by this observation, Adafactor used an increasing second-moment decay rate
β2,k = 1− 1/kc, c > 0, and the empirical default setting is c = 0.8. As pointed out by Shazeer &
Stern (2018), this setting allows for enjoying the stability of a low β2,k at the early stage of training
and the insurance of convergence from a high β2,k as the run progresses. Moreover, it also leverages
the bias correction.

Update clipping. Adafactor modifies the update process by discarding the first-order moment
Mk and instead applies an update clipping technique inside the step-size ηk. This involves dividing
the root-mean-square of the update Uk, denoted as RMS(Uk), when it exceeds a threshold d. This
mechanism helps to calibrate the second moment estimator Wk when it’s larger-than-desired Gk⊙Gk.
Empirical findings in (Shazeer & Stern, 2018) indicated that implementing update clipping leads to
significant performance improvements when the warm-up technique is not used.

Relative step-sizes. Adafactor incorporates a step-size proportional to scale of Xk, denoted by
RMS(Xk), which is shown in experiments more resilient to the more naive parameter initialization
and scaling schemes (Shazeer & Stern, 2018).

4
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5 CONVERGENCE RESULT FOR FULL-BATCH ADAFACTOR

We first provide the convergence bound for the full-batch Adafactor. At each iteration, full-batch
Adafactor obtains the gradient ∇f(Xk) and then updates Rk,Ck using ∇f(Xk) instead of Gk in
Algorithm 1.
Theorem 5.1. Let {Xk}k≥1 be generated by Algorithm 1 with g(Xk,Zk) = ∇f(Xk),∀k ≥ 1. If
Assumptions (A1) and (A2) hold, ∥∇f(Xk)∥F ≤ G,∀k ≥ 1, β2,1 = 1/2, ρ1 = ρ0 and

ρk = ρ0, 0 < β2,k < 1, ∀k ≥ 2, (3)
for some positive constant ρ0, then for any T ≥ 1,

min
k∈[T ]

∥∇f(Xk)∥2F ≲ O
(
log T

T

)
.

When setting ρk = ρ0/
√
k, k ≥ 1, for any T ≥ 1,

min
k∈[T ]

∥∇f(Xk)∥2F ≲ O
(
log T√

T

)
.

The result indicates that full-batch Adafactor could find a stationary point at a rate of O(log T/T )
under the non-convex smooth case, corresponding to the rate for gradient descent (Bottou et al., 2018)
and full-batch Adam (Shi et al., 2020). We note that the time-decreasing step-size only leads to a
sub-optimal rate in our framework. The hyper-parameter setting in (3) only requires β2,k ∈ (0, 1),
denoting a much wider range including the default one which requires β2,k = 1 − 1/k0.8. The
detailed version for the above result can be found in Theorem A.1 from the appendix.

6 STOCHASTIC ADAFACTOR WITHOUT UPDATE CLIPPING

In the stochastic case, we start from the simple scenario where
ηk = max{ϵ2,RMS(Xk)}ρk (4)

dropping the update clipping 1/max{1,RMS(Uk)/d}. The main reasons are as follows.

• As pointed out in the experiments from (Shazeer & Stern, 2018), Adafactor’s performance shows
little difference with and without update clipping when implementing learning rate warm-up.
Since the warm-up technique is a popular method in deep learning (Zhao et al., 2023), it’s
reasonable to drop the update clipping.

• In stochastic Adafactor, the correlation between Gk and ηk would be more complex if the update
clipping is involved. The proof would be simpler when dropping the update clipping, which
could help to better understand the analysis for Adafactor.

Based on these reasons, we assume that the warm-up technique is implemented and drop the update
clipping. In addition, we focus on the stage when the warm-up is finished, which allows us to focus
on the stage that leads to the final output. Despite these reasons, we also believe that investigating the
warm-up stage could be quite an interesting topic for future work. We now present the probabilistic
convergence bound for Adafactor without update clipping as follows.
Theorem 6.1. Let {Xk}k≥1 be generated by Algorithm 1 without update clipping where ηk is given
by (4) for each k ≥ 1. If Assumptions (A1)-(A4) hold, and

β2,1 = 1/2, ρ1 = ρ0,

β2,k = 1− 1/kc, ρk = ρ0/
√
k, ∀k ≥ 2,

(5)

for some constants 1/2 ≤ c ≤ 1, ρ0 > 0, then for any T ≥ 1, δ ∈ (0, 1), with probability at least
1− δ,

min
k∈[T ]

∥∇f(Xk)∥2F ≲ O
(

1

T c−1/2
log

(
T

δ

))
.

The detailed version of the above results can be found in Theorem B.1 from the appendix. We will
make a detailed discussion on the convergence bound as well as some hyper-parameter dependencies
in the next section.

5
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6.1 DISCUSSION OF THE HYPER-PARAMETER DEPENDENCY.

In this section, we discuss the dependency of several important hyper-parameters in Theorem 6.1
and the detailed version in Theorem B.1 in the appendix. It’s worthy to mention that the dominated
order in our convergence bound is determined by the total iteration number T , whereas other hyper-
parameters could be regarded as constants. However, we hope to improve the dependency of these
hyper-parameters as much as possible to make the convergence bound tight.

Discussion of c and the optimal rate. Theorem 6.1 reveals that when c = 1, β2,k = 1− 1/k and
ρk = ρ0/

√
k, the convergence rate attains the optimal rate matching the lower bound. The result then

complements the empirical results that the information lost in Adafactor does not essentially harm
the convergence speed and Adafactor could still achieve comparable performance to Adam.

In addition, when c increases from 1/2 to 1, the convergence rate improves, which could also be
seen roughly in the experiment (see Figure 1). This phenomenon somehow explains that a small
decay rate β2,k (c is low) may harm the convergence speed, as β2,k should be closed enough to 1
to ensure convergence. This phenomenon is both verified by convergence bounds for Adam in e.g.,
(Zou et al., 2019; Défossez et al., 2022; Zhang et al., 2022; Wang et al., 2023) and negative results
where a constant β2 is not guaranteed to converge in e.g., (Reddi et al., 2018; Zhang et al., 2022).

Dependency to mn. It’s clear to see that the convergence bounds in Theorem A.1 and Theorem
B.1 are free of the curse of the dimension factor mn as mn only appears on the denominator in each
coefficient. We think that solving the curse of dimension is vital since the applied range for Adafactor
includes many deep learning tasks where mn are comparable large to T .

Dependency to ϵ1, ϵ2. The convergence bounds in Theorem 6.1 is of order O(ϵ−1
1 log(1/ϵ1)) on

ϵ1.2 Although the polynomial dependency to ϵ1 is a bit worse since ϵ1 usually takes a small value
in experiments, e.g., 10−30 in the default setup, it’s still common in some theoretical convergence
results, e.g., (Zaheer et al., 2018; Li et al., 2023). We also perform some experiments to show that a
relatively large ϵ1, roughly 10−5, makes no observable effect on the convergence speed (see Figure 4
in Appendix E). Thereby, ϵ1 could be regarded as a constant in comparison to T and the influence
brought by 1/ϵ1 could be somehow acceptable.

Since the default value of ϵ2 is 10−3 in experiments, the dependency O(1/ϵ2) on ϵ2 shows little
effect on convergence bounds given the sufficiently large T .

Dependency on the scale of parameters. The convergence bounds in Theorem B.1 contain a
O (Θmax) factor where Θmax denotes the maximum values of ∥Xk∥∞,∀k ≥ 1. However, the
dependence on Θmax is not fundamental, as it arises from the relative step-size max{ϵ2,RMS(Xk)},
which could be dropped by removing the relative step-size as done in Adam.

7 CONVERGENCE OF ADAFACTOR WITH UPDATE CLIPPING

In this section, we slightly change the update clipping threshold d in Algorithm 1 to a time-varying
threshold dk. The step-size ηk then becomes

ηk =
max{ϵ2,RMS(Xk)}ρk
max{1,RMS(Uk)/dk}

. (6)

The update-clipping in Adafactor differs from the standard clipping mechanism with the form
1/max {1, λ/∥Gk∥F }, bringing some more essential challenges for analyzing. In what follows,
we demonstrate that incorporating such clipping can still ensure convergence for Adafactor under
bounded stochastic gradient assumption.
Theorem 7.1. Let {Xk}k≥1 be generated by Algorithm 1 with ηk given by (6) for each k ≥ 1. If
Assumptions (A1)-(A4) hold, and

d1 = 1, β2,1 = 1/2, ρ1 = ρ0,

dk = k
c

2(α−1) , β2,k = 1− 1/kc, ρk = ρ0/
√
k, ∀k ≥ 2,

(7)

2The detailed discussion could be found in (41) and (42) in Appendix B.
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for some constants α > 1, 1/2 ≤ c ≤ 1, ρ0 > 0, then for any T ≥ 1, δ ∈ (0, 1), with probability at
least 1− δ,

min
k∈[T ]

∥∇f(Xk)∥2F ≲ O
(

1

T c−1/2
log

(
T

δ

))
.

Discussion of Theorem 7.1. The convergence result indicates that with a proper selection of the
clipping threshold, along with the commonly used ρk and β2,k, Adafactor can find a stationary point
with a rate of Õ(1/T c−1/2). The dependency on c remains consistent with Theorem 6.1, achieving
the optimal rate when c = 1. We thus conclude that Adafactor, equipped with matrix factorization
to reduce the memory of Adam and update clipping, could still obtain a convergence rate as fast as
Adam in theory. In addition, the convergence bound can still avoid the curse of dimension, which is
shown in the detailed version Theorem D.1 from the appendix.

The additional hyper-parameter α primarily influences the dependency on ϵ1, specifically as
O
(
ϵ−α
1 log(1/ϵ1)

)
. Thus, our convergence bound may deteriorate as α increases. This depen-

dency could be potentially improved to O
(
ϵ−1
1 log(1/ϵ1)

)
when mn is comparable to 1/ϵ1, which

is practical in large-size models.3 In our experiments, we found that suitably small values, such as
α = 4, 6, 7, 8 can lead to convergence speed and training stability comparable to the default one (see
Figure 5 and 6). This finding suggests that our new threshold setting plays a similar role in enhancing
training stability as the default one, which is also the main motivation for update clipping. Since ϵ1
can be set to a relatively large value, e.g., 10−3, a dependency like O(ϵ−4

1 log(1/ϵ1)) is somewhat
acceptable for sufficiently large T .

The time-increasing dk provides the following intuition: As shown in (Shazeer & Stern, 2018, Figure
1), during the early stages of training, a high decay rate β2,k can cause larger-than-desired updates and
training instability. Therefore, we set a low threshold dk to ensure that the update clipping mechanism
effectively calibrates these larger-than-desired updates. As training progresses, the sequences and
updates become more stable. Consequently, there is less need for update clipping, corresponding to a
relatively large dk.

8 SUMMARY OF PROOF CHALLENGES AND TECHNIQUES

In this section, we will summarize the main proof challenges brought by Adafactor, which are essen-
tially different from other adaptive methods particularly Adam due to the unique matrix factorization
and update clipping. We also present our proof techniques including a proof sketch for Theorem 6.1
in the solution part. The proof for other main results shares many similarities with this proof sketch.

We begin by the descent lemma of the smoothness and using the updated rule in Algorithm 1,

f(Xk+1) ≤ f(Xk)−ηk

〈
∇f(Xk),

Gk√
Wk

〉
︸ ︷︷ ︸

(I)

+
Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F︸ ︷︷ ︸

(II)

, ∀k ≥ 1, (8)

Challenge I. A new type of adaptive step-size (no update clipping). We first consider the step-
size excluding the update clipping. The analysis of Adafactor presents two unique challenges, both
arising from its adaptive step-size involving a distinctive matrix factorization:

• Addressing the entanglement of the stochastic gradient Gk, and the adaptive step-size matrix
Wk that appears in component (I) in (8).

• Controlling the summation of the second-order term (II).

A key difficulty in analyzing adaptive methods lies in computing the conditional expectation of (I)
due to the correlation of Gk and Wk. To overcome this, existing analyses typically introduce a proxy
step-size matrix Ak that is conditional independent of Gk. This approach is applied in works such as

3The detailed calculation could be found in (96) from the appendix.
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(Ward et al., 2020; Défossez et al., 2022) for AdaGrad and (Wang et al., 2023; Hong & Lin, 2024) for
Adam. Introducing Ak into (8) and summing up both sides over k ∈ [t],

f(Xt+1) ≤ f(X1)−
t∑

k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

−
t∑

k=1

ηk

〈
Ḡk,

Gk − Ḡk√
Ak

〉
︸ ︷︷ ︸

(A)

+

t∑
k=1

ηk

〈
Ḡk,Gk ⊙

(
1√
Ak

− 1√
Wk

)〉
︸ ︷︷ ︸

(B)

+

t∑
k=1

Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F︸ ︷︷ ︸

(C)

.

Note that (A) is a summation of a martingale difference sequence, which could be estimated through a
concentration inequality. The primary challenge, however, comes from estimating the additional error
(B). For Adam, the updated rule in (2) and AdaGrad, the updates Vk = Vk−1 +Gk ⊙Gk ensures
that Vk and Vk−1 share a linear relation. Most existing works rely on this linear relation to design
suitable proxy step-sizes, thereby tightly controlling (B) (see e.g., (Défossez et al., 2022, Lemma 5.1)
and (Wang et al., 2023, Lemma 7)). However, the step-size matrix Wk in Adafactor does not exhibit
a linear relationship with Wk−1. Specifically, we let Gk,ϵ1 = Gk ⊙Gk + ϵ1 and derive

Wk =

(
β2,kRk−1 + (1− β2,k)RGk,ϵ1

)
⊙
(
β2,kCk−1 + (1− β2,k)CGk,ϵ1

)
β2,kSk−1 + (1− β2,k)SGk,ϵ1

,

where RGk,ϵ1
= Gk,ϵ11m,CGk,ϵ1

= 1⊤
nGk,ϵ1 and Sk, SGk,ϵ1

are the coordinate sum of Vk,Gk,ϵ1 .
The absence of a linear relation between Wk and Wk−1 suggests that B may be unbounded using
existing proxy step-sizes.

Existing results, such as (Ward et al., 2020, Lemma 3.2) for AdaGrad or (Défossez et al., 2022,
Lemma 5.2) for Adam, show that the summation of the second-order term is restricted by logarithm
order of T . However, these results could not be directly applied to Adafactor due to the rather
different adaptive step-size and the time-varying β2,k.

Solution. The solution part also serves as a proof sketch of Theorem 6.1. Motivated by the existing
construction, we design a new proxy step-size matrix Ak as follows:

Ak =
(β2,kRk−1 + (1− β2,k)G1)⊙ (β2,kCk−1 + (1− β2,k)G2)

β2,kSk−1 + (1− β2,k)G
,

where G1,G2,G are constants related to G 4. We note that Ak is conditional independent with the
noise Gk − Ḡk. Note that we omit update clipping in Theorem 6.1 and A is now a summation of
the martingale difference sequence. Hence, we could use the concentration inequality to derive that
A ≲ O

(
G2 log(T/δ)/ϵ1

)
with the detail in Lemma B.6. More importantly, the construction of Ak

is delicate since we are able to control the relative distance (detailed in Lemma B.7) as∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

≲ O
(
G
√
1− β2,k

)
,∀k ≥ 1, i ∈ [n], j ∈ [m].

Relying on this bound, we could control the error term (B) as

(B) ≲
1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+O

(
G

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

)
. (9)

The remained thing is to control the second-order summation that emerged both in (C) and (9). We
begin by analyzing the ratio of the second-order term for Adafactor and Adam. Then, we extend an
inequality for Adam with a constant decay rate (Défossez et al., 2022, Lemma 5.2) to a time-varying
setup. These results are summarized as (see the details in Lemma B.4 and B.5),∥∥∥∥ Gk√

Wk

∥∥∥∥2
F

≲ O

(
G2

ϵ1

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

)
,

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

≲ O

(
log

(
G2

ϵ1
+

t∑
k=1

(1− β2,k)

))
.

4The detailed expression is given in (14).
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These results help to derive that

(B) + (C) ≲
1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+O

(
G3

ϵ1

(
log

(
G2

ϵ1

)
+

t∑
k=1

(1− β2,k)

))
.

Combining with the bounds for (A),(B),(C) and using β2,k = 1− 1/kc, it holds that with probability
at least 1− δ,

1

2

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≲ O

(
G3

ϵ1
log

(
GT

δϵ1

)
+

t∑
k=1

1

kc

)
.

Finally, by upper bounding
∥∥ 4
√
Ak

∥∥
F

with G (see Lemma B.3), we can derive the desired result.

Challenge II. Additional update clipping in the adaptive step-size. We note that the solution to
the first challenge only considers the matrix factorization but omits the update clipping. However,
incorporating update clipping introduces an even more complex adaptive step-size ηk as in Algorithm
1, and the conditional expectation of (I) is even harder to compute. To our knowledge, this structure
causes all existing constructions of proxy step-size ineffective. We will face this challenge in the
proof of Theorem 7.1.

Solution. We first rewrite the updated rule as

Xk+1 = Xk − ρ̂k
G̃k√
Wk

, G̃k =
Gk

max{1,RMS(Uk)/dk}
, ρ̂k = max{ϵ2,RMS(Xk)}ρk.

The first-order term in the descent lemma then become (̃I) =
∑t

k=1 −ρ̂k

〈
Ḡk, G̃k/

√
Wk

〉
. Inspired

by a standard way in the analysis of SGD with clipping, we provide a decomposition for (̃I),

(̃I) = −
t∑

k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+

t∑
k=1

ρ̂k

〈
Ḡk,

(
1√
Ak

− 1√
Wk

)
⊙ G̃k

〉
︸ ︷︷ ︸

(1)

−
t∑

k=1

ρ̂k

〈
Ḡk,

G̃k√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

(2)

+

t∑
k=1

ρ̂k

〈
Ḡk,

Ḡk√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

(3)

.

Here, (2) is a summation of a martingale difference sequence and (1) is an error term that can be
estimated similarly to (B) in (9). The critical step is to handle the additional error term (3) using the
maximum operator inside the update clipping (detailed in (109) and (110)),

(3) ≲ O

(
G1+α

(
G2 +

√
ϵ1
)α

ϵα1

t∑
k=1

1

dα−1
k

√
k

)
.

To ensure that this error term remains controlled by a logarithm order of t, we should further require
dk = k

c
2(α−1) .

Challenge III. Lower bound first-order term (full-batch case). A central problem in full-batch
case is to lower bound (I) in (15). Existing results on Adam, e.g., (De et al., 2018) obtain that
∥Vk∥∞ ≤ G2 based on exponential moving average property, thus lower bounding (I). However,
Adafactor does not enjoy such a property.

Solution. We first separate [t] into two index set

E1 =
{
k ∈ [t] | ∥Uk∥F ≥ d

√
mn
}
, E2 =

{
k ∈ [t] | ∥Uk∥F ≤ d

√
mn
}
.

Through Lemma A.3, we show that ∥Wk∥∞ ≲ O(G2 + ϵ1), ∥Uk∥F ≲ O(G2/ϵ1). Then, for some
constant c0 > 0, (I) is lower bounded by

(I) ≳ O

(∑
k∈E1

ρk∥Ḡk∥2F
∥Uk∥F

√
∥Wk∥∞

+
∑
k∈E2

ρk∥Ḡk∥2F√
∥Wk∥∞

)
≳ O

(
min{c0, ϵ1/G2}

G+
√
ϵ1

t∑
k=1

ρk∥Ḡk∥2F

)
.
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Figure 1: Training loss curve using BERT-Base model on GLUE/MNLI dataset. Adafactor: ρ0 =
7× 10−3, batch-size = 128. Adam: ρ0 = 3.5× 10−5, β1 = 0.9, β2 = 0.999, batch-size = 128.

9 EXPERIMENTS

In this section, we will report our experimental results based on our convergence results. We will
mainly provide the following three experiments (the last two are included in Appendix E due to the
page limitation):

• We will show the training/testing performance of Adafactor (no update clipping) under different
decay rate parameters c on CV and NLP tasks.

• We evaluate the sensitivity of Adafactor to different values of ϵ1, particularly showing that a
relatively large ϵ1 does not significantly impact the convergence speed.

• We assess the training performance of Adafactor with a time-increasing dk setting, as described
in Theorem 7.1, and compare it to the default constant setting.

We train BERT-Base model using Adafactor (no update clipping) with decay rate c ranging from
0.5 to 1.0, while keeping other hyper-parameters the same. Each experiment is run with 4 epochs,
and we plot the training loss curve in Figure 1. We also train the model with Adam as the baseline.
The result indicates that convergence rates for Adafactor and Adam are comparable. In addition,
the convergence rate for Adafactor grows fast as c increases from 0.5 to 1.0, roughly aligning with
Theorem 6.1.

The second experiment (Figure 4) shows that Adafactor is not sensitive to the choice of ϵ1, and a
relatively large ϵ1, such as 10−3 can still lead to convergence, making the polynomial dependency
O(1/ϵ1) in convergence bounds acceptable. The third experiment (Figure 5 and 6) indicates that, for
α = 4, 6, 7, 8, Adafactor achieves comparable convergence speed compared to the default threshold.
All the detailed results could be found in Appendix E.

10 CONCLUSIONS

In this paper, we investigate the convergence behavior of Adafactor on non-convex smooth landscapes
with bounded stochastic gradients. Our theoretical results complement an empirical observation
that Adafactor could achieve comparable performance to Adam, despite sacrificing some gradient
information to reduce memory usage. We introduce a new proxy step-size to decouple the stochastic
gradients from the unique adaptive step-size and update clipping. We also rely on the unique structure
of proxy step-sizes and an appropriate choice of β2 to control the additional errors.

Limitations. Several limitations warrant further investigation. First, the polynomial dependency
on ϵ1 in convergence bounds may be improved to a better one, such as log(1/ϵ1). Second, the
convergence bound for stochastic vanilla Adafactor remains unknown. Third, the bounded stochastic
gradient can be relaxed as it may be unpractical in LLMs (Zhang et al., 2020). Finally, it’s beneficial
to further support our theoretical results through experiments on large language models.
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A PROOF DETAIL FOR FULL-BATCH CASE

We first provide the full-batch Adafactor as follows. The only difference to Algorithm (1) is the
replacement of stochastic gradient by deterministic gradient ∇f(Xk) at each iteration.

Algorithm 2 Full-batch Adafactor

Input: Initialization point X1 ∈ Rn×m, R0 = 0n,C0 = 0⊤
m, relative step-sizes {ρk}k≥1, decay

rate {β2,k}k≥1 ∈ [0, 1), regularization constants ϵ1, ϵ2 > 0, clipping threshold d.
for k = 1, · · · , T do
Ḡk = ∇f(Xk);
R̄k = β2,kR̄k−1 + (1− β2,k)(Ḡk ⊙ Ḡk + ϵ11n1

⊤
m)1m;

C̄k = β2,kC̄k−1 + (1− β2,k)1
⊤
n (Ḡk ⊙ Ḡk + ϵ11n1

⊤
m);

W̄k = (R̄kC̄k)/1
⊤
n R̄k;

Ūk = Ḡk/
√

W̄k;
η̂k = max{ϵ2,RMS(Xk)}ρk/max{1,RMS(Ūk)/d};
Xk+1 = Xk − η̂k · Ḡk/

√
W̄k;

end for

Then, we provide the detailed version of Theorem 5.1 as follows.
Theorem A.1. Let {Xk}k≥1 be generated by Algorithm 2. If Assumptions (A1), (A2) hold,
∥∇f(Xk)∥F ≤ G,∀k ≥ 1 and ρ1 = ρ0, β2,1 = 1/2,

ρk = ρ0, 0 < β2,k < 1, ∀k ≥ 2,

for some positive constant ρ0, then for any T ≥ 1,

min
k∈[T ]

∥∇f(Xk)∥2F ≤ A0A1(f(X1)− f∗ +∆2
0 log T +∆2

0)

T
.

If let ρk = ρ0/
√
k, then for any T ≥ 1,

min
k∈[T ]

∥∇f(Xk)∥2F ≤ A0A1(f(X1)− f∗ +∆2
0 log T +∆2

0)√
T

,

min
k∈[T ]

∥∇f(Xk)∥2F ≤ A0A
′
1(f(X1)− f∗ + ∆̃2

0 log T + ∆̃2
0)√

T
,

(10)

where we define

Θmax = max
k∈[T ]

∥Xk∥∞, G = G2 +mnϵ1, (11)

and the other constant parameters are given by

∆2
0 =

Ld2mn(ϵ2 +Θmax)
2ρ20

2
, ∆̃2

0 =
LG2G(ϵ2 +Θmax)

2ρ20
2mnϵ21(1− β2,1)2

,

A0 =
max

{
1, G

√
G

dϵ1mn(1−β2,1)

}
ρ0ϵ2

, A1 = 4

√
G4 +G2(m+ n)ϵ1 +mnϵ21,

A′
1 =

√
2

(
G4

mnϵ1
+G2 + ϵ1

)
.

(12)

A.1 PRELIMINARY

We first denote the auxiliary matrix Ḡ2
k,ϵ1

= Ḡk ⊙ Ḡk + ϵ11n1
⊤
m. In addition, we define V̄k =(

v̄
(k)
ij

)
ij

as follows,

V̄0 = 0n×m, V̄k = β2,kV̄k−1 + (1− β2,k)Ḡ
2
k,ϵ1 , k ≥ 1. (13)

14
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To simplify the notation, we let Ḡk =
(
ḡ
(k)
ij

)
ij

, R(i)

V̄k
, C(j)

V̄k
and SV̄k

be the i-th row sum, j-th column

sum and the coordinate sum of V̄k respectively. The same definition principal is applied to the
notation R

(i)

Ḡ2
k,ϵ1

and C
(j)

Ḡ2
k,ϵ1

. We also use w̄
(k)
ij , v̄

(k)
ij , ū

(k)
ij to denote the coordinates of W̄k, V̄k, Ūk

in Algorithm 2 respectively. We also define values G1,G2,G as follows:

G1 = G2 +mϵ1, G2 = G2 + nϵ1, G = G2 +mnϵ1. (14)

A.2 TECHNICAL LEMMAS

Following the descent lemma for a L-smooth objective function f , we derive that

f(Y ) ≤ f(X) + ⟨∇f(X),Y −X⟩+ L

2
∥Y −X∥2F , ∀X,Y ∈ Rn×m. (15)

In the following, we will provide some necessary technical lemmas.

Lemma A.1. Let β2,k ∈ (0, 1) and Γk be defined by

Γ0 = 0, Γk = β2,kΓk−1 + (1− β2,k), ∀k ≥ 1.

Then, (1− β2,1) ≤ Γk ≤ 1,∀k ≥ 1.

Proof. We could prove the result by induction. Since Γ0 = 0, it’s easy to derive that (1− β2,1) =
Γ1 ≤ 1. Suppose that for any j ∈ [k − 1], (1− β2,1) ≤ Γj ≤ 1. Then

Γk ≥ β2,k(1− β2,1) + (1− β2,k) ≥ 1− β2,1, Γk ≤ β2,k + (1− β2,k) ≤ 1.

The induction is then complete.

Lemma A.2. Let V̄k be defined in (13). For any k ≥ 0, it holds that

R̄k = V̄k1m, C̄k = 1⊤
n V̄k, SV̄k

= 1⊤
n R̄k = 1⊤

n V̄k1m.

As a consequence,

R
(i)

V̄k
= β2,kR

(i)

V̄k−1
+ (1− β2,k)R

(i)

Ḡ2
k,ϵ1

, C
(j)

V̄k
= β2,kC

(j)

V̄k−1
+ (1− β2,k)C

(j)

Ḡ2
k,ϵ1

.

Proof. Note that R̄0 = V̄01m = 0n and C̄0 = 1⊤
n V̄0 = 0⊤

m. Suppose that for any j ≤ k − 1,
R̄j = V̄j1m, C̄j = 1⊤

n V̄j . Then using the updated rule in Algorithm 2 and (13),

R̄k = β2,kR̄k−1 + (1− β2,k)Ḡ
2
k,ϵ11m =

(
β2,kV̄k−1 + (1− β2,k)Ḡ

2
k,ϵ1

)
1m = V̄k1m,

C̄k = β2,kC̄k−1 + (1− β2,k)1
⊤
n Ḡ

2
k,ϵ1 = 1⊤

n

(
β2,kV̄k−1 + (1− β2,k)Ḡ

2
k,ϵ1

)
= 1⊤

n V̄k.
(16)

Since SV̄k
represents the coordinate sum of V̄k, we could derive that

SV̄k
=

n∑
i=1

m∑
j=1

v̄
(k)
ij = 1⊤

n R̄k = 1⊤
n V̄k1m.

Since R(i)

V̄k
denotes the i-th row sum of V̄k, it’s the i-th coordinate of R̄k. Hence, for each coordinate

of R̄k, using (16),

R
(i)

V̄k
= β2,kR

(i)

V̄k−1
+ (1− β2,k)R

(i)

Ḡ2
k,ϵ1

.

Similarly, we could derive the results related to C
(j)

V̄k
.

Lemma A.3. Following the parameter setting in (3), for any i ∈ [n], j ∈ [m], k ≥ 1, it holds that

R
(i)

V̄k
∈ [mϵ1(1− β2,1),G1], C

(j)

V̄k
∈ [nϵ1(1− β2,1),G2], SV̄k

∈ [mnϵ1(1− β2,1),G].

15
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Proof. Recalling the definition of V̄k in (13) and ∥∇f(Xk)∥F ≤ G,∀k ≥ 1, we derive that

SV̄k
=

n∑
i=1

m∑
j=1

v̄
(k)
ij =

n∑
i=1

m∑
j=1

k∑
p=1

(1− β2,p)

((
ḡ
(p)
ij

)2
+ ϵ1

) k∏
l=p+1

β2,l


≤

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Ḡp∥2F + Γkmnϵ1 ≤ G2Γk +mnϵ1 ≤ G, (17)

where the last inequality comes from Lemma A.1. Following (17) and Lemma A.1, we also derive
that

SV̄k
≥ mnϵ1Γk ≥ mnϵ1(1− β2,1).

We also derive the upper bounds for R(i)

V̄k
and C

(j)

V̄k
as follows,

R
(i)

V̄k
=

m∑
j=1

v̄
(k)
ij ≤

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Ḡp∥2F + Γkmϵ1 ≤ G2Γk +mϵ1 ≤ G1,

C
(j)

V̄k
=

n∑
i=1

v̄
(k)
ij ≤

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Ḡp∥2F + Γknϵ1 ≤ G2Γk + nϵ1 ≤ G2.

Similarly, the lower bound could be derived by

R
(i)

V̄k
≥ mϵ1Γk ≥ mϵ1(1− β2,1), C

(j)

V̄k
≥ nϵ1Γk ≥ nϵ1(1− β2,1).

A.3 PROOF OF THEOREM A.1

Now we move to prove the main result. Using (15) and the updated rule in Algorithm 2,

f(Xk+1) ≤ f(Xk) + ⟨Ḡk,Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2F

= f(Xk)− η̂k

〈
Ḡk,

Ḡk√
W̄k

〉
+

Lη̂2k
2

∥∥∥∥∥ Ḡk√
W̄k

∥∥∥∥∥
2

F

.

We then re-arrange the order, sum up both sides over k ∈ [t] and apply f(Xt+1) ≥ f∗ from
Assumption (A2) to get,

t∑
k=1

η̂k

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F︸ ︷︷ ︸
(a)

≤ f(X1)− f∗ +
L

2

t∑
k=1

η̂2k

∥∥∥∥∥ Ḡk√
W̄k

∥∥∥∥∥
2

F︸ ︷︷ ︸
(b)

. (18)

Since ∥Xk∥∞ ≤ Θmax, we have RMS(Xk) ≤ Θmax for any k ≥ 1. Hence, using η̂k defined in
Algorithm 2,

η̂k =
max{ϵ2,RMS(Xk)}ρk

max
{
1, ∥Ūk∥F /(d

√
mn)

} ≤ (ϵ2 +Θmax)ρk min

{
1,

d
√
mn

∥Ūk∥F

}
. (19)

Using (19), Ūk = Ḡk/
√

W̄k, ∆0 in (12) and ρk = ρ0/
√
k, we thus derive that

(b) ≤ Ld2mn(ϵ2 +Θmax)
2

2

t∑
k=1

ρ2k · ∥Ūk∥2F
∥Ūk∥2F

= ∆2
0

t∑
k=1

1

k
. (20)

To lower bound (a), we first discuss the maximum operator inside η̂k. Let

E1 =
{
k ∈ [t] | ∥Ūk∥F ≥ d

√
mn
}
, E2 =

{
k ∈ [t] | ∥Ūk∥F ≤ d

√
mn
}
.
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When k ∈ E1, it derives that

η̂k ≥ d
√
mnϵ2ρk
∥Ūk∥F

. (21)

Using Lemma A.2, we first derive that w̄(k)
ij = (R

(i)

V̄k
C

(j)

V̄k
)/SV̄k

. Then, applying Lemma A.3 and
∥∇f(Xk)∥F ≤ G, we could upper bound ∥Ūk∥2F as follows,

∥Ūk∥2F =

n∑
i=1

m∑
j=1

(
ḡ
(k)
ij

)2
SV̄k

R
(i)

V̄k
C

(j)

V̄k

≤ ∥Ḡk∥2FG
mnϵ21(1− β2,1)2

≤ G2G
mnϵ21(1− β2,1)2

. (22)

Hence, combining with (21) and (22), we have

∑
k∈E1

η̂k

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

≥ d
√
mnϵ2

∑
k∈E1

ρk
∥Ūk∥F

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

≥ dϵ1mn(1− β2,1)ϵ2

G
√
G

∑
k∈E1

ρk

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

. (23)

When k ∈ E2, we obtain that η̂k = max{ϵ2,RMS(Xk)}ρk ≥ ϵ2ρk and thus

∑
k∈E2

η̂k

∥∥∥∥∥ Ḡk

4
√

W̄k

∥∥∥∥∥
2

F

≥ ϵ2
∑
k∈E2

ρk

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

. (24)

Combining with (23) and (24), we derive that

(a) ≥ ϵ2 min

{
1,

dϵ1mn(1− β2,1)

G
√
G

} t∑
k=1

ρk

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

. (25)

We also derive from Lemma A.2 and Lemma A.3 that for any i ∈ [n], j ∈ [m],

w̄
(k)
ij =

R
(i)

V̄k
C

(j)

V̄k

SV̄k

≤
R

(i)

V̄k
C

(j)

V̄k√
R

(i)

V̄k
C

(j)

V̄k

≤
√
R

(i)

V̄k
C

(j)

V̄k
≤
√
G1G2. (26)

Using (26), we have ∥∥∥∥∥ Ḡk

4
√

W̄k

∥∥∥∥∥
2

F

=

n∑
i=1

m∑
j=1

(
ḡ
(k)
ij

)2
√
w̄

(k)
ij

≥ ∥Ḡk∥2F
4
√
G1G2

=
∥Ḡk∥2F
A1

, (27)

where A1 has been defined in (12). Plugging (27) into (25), we derive that

(a) ≥ ϵ2
A1

min

{
1,

dϵ1mn(1− β2,1)

G
√
G

} t∑
k=1

ρk∥Ḡk∥2F . (28)

Plugging (20) and (28) into (18), and using ρk = ρ0/
√
k, we thus derive that

min
k∈[t]

∥Ḡk∥2F
t∑

k=1

1√
k
≤

t∑
k=1

ρk∥Ḡk∥2F
ρ0

≤ A0A1

(
f(X1)− f∗ +∆2

0

t∑
k=1

1

k

)
, (29)

where A0 is given in (12). Moreover, we have the following results,
t∑

k=1

1

k
≤ 1 +

∫ t

1

1

x
dx = 1 + log t,

t∑
k=1

1√
k
≥

√
t. (30)

We thus derive the first desired result in (10) as follows,

min
k∈[t]

∥Ḡk∥2F ≤ A0A1√
t

(
f(X1)− f∗ +∆2

0 +∆2
0 log t

)
.
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A constant step-size ρk = ρ0 Setting ρk = ρ0, then following the result in (29), we derive that

t · min
k∈[t]

∥Ḡk∥2F ≤
t∑

k=1

∥Ḡk∥2F ≤ A0A1

(
f(X1)− f∗ +∆2

0

t∑
k=1

1

k

)
.

Using (30) and dividing t on both sides, we obtain that

min
k∈[t]

∥Ḡk∥2F ≤ A0A1

t

(
f(X1)− f∗ +∆2

0 +∆2
0 log t

)
.

Avoiding the curse of dimension To derive a free-dimension numerator bound, we first derive
from (19) and (22) with ρk = ρ0/

√
k that

(b) ≤ L(ϵ2 +Θmax)
2

2

t∑
k=1

ρ2k∥Ūk∥2F ≤ LG2G(ϵ2 +Θmax)
2

2mnϵ21(1− β2,1)2

t∑
k=1

ρ2k = ∆̃2
0

t∑
k=1

1

k
, (31)

where ∆̃0 has been defined in (12). In addition, we derive from Lemma A.2, Lemma A.3 and (14)
that

w̄
(k)
ij =

R
(i)

V̄k
C

(j)

V̄k

SV̄k

≤ 2G1G2

mnϵ1
≤ 2

(
G4

mnϵ1
+G2 + ϵ1

)
= (A′

1)
2,

where we use m+ n ≤ mn and A′
1 in (12). Thereby, we have∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

=

n∑
i=1

m∑
j=1

(
ḡ
(k)
ij

)2
√
w̄

(k)
ij

≥ ∥Ḡk∥2F
A′

1

.

Combining with (25), we thus derive that

(a) ≥ ϵ2
A′

1

min

{
1,

dϵ1mn(1− β2,1)

G
√
G

} t∑
k=1

ρk∥Ḡk∥2F (32)

Plugging (31) and (32) into (18), and using ρk = ρ0/
√
k, we derive that

min
k∈[t]

∥Ḡk∥2F
t∑

k=1

1√
k
≤

t∑
k=1

ρk∥Ḡk∥2F
ρ0

≤ A0A
′
1

(
f(X1)− f∗ + ∆̃2

0

t∑
k=1

1

k

)
,

where A0 has been defined in (12). Using (30), we derive the second desired result in (10).

min
k∈[t]

∥Ḡk∥2F ≤ A0A
′
1√

t

(
f(X1)− f∗ + ∆̃2

0 + ∆̃2
0 log t

)
.

B PROOF DETAIL FOR STOCHASTIC ADAFACTOR WITHOUT UPDATE CLIPPING

We first provide the detailed version of Theorem 6.1.
Theorem B.1 (Formal statement of Theorem 6.1). Let {Xk}k≥1 be generated by Algorithm 1 without
update clipping where ηk is given by (4) for each k ≥ 1. If Assumptions (A1)-(A4) hold, and

β2,1 = 1/2, ρ1 = ρ0,

β2,k = 1− 1/kc, ρk = ρ0/
√
k, ∀k ≥ 2,

for some constants 1/2 ≤ c ≤ 1, ρ0 > 0, then for any T ≥ 1, δ ∈ (0, 1), we have the following
results.
When c = 1, with probability at least 1− δ,

min
k∈[T ]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+ C2 log T + C2 + C3

)
, (33)

min
k∈[T ]

∥Ḡk∥2F ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+ (C ′

2 + C ′
3) log T + C ′

2 + C ′
3

)
. (34)
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When 1/2 ≤ c < 1, with probability at least 1− δ,

min
k∈[T ]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+

C2

1− c
· T 1−c + C2 + C3

)
, (35)

min
k∈[T ]

∥Ḡk∥2F ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+

2C ′
2

1− c
· T 1−c + C ′

3 log T + C ′
2 + C ′

3

)
. (36)

Here, Θmax and G are as in (11), and

C1 = f(X1)− f∗ +
24G2(ϵ2 +Θmax)ρ0√

ϵ1
. (37)

The C0, C2, C3 are constants defined as

C0 =
2
√
2G

ρ0ϵ2
, C3 =

C2

4
log

(
2 +

2G2

ϵ1

)
,

C2 =
32mnG 3

2 (ϵ2 +Θmax)ρ0
max{m,n}ϵ1

+
4LmnG(ϵ2 +Θmax)

2ρ20
max{m,n}ϵ1

. (38)

The C ′
0, C

′
2, C

′
3 are positive constants (that could be further upper bounded by constants independent

from m,n), defined by

C ′
0 =

2

√
2
(

G2

mnϵ1
+G+ ϵ1

)
ρ0ϵ2

, C ′
2 = 4G3(G1 +G2)(ϵ2 +Θmax)ρ0, C

′
3 =

LG3(ϵ2 +Θmax)
2ρ20

2
,

(39)

and G1, G2, G3 are given by

G1 =

√
6

(
G4

mnϵ1
+G2 + ϵ1

)
, G3 =

4(G4 +G2mnϵ1)

mnϵ21
,

G2 = 2

(
G3

mnϵ1
+

2G2

√
mnϵ1

+
G√
mn

+G+
√
ϵ1

)
. (40)

Calculation of hyper-parameter dependency To derive a free dimension bound, we shall use the
convergence bounds in (34) and (36). From (39), it’s easy to show that m,n could only exist in the
denominator of C ′

0, C
′
2, C

′
3, which could avoid the curse of dimension.

To calculate the dependency of ϵ1, we first show that its dependency in coefficients C0, C1, C2, C3 as
follows, based on the assumption that 0 < ϵ1 < 1,

C0 ∼ O (1) , C1 ∼ O (1/
√
ϵ1) , C2 ∼ O (1/ϵ1) , C3 ∼ O (C2 log(1/ϵ1)) . (41)

Thereby, with the convergence bounds in (33) and (35), it’s easy to show that

min
k∈[T ]

∥Ḡk∥2F ≤ O
(
ϵ−1
1 log(1/ϵ1)

)
. (42)

Proposition B.1. Following the same assumptions and settings in Theorem 6.1, then with probability
at least 1− δ,

min
k∈[T ]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+ C2

T∑
k=1

1

kc
+ C3

)
,

and with probability at least 1− δ,

min
k∈[T ]

∥Ḡk∥2F ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+ C ′

2

T∑
k=1

1

kc/2+1/2
+ C ′

3

T∑
k=1

1

k

)
,

where all constants are given as in Theorem B.1.
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B.1 PRELIMINARY

We first follow the notations of Ḡk =
(
ḡ
(k)
ij

)
ij

and G,G1,G2 in (14). Let Gk =
(
g
(k)
ij

)
ij

and

ξk = Gk − Ḡk. We also define G2
k,ϵ1

= Gk ⊙Gk + ϵ11n1
⊤
m and Vk =

(
v
(k)
ij

)
ij

as follows,

V0 = 0n×m, Vk = β2,kVk−1 + (1− β2,k)G
2
k,ϵ1 , k ≥ 1. (43)

We also define R
(i)
Vk

, C
(j)
Vk

and SVk
as the i-th row sum, j-th column sum and coordinate sum of Vk

respectively. R(i)

G2
k,ϵ1

and C
(j)

G2
k,ϵ1

represent the same definitions with respect to G2
k,ϵ1

. Then, using a

similar deduction in Lemma A.2, we also obtain that for all k ≥ 1,

R
(i)
Vk

= β2,kR
(i)
Vk−1

+ (1− β2,k)G
2
k,ϵ11m, C

(j)
Vk

= β2,kC
(j)
Vk−1

+ (1− β2,k)1
⊤
nG

2
k,ϵ1 . (44)

As a consequence of (44), each coordinate of Wk satisfies that

w
(k)
ij =

R
(i)
Vk

C
(j)
Vk

SVk

=

(
β2,kR

(i)
Vk−1

+ (1− β2,k)R
(i)

G2
k,ϵ1

)(
β2,kC

(j)
Vk−1

+ (1− β2,k)C
(j)

G2
k,ϵ1

)
β2,kSVk−1

+ (1− β2,k)SG2
k,ϵ1

.

(45)

Next, we introduce a proxy step-size matrix Ak =
(
a
(k)
ij

)
ij

such that

a
(k)
ij =

(
β2,kR

(i)
Vk−1

+ (1− β2,k)G1

)(
β2,kC

(j)
Vk−1

+ (1− β2,k)G2

)
β2,kSVk−1

+ (1− β2,k)G
. (46)

The proxy step-size technique is a standard way in the convergence analysis of adaptive methods, e.g.,
Ward et al. (2020); Défossez et al. (2022). We provide a new proxy step-size in (46) to handle the
matrix factorization in Adafactor. This construction satisfies two properties. First, it’s independent
from Zk in order to disrupt the correlation of stochastic gradients and adaptive step-sizes. Second, it
needs to remain sufficiently close to the original adaptive step-size w(k)

ij to avoid generating divergent
terms.

B.2 TECHNICAL LEMMAS

In the following, we first provide some more necessary technical lemmas. We introduce a concentra-
tion inequality for the martingale difference sequence, see (Li & Orabona, 2020) for a proof.

Lemma B.1. Suppose that {Zs}s∈[T ] is a martingale difference sequence with respect to ζ1, · · · , ζT .
Assume that for each s ∈ [T ], σs is a random variable dependent on ζ1, · · · , ζs−1 and satisfies that

E
[
exp

(
Z2
s

σ2
s

)
| ζ1, · · · , ζs−1

]
≤ e.

Then for any λ > 0, and for any δ ∈ (0, 1), it holds that

P

(
T∑

s=1

Zs >
1

λ
log

(
1

δ

)
+

3

4
λ

T∑
s=1

σ2
s

)
≤ δ.

Lemma B.2. Following the parameter setting in (5), for any i ∈ [n], j ∈ [m], k ≥ 1, it holds that

R
(i)

G2
k,ϵ1

, R
(i)
Vk

∈ [mϵ1/2,G1], C
(j)

G2
k,ϵ1

, C
(j)
Vk

∈ [nϵ1/2,G2], SG2
k,ϵ1

, SVk
∈ [mnϵ1/2,G].
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Proof. First, using Assumption (A4), we derive that

mnϵ1/2 ≤ SG2
k,ϵ1

=

n∑
i=1

m∑
j=1

((
g
(k)
ij

)2
+ ϵ1

)
= ∥Gk∥2F +mnϵ1 ≤ G,

mϵ1/2 ≤ R
(i)

G2
k,ϵ1

=

m∑
j=1

((
g
(k)
ij

)2
+ ϵ1

)
≤ ∥Gk∥2F +mϵ1 ≤ G1,

nϵ1/2 ≤ C
(j)

G2
k,ϵ1

=

n∑
i=1

((
g
(k)
ij

)2
+ ϵ1

)
≤ ∥Gk∥2F + nϵ1 ≤ G2.

Using the similar deduction for Lemma A.3, we could show that mϵ1(1− β2,1) ≤ R
(i)
Vk

≤ G1. Since

β2,1 = 1/2 from (5), we then obtain the desired result. The bounds for C(j)
Vk

, SVk
could be also

derived by using similar arguments.

We have the following lemma to upper bound each coordinate of the proxy step-size matrix Ak

defined in (46) .
Lemma B.3. For any k ≥ 1, it holds that

β2,k(1− β2,k)ϵ1 ≤ a
(k)
ij ≤ 2min

{
G, G2

mnϵ1
+G+ ϵ1

}
, ∀i ∈ [n], j ∈ [m].

Proof. We first have

β2,kR
(i)
Vk−1

+ (1− β2,k)G1

β2,kSVk−1
+ (1− β2,k)G

≤
β2,kR

(i)
Vk−1

β2,kSVk−1

+
(1− β2,k)G1

(1− β2,k)G
≤ 2. (47)

Then, recalling the definition of a(k)ij in (46) and Lemma B.2, it derives that C(j)
Vk−1

≤ G2 and thereby

β2,kC
(j)
Vk−1

+ (1 − β2,k)G2 ≤ G2 ≤ G. Then combining with (47), we derive a
(k)
ij ≤ 2G. We also

derive a free dimension bound from Lemma B.2 for a(k)ij as follows,

a
(k)
ij ≤ 2G1G2

mnϵ1
=

2(G2 +G(m+ n)ϵ1 +mnϵ21)

mnϵ1
≤ 2

(
G2

mnϵ1
+G+ ϵ1

)
,

where we use m + n ≤ mn when m,n ≥ 2 and β2,kSVk−1
+ (1 − β2,k)G ≥ mnϵ1/2. To lower

bound a
(k)
ij , we derive from Lemma B.2 that β2,kSVk−1

+ (1− β2,k)G ≤ G. Thereby,

a
(k)
ij ≥

β2,k(1− β2,k)
(
R

(i)
Vk−1

G2 + C
(j)
Vk−1

G1

)
G

≥ β2,k(1− β2,k) ·
(mG2 + nG1)ϵ1

2G

= β2,k(1− β2,k) ·
[(m+ n)G2 + 2mnϵ1]ϵ1

2(G2 +mnϵ1)
≥ β2,k(1− β2,k)ϵ1.

Lemma B.4. Let Wk and Vk be defined in Algorithm 1 without update clipping where ηk is given by
(4) and (43) respectively. For any k ≥ 1, it holds that∥∥∥∥ Gk√

Wk

∥∥∥∥2
F

≤ 2G
max{m,n}ϵ1

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

.

Proof. Recalling (45), v(k)ij ≤ R
(i)
Vk

,v(k)ij ≤ C
(j)
Vk

and Lemma B.2, one could verify that(
g
(k)
ij

)2
w

(k)
ij

=

(
g
(k)
ij

)2
SVk

R
(i)
Vk

C
(j)
Vk

≤
2
(
g
(k)
ij

)2
G

nϵ1v
(k)
ij

,

(
g
(k)
ij

)2
w

(k)
ij

=

(
g
(k)
ij

)2
SVk

R
(i)
Vk

C
(j)
Vk

≤
2
(
g
(k)
ij

)2
G

mϵ1v
(k)
ij

,
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which leads to the desired result that

∥Uk∥2F =

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 2G
max{m,n}ϵ1

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

.

The following lemma is inspired by (Défossez et al., 2022, Lemma 5.2) where they considered a
constant β2,k. Here, we generalize the result to the case of time-varying β2,k and provide the proof
detail.
Lemma B.5. For any t ≥ 1, if β2,k are as in (5), then it holds that

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

≤ mn log

(
2(G2 + ϵ1)

ϵ1

)
+ 4mn

t∑
k=1

(1− β2,k).

Proof. Recalling the definition of Vk and since V0 = 0n×m, we have that for any k ≥ 1,

v
(k)
ij = β2,kv

(k−1)
ij + (1− β2,k)

[(
g
(k)
ij

)2
+ ϵ1

]

=

k∑
p=1

(1− β2,p)

[(
g
(p)
ij

)2
+ ϵ1

] k∏
l=p+1

β2,l

 .

Then, we have

(1− β2,k) ·

(
g
(k)
ij

)2
v
(k)
ij

=
xk

yk + θk
, (48)

where we set y0 = 0, θ0 = 0 and

xk = (1− β2,k)
(
g
(k)
ij

)2
, yk =

k∑
p=1

(1− β2,p)
(
g
(p)
ij

)2 k∏
l=p+1

β2,l

 ,

θk = ϵ1

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 , ∀k ≥ 1.

Then we have yk − xk = β2,kyk−1,∀k ≥ 1. Moreover, since yk ≥ xk, we could use log x ≥
1− 1/x,∀x ≥ 1 to derive that

xk

yk + θk
≤ log(yk + θk)− log(yk + θk − xk) = log(yk + θk)− log(β2,kyk−1 + θk)

= log

(
yk + θk

yk−1 + θk−1

)
+ log

(
yk−1 + θk−1

β2,kyk−1 + θk

)
.

Noting that θk = β2,kθk−1 + (1− β2,k)ϵ1, which leads to β2,kθk−1 ≤ θk. Hence, we further have

xk

yk + θk
≤ log

(
yk + θk

yk−1 + θk−1

)
+ log

(
yk−1 + θk−1

β2,k(yk−1 + θk−1)

)
= log

(
yk + θk

yk−1 + θk−1

)
− log β2,k.

(49)

Hence, summing up on both sides of (48) and (49) over k ∈ [t], and noting that x1 = y1, we obtain
that

t∑
k=1

(1− β2,k) ·

(
g
(k)
ij

)2
v
(k)
ij

=
x1

y1 + θ1
+

t∑
k=2

xk

yk + ϵk

≤1 + log

(
yt + θt
y1 + θ1

)
−

t∑
k=2

log β2,k. (50)
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Note that y1 + θ1 ≥ (1− β2,1)ϵ1 = ϵ1/2. Moreover, using Lemma A.1 and Assumption (A4), we
have θt = Γtϵ1 ≤ ϵ1 and yt ≤ ΓtG

2 ≤ G2. We then derive that

yt + θt
y1 + θ1

≤ 2(G2 + ϵ1)

ϵ1
. (51)

Noting that for k ≥ 2, c ∈ [1/2, 1], β2,k ≥ β2,2 = 1− 1/2c ≥ 1− 1/
√
2, we then derive that

− log β2,k ≤ 1− β2,k

β2,k
≤

√
2(1− β2,k)√

2− 1
≤ 4(1− β2,k). (52)

Finally, plugging (51), (52) into (50), and then summing (50) up over i ∈ [n], j ∈ [m], we obtain the
desired result.

Next, we have the following probabilistic result relying on the property of the martingale difference
sequence which is commonly used in the analysis of adaptive methods.
Lemma B.6. Following the parameter setting in (5), for any T ≥ 1 and λ > 0, with probability at
least 1− δ, ∀t ∈ [T ],

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
24G2(ϵ2 +Θmax)ρ0√

ϵ1
log

(
T

δ

)
.

Proof. Let ζk = −ηk

〈
Ḡk,

ξk√
Ak

〉
and the filtration Fk = σ (Z1, · · · ,Zk) where σ(·) denotes the

σ-algebra. Note that ηk, Ḡk and Ak are dependent by {X1, · · · ,Xk−1} and thereby Fk−1. Since
ξk is dependent by Fk, we could prove that {ζk}k≥1 is a martingale difference sequence since

E [ζk | Fk−1] = −ηk

〈
Ḡk,

E [ξk | Fk−1]√
Ak

〉
= 0,

where we apply that E [ξk | Fk−1] = EZk
[ξk] = 0 from Assumption (A3). Then, using Assumption

(A3) and Assumption (A4), we have

∥Ḡk∥F = ∥EZk
[Gk]∥F ≤ EZk

∥Gk∥F ≤ G, ∥ξk∥F = ∥Gk − Ḡk∥F ≤ 2G.

Let ωk = 2Gηk

∥∥∥ Ḡk√
Ak

∥∥∥
F

. We thus derive from the Cauchy-Schwarz inequality that

E
[
exp

(
ζ2k
ω2
k

)
| Fk−1

]
≤ E

exp

∥∥∥ Ḡk√

Ak

∥∥∥2
F
∥ξk∥2F

4G2
∥∥∥ Ḡk√

Ak

∥∥∥2
F

 | Fk−1

 ≤ exp(1). (53)

Then, using Lemma B.1, it leads to that for any λ > 0, with probability at least 1− δ,

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 3λG2

t∑
k=1

η2k

∥∥∥∥ Ḡk√
Ak

∥∥∥∥2
F

+
1

λ
log

(
1

δ

)

= 3λG2
t∑

k=1

n∑
i=1

m∑
j=1

ηk√
a
(k)
ij

· ηk

(
ḡ
(k)
ij

)2
√
a
(k)
ij

+
1

λ
log

(
1

δ

)
. (54)

Meanwhile, when ∥Xk∥∞ ≤ Θmax, ρk = ρ0/
√
k, we have

RMS(Xk) ≤ Θmax,
ϵ2ρ0√

k
≤ ηk ≤ (ϵ2 +Θmax)ρ0√

k
. (55)

Combining with Lemma B.3, we derive that

ηk√
a
(k)
ij

≤ ηk√
β2,k(1− β2,k)ϵ1

≤ (ϵ2 +Θmax)ρ0√
β2,kϵ1

· k
c/2

√
k

≤ (ϵ2 +Θmax)ρ0√
min{β2,1, β2,2}ϵ1

≤ 2(ϵ2 +Θmax)ρ0√
ϵ1

, (56)
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where we use β2,1 = 1/2, β2,2 = 1− 1/2c ≥ 1− 1/
√
2, c ∈ [1/2, 1] from (5) in the last inequality.

Hence, plugging (56) into (54) and then re-scaling the δ, we found that with probability at least 1− δ,
for all t ∈ [T ],

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 6λG2(ϵ2 +Θmax)ρ0√

ϵ1

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
1

λ
log

(
T

δ

)
.

Setting λ =
√
ϵ1/(24G

2(ϵ2 +Θmax)ρ0), we derive the desired result.

The following key lemma provides an upper bound for the error brought by the proxy step-size a
(k)
ij ,

illustrating the error is controllable.
Lemma B.7. For any k ≥ 1, i ∈ [n], j ∈ [m], it holds that∣∣∣w(k)

ij − a
(k)
ij

∣∣∣√
a
(k)
ij

≤
√
1− β2,k min{4

√
G, G1 +G2}, (57)

where G is as in (14) and G1, G2 are as in (40).

Proof. To simplify the notation, we let

X = β2,kR
(i)
Vk−1

+ (1− β2,k)R
(i)

G2
k,ϵ1

, ∆X = (1− β2,k)(G1 −R
(i)

G2
k,ϵ1

),

Y = β2,kC
(j)
Vk−1

+ (1− β2,k)C
(j)

G2
k,ϵ1

, ∆Y = (1− β2,k)(G2 − C
(j)

G2
k,ϵ1

),

Z = β2,kSVk−1
+ (1− β2,k)SG2

k,ϵ1
, ∆Z = (1− β2,k)(G − SG2

k,ϵ1
). (58)

Then we have∣∣∣w(k)
ij − a

(k)
ij

∣∣∣ = ∣∣∣∣XY

Z
− (X +∆X)(Y +∆Y )

Z +∆Z

∣∣∣∣ = ∣∣∣∣XY∆Z −XZ∆Y − Y Z∆X − Z(∆X∆Y )

Z(Z +∆Z)

∣∣∣∣ .
Applying Lemma B.2, we could verify that X,Y, Z ≥ 0 and

0 ≤ ∆X ≤ (1− β2,k)G1, 0 ≤ ∆Y ≤ (1− β2,k)G2, 0 ≤ ∆Z ≤ (1− β2,k)G. (59)
Hence, we derive that∣∣∣w(k)

ij − a
(k)
ij

∣∣∣√
a
(k)
ij

=
|XY∆Z −XZ∆Y − Y Z∆X − Z(∆X∆Y )|

Z
√
(X +∆X)(Y +∆Y )(Z +∆Z)

≤ |X∆Y + Y∆X + (∆X∆Y )|√
(X +∆X)(Y +∆Y )(Z +∆Z)︸ ︷︷ ︸

(I)

+
XY∆Z

Z
√

(X +∆X)(Y +∆Y )(Z +∆Z)︸ ︷︷ ︸
(II)

.

(60)
Since XY ≥ 0 from (58), Term (I) could be bounded as

(I) ≤ |X∆Y + Y∆X + (∆X∆Y )|√
(X∆Y + Y∆X + (∆X∆Y ))(Z +∆Z)

≤
√

X∆Y + Y∆X + (∆X∆Y )

Z +∆Z
. (61)

Recalling the definition, we have R(i)
Vk−1

≤ SVk−1
, C(j)

Vk−1
≤ SVk−1

for any i ∈ [n], j ∈ [m]. Further,
applying Lemma B.2 and (59), we derive that

X∆Y

Z +∆Z
≤

R
(i)
Vk−1

SVk−1

+
R

(i)

G2
k,ϵ1

G

∆Y ≤ 2(1− β2,k)G2.

Y∆X

Z +∆Z
≤

C
(j)
Vk−1

SVk−1

+
C

(j)

G2
k,ϵ1

G

∆X ≤ 2(1− β2,k)G1,

∆X∆Y

Z +∆Z
≤ ∆X(1− β2,k)G

(1− β2,k)G
≤ (1− β2,k)G1.
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We then derive from (61), G1 ≤ G and G2 ≤ G that

(I) ≤
√
5(1− β2,k)G. (62)

To derive a free dimension bound, we could obtain from Lemma B.2, (59) and G ≥ mnϵ1/2 that
Z +∆Z ≥ mnϵ1/2. Hence,

X∆Y

Z +∆Z
≤ 2(1− β2,k)G1G2

mnϵ1
,

Y∆X

Z +∆Z
≤ 2(1− β2,k)G1G2

mnϵ1
,

∆X∆Y

Z +∆Z
≤ 2(1− β2,k)G1G2

mnϵ1
.

We then derive that

(I) ≤

√
6(1− β2,k)G1G2

mnϵ1
=

√
6(1− β2,k)(G4 +G2ϵ1(m+ n) +mnϵ21)

mnϵ1
≤ G1

√
1− β2,k,

(63)

where we used m + n ≤ mn, and G1 is defined in (40). Then, combining with (62) and (63), we
have

(I) ≤
√

1− β2,k min{
√
5G, G1}, (64)

where we applied that m + n ≤ mn when m,n ≥ 2. Then we move to bound (II). Recalling the
definitions in (58), we have X ≤ Z, Y ≤ Z. Applying (59), we have

(II) ≤ XY∆Z

Z
√
XY∆Z

≤
√
XY∆Z

Z
≤

√
∆Z ≤

√
(1− β2,k)G.

Similarly, we derive from Lemma B.2 that Z ≥ mnϵ1/2, X ≤ G1, Y ≤ G2. Hence,

(II) ≤
√
XY∆Z

Z
≤

2
√
(1− β2,k)G1G2G

mnϵ1

≤ 2
√

1− β2,k

(
G3

mnϵ1
+

2G2

√
mnϵ1

+G+
G√
mn

+
√
ϵ1

)
≤ G2

√
1− β2,k,

where G2 has been defined in (40). We thus derive that

(II) ≤
√

1− β2,k min{
√
G, G2}. (65)

Combining (64) with (65) into (60), we then derive the desired result.

B.3 PROOF OF PROPOSITION B.1

Using the inequality in (15), we have

f(Xk+1) ≤ f(Xk) + ⟨Ḡk,Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2F

≤ f(Xk)− ηk

〈
Ḡk,

Gk√
Wk

〉
+

Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

.

Introducing the proxy step-size matrix Ak in (46) and then summing up both sides over k ∈ [t], we
derive that

f(Xt+1) ≤ f(X1)−
t∑

k=1

ηk

〈
Ḡk,

Gk√
Ak

〉
︸ ︷︷ ︸

A

+

t∑
k=1

ηk

〈
Ḡk,Gk ⊙

(
1√
Ak

− 1√
Wk

)〉
︸ ︷︷ ︸

B

+

t∑
k=1

Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F︸ ︷︷ ︸

C

. (66)
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Estimation for A We first introduce ξk into A,

A = −
t∑

k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
. (67)

Then, using Lemma B.6, with probability at least 1− δ, for all t ∈ [T ],

A = −3

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
24G2(ϵ2 +Θmax)ρ0√

ϵ1
log

(
T

δ

)
. (68)

Estimation for B Term B is essentially the error brought by the proxy step-size Ak. We will first

calculate the gap of 1/
√
w

(k)
ij and 1/

√
a
(k)
ij as follows,∣∣∣∣∣∣ 1√

w
(k)
ij

− 1√
a
(k)
ij

∣∣∣∣∣∣ = 1√
w

(k)
ij

√
a
(k)
ij

∣∣∣∣√w
(k)
ij −

√
a
(k)
ij

∣∣∣∣ ≤ 1√
w

(k)
ij

√
a
(k)
ij

√∣∣∣w(k)
ij − a

(k)
ij

∣∣∣. (69)

We then apply (69) and Young’s inequality,

B ≤
t∑

k=1

n∑
i=1

m∑
j=1

ηk

∣∣∣ḡ(k)ij g
(k)
ij

∣∣∣
∣∣∣∣∣∣ 1√

w
(k)
ij

− 1√
a
(k)
ij

∣∣∣∣∣∣
≤

t∑
k=1

n∑
i=1

m∑
j=1

ηk

∣∣∣ḡ(k)ij g
(k)
ij

∣∣∣√
w

(k)
ij

√
a
(k)
ij

√∣∣∣w(k)
ij − a

(k)
ij

∣∣∣
≤ 1

4

t∑
k=1

n∑
i=1

m∑
j=1

ηk ·

(
ḡ
(k)
ij

)2
√
a
(k)
ij

+ 4

t∑
k=1

n∑
i=1

m∑
j=1

ηk ·

∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

·

 g
(k)
ij√
w

(k)
ij

2

. (70)

Thus, plugging (57) in Lemma B.7 into (70), we derive that

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G

t∑
k=1

ηk
√
1− β2,k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G

t∑
k=1

(ϵ2 +Θmax)ρ0√
k

√
1− β2,k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G

t∑
k=1

(ϵ2 +Θmax)ρ0(1− β2,k)

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

, (71)

where we used (55) in the second inequality and 1/
√
k ≤ 1/kc/2, c ∈ [1/2, 1]. Furthermore, using

Lemma B.4 and Lemma B.5, we derive that

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
8mnG 3

2 (ϵ2 +Θmax)ρ0
max{m,n}ϵ1

[
log

(
2 +

2G2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
. (72)

Estimating C Using the similar deduction in (71) and (72), we derive that

C ≤ LmnG(ϵ2 +Θmax)
2ρ20

max{m,n}ϵ1

[
log

(
2 +

2G2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
. (73)

Putting together We first re-arrange the order in (66) and use f(Xt+1) ≥ f∗ in Assumption (A2)
to derive that

0 ≤ f(X1)− f∗ +A+B+C. (74)
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We then plug (68), (72), (73) into (74) and set t = T , which leads to that with probability at least
1− δ,

1

2

T∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≤C1 log

(
T

δ

)
+ C2

T∑
k=1

(1− β2,k) + C3, (75)

where C1, C2, C3 are as in Theorem B.1. Moreover, using Lemma B.3 and (55), we have

1

2

T∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≥
T∑

k=1

ηk
∥∥Ḡk

∥∥2
F

2maxi,j

√
a
(k)
ij

≥ ρ0ϵ2

2
√
2G

T∑
k=1

∥∥Ḡk

∥∥2
F√

k
. (76)

Combining with (76) and (75), and using
∑T

k=1 1/
√
k ≥

√
T , we derive that

min
k∈[T ]

∥Ḡk∥2 ≤ C0√
T

(
C1 log

(
T

δ

)
+ C2

T∑
k=1

(1− β2,k) + C3

)
,

where C0 has already been defined in (38). We then derive the first desired result that

min
k∈[T ]

∥Ḡk∥2 ≤ C0√
T

(
C1 log

(
T

δ

)
+ C2

T∑
k=1

1

kc
+ C3

)
.

Free dimension bound We follow the similar deduction in (71) and use Lemma B.7 to derive that

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4(G1 +G2)(ϵ2 +Θmax)ρ0

t∑
k=1

1

kc/2+1/2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

. (77)

Recalling the definition of w(k)
ij in (45) and Lemma B.2, we derive that

w
(k)
ij =

R
(i)
Vk

C
(j)
Vk

SVk

≥ mnϵ21
4G

,

∥∥∥∥ Gk√
W k

∥∥∥∥2
F

≤ ∥Gk∥2F
mini,j w

(k)
ij

≤ 4G2G
mnϵ21

≤ G3, (78)

where G3 is as in (40). We thus derive from (77) and (78) that

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4G3(G1 +G2)(ϵ2 +Θmax)ρ0

t∑
k=1

1

kc/2+1/2
. (79)

Using (55) and (78), we derive that

C =

t∑
k=1

Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ LG3(ϵ2 +Θmax)
2ρ20

2

t∑
k=1

1

k
. (80)

Plugging the unchanged estimation for A in (68), (79) and (80) into (66), we have that with probability
at least 1− δ, for all t ∈ [T ],

1

2

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≤ C1 log

(
T

δ

)
+ C ′

2

t∑
k=1

1

kc/2+1/2
+ C ′

3

t∑
k=1

1

k
, (81)

where C ′
2, C

′
3 are given as in (39) and C1 is as in (37). Further, using Lemma B.3 and the similar

deduction for (76),

1

2

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≥
t∑

k=1

ηk
∥∥Ḡk

∥∥2
F

2maxi,j

√
a
(k)
ij

≥ 1

C ′
0

t∑
k=1

∥∥Ḡk

∥∥2
F√

k
, (82)

where C ′
0 is as in (39). Combining with (81) and (82), and setting t = T , we derive the second

desired result in Proposition B.1 that

min
k∈[T ]

∥Ḡk∥2 ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+ C ′

2

T∑
k=1

1

kc/2+1/2
+ C ′

3

T∑
k=1

1

k

)
.
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B.4 PROOF OF THEOREM B.1

Now based on the result in Proposition B.1, we could further derive the final convergence rate. Noting
that when c = 1, we could bound that

T∑
k=1

1

k
≤ 1 +

∫ T

1

1

x
dx ≤ 1 + log T. (83)

Then, we obtain that

min
k∈[T ]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+ C2 log T + C2 + C3

)
,

min
k∈[T ]

∥Ḡk∥2F ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+ (C ′

2 + C ′
3) log T + C ′

2 + C ′
3

)
.

When 1/2 ≤ c < 1, we have

T∑
k=1

1

kc
≤ 1 +

∫ T

1

1

xc
dx ≤ 1 +

T 1−c

1− c
,

T∑
k=1

1

kc/2+1/2
≤ 1 +

∫ T

1

1

xc/2+1/2
dx ≤ 1 +

2T (1−c)/2

1− c
. (84)

Then, we obtain that

min
k∈[T ]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+

C2

1− c
· T 1−c + C2 + C3

)
,

min
k∈[T ]

∥Ḡk∥2F ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+

2C ′
2

1− c
· T 1−c + C ′

3 log T + C ′
2 + C ′

3

)
.

C AN EXTENSION TO SUB-GAUSSIAN NOISE WITH BOUNDED GRADIENTS

We first recall the sub-Gaussian noise assumption.

Assumption 1. The gradient oracle g(X,Z) satisfies that for some constant σ > 0,

E
[
exp

(
∥g(X,Z)−∇f(X)∥2

σ2

) ∣∣∣X] ≤ exp(1), ∀X ∈ Rn×m.

We state a standard concentration inequality for sub-Gaussian noise as follows.
Lemma C.1. Given T ≥ 1, let the noise sequence {ξt}t∈[T ] where ξt = g(Xt,Zt) − ∇f(Xt)
satisfies Assumption 1. Then, with probability at least 1− δ,

max
t∈[T ]

∥ξt∥2 ≤ σ2 log

(
eT

δ

)
.

Proof. See (Li & Orabona, 2020, Lemma 5) for a proof.

We also assume that the gradient is bounded, satisfying that ∥∇f(X)∥ ≤ G0,∀X ∈ Rn×m. Then,
we have the following convergence bound.
Theorem C.1. Let {Xk}k≥1 be generated by Algorithm 1 without update clipping where ηk is given
by (4) for each k ≥ 1. If Assumptions (A1)-(A3) hold, ∥∇f(X)∥F ≤ G0,∀X ∈ Rn×m, Assumption
1 holds, and

β2,1 = 1/2, ρ1 = ρ0,

β2,k = 1− 1/kc, ρk = ρ0/
√
k, ∀k ≥ 2,
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for some constants 1/2 ≤ c ≤ 1, ρ0 > 0, then for any T ≥ 1, δ ∈ (0, 1), with probability at least
1− 2δ,

min
k∈[T ]

∥Ḡk∥2F ≤ C̃0√
T

(
C̃1 log

(
T

δ

)
+

C̃2

1− c
· T 1−c + C̃2 + C̃3

)
,

where we define

C̃1 = f(X1)− f∗ +
6σ2(ϵ2 +Θmax)ρ0√

ϵ1
,

C̃0, C̃2, C̃3 follow the definitions of C0, C2, C3 in (38) with G,G replaced by G′,G′ and

G′ = G0 + σ

√
log

(
eT

δ

)
,G′ = (G′)

2
+mnϵ1.

The proof begins with the probabilistic estimations and follows the deterministic estimations. We
will show the key steps as follows.

C.1 PROBABILISTIC BOUNDS

We will rely on the definition of sub-Gaussian to estimate the summation of the martingale difference
sequence as shown in (67). Letting ζk = −ηk

〈
Ḡk,

ξk√
Ak

〉
and ω′

k = σηk

∥∥∥ Ḡk√
Ak

∥∥∥
F

, we could derive

from Assumption 1 and Cauchy-Schwarz inequality that for any k ∈ [T ],

E

[
exp

(
ζ2k

(ω′
k)

2

)
| Fk−1

]
≤ exp(1).

Thereby, relying on Lemma B.1, we derive a similar result to Lemma B.6: with probability at least
1− δ, for all t ∈ [T ],

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 3λσ2

4

t∑
k=1

η2k

∥∥∥∥ Ḡk√
Ak

∥∥∥∥2
F

+
1

λ
log

(
T

δ

)
. (85)

Using (56) where ηk/
√
a
(k)
ij ≤ 2(ϵ2 +Θmax)ρ0/

√
ϵ1, we have

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 3λσ2(ϵ2 +Θmax)ρ0

2
√
ϵ1

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
1

λ
log

(
T

δ

)
.

Setting λ =
√
ϵ1/(6σ

2(ϵ2 +Θmax)ρ0), we then derive that with probability at least 1− δ,

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
6σ2(ϵ2 +Θmax)ρ0√

ϵ1
log

(
T

δ

)
.

Relying on the bounded gradient ∥∇f(X)∥ ≤ G0 and Lemma C.1, we could derive the second
probability event: with probability at least 1− δ,

∥g(Xt,Zt)∥ ≤ G0 + σ

√
log

(
eT

δ

)
, ∀t ∈ [T ]. (86)

where we let G′ = G0 + σ
√
log
(
eT
δ

)
,G′ = (G′)

2
+mnϵ1.

C.2 DETERMINISTIC BOUNDS

Then, we will assume both two events, (85) and (86), always happen. Based on the events, stochastic
gradients are now bounded with G′. Then, recalling (67) and using (85), we derive that

A ≤ −3

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
6σ2(ϵ2 +Θmax)ρ0√

ϵ1
log

(
T

δ

)
. (87)
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Using the same deduction in Lemma B.7, the gap in the following is now bounded as∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

≤ 4
√
1− β2,k

√
G′.

Then, following the same result in (70), we derive that

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G′

t∑
k=1

(ϵ2 +Θmax)ρ0(1− β2,k)

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

.

Further, using Lemma B.4 and Lemma B.5 with G,G replaced by G′,G′,

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
8mnG′ 32 (ϵ2 +Θmax)ρ0

max{m,n}ϵ1

[
log

(
2 +

2G′2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
.

(88)

Similarly, we replace G,G with G′,G′ in (73) and (76), leading to

C ≤ LmnG′(ϵ2 +Θmax)
2ρ20

max{m,n}ϵ1

[
log

(
2 +

2G′2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
, (89)

and

1

2

T∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≥ ρ0ϵ2

2
√
2G′

T∑
k=1

∥∥Ḡk

∥∥2
F√

k
. (90)

As we assume two probability events happen, we then plug (87), (88), (89) and (90) into (66), and
use β2,k = 1− 1/kc, leading to with probability at least 1− 2δ,

min
k∈[T ]

∥Ḡk∥2F ≤ C̃0√
T

(
C̃1 log

(
T

δ

)
+ C̃2

T∑
k=1

1

kc
+ C̃3

)
.

Finally, we shall estimate
∑T

k=1 1/k
c following the same deduction in Appendix B.4, which leads to

the desired convergence bounds as follows:

min
k∈[T ]

∥Ḡk∥2F ≤ C̃0√
T

(
C̃1 log

(
T

δ

)
+

C̃2

1− c
· T 1−c + C̃2 + C̃3

)
.

D PROOF DETAIL FOR STOCHASTIC ADAFACTOR WITH UPDATE CLIPPING

We first provide the detailed version of Theorem 7.1 as follows.

Theorem D.1. Let {Xk}k≥1 be the sequence generated by Algorithm 1 with (6). If Assumptions
(A1) -(A4) hold, and

ρk = ρ0/
√
k, dk = k

c
2(α−1) , ∀k ≥ 1,

β2,1 = 1/2, β2,k = 1− 1/kc,∀k ≥ 2.

When c = 1, with probability at least 1− δ,

min
k∈[T ]

∥Ḡk∥2F ≤ D0√
T

(
C1 log

(
T

δ

)
+ (C2 +D1(α)) log T + C2 +D1(α) + C3

)
, (91)

min
k∈[T ]

∥Ḡk∥2F ≤ D0√
T

(
C1 log

(
T

δ

)
+ (C ′

2 + C ′
3 +D1(α)) log T + C ′

2 + C ′
3 +D1(α)

)
. (92)
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When 1/2 ≤ c < 1, with probability at least 1− δ,

min
k∈[T ]

∥Ḡk∥2F ≤ D0√
T

(
C1 log

(
T

δ

)
+

C2 +D1(α)

1− c
· T 1−c + C2 +D1(α) + C3

)
, (93)

min
k∈[T ]

∥Ḡk∥2F ≤ D0√
T

(
C1 log

(
T

δ

)
+ C ′

3 log T +
2(C ′

2 +D1(α))

1− c
· T

1−c
2 + C ′

2 + C ′
3 +D1(α)

)
,

(94)

where C1, C2, C3, C
′
2, C

′
3 are as in Theorem B.1 and

D0 = min{C0, C
′
0}, D1(α) =

G1+αG1−α
4

√
G(ϵ2 +Θmax)ρ0√
mnϵ1

, G4 =
mnϵ1

2
√
G
. (95)

Calculation of hyper-parameters’ dependency We first calculate the dependency on m,n, ϵ1, α
in the additional coefficient D1(α) as follows,

D1(α) ∼ O

((√
1 +mnϵ1
mnϵ1

)α−1
√

1

mnϵ21
+

1

ϵ1

)
, (96)

which is free of the curse of dimension since mn exists in the denominator. Recalling the definitions
of C ′

0, C1, C
′
2, C

′
3 in (37) and (39), it’s easy to verify that these coefficients are also free of the

curse of dimension factor m,n since m,n exist in the denominator. Thereby, we also derive a free
dimension bound selecting (92) and (94).

To calculate the dependency on ϵ1, we could combine with (41) and (96) to derive that

C0D1(α) ∼ O
(
ϵ−α
1

)
, C0C1 ∼ O

(
1/ϵ

−1/2
1

)
, C0C3 ∼ O

(
ϵ−1
1 log(1/ϵ1)

)
.

Thereby, selecting the bounds in (91) and (93) and noting that α > 1, we derive that the order on ϵ1 is

O
(

1

ϵα1
log

(
1

ϵ1

))
.

Moreover, it’s clear to reveal that there exists mn in the denominator, which could improve the
dependency on ϵ1. If we suppose that mn is comparable to ϵ1, then we derive that C0D1(α) ∼
O(ϵ

−1/2
1 ) and the order on ϵ1 is

O
(

1

ϵ1
log

(
1

ϵ1

))
.

D.1 PROOF OF THEOREM D.1

We define

G̃k =
Gk

max{1, ∥Uk∥F /(dk
√
mn)}

, ρ̂k = max{ϵ2,RMS(Xk)}ρk. (97)

Since RMS(Uk) = ∥Uk∥F /
√
mn, RMS(Xk) ≤ Θmax, we derive that

Xk+1 = Xk − ρ̂k
G̃k√
Wk

,

ϵ2ρ0√
k

≤ ρ̂k ≤ (ϵ2 +Θmax)ρ0√
k

≤ (ϵ2 +Θmax)ρ0
√
1− β2,k, (98)

where we applied that 1/
√
k ≤ 1/kc/2, c ∈ [1/2, 1] and β2,k = 1−1/kc in the last inequality. Using

the inequalities in (15) and (98), we have

f(Xk+1) ≤ f(Xk) + ⟨Ḡk,Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2F

≤ f(Xk)− ρ̂k

〈
Ḡk,

G̃k√
Wk

〉
+

Lρ̂2k
2

∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F

.
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Summing up both sides over k ∈ [t] and using f(Xt+1) ≥ f∗ from Assumption (A2), we derive that

0 ≤ f(X1)− f∗ +

t∑
k=1

−ρ̂k

〈
Ḡk,

G̃k√
Wk

〉
︸ ︷︷ ︸

D

+

t∑
k=1

Lρ̂2k
2

∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F︸ ︷︷ ︸
E

. (99)

Introducing Ak in (46), we further have the following decomposition,

D = −
t∑

k=1

ρ̂k

〈
Ḡk,

G̃k√
Ak

〉
+

t∑
k=1

ρ̂k

〈
Ḡk,

(
1√
Ak

− 1√
Wk

)
⊙ G̃k

〉
︸ ︷︷ ︸

D.1

= −
t∑

k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+D.1

−
t∑

k=1

ρ̂k

〈
Ḡk,

G̃k√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

D.2

+

t∑
k=1

ρ̂k

〈
Ḡk,

Ḡk√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

D.3

. (100)

Estimating E Hence, using (97), (98), Lemma B.4 and Lemma B.5, we derive that

E ≤ L

2

t∑
k=1

ρ̂2k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ L(ϵ2 +Θmax)
2ρ20

2

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ LmnG(ϵ2 +Θmax)
2ρ20

max{m,n}ϵ1

[
log

(
2 +

2G2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
. (101)

To avoid the curse of dimension, we drive from (97) and (78) that∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F

=
1

(max{1, ∥Uk∥F /(dk
√
mn)})2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤
∥∥∥∥ Gk√

Wk

∥∥∥∥2
F

≤ G3. (102)

Then, using (98) and (102), we derive that

E ≤ LG3(ϵ2 +Θmax)
2ρ20

2

t∑
k=1

1

k
. (103)

Estimating D.1 We could follow the similar deduction in (69) and (70) to derive that

D.1 ≤
t∑

k=1

n∑
i=1

m∑
j=1

ρ̂k|ḡ(k)ij g̃
(k)
ij |

∣∣∣∣∣∣ 1√
w

(k)
ij

− 1√
a
(k)
ij

∣∣∣∣∣∣
≤

t∑
k=1

n∑
i=1

m∑
j=1

ρ̂k
|ḡ(k)ij g̃

(k)
ij |√

w
(k)
ij

√
a
(k)
ij

√∣∣∣w(k)
ij − a

(k)
ij

∣∣∣
≤ 1

4

t∑
k=1

n∑
i=1

m∑
j=1

ρ̂k ·

(
ḡ
(k)
ij

)2
√
a
(k)
ij

+ 4

t∑
k=1

n∑
i=1

m∑
j=1

ρ̂k ·

∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

·
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(k)
ij√
w

(k)
ij

2

. (104)

Using Lemma B.7 and (104), we further derive that

D.1 ≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G

t∑
k=1

ρ̂k
√

1− β2,k

∥∥∥∥∥ G̃k√
Wk
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2

F

≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G

t∑
k=1

ρ̂k
√

1− β2,k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

.
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Using (98), Lemma B.4 and Lemma B.5, we further have

D.1 ≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G(ϵ2 +Θmax)ρ0

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
8mnG 3

2 (ϵ2 +Θmax)ρ0
max{m,n}ϵ1

[
log

(
2 +

2G2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
.

(105)

To avoid the curse of dimension, we apply Lemma B.7, (98) and (78) to derive that

D.1 ≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4(G1 +G2)

t∑
k=1

ρ̂k
√
1− β2,k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4(G1 +G2)(ϵ2 +Θmax)ρ0

t∑
k=1

1

kc/2+1/2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4G3(G1 +G2)(ϵ2 +Θmax)ρ0

t∑
k=1

1

kc/2+1/2
. (106)

Estimating D.2 Since Ak is independent from Zk, it further leads to

D.2 = −
t∑

k=1

ρ̂k

〈
Ḡk√
Ak

, G̃k − EZk

[
G̃k

]〉
.

Then, the deduction for estimating D.2 follows the similar idea as in Lemma B.6, relying on a
martingale difference sequence.

Let us set φk = −ρ̂k

〈
Ḡk√
Ak

, G̃k − EZk

[
G̃k

]〉
and the filtration Fk = σ (Z1, · · · ,Zk). Noting that

ρ̂k, Ḡk and Ak are dependent by Fk−1. Since ξk is dependent by Fk, we could prove that {φk}k≥1

is a martingale difference sequence by showing that

E [φk | Fk−1] = −ρ̂k

〈
Ḡk√
Ak

,EZk

[
G̃k − EZk

[G̃k]
]〉

= 0.

In addition, using Assumptions (A3), (A4) and Jensen’s inequality, we have

∥G̃k∥F =
∥Gk∥F

max{1, ∥Uk∥/(dk
√
mn)}

≤ ∥Gk∥F ≤ G, ∥EZk
[G̃k]∥F ≤ EZk

∥G̃k∥F ≤ G.

Therefore, we derive that

∥G̃k − EZk
[G̃k]∥F ≤ ∥G̃k∥F + ∥EZk

[G̃k]∥F ≤ 2G. (107)

Let ω′
k = 2Gρ̂k

∥∥∥ Ḡk√
Ak

∥∥∥
F

. We thus derive from the Cauchy-Schwarz inequality and (107) that

E
[
exp

(
φ2
k

(ω′
k)

2

)
| Fk−1

]
≤ E

exp

∥∥∥ Ḡk√

Ak

∥∥∥2
F
∥G̃k − EZk

[G̃k]∥2F

4G2
∥∥∥ Ḡk√

Ak

∥∥∥2
F

 | Fk−1

 ≤ exp(1).

Then, using Lemma B.1, it leads to that for any λ > 0, with probability at least 1− δ,

D.2 =

t∑
k=1

φk ≤ 3λG2
t∑
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ρ̂2k

∥∥∥∥ Ḡk√
Ak

∥∥∥∥2
F

+
1

λ
log

(
1

δ

)

= 3λG2
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m∑
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+
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.
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Since {β2,k}k≥2 is non-decreasing, we could apply Lemma B.3 to derive that

1√
a
(k)
ij

≤

√
1

β2,k(1− β2,k)ϵ1
≤

√
1

min{β2,1, β2,2}(1− β2,k)ϵ1
≤ 2√

(1− β2,k)ϵ1
.

Then, we apply (98), and re-scale δ to obtain that for any λ > 0, with probability at least 1− δ, for
all t ∈ [T ],

D.2 ≤ 6λG2ρ0(ϵ2 +Θmax)√
ϵ1

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
1

λ
log

(
T

δ

)
.

Setting λ =
√
ϵ1/(24G

2ρ0(ϵ2 +Θmax)), we derive that

D.2 ≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
24G2ρ0(ϵ2 +Θmax)√

ϵ1
log

(
T

δ

)
. (108)

Estimating D.3 First, since Ak is independent from Zk and EZk
[Gk] = Ḡk, we have

D.3 =

t∑
k=1

ρ̂k

〈
Ḡk,

EZk
[Gk]√
Ak

− EZk
[G̃k]√
Ak

〉

≤
t∑

k=1

ρ̂k

∥∥∥∥ Ḡk√
Ak

∥∥∥∥
F

·

∥∥∥∥∥∥∥∥∥EZk

[
Gk − Gk

max{1, ∥Uk∥F /(dk
√
mn)}

]
︸ ︷︷ ︸

Ωk

∥∥∥∥∥∥∥∥∥
F

. (109)

We define the random variable S
(1)
k , S(2)

k and S̃
(1)
k using the indicator function χ and G4 in (95) as

follows,

S
(1)
k = χ{∥Uk∥F>dk

√
mn}, S

(2)
k = χ{∥Uk∥F≤dk

√
mn}, S̃

(1)
k = χ{∥Gk∥F≥dkG4}.

From (78), we derive that

∥Uk∥F ≤ ∥Gk∥F · 2
√
G√

mnϵ1
.

Hence, S(1)
k ≤ S̃

(1)
k ,∀k ≥ 1. Note that when S

(2)
k = 1, it’s equivalent to Ωk = 0. Then, we derive

that

∥EZk
[Ωk]∥F =

∥∥∥EZk
[ΩkS

(1)
k ] + EZk

[ΩkS
(2)
k ]
∥∥∥
F
=
∥∥∥EZk

[ΩkS
(1)
k ]
∥∥∥
F

≤ EZk

∥∥∥ΩkS
(1)
k

∥∥∥
F
≤ EZk

∥∥∥ΩkS̃
(1)
k

∥∥∥
F
≤ EZk

∥∥∥GkS̃
(1)
k

∥∥∥
F
≤ Gα (dkG4)

1−α
, (110)

Furthermore, we use Assumption (A4) and Lemma B.2 to derive a lower bound for a(k)ij where

a
(k)
ij ≥ mnϵ21

4G
,

∥∥∥∥ Ḡk√
Ak

∥∥∥∥
F

≤ ∥Ḡk∥F

mini,j

√
a
(k)
ij

≤ 2G
√
G√

mnϵ1
. (111)

Combining with (98), (109), (110) and (111), we thus derive that

D.3 ≤ 2G1+αG1−α
4

√
G(ϵ2 +Θmax)ρ0√
mnϵ1

t∑
k=1

1

dα−1
k

√
k
. (112)

Putting together Both E and D.1 are bounded with two estimations, one of which owns a better
dependency to 1/ϵ1 and the other avoids the curse of the dimension. We thereby derive two results.
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Plugging (105), (108) and (112) into (100) and then combining with (101) and (99), we then derive
that with probability at least 1− δ, for all t ∈ [T ],

1

2

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≤ C1 log

(
T

δ

)
+ C2

t∑
k=1

(1− β2,k) + C3 +D1(α)

t∑
k=1

1

dα−1
k

√
k
, (113)

where C1, C2, C3 are as in Theorem B.1 and D1(α) is as in (95). Plugging (106), (108) and (112)
into (100), then combining with (103) and (99), we then derive that with probability at least 1− δ,
for all t ∈ [T ],
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(114)

where C ′
2, C

′
3 are as in Theorem B.1. Moreover, using (98), we reveal that the lower bound for ρ̂k is

the same the one for ηk in (55). Thereby, following the same deduction in (76) and (81), we derive
that
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where D0 = min{C0, C
′
0} that has been defined in (95). Setting t = T on (113) and (114), and then

using (115), we then derive that
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Then, using the results in (83) and (84), we could derive the desired result in Theorem D.1.

E SOME COMPLEMENTARY EXPERIMENTS

E.1 TEST ACCURACY OF TRAINING BERT-BASE MODEL

First, we report the test accuracy for the experiment in Section 9, using Adafactor with different c
and Adam to train BERT-Base.

Table 1: The test accuracy after 5 epochs. We use Adafactor and Adam to train BERT-Base on
GLUE/MNLI dataset. All the setup is aligned with the one in Figure 1.

c = 0.5 c = 0.6 c = 0.8 c = 0.9 c = 1.0 Adam

accuracy 0.7785 0.7803 0.7795 0.7827 0.7802 0.8014

Table 1 implies that the performance of Adafactor and Adam is comparable. It’s also reasonable that
Adafactor sacrifices some accuracy as the memory is saved in comparison to Adam.

E.2 EXPERIMENTS ON RESNET MODEL

In the following experiments, the initialization is R0 = 0m and C0 = 0⊤
n . We use a learning rate

with the warm-up technique as described in (Shazeer & Stern, 2018), specifically ρk = min{10−6 ·
k, 1/

√
k} for all experiments unless otherwise specified. The batch size is set to 256, and the total

number of epochs is 400 by default. Our models are ResNet-20 and ResNet-110 (He et al., 2016),
and we use the CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) without any data
augmentation. The experiments are conducted using the PyTorch implementation of Adafactor on a
single NVIDIA GeForce RTX 4090 GPU.
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E.3 REPORT ON EXPERIMENT 1

We train ResNet-20 and ResNet-110 using Adafactor (no update clipping) with decay rate parameter
c ranging from 0.5 to 1.0 in increments of 0.05, while keeping other hyper-parameters at their default
values. Each experiment is run 10 times with 100 epochs, and we plot the average training curve
and the average test accuracy with standard deviation (shallow blue region) in Figure 2 and Figure 3,
respectively. The training curves under different decay rates c are not obviously different. Hence, we
turn to use the test accuracy as the measurement. Figure 3 indicates that c = 1.0 yields better test
performance and stability compared to c < 1.0 on different models and datasets, corresponding to
the highest test accuracy and thinner shallow blue band. These performances align roughly with the
results in Theorem 6.1.
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E.4 REPORT ON EXPERIMENT 2

Table 2: The test accuracy after 400 epochs. We use Adafactor without update clipping under different
ϵ1 and other hyper-parameters are set by default.

ϵ1 ResNet 20 / CIFAR 10 ResNet 20 / CIFAR 100 ResNet 110 / CIFAR 100

10−30 0.7526 0.4072 0.4159
10−15 0.7439 0.3936 0.4288
10−8 0.7425 0.4157 0.4266
10−5 0.7480 0.4141 0.3951
10−3 0.6864 0.3247 0.3377

In the second experiment, we test Adafactor (no update clipping) under different ϵ1 values. We
plot the training loss curve against the step t on different models and datasets in Figure 4. We also
report the test accuracy after training 400 epochs in Table 2. The performance for ϵ1 = 10−8 and
ϵ1 = 10−5 is nearly identical to that for ϵ1 = 10−30. Moreover, even a larger value of 10−3 achieves
comparable training performance, though with a slower decrease in loss and a worse test accuracy
compared to other values of ϵ1. Notably, ϵ1 = 10−3 requires approximately the same number of
steps (t ≈ 20000) as ϵ1 = 10−30 to achieve near-zero training loss. We conclude that Adafactor is
not sensitive to the choice of ϵ1, and a relatively large ϵ1 can still lead to convergence, making the
polynomial dependency O(1/ϵ1) in our convergence bounds acceptable.
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Figure 2: Average training loss curve under different decay rate parameters c.
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Figure 3: Average test accuracy and standard deviation (shallow blue region) under different decay
rate parameters c.
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E.5 REPORT ON EXPERIMENT 3

Table 3: The test accuracy after 400 epochs. We use Adafactor with different time-varying clipping
thresholds and other hyper-parameters are set by default. We do not apply the warm-up technique.

α (no warm up) ResNet 20 / CIFAR 10 ResNet 20 / CIFAR 100 ResNet 110 / CIFAR 100

α = 4.0 0.6947 0.3096 0.3508
α = 6.0 0.7420 0.3600 0.4359
α = 7.0 0.7558 0.3564 0.4483
α = 8.0 0.7556 0.3729 0.4586
α = 9.0 0.7751 0.3771 0.4401
α = 1.0 (default) 0.8031 0.4535 0.4906

Table 4: The test accuracy after 400 epochs. We use Adafactor with different time-varying clipping
thresholds and other hyper-parameters are set by default. We apply the warm-up technique.

α(warm up) ResNet 20 / CIFAR 10 ResNet 20 / CIFAR 100 ResNet 110 / CIFAR 100

α = 4.0 0.6331 0.2753 0.2958
α = 6.0 0.6812 0.2988 0.3433
α = 7.0 0.6811 0.3111 0.3547
α = 8.0 0.6930 0.3195 0.3658
α = 9.0 0.6969 0.2969 0.3855
α = 1.0 (default) 0.7371 0.3812 0.4085

In this experiment, we explore the appropriate values of α in Theorem 7.1 and compare the training
performance to the default setting of d = 1. As indicated by Theorem 7.1, a relatively small α is
desirable for better dependency on ϵ1. We train models with α set to 4, 6, 7, 8, and 9, keeping other
hyper-parameters at their default values. We also train models with the default d = 1 setting as the
baseline. We report the test accuracy after training 400 epochs. We also plot the training loss against
the steps in Figure 5 without step-size warm-up and Figure 6 with step-size warm-up.

The results indicate that, for the values of α = 6, 7, 8, 9, Adafactor achieves comparable convergence
speed compared to the default threshold (represented by "Baseline"), which helps to complement the
theoretical results in Theorem 7.1.
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Figure 4: Training loss vs. steps using Adafactor without update clipping under different ϵ1. The
step-size ηt, decay rate β2,k, and learning rate warm-up are set by default.
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Figure 5: Training loss vs. steps on different models and datasets. We use step-size without warm-up
technique and test under different α.
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Figure 6: Training loss vs. steps on different models and datasets. We use step-size with warm-up
technique by default and test under different α.
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