
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONVERGENCE OF ADAFACTOR UNDER NON-CONVEX
SMOOTH STOCHASTIC OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Adafactor, a memory-efficient variant of Adam, has emerged as one of the popular
choices for training deep learning tasks, particularly large language models. How-
ever, despite its practical success, there is limited theoretical analysis of Adafactor’s
convergence. In this paper, we present a comprehensive analysis of Adafactor in a
non-convex smooth setting. We show that full-batch Adafactor finds a stationary
point at a rate of Õ(1/

√
T) with the default setup, which could be accelerated

to Õ(1/T) with a constant step-size parameter. For stochastic Adafactor without
update clipping, we prove a convergence rate of Õ(1/

√
T) with the right parame-

ters covering the default setup. We also prove that Adafactor with a time-varying
clipping threshold could also find a stationary point with the rate of Õ(1/

√
T).

Our theoretical results are further complemented by some experimental results.

1 INTRODUCTION

The adaptive gradient-based methods, such as the well-known AdaGrad (Duchi et al., 2011; Streeter
& McMahan, 2010), RMSProp (Tieleman & Hinton, 2012), Adadelta (Zeiler, 2012), Adam (Kingma
& Ba, 2015), and AMSGrad (Reddi et al., 2018) are one of the preferred approaches in solving the
following unconstrained stochastic optimization problem in deep learning fields:

min
X∈Rn×m

f(X) = EZ∈P [l(X;Z)], (1)

where l is a smooth potentially non-convex function and P denotes a probability distribution. During
the training process, these adaptive methods require storing the historical gradients’ information to
tune their step-sizes adaptively. For example, both Adam and AdamW maintain the exponential
average of gradients and squared gradients, and AdaGrad stores the cumulative of squared gradients.
Despite their effectiveness, these algorithms pose substantial memory challenges for GPUs to save
these additional gradients’ information, especially when training large language models (LLMs),
such as GPT-3 (Brown et al., 2020), which contains over 175 billion parameters.

To address memory constraints, several memory-efficient optimization algorithms have been devel-
oped, e.g., (Shazeer & Stern, 2018; Anil et al., 2019; Luo et al., 2023; Li et al., 2024). One of the
popular optimizers is Adafactor (Shazeer & Stern, 2018), a memory-saved variant of Adam that
employs a rank-1 matrix factorization to approximate the second-moment matrix. For an n × m
weight matrices, this technique reduces memory from O(mn) to O(m + n) by only tracking the
moving averages of the row and column sums of the squared gradients matrix. Additionally, Adafactor
eliminates the first-order momentum used in Adam and incorporates update clipping to enhance
training stability. In real applications, several LLMs including PaLM (Chowdhery et al., 2023)1 and
T5 (Raffel et al., 2020) have included Adafactor into their main optimizers (Zhao et al., 2023).

The empirical results reveal that Adafactor achieves comparable performance to Adam in training
Transformer models (Shazeer & Stern, 2018), even though it sacrifices gradient information to save
the memory. Despite Adafactor’s empirical success, there is limited understanding on its convergence
in theory, especially the explanation for its hyper-parameter setting in experiments. Theoretical
results, e.g., (Zou et al., 2019; Défossez et al., 2022), have proved that Adam could converge to the
stationarity with Õ(1/

√
T) rate under specific hyper-parameter for non-convex smooth setup. Then,

a natural question arises:
1PaLM applies Adafactor without matrix factorization.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Could Adafactor still achieve the same order of convergence rate as Adam while sacrificing
gradient information for improved memory efficiency? If so, what’s the requirement for its
hyper-parameters setup?

In this paper, we analyze Adafactor’s convergence for non-convex smooth optimization problems,
considering the typical bounded gradient setting as those for AdaGrad (Li & Orabona, 2019; Ward
et al., 2020) and Adam (Zaheer et al., 2018). We aim to provide a similar convergence rate for
Adafactor which complements the empirical observation that Adafactor could attain comparable
performance to Adam while reducing memory usage. The analysis is non-trivial compared to other
adaptive methods such as AdaGrad and Adam due to the unique matrix factorization and update
clipping mechanisms in Adafactor. In the full-batch case, we rely on the special exponential moving
averages of the row sums and column sums of the squared gradients to lower bound the first-order
term in the Descent Lemma. In the stochastic case, we design a new proxy step-size to compute the
conditional expectation of the first-order term that involved the stochastic gradient and the adaptive
step-sizes. Further, we successfully control the additional error brought by this proxy step-size. We
also extend a standard way in the analysis of SGD with clipping to handle the update clipping. Our
main contributions are summarized as follows.

• We provide a convergence analysis for full-batch Adafactor under bounded gradients and a
broader range of hyper-parameter settings which covers the default one in (Shazeer & Stern,
2018). The result shows that Adafactor can find a stationary point Õ(1/

√
T) rate with default

step-sizes. This rate can be accelerated to Õ (1/T) with a constant step-size parameter.

• We further investigate the more realistic stochastic Adafactor. It’s found that a simple variant
of Adafactor, which drops the update clipping, could attain the convergence rate of Õ(1/

√
T)

when the decay rate of the second moment is 1− 1/k. This rate is optimal, matching the lower
bound (Arjevani et al., 2023) up to logarithm factors.

• We extend our study to include a time-varying clipping threshold. Our analysis implies that with
proper selections of clipping threshold and hyper-parameters, Adafactor could also achieve the
best convergence rate of Õ(1/

√
T).

• We further provide some basic experiments on computer vision and natural language processing
tasks to complement our theoretical results.

The rest of the paper are organized as follows. The next section provides some most relevant works.
Section 3 presents some necessary notations definitions and problem setup. Section 4 reviews
Adafactor and its major differences to Adam. Sections 5 and 6, separately provide convergence
bounds for full-batch Adafactor and stochastic Adafactor (no update clipping) and further discuss
the hyper-parameters’ dependency. Section 7 investigates Adafactor using a time-increasing update
clipping threshold. Section 8 summarizes the main proof challenges brought by Adafactor and our
proof novelty. Section 9 provides experimental results to complement our theory. All the detailed
proofs and some experiments can be found in the appendix.

2 RELATED WORK

Although there are limited works on Adafactor in theory, the convergence for other memory-
unconstraint adaptive methods are widely studied. Here, we briefly list some typical works due to the
page limitation.

Convergence of adaptive methods. Several studies (Li & Orabona, 2019; Ward et al., 2020; Zou
et al., 2019) prove the convergence of AdaGrad in non-convex smooth settings assuming bounded
stochastic gradients. Shi et al. (2020) shows that RMSProp could converge to the stationarity when
the decay rate of the second moment is close to one. Several works (Chen et al., 2019; Zhou et al.,
2020; Alacaoglu et al., 2020) provide convergence bounds for AMSGrad in non-convex smooth
settings. A line of research, e.g., (Zaheer et al., 2018; De et al., 2018; Zou et al., 2019; Défossez et al.,
2022) have investigated the convergence of Adam assuming bounded gradients and noise. Yao et al.
(2021) designed AdaHessian, using Hutchinson’s approximation to estimate the diagonal Hessian.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Sadiev et al. (2023) provided Scaled SARAH and Scaled L-SVRG to approximate the diagonal
Hessian when the problem is ill-conditioned. Recently, several works focused on the heavy-tail noise,
showing that clipping is also necessary for AdaGrad (Li & Liu, 2023) and Adam (Chezhegov et al.,
2024) as the one for SGD (Gorbunov et al., 2020).

Memory efficient algorithms. As large models are increasingly used in deep learning, memory
constraints have become a central issue during training. Consequently, several memory-efficient
optimizers have been developed to address this challenge.

One approach to saving memory involves applying matrix factorization to optimization algorithms.
For instance, Shazeer et al. (2017) used matrix factorization in the second moment estimator of
gradients in Adam, similar to the concept behind Adafactor. Luo et al. (2023) introduced CAME, a
variant of Adafactor, which incorporates a confidence-guided strategy to mitigate instability caused
by erroneous updates. Zhao et al. (2024) proposed Adapprox, leveraging randomized low-rank
matrix approximation for Adam’s second moment estimator, demonstrating superior performance
and reduced memory usage compared to AdamW.

There are some other techniques to save the memory. For example, Gupta et al. (2018) relied on
a “Shampoo” technique to reduce the storage requirement of full-matrix preconditioning methods.
Notably, their method could be further extended to the more realistic tensor case. Anil et al. (2019)
presented a memory-saved version of AdaGrad, called SM3, by maintaining k sets gradient ac-
cumulator. They proved the convergence guarantee of SM3 on online convex optimization and
the effectiveness in experiments. Recently, Li et al. (2024) built a 4-bit Adam using quantization
techniques to compress the first and second moment estimators in Adam, also reducing memory
usage.

In summary, many existing optimizers, particularly adaptive methods like AdaGrad and Adam, face
memory overhead. In response, the discussed works have designed memory-efficient optimizers that
aim to achieve comparable performance to these existing methods while achieving memory benefits.

3 PROBLEM SETUP

To start with, we introduce some necessary notations.

Notations. The index set [n] denotes {1, 2, · · · , n}. ∥ · ∥F and ∥ · ∥∞ denote the Frobenius norm
and l∞-norm respectively. a ≲ O(b) denotes a ≤ C0b for some positive constant C0. For any two
matrices X = (xij)ij ,Y = (yij)ij ∈ Rn×m, we define ⟨X,Y ⟩ =

∑n
i=1

∑m
j=1 xijyij . X ⊙ Y ,

X
Y and

√
X denote the coordinate-wise product, quotient, and squared root respectively. 0n and

1n denote the zero and one n-dimensional vector respectively, and 1n×m denotes the one n ×m-
dimensional matrix. For a positive sequence {αi}i≥1, we define

∑b
i=a αi = 0 and

∏b
i=a αi = 1 if

a > b. The operator RMS(·) denotes

RMS(X) =

√√√√ 1

mn

n∑
i=1

m∑
j=1

x2
ij .

We consider unconstrained stochastic optimization (1) over Rn×m with the Frobenius norm. The
objective function f : Rn×m → R is differentiable. Given an n×m matrix X , we assume a gradient
oracle that returns a random matrix g(X,Z) ∈ Rn×m dependent on the random sample Z. The
gradient of f at X is denoted by ∇f(X) ∈ Rn×m.

Assumptions. We make the following standard assumptions throughout the paper.

• (A1) L-smoothness: For any X,Y ∈ Rn×m, ∥∇f(Y)−∇f(X)∥F ≤ L∥Y −X∥F ;
• (A2) Bounded below: There exists f∗ > −∞ such that f(X) ≥ f∗,∀X ∈ Rn×m;
• (A3) Unbiased estimator: The gradient oracle provides an unbiased estimator of ∇f(X), i.e.,
E [g(X,Z) | X] = ∇f(X),∀X ∈ Rn×m;

• (A4) Almost surely bounded stochastic gradient: for any X ∈ Rn×m, ∥g(X,Z)∥F ≤ G, a.s..

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Combining with (A3) and (A4), it’s easy to verify that ∥∇f(X)∥ ≤ G,∀X ∈ Rn×m. Assumptions
(A1)-(A3) are standard in the non-convex smooth convergence analysis. Although Assumption (A4)
is a bit strong, it’s still commonly used to derive the high probability convergence bound, see e.g.,
(Ward et al., 2020; Kavis et al., 2022), which is a stronger result than an expected convergence.It’s
also commonly appeared in several early convergence results for adaptive methods, e.g., (Kingma &
Ba, 2015; Reddi et al., 2018; Zaheer et al., 2018; Défossez et al., 2022). We note that our analysis
can be extended to the sub-Gaussian noise case, which is commonly used for analyzing adaptive
methods, e.g., (Li & Orabona, 2020; Liu et al., 2023). We will discuss this in detail in Appendix B.4.

4 A REVIEW OF ADAFACTOR

In this section, we briefly introduce Adafactor and highlight its major differences from Adam. The
pseudocode for Adafactor is presented in Algorithm 1.

Algorithm 1 Adafactor

Input: Initialization point X1 ∈ Rn×m, R0 = 0m, C0 = 0⊤
n , relative step-sizes {ρk}k≥1, decay

rate {β2,k}k≥1 ∈ [0, 1), regularization constants ϵ1, ϵ2 > 0, clipping threshold d.
for k = 1, · · · , T do
Gk = g(Xk,Zk);
Rk = β2,kRk−1 + (1− β2,k)(Gk ⊙Gk + ϵ11n1

⊤
m)1m;

Ck = β2,kCk−1 + (1− β2,k)1
⊤
n (Gk ⊙Gk + ϵ11n1

⊤
m);

Wk = (RkCk)/1
⊤
nRk;

Uk = Gk/
√
Wk;

ηk = max{ϵ2,RMS(Xk)}ρk/max{1,RMS(Uk)/d};
Xk+1 = Xk − ηk ·Gk/

√
Wk;

end for

Matrix factorization. Adafactor could be served as a saved-memory version of Adam. Throughout
the training process, Adam maintains two n ×m matrices Mk and Vk using exponential moving
average update,

Mk = β1,kMk−1 + (1− β1,k)Gk, Vk = β2,kVk−1 + (1− β2,k)Gk ⊙Gk, (2)
where β1,k, β2,k ∈ (0, 1), thereby tripling the memory usage. The innovation in Adafactor lies in
its method of approximating Vk by factoring it into two rank-1 matrices, specifically the row sums
and column sums of Vk, thus sufficiently reducing the memory from 2mn to m + n. Although
this factorization sacrifices some information about the squared gradients, Adafactor still delivers
performance comparable to Adam in many real application tasks.

Increasing decay rate. In Adam, corrective terms are introduced into Mk and Vk, resulting in
two increasing-to-one decay rates. Theoretically, it has been demonstrated that a value close to
one for β2,k would ensure the convergence, e.g., (Défossez et al., 2022; Zou et al., 2019; Zhang
et al., 2022). Inspired by this observation, Adafactor used an increasing second-moment decay rate
β2,k = 1− 1/kc, c > 0, and the empirical default setting is c = 0.8. As pointed out by Shazeer &
Stern (2018), this setting allows for enjoying the stability of a low β2,k at the early stage of training
and the insurance of convergence from a high β2,k as the run progresses. Moreover, it also leverages
the bias correction.

Update clipping. Adafactor modifies the update process by discarding the first-order moment
Mk and instead applies an update clipping technique inside the step-size ηk. This involves dividing
the root-mean-square of the update Uk, denoted as RMS(Uk), when it exceeds a threshold d. This
mechanism helps to calibrate the second moment estimator Wk when it’s larger-than-desired Gk⊙Gk.
Empirical findings in (Shazeer & Stern, 2018) indicated that implementing update clipping leads to
significant performance improvements when the warm-up technique is not used.

Relative step-sizes. Adafactor incorporates a step-size proportional to scale of Xk, denoted by
RMS(Xk), which is shown in experiments more resilient to the more naive parameter initialization
and scaling schemes (Shazeer & Stern, 2018).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

5 CONVERGENCE RESULT FOR FULL-BATCH ADAFACTOR

We first provide the convergence bound for the full-batch Adafactor. At each iteration, full-batch
Adafactor obtains the gradient ∇f(Xk) and then updates Rk,Ck using ∇f(Xk) instead of Gk in
Algorithm 1.
Theorem 5.1. Let {Xk}k≥1 be generated by Algorithm 1 with g(Xk,Zk) = ∇f(Xk),∀k ≥ 1. If
Assumptions (A1) and (A2) hold, ∥∇f(Xk)∥F ≤ G,∀k ≥ 1, β2,1 = 1/2, ρ1 = ρ0 and

ρk = ρ0, 0 < β2,k < 1, ∀k ≥ 2, (3)
for some positive constant ρ0, then for any T ≥ 1,

min
k∈[T]

∥∇f(Xk)∥2F ≲ O
(
log T

T

)
.

When setting ρk = ρ0/
√
k, k ≥ 1, for any T ≥ 1,

min
k∈[T]

∥∇f(Xk)∥2F ≲ O
(
log T√

T

)
.

The result indicates that full-batch Adafactor could find a stationary point at a rate of O(log T/T)
under the non-convex smooth case, corresponding to the rate for gradient descent (Bottou et al., 2018)
and full-batch Adam (Shi et al., 2020). We note that the time-decreasing step-size only leads to a
sub-optimal rate in our framework. The hyper-parameter setting in (3) only requires β2,k ∈ (0, 1),
denoting a much wider range including the default one which requires β2,k = 1 − 1/k0.8. The
detailed version for the above result can be found in Theorem A.1 from the appendix.

6 STOCHASTIC ADAFACTOR WITHOUT UPDATE CLIPPING

In the stochastic case, we start from the simple scenario where
ηk = max{ϵ2,RMS(Xk)}ρk (4)

dropping the update clipping 1/max{1,RMS(Uk)/d}. The main reasons are as follows.

• As pointed out in the experiments from (Shazeer & Stern, 2018), Adafactor’s performance shows
little difference with and without update clipping when implementing learning rate warm-up.
Since the warm-up technique is a popular method in deep learning (Zhao et al., 2023), it’s
reasonable to drop the update clipping.

• In stochastic Adafactor, the correlation between Gk and ηk would be more complex if the update
clipping is involved. The proof would be simpler when dropping the update clipping, which
could help to better understand the analysis for Adafactor.

Based on these reasons, we assume that the warm-up technique is implemented and drop the update
clipping. In addition, we focus on the stage when the warm-up is finished, which allows us to focus
on the stage that leads to the final output. Despite these reasons, we also believe that investigating the
warm-up stage could be quite an interesting topic for future work. We now present the probabilistic
convergence bound for Adafactor without update clipping as follows.
Theorem 6.1. Let {Xk}k≥1 be generated by Algorithm 1 without update clipping where ηk is given
by (4) for each k ≥ 1. If Assumptions (A1)-(A4) hold, and

β2,1 = 1/2, ρ1 = ρ0,

β2,k = 1− 1/kc, ρk = ρ0/
√
k, ∀k ≥ 2,

(5)

for some constants 1/2 ≤ c ≤ 1, ρ0 > 0, then for any T ≥ 1, δ ∈ (0, 1), with probability at least
1− δ,

min
k∈[T]

∥∇f(Xk)∥2F ≲ O
(

1

T c−1/2
log

(
T

δ

))
.

The detailed version of the above results can be found in Theorem B.1 from the appendix. We will
make a detailed discussion on the convergence bound as well as some hyper-parameter dependencies
in the next section.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

6.1 DISCUSSION OF THE HYPER-PARAMETER DEPENDENCY.

In this section, we discuss the dependency of several important hyper-parameters in Theorem 6.1
and the detailed version in Theorem B.1 in the appendix. It’s worthy to mention that the dominated
order in our convergence bound is determined by the total iteration number T , whereas other hyper-
parameters could be regarded as constants. However, we hope to improve the dependency of these
hyper-parameters as much as possible to make the convergence bound tight.

Discussion of c and the optimal rate. Theorem 6.1 reveals that when c = 1, β2,k = 1− 1/k and
ρk = ρ0/

√
k, the convergence rate attains the optimal rate matching the lower bound. The result then

complements the empirical results that the information lost in Adafactor does not essentially harm
the convergence speed and Adafactor could still achieve comparable performance to Adam.

In addition, when c increases from 1/2 to 1, the convergence rate improves, which could also be
seen roughly in the experiment (see Figure 1). This phenomenon somehow explains that a small
decay rate β2,k (c is low) may harm the convergence speed, as β2,k should be closed enough to 1
to ensure convergence. This phenomenon is both verified by convergence bounds for Adam in e.g.,
(Zou et al., 2019; Défossez et al., 2022; Zhang et al., 2022; Wang et al., 2023) and negative results
where a constant β2 is not guaranteed to converge in e.g., (Reddi et al., 2018; Zhang et al., 2022).

Dependency to mn. It’s clear to see that the convergence bounds in Theorem A.1 and Theorem
B.1 are free of the curse of the dimension factor mn as mn only appears on the denominator in each
coefficient. We think that solving the curse of dimension is vital since the applied range for Adafactor
includes many deep learning tasks where mn are comparable large to T .

Dependency to ϵ1, ϵ2. The convergence bounds in Theorem 6.1 is of order O(ϵ−1
1 log(1/ϵ1)) on

ϵ1.2 Although the polynomial dependency to ϵ1 is a bit worse since ϵ1 usually takes a small value
in experiments, e.g., 10−30 in the default setup, it’s still common in some theoretical convergence
results, e.g., (Zaheer et al., 2018; Li et al., 2023). We also perform some experiments to show that a
relatively large ϵ1, roughly 10−5, makes no observable effect on the convergence speed (see Figure 4
in Appendix E). Thereby, ϵ1 could be regarded as a constant in comparison to T and the influence
brought by 1/ϵ1 could be somehow acceptable.

Since the default value of ϵ2 is 10−3 in experiments, the dependency O(1/ϵ2) on ϵ2 shows little
effect on convergence bounds given the sufficiently large T .

Dependency on the scale of parameters. The convergence bounds in Theorem B.1 contain a
O (Θmax) factor where Θmax denotes the maximum values of ∥Xk∥∞,∀k ≥ 1. However, the
dependence on Θmax is not fundamental, as it arises from the relative step-size max{ϵ2,RMS(Xk)},
which could be dropped by removing the relative step-size as done in Adam.

7 CONVERGENCE OF ADAFACTOR WITH UPDATE CLIPPING

In this section, we slightly change the update clipping threshold d in Algorithm 1 to a time-varying
threshold dk. The step-size ηk then becomes

ηk =
max{ϵ2,RMS(Xk)}ρk
max{1,RMS(Uk)/dk}

. (6)

The update-clipping in Adafactor differs from the standard clipping mechanism with the form
1/max {1, λ/∥Gk∥F }, bringing some more essential challenges for analyzing. In what follows,
we demonstrate that incorporating such clipping can still ensure convergence for Adafactor under
bounded stochastic gradient assumption.
Theorem 7.1. Let {Xk}k≥1 be generated by Algorithm 1 with ηk given by (6) for each k ≥ 1. If
Assumptions (A1)-(A4) hold, and

d1 = 1, β2,1 = 1/2, ρ1 = ρ0,

dk = k
c

2(α−1) , β2,k = 1− 1/kc, ρk = ρ0/
√
k, ∀k ≥ 2,

(7)

2The detailed discussion could be found in (41) and (42) in Appendix B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

for some constants α > 1, 1/2 ≤ c ≤ 1, ρ0 > 0, then for any T ≥ 1, δ ∈ (0, 1), with probability at
least 1− δ,

min
k∈[T]

∥∇f(Xk)∥2F ≲ O
(

1

T c−1/2
log

(
T

δ

))
.

Discussion of Theorem 7.1. The convergence result indicates that with a proper selection of the
clipping threshold, along with the commonly used ρk and β2,k, Adafactor can find a stationary point
with a rate of Õ(1/T c−1/2). The dependency on c remains consistent with Theorem 6.1, achieving
the optimal rate when c = 1. We thus conclude that Adafactor, equipped with matrix factorization
to reduce the memory of Adam and update clipping, could still obtain a convergence rate as fast as
Adam in theory. In addition, the convergence bound can still avoid the curse of dimension, which is
shown in the detailed version Theorem D.1 from the appendix.

The additional hyper-parameter α primarily influences the dependency on ϵ1, specifically as
O
(
ϵ−α
1 log(1/ϵ1)

)
. Thus, our convergence bound may deteriorate as α increases. This depen-

dency could be potentially improved to O
(
ϵ−1
1 log(1/ϵ1)

)
when mn is comparable to 1/ϵ1, which

is practical in large-size models.3 In our experiments, we found that suitably small values, such as
α = 4, 6, 7, 8 can lead to convergence speed and training stability comparable to the default one (see
Figure 5 and 6). This finding suggests that our new threshold setting plays a similar role in enhancing
training stability as the default one, which is also the main motivation for update clipping. Since ϵ1
can be set to a relatively large value, e.g., 10−3, a dependency like O(ϵ−4

1 log(1/ϵ1)) is somewhat
acceptable for sufficiently large T .

The time-increasing dk provides the following intuition: As shown in (Shazeer & Stern, 2018, Figure
1), during the early stages of training, a high decay rate β2,k can cause larger-than-desired updates and
training instability. Therefore, we set a low threshold dk to ensure that the update clipping mechanism
effectively calibrates these larger-than-desired updates. As training progresses, the sequences and
updates become more stable. Consequently, there is less need for update clipping, corresponding to a
relatively large dk.

8 SUMMARY OF PROOF CHALLENGES AND TECHNIQUES

In this section, we will summarize the main proof challenges brought by Adafactor, which are essen-
tially different from other adaptive methods particularly Adam due to the unique matrix factorization
and update clipping. We also present our proof techniques including a proof sketch for Theorem 6.1
in the solution part. The proof for other main results shares many similarities with this proof sketch.

We begin by the descent lemma of the smoothness and using the updated rule in Algorithm 1,

f(Xk+1) ≤ f(Xk)−ηk

〈
∇f(Xk),

Gk√
Wk

〉
︸ ︷︷ ︸

(I)

+
Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F︸ ︷︷ ︸

(II)

, ∀k ≥ 1, (8)

Challenge I. A new type of adaptive step-size (no update clipping). We first consider the step-
size excluding the update clipping. The analysis of Adafactor presents two unique challenges, both
arising from its adaptive step-size involving a distinctive matrix factorization:

• Addressing the entanglement of the stochastic gradient Gk, and the adaptive step-size matrix
Wk that appears in component (I) in (8).

• Controlling the summation of the second-order term (II).

A key difficulty in analyzing adaptive methods lies in computing the conditional expectation of (I)
due to the correlation of Gk and Wk. To overcome this, existing analyses typically introduce a proxy
step-size matrix Ak that is conditional independent of Gk. This approach is applied in works such as

3The detailed calculation could be found in (96) from the appendix.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(Ward et al., 2020; Défossez et al., 2022) for AdaGrad and (Wang et al., 2023; Hong & Lin, 2024) for
Adam. Introducing Ak into (8) and summing up both sides over k ∈ [t],

f(Xt+1) ≤ f(X1)−
t∑

k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

−
t∑

k=1

ηk

〈
Ḡk,

Gk − Ḡk√
Ak

〉
︸ ︷︷ ︸

(A)

+

t∑
k=1

ηk

〈
Ḡk,Gk ⊙

(
1√
Ak

− 1√
Wk

)〉
︸ ︷︷ ︸

(B)

+

t∑
k=1

Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F︸ ︷︷ ︸

(C)

.

Note that (A) is a summation of a martingale difference sequence, which could be estimated through a
concentration inequality. The primary challenge, however, comes from estimating the additional error
(B). For Adam, the updated rule in (2) and AdaGrad, the updates Vk = Vk−1 +Gk ⊙Gk ensures
that Vk and Vk−1 share a linear relation. Most existing works rely on this linear relation to design
suitable proxy step-sizes, thereby tightly controlling (B) (see e.g., (Défossez et al., 2022, Lemma 5.1)
and (Wang et al., 2023, Lemma 7)). However, the step-size matrix Wk in Adafactor does not exhibit
a linear relationship with Wk−1. Specifically, we let Gk,ϵ1 = Gk ⊙Gk + ϵ1 and derive

Wk =

(
β2,kRk−1 + (1− β2,k)RGk,ϵ1

)
⊙
(
β2,kCk−1 + (1− β2,k)CGk,ϵ1

)
β2,kSk−1 + (1− β2,k)SGk,ϵ1

,

where RGk,ϵ1
= Gk,ϵ11m,CGk,ϵ1

= 1⊤
nGk,ϵ1 and Sk, SGk,ϵ1

are the coordinate sum of Vk,Gk,ϵ1 .
The absence of a linear relation between Wk and Wk−1 suggests that B may be unbounded using
existing proxy step-sizes.

Existing results, such as (Ward et al., 2020, Lemma 3.2) for AdaGrad or (Défossez et al., 2022,
Lemma 5.2) for Adam, show that the summation of the second-order term is restricted by logarithm
order of T . However, these results could not be directly applied to Adafactor due to the rather
different adaptive step-size and the time-varying β2,k.

Solution. The solution part also serves as a proof sketch of Theorem 6.1. Motivated by the existing
construction, we design a new proxy step-size matrix Ak as follows:

Ak =
(β2,kRk−1 + (1− β2,k)G1)⊙ (β2,kCk−1 + (1− β2,k)G2)

β2,kSk−1 + (1− β2,k)G
,

where G1,G2,G are constants related to G 4. We note that Ak is conditional independent with the
noise Gk − Ḡk. Note that we omit update clipping in Theorem 6.1 and A is now a summation of
the martingale difference sequence. Hence, we could use the concentration inequality to derive that
A ≲ O

(
G2 log(T/δ)/ϵ1

)
with the detail in Lemma B.6. More importantly, the construction of Ak

is delicate since we are able to control the relative distance (detailed in Lemma B.7) as∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

≲ O
(
G
√
1− β2,k

)
,∀k ≥ 1, i ∈ [n], j ∈ [m].

Relying on this bound, we could control the error term (B) as

(B) ≲
1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+O

(
G

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

)
. (9)

The remained thing is to control the second-order summation that emerged both in (C) and (9). We
begin by analyzing the ratio of the second-order term for Adafactor and Adam. Then, we extend an
inequality for Adam with a constant decay rate (Défossez et al., 2022, Lemma 5.2) to a time-varying
setup. These results are summarized as (see the details in Lemma B.4 and B.5),∥∥∥∥ Gk√

Wk

∥∥∥∥2
F

≲ O

(
G2

ϵ1

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

)
,

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

≲ O

(
log

(
G2

ϵ1
+

t∑
k=1

(1− β2,k)

))
.

4The detailed expression is given in (14).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

These results help to derive that

(B) + (C) ≲
1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+O

(
G3

ϵ1

(
log

(
G2

ϵ1

)
+

t∑
k=1

(1− β2,k)

))
.

Combining with the bounds for (A),(B),(C) and using β2,k = 1− 1/kc, it holds that with probability
at least 1− δ,

1

2

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≲ O

(
G3

ϵ1
log

(
GT

δϵ1

)
+

t∑
k=1

1

kc

)
.

Finally, by upper bounding
∥∥ 4
√
Ak

∥∥
F

with G (see Lemma B.3), we can derive the desired result.

Challenge II. Additional update clipping in the adaptive step-size. We note that the solution to
the first challenge only considers the matrix factorization but omits the update clipping. However,
incorporating update clipping introduces an even more complex adaptive step-size ηk as in Algorithm
1, and the conditional expectation of (I) is even harder to compute. To our knowledge, this structure
causes all existing constructions of proxy step-size ineffective. We will face this challenge in the
proof of Theorem 7.1.

Solution. We first rewrite the updated rule as

Xk+1 = Xk − ρ̂k
G̃k√
Wk

, G̃k =
Gk

max{1,RMS(Uk)/dk}
, ρ̂k = max{ϵ2,RMS(Xk)}ρk.

The first-order term in the descent lemma then become (̃I) =
∑t

k=1 −ρ̂k

〈
Ḡk, G̃k/

√
Wk

〉
. Inspired

by a standard way in the analysis of SGD with clipping, we provide a decomposition for (̃I),

(̃I) = −
t∑

k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+

t∑
k=1

ρ̂k

〈
Ḡk,

(
1√
Ak

− 1√
Wk

)
⊙ G̃k

〉
︸ ︷︷ ︸

(1)

−
t∑

k=1

ρ̂k

〈
Ḡk,

G̃k√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

(2)

+

t∑
k=1

ρ̂k

〈
Ḡk,

Ḡk√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

(3)

.

Here, (2) is a summation of a martingale difference sequence and (1) is an error term that can be
estimated similarly to (B) in (9). The critical step is to handle the additional error term (3) using the
maximum operator inside the update clipping (detailed in (109) and (110)),

(3) ≲ O

(
G1+α

(
G2 +

√
ϵ1
)α

ϵα1

t∑
k=1

1

dα−1
k

√
k

)
.

To ensure that this error term remains controlled by a logarithm order of t, we should further require
dk = k

c
2(α−1) .

Challenge III. Lower bound first-order term (full-batch case). A central problem in full-batch
case is to lower bound (I) in (15). Existing results on Adam, e.g., (De et al., 2018) obtain that
∥Vk∥∞ ≤ G2 based on exponential moving average property, thus lower bounding (I). However,
Adafactor does not enjoy such a property.

Solution. We first separate [t] into two index set

E1 =
{
k ∈ [t] | ∥Uk∥F ≥ d

√
mn
}
, E2 =

{
k ∈ [t] | ∥Uk∥F ≤ d

√
mn
}
.

Through Lemma A.3, we show that ∥Wk∥∞ ≲ O(G2 + ϵ1), ∥Uk∥F ≲ O(G2/ϵ1). Then, for some
constant c0 > 0, (I) is lower bounded by

(I) ≳ O

(∑
k∈E1

ρk∥Ḡk∥2F
∥Uk∥F

√
∥Wk∥∞

+
∑
k∈E2

ρk∥Ḡk∥2F√
∥Wk∥∞

)
≳ O

(
min{c0, ϵ1/G2}

G+
√
ϵ1

t∑
k=1

ρk∥Ḡk∥2F

)
.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000 14000 16000
Step t

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

Tr
ai

ni
ng

 L
os

s

Loss vs Steps for Different Decay Parameters
Adafactor (c=0.5)
Adafactor (c=0.6)
Adafactor (c=0.8)
Adafactor (c=0.9)
Adafactor (c=1.0)
Adam

Figure 1: Training loss curve using BERT-Base model on GLUE/MNLI dataset. Adafactor: ρ0 =
7× 10−3, batch-size = 128. Adam: ρ0 = 3.5× 10−5, β1 = 0.9, β2 = 0.999, batch-size = 128.

9 EXPERIMENTS

In this section, we will report our experimental results based on our convergence results. We will
mainly provide the following three experiments (the last two are included in Appendix E due to the
page limitation):

• We will show the training/testing performance of Adafactor (no update clipping) under different
decay rate parameters c on CV and NLP tasks.

• We evaluate the sensitivity of Adafactor to different values of ϵ1, particularly showing that a
relatively large ϵ1 does not significantly impact the convergence speed.

• We assess the training performance of Adafactor with a time-increasing dk setting, as described
in Theorem 7.1, and compare it to the default constant setting.

We train BERT-Base model using Adafactor (no update clipping) with decay rate c ranging from
0.5 to 1.0, while keeping other hyper-parameters the same. Each experiment is run with 4 epochs,
and we plot the training loss curve in Figure 1. We also train the model with Adam as the baseline.
The result indicates that convergence rates for Adafactor and Adam are comparable. In addition,
the convergence rate for Adafactor grows fast as c increases from 0.5 to 1.0, roughly aligning with
Theorem 6.1.

The second experiment (Figure 4) shows that Adafactor is not sensitive to the choice of ϵ1, and a
relatively large ϵ1, such as 10−3 can still lead to convergence, making the polynomial dependency
O(1/ϵ1) in convergence bounds acceptable. The third experiment (Figure 5 and 6) indicates that, for
α = 4, 6, 7, 8, Adafactor achieves comparable convergence speed compared to the default threshold.
All the detailed results could be found in Appendix E.

10 CONCLUSIONS

In this paper, we investigate the convergence behavior of Adafactor on non-convex smooth landscapes
with bounded stochastic gradients. Our theoretical results complement an empirical observation
that Adafactor could achieve comparable performance to Adam, despite sacrificing some gradient
information to reduce memory usage. We introduce a new proxy step-size to decouple the stochastic
gradients from the unique adaptive step-size and update clipping. We also rely on the unique structure
of proxy step-sizes and an appropriate choice of β2 to control the additional errors.

Limitations. Several limitations warrant further investigation. First, the polynomial dependency
on ϵ1 in convergence bounds may be improved to a better one, such as log(1/ϵ1). Second, the
convergence bound for stochastic vanilla Adafactor remains unknown. Third, the bounded stochastic
gradient can be relaxed as it may be unpractical in LLMs (Zhang et al., 2020). Finally, it’s beneficial
to further support our theoretical results through experiments on large language models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ahmet Alacaoglu, Yura Malitsky, Panayotis Mertikopoulos, and Volkan Cevher. A new regret analysis
for adam-type algorithms. In International conference on machine learning, pp. 202–210. PMLR,
2020.

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimization.
In Advances in Neural Information Processing Systems, 2019.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1-2):
165–214, 2023.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of Adam-type
algorithms for non-convex optimization. In International Conference on Learning Representations,
2019.

Savelii Chezhegov, Yaroslav Klyukin, Andrei Semenov, Aleksandr Beznosikov, Alexander Gasnikov,
Samuel Horváth, Martin Takáč, and Eduard Gorbunov. Gradient clipping improves adagrad when
the noise is heavy-tailed. arXiv preprint arXiv:2406.04443, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees for RMSProp and Adam
in non-convex optimization and an empirical comparison to Nesterov acceleration. arXiv preprint
arXiv:1807.06766, 2018.

Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of Adam and Adagrad. Transactions on Machine Learning Research, 2022.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7):2121–2159, 2011.

Eduard Gorbunov, Marina Danilova, and Alexander Gasnikov. Stochastic optimization with heavy-
tailed noise via accelerated gradient clipping. Advances in Neural Information Processing Systems,
33:15042–15053, 2020.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2016.

Yusu Hong and Junhong Lin. On convergence of adam for stochastic optimization under relaxed
assumptions. arXiv preprint arXiv:2402.03982, 2024.

Ali Kavis, Kfir Yehuda Levy, and Volkan Cevher. High probability bounds for a class of nonconvex
algorithms with AdaGrad stepsize. In International Conference on Learning Representations,
2022.

Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In International
Conference on Learning Representations, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances in
Neural Information Processing Systems, 36, 2024.

Haochuan Li, Ali Jadbabaie, and Alexander Rakhlin. Convergence of Adam under relaxed assump-
tions. In Advances in Neural Information Processing Systems, 2023.

Shaojie Li and Yong Liu. High probability analysis for non-convex stochastic optimization with
clipping. In ECAI 2023, pp. 1406–1413. IOS Press, 2023.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In International Conference on Artificial Intelligence and Statistics, 2019.

Xiaoyu Li and Francesco Orabona. A high probability analysis of adaptive SGD with momentum. In
Workshop on International Conference on Machine Learning, 2020.

Zijian Liu, Ta Duy Nguyen, Thien Hang Nguyen, Alina Ene, and Huy Nguyen. High probability
convergence of stochastic gradient methods. In International Conference on Machine Learning,
2023.

Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo Jiang, Xin Jiang, and Yang You. CAME: Confidence-
guided adaptive memory efficient optimization. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In
International Conference on Learning Representations, 2018.

Abdurakhmon Sadiev, Marina Danilova, Eduard Gorbunov, Samuel Horváth, Gauthier Gidel, Pavel
Dvurechensky, Alexander Gasnikov, and Peter Richtárik. High-probability bounds for stochas-
tic optimization and variational inequalities: the case of unbounded variance. arXiv preprint
arXiv:2302.00999, 2023.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2017.

Naichen Shi, Dawei Li, Mingyi Hong, and Ruoyu Sun. RMSProp converges with proper hyper-
parameter. In International Conference on Learning Representations, 2020.

Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. arXiv preprint
arXiv:1002.4862, 2010.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-RMSProp: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap
between the upper bound and lower bound of Adam’s iteration complexity. In Advances in Neural
Information Processing Systems, 2023.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: sharp convergence over nonconvex
landscapes. Journal of Machine Learning Research, 21(1):9047–9076, 2020.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 10665–10673, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. In Advances in Neural Information Processing Systems, 2018.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In Advances in
Neural Information Processing Systems, 2020.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. In Advances in Neural Information Processing Systems,
2022.

Pengxiang Zhao, Ping Li, Yingjie Gu, Yi Zheng, Stephan Ludger Kölker, Zhefeng Wang, and
Xiaoming Yuan. Adapprox: Adaptive approximation in adam optimization via randomized low-
rank matrices. arXiv preprint arXiv:2403.14958, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the
convergence of adaptive gradient methods for nonconvex optimization. In Annual Workshop on
Optimization for Machine Learning, 2020.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for conver-
gences of Adam and RMSProp. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF DETAIL FOR FULL-BATCH CASE

We first provide the full-batch Adafactor as follows. The only difference to Algorithm (1) is the
replacement of stochastic gradient by deterministic gradient ∇f(Xk) at each iteration.

Algorithm 2 Full-batch Adafactor

Input: Initialization point X1 ∈ Rn×m, R0 = 0n,C0 = 0⊤
m, relative step-sizes {ρk}k≥1, decay

rate {β2,k}k≥1 ∈ [0, 1), regularization constants ϵ1, ϵ2 > 0, clipping threshold d.
for k = 1, · · · , T do
Ḡk = ∇f(Xk);
R̄k = β2,kR̄k−1 + (1− β2,k)(Ḡk ⊙ Ḡk + ϵ11n1

⊤
m)1m;

C̄k = β2,kC̄k−1 + (1− β2,k)1
⊤
n (Ḡk ⊙ Ḡk + ϵ11n1

⊤
m);

W̄k = (R̄kC̄k)/1
⊤
n R̄k;

Ūk = Ḡk/
√

W̄k;
η̂k = max{ϵ2,RMS(Xk)}ρk/max{1,RMS(Ūk)/d};
Xk+1 = Xk − η̂k · Ḡk/

√
W̄k;

end for

Then, we provide the detailed version of Theorem 5.1 as follows.
Theorem A.1. Let {Xk}k≥1 be generated by Algorithm 2. If Assumptions (A1), (A2) hold,
∥∇f(Xk)∥F ≤ G,∀k ≥ 1 and ρ1 = ρ0, β2,1 = 1/2,

ρk = ρ0, 0 < β2,k < 1, ∀k ≥ 2,

for some positive constant ρ0, then for any T ≥ 1,

min
k∈[T]

∥∇f(Xk)∥2F ≤ A0A1(f(X1)− f∗ +∆2
0 log T +∆2

0)

T
.

If let ρk = ρ0/
√
k, then for any T ≥ 1,

min
k∈[T]

∥∇f(Xk)∥2F ≤ A0A1(f(X1)− f∗ +∆2
0 log T +∆2

0)√
T

,

min
k∈[T]

∥∇f(Xk)∥2F ≤ A0A
′
1(f(X1)− f∗ + ∆̃2

0 log T + ∆̃2
0)√

T
,

(10)

where we define

Θmax = max
k∈[T]

∥Xk∥∞, G = G2 +mnϵ1, (11)

and the other constant parameters are given by

∆2
0 =

Ld2mn(ϵ2 +Θmax)
2ρ20

2
, ∆̃2

0 =
LG2G(ϵ2 +Θmax)

2ρ20
2mnϵ21(1− β2,1)2

,

A0 =
max

{
1, G

√
G

dϵ1mn(1−β2,1)

}
ρ0ϵ2

, A1 = 4

√
G4 +G2(m+ n)ϵ1 +mnϵ21,

A′
1 =

√
2

(
G4

mnϵ1
+G2 + ϵ1

)
.

(12)

A.1 PRELIMINARY

We first denote the auxiliary matrix Ḡ2
k,ϵ1

= Ḡk ⊙ Ḡk + ϵ11n1
⊤
m. In addition, we define V̄k =(

v̄
(k)
ij

)
ij

as follows,

V̄0 = 0n×m, V̄k = β2,kV̄k−1 + (1− β2,k)Ḡ
2
k,ϵ1 , k ≥ 1. (13)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

To simplify the notation, we let Ḡk =
(
ḡ
(k)
ij

)
ij

, R(i)

V̄k
, C(j)

V̄k
and SV̄k

be the i-th row sum, j-th column

sum and the coordinate sum of V̄k respectively. The same definition principal is applied to the
notation R

(i)

Ḡ2
k,ϵ1

and C
(j)

Ḡ2
k,ϵ1

. We also use w̄
(k)
ij , v̄

(k)
ij , ū

(k)
ij to denote the coordinates of W̄k, V̄k, Ūk

in Algorithm 2 respectively. We also define values G1,G2,G as follows:

G1 = G2 +mϵ1, G2 = G2 + nϵ1, G = G2 +mnϵ1. (14)

A.2 TECHNICAL LEMMAS

Following the descent lemma for a L-smooth objective function f , we derive that

f(Y) ≤ f(X) + ⟨∇f(X),Y −X⟩+ L

2
∥Y −X∥2F , ∀X,Y ∈ Rn×m. (15)

In the following, we will provide some necessary technical lemmas.

Lemma A.1. Let β2,k ∈ (0, 1) and Γk be defined by

Γ0 = 0, Γk = β2,kΓk−1 + (1− β2,k), ∀k ≥ 1.

Then, (1− β2,1) ≤ Γk ≤ 1,∀k ≥ 1.

Proof. We could prove the result by induction. Since Γ0 = 0, it’s easy to derive that (1− β2,1) =
Γ1 ≤ 1. Suppose that for any j ∈ [k − 1], (1− β2,1) ≤ Γj ≤ 1. Then

Γk ≥ β2,k(1− β2,1) + (1− β2,k) ≥ 1− β2,1, Γk ≤ β2,k + (1− β2,k) ≤ 1.

The induction is then complete.

Lemma A.2. Let V̄k be defined in (13). For any k ≥ 0, it holds that

R̄k = V̄k1m, C̄k = 1⊤
n V̄k, SV̄k

= 1⊤
n R̄k = 1⊤

n V̄k1m.

As a consequence,

R
(i)

V̄k
= β2,kR

(i)

V̄k−1
+ (1− β2,k)R

(i)

Ḡ2
k,ϵ1

, C
(j)

V̄k
= β2,kC

(j)

V̄k−1
+ (1− β2,k)C

(j)

Ḡ2
k,ϵ1

.

Proof. Note that R̄0 = V̄01m = 0n and C̄0 = 1⊤
n V̄0 = 0⊤

m. Suppose that for any j ≤ k − 1,
R̄j = V̄j1m, C̄j = 1⊤

n V̄j . Then using the updated rule in Algorithm 2 and (13),

R̄k = β2,kR̄k−1 + (1− β2,k)Ḡ
2
k,ϵ11m =

(
β2,kV̄k−1 + (1− β2,k)Ḡ

2
k,ϵ1

)
1m = V̄k1m,

C̄k = β2,kC̄k−1 + (1− β2,k)1
⊤
n Ḡ

2
k,ϵ1 = 1⊤

n

(
β2,kV̄k−1 + (1− β2,k)Ḡ

2
k,ϵ1

)
= 1⊤

n V̄k.
(16)

Since SV̄k
represents the coordinate sum of V̄k, we could derive that

SV̄k
=

n∑
i=1

m∑
j=1

v̄
(k)
ij = 1⊤

n R̄k = 1⊤
n V̄k1m.

Since R(i)

V̄k
denotes the i-th row sum of V̄k, it’s the i-th coordinate of R̄k. Hence, for each coordinate

of R̄k, using (16),

R
(i)

V̄k
= β2,kR

(i)

V̄k−1
+ (1− β2,k)R

(i)

Ḡ2
k,ϵ1

.

Similarly, we could derive the results related to C
(j)

V̄k
.

Lemma A.3. Following the parameter setting in (3), for any i ∈ [n], j ∈ [m], k ≥ 1, it holds that

R
(i)

V̄k
∈ [mϵ1(1− β2,1),G1], C

(j)

V̄k
∈ [nϵ1(1− β2,1),G2], SV̄k

∈ [mnϵ1(1− β2,1),G].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. Recalling the definition of V̄k in (13) and ∥∇f(Xk)∥F ≤ G,∀k ≥ 1, we derive that

SV̄k
=

n∑
i=1

m∑
j=1

v̄
(k)
ij =

n∑
i=1

m∑
j=1

k∑
p=1

(1− β2,p)

((
ḡ
(p)
ij

)2
+ ϵ1

) k∏
l=p+1

β2,l


≤

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Ḡp∥2F + Γkmnϵ1 ≤ G2Γk +mnϵ1 ≤ G, (17)

where the last inequality comes from Lemma A.1. Following (17) and Lemma A.1, we also derive
that

SV̄k
≥ mnϵ1Γk ≥ mnϵ1(1− β2,1).

We also derive the upper bounds for R(i)

V̄k
and C

(j)

V̄k
as follows,

R
(i)

V̄k
=

m∑
j=1

v̄
(k)
ij ≤

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Ḡp∥2F + Γkmϵ1 ≤ G2Γk +mϵ1 ≤ G1,

C
(j)

V̄k
=

n∑
i=1

v̄
(k)
ij ≤

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Ḡp∥2F + Γknϵ1 ≤ G2Γk + nϵ1 ≤ G2.

Similarly, the lower bound could be derived by

R
(i)

V̄k
≥ mϵ1Γk ≥ mϵ1(1− β2,1), C

(j)

V̄k
≥ nϵ1Γk ≥ nϵ1(1− β2,1).

A.3 PROOF OF THEOREM A.1

Now we move to prove the main result. Using (15) and the updated rule in Algorithm 2,

f(Xk+1) ≤ f(Xk) + ⟨Ḡk,Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2F

= f(Xk)− η̂k

〈
Ḡk,

Ḡk√
W̄k

〉
+

Lη̂2k
2

∥∥∥∥∥ Ḡk√
W̄k

∥∥∥∥∥
2

F

.

We then re-arrange the order, sum up both sides over k ∈ [t] and apply f(Xt+1) ≥ f∗ from
Assumption (A2) to get,

t∑
k=1

η̂k

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F︸ ︷︷ ︸
(a)

≤ f(X1)− f∗ +
L

2

t∑
k=1

η̂2k

∥∥∥∥∥ Ḡk√
W̄k

∥∥∥∥∥
2

F︸ ︷︷ ︸
(b)

. (18)

Since ∥Xk∥∞ ≤ Θmax, we have RMS(Xk) ≤ Θmax for any k ≥ 1. Hence, using η̂k defined in
Algorithm 2,

η̂k =
max{ϵ2,RMS(Xk)}ρk

max
{
1, ∥Ūk∥F /(d

√
mn)

} ≤ (ϵ2 +Θmax)ρk min

{
1,

d
√
mn

∥Ūk∥F

}
. (19)

Using (19), Ūk = Ḡk/
√

W̄k, ∆0 in (12) and ρk = ρ0/
√
k, we thus derive that

(b) ≤ Ld2mn(ϵ2 +Θmax)
2

2

t∑
k=1

ρ2k · ∥Ūk∥2F
∥Ūk∥2F

= ∆2
0

t∑
k=1

1

k
. (20)

To lower bound (a), we first discuss the maximum operator inside η̂k. Let

E1 =
{
k ∈ [t] | ∥Ūk∥F ≥ d

√
mn
}
, E2 =

{
k ∈ [t] | ∥Ūk∥F ≤ d

√
mn
}
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

When k ∈ E1, it derives that

η̂k ≥ d
√
mnϵ2ρk
∥Ūk∥F

. (21)

Using Lemma A.2, we first derive that w̄(k)
ij = (R

(i)

V̄k
C

(j)

V̄k
)/SV̄k

. Then, applying Lemma A.3 and
∥∇f(Xk)∥F ≤ G, we could upper bound ∥Ūk∥2F as follows,

∥Ūk∥2F =

n∑
i=1

m∑
j=1

(
ḡ
(k)
ij

)2
SV̄k

R
(i)

V̄k
C

(j)

V̄k

≤ ∥Ḡk∥2FG
mnϵ21(1− β2,1)2

≤ G2G
mnϵ21(1− β2,1)2

. (22)

Hence, combining with (21) and (22), we have

∑
k∈E1

η̂k

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

≥ d
√
mnϵ2

∑
k∈E1

ρk
∥Ūk∥F

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

≥ dϵ1mn(1− β2,1)ϵ2

G
√
G

∑
k∈E1

ρk

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

. (23)

When k ∈ E2, we obtain that η̂k = max{ϵ2,RMS(Xk)}ρk ≥ ϵ2ρk and thus

∑
k∈E2

η̂k

∥∥∥∥∥ Ḡk

4
√

W̄k

∥∥∥∥∥
2

F

≥ ϵ2
∑
k∈E2

ρk

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

. (24)

Combining with (23) and (24), we derive that

(a) ≥ ϵ2 min

{
1,

dϵ1mn(1− β2,1)

G
√
G

} t∑
k=1

ρk

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

. (25)

We also derive from Lemma A.2 and Lemma A.3 that for any i ∈ [n], j ∈ [m],

w̄
(k)
ij =

R
(i)

V̄k
C

(j)

V̄k

SV̄k

≤
R

(i)

V̄k
C

(j)

V̄k√
R

(i)

V̄k
C

(j)

V̄k

≤
√
R

(i)

V̄k
C

(j)

V̄k
≤
√
G1G2. (26)

Using (26), we have ∥∥∥∥∥ Ḡk

4
√

W̄k

∥∥∥∥∥
2

F

=

n∑
i=1

m∑
j=1

(
ḡ
(k)
ij

)2
√
w̄

(k)
ij

≥ ∥Ḡk∥2F
4
√
G1G2

=
∥Ḡk∥2F
A1

, (27)

where A1 has been defined in (12). Plugging (27) into (25), we derive that

(a) ≥ ϵ2
A1

min

{
1,

dϵ1mn(1− β2,1)

G
√
G

} t∑
k=1

ρk∥Ḡk∥2F . (28)

Plugging (20) and (28) into (18), and using ρk = ρ0/
√
k, we thus derive that

min
k∈[t]

∥Ḡk∥2F
t∑

k=1

1√
k
≤

t∑
k=1

ρk∥Ḡk∥2F
ρ0

≤ A0A1

(
f(X1)− f∗ +∆2

0

t∑
k=1

1

k

)
, (29)

where A0 is given in (12). Moreover, we have the following results,
t∑

k=1

1

k
≤ 1 +

∫ t

1

1

x
dx = 1 + log t,

t∑
k=1

1√
k
≥

√
t. (30)

We thus derive the first desired result in (10) as follows,

min
k∈[t]

∥Ḡk∥2F ≤ A0A1√
t

(
f(X1)− f∗ +∆2

0 +∆2
0 log t

)
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A constant step-size ρk = ρ0 Setting ρk = ρ0, then following the result in (29), we derive that

t · min
k∈[t]

∥Ḡk∥2F ≤
t∑

k=1

∥Ḡk∥2F ≤ A0A1

(
f(X1)− f∗ +∆2

0

t∑
k=1

1

k

)
.

Using (30) and dividing t on both sides, we obtain that

min
k∈[t]

∥Ḡk∥2F ≤ A0A1

t

(
f(X1)− f∗ +∆2

0 +∆2
0 log t

)
.

Avoiding the curse of dimension To derive a free-dimension numerator bound, we first derive
from (19) and (22) with ρk = ρ0/

√
k that

(b) ≤ L(ϵ2 +Θmax)
2

2

t∑
k=1

ρ2k∥Ūk∥2F ≤ LG2G(ϵ2 +Θmax)
2

2mnϵ21(1− β2,1)2

t∑
k=1

ρ2k = ∆̃2
0

t∑
k=1

1

k
, (31)

where ∆̃0 has been defined in (12). In addition, we derive from Lemma A.2, Lemma A.3 and (14)
that

w̄
(k)
ij =

R
(i)

V̄k
C

(j)

V̄k

SV̄k

≤ 2G1G2

mnϵ1
≤ 2

(
G4

mnϵ1
+G2 + ϵ1

)
= (A′

1)
2,

where we use m+ n ≤ mn and A′
1 in (12). Thereby, we have∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

=

n∑
i=1

m∑
j=1

(
ḡ
(k)
ij

)2
√
w̄

(k)
ij

≥ ∥Ḡk∥2F
A′

1

.

Combining with (25), we thus derive that

(a) ≥ ϵ2
A′

1

min

{
1,

dϵ1mn(1− β2,1)

G
√
G

} t∑
k=1

ρk∥Ḡk∥2F (32)

Plugging (31) and (32) into (18), and using ρk = ρ0/
√
k, we derive that

min
k∈[t]

∥Ḡk∥2F
t∑

k=1

1√
k
≤

t∑
k=1

ρk∥Ḡk∥2F
ρ0

≤ A0A
′
1

(
f(X1)− f∗ + ∆̃2

0

t∑
k=1

1

k

)
,

where A0 has been defined in (12). Using (30), we derive the second desired result in (10).

min
k∈[t]

∥Ḡk∥2F ≤ A0A
′
1√

t

(
f(X1)− f∗ + ∆̃2

0 + ∆̃2
0 log t

)
.

B PROOF DETAIL FOR STOCHASTIC ADAFACTOR WITHOUT UPDATE CLIPPING

We first provide the detailed version of Theorem 6.1.
Theorem B.1 (Formal statement of Theorem 6.1). Let {Xk}k≥1 be generated by Algorithm 1 without
update clipping where ηk is given by (4) for each k ≥ 1. If Assumptions (A1)-(A4) hold, and

β2,1 = 1/2, ρ1 = ρ0,

β2,k = 1− 1/kc, ρk = ρ0/
√
k, ∀k ≥ 2,

for some constants 1/2 ≤ c ≤ 1, ρ0 > 0, then for any T ≥ 1, δ ∈ (0, 1), we have the following
results.
When c = 1, with probability at least 1− δ,

min
k∈[T]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+ C2 log T + C2 + C3

)
, (33)

min
k∈[T]

∥Ḡk∥2F ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+ (C ′

2 + C ′
3) log T + C ′

2 + C ′
3

)
. (34)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

When 1/2 ≤ c < 1, with probability at least 1− δ,

min
k∈[T]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+

C2

1− c
· T 1−c + C2 + C3

)
, (35)

min
k∈[T]

∥Ḡk∥2F ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+

2C ′
2

1− c
· T 1−c + C ′

3 log T + C ′
2 + C ′

3

)
. (36)

Here, Θmax and G are as in (11), and

C1 = f(X1)− f∗ +
24G2(ϵ2 +Θmax)ρ0√

ϵ1
. (37)

The C0, C2, C3 are constants defined as

C0 =
2
√
2G

ρ0ϵ2
, C3 =

C2

4
log

(
2 +

2G2

ϵ1

)
,

C2 =
32mnG 3

2 (ϵ2 +Θmax)ρ0
max{m,n}ϵ1

+
4LmnG(ϵ2 +Θmax)

2ρ20
max{m,n}ϵ1

. (38)

The C ′
0, C

′
2, C

′
3 are positive constants (that could be further upper bounded by constants independent

from m,n), defined by

C ′
0 =

2

√
2
(

G2

mnϵ1
+G+ ϵ1

)
ρ0ϵ2

, C ′
2 = 4G3(G1 +G2)(ϵ2 +Θmax)ρ0, C

′
3 =

LG3(ϵ2 +Θmax)
2ρ20

2
,

(39)

and G1, G2, G3 are given by

G1 =

√
6

(
G4

mnϵ1
+G2 + ϵ1

)
, G3 =

4(G4 +G2mnϵ1)

mnϵ21
,

G2 = 2

(
G3

mnϵ1
+

2G2

√
mnϵ1

+
G√
mn

+G+
√
ϵ1

)
. (40)

Calculation of hyper-parameter dependency To derive a free dimension bound, we shall use the
convergence bounds in (34) and (36). From (39), it’s easy to show that m,n could only exist in the
denominator of C ′

0, C
′
2, C

′
3, which could avoid the curse of dimension.

To calculate the dependency of ϵ1, we first show that its dependency in coefficients C0, C1, C2, C3 as
follows, based on the assumption that 0 < ϵ1 < 1,

C0 ∼ O (1) , C1 ∼ O (1/
√
ϵ1) , C2 ∼ O (1/ϵ1) , C3 ∼ O (C2 log(1/ϵ1)) . (41)

Thereby, with the convergence bounds in (33) and (35), it’s easy to show that

min
k∈[T]

∥Ḡk∥2F ≤ O
(
ϵ−1
1 log(1/ϵ1)

)
. (42)

Proposition B.1. Following the same assumptions and settings in Theorem 6.1, then with probability
at least 1− δ,

min
k∈[T]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+ C2

T∑
k=1

1

kc
+ C3

)
,

and with probability at least 1− δ,

min
k∈[T]

∥Ḡk∥2F ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+ C ′

2

T∑
k=1

1

kc/2+1/2
+ C ′

3

T∑
k=1

1

k

)
,

where all constants are given as in Theorem B.1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.1 PRELIMINARY

We first follow the notations of Ḡk =
(
ḡ
(k)
ij

)
ij

and G,G1,G2 in (14). Let Gk =
(
g
(k)
ij

)
ij

and

ξk = Gk − Ḡk. We also define G2
k,ϵ1

= Gk ⊙Gk + ϵ11n1
⊤
m and Vk =

(
v
(k)
ij

)
ij

as follows,

V0 = 0n×m, Vk = β2,kVk−1 + (1− β2,k)G
2
k,ϵ1 , k ≥ 1. (43)

We also define R
(i)
Vk

, C
(j)
Vk

and SVk
as the i-th row sum, j-th column sum and coordinate sum of Vk

respectively. R(i)

G2
k,ϵ1

and C
(j)

G2
k,ϵ1

represent the same definitions with respect to G2
k,ϵ1

. Then, using a

similar deduction in Lemma A.2, we also obtain that for all k ≥ 1,

R
(i)
Vk

= β2,kR
(i)
Vk−1

+ (1− β2,k)G
2
k,ϵ11m, C

(j)
Vk

= β2,kC
(j)
Vk−1

+ (1− β2,k)1
⊤
nG

2
k,ϵ1 . (44)

As a consequence of (44), each coordinate of Wk satisfies that

w
(k)
ij =

R
(i)
Vk

C
(j)
Vk

SVk

=

(
β2,kR

(i)
Vk−1

+ (1− β2,k)R
(i)

G2
k,ϵ1

)(
β2,kC

(j)
Vk−1

+ (1− β2,k)C
(j)

G2
k,ϵ1

)
β2,kSVk−1

+ (1− β2,k)SG2
k,ϵ1

.

(45)

Next, we introduce a proxy step-size matrix Ak =
(
a
(k)
ij

)
ij

such that

a
(k)
ij =

(
β2,kR

(i)
Vk−1

+ (1− β2,k)G1

)(
β2,kC

(j)
Vk−1

+ (1− β2,k)G2

)
β2,kSVk−1

+ (1− β2,k)G
. (46)

The proxy step-size technique is a standard way in the convergence analysis of adaptive methods, e.g.,
Ward et al. (2020); Défossez et al. (2022). We provide a new proxy step-size in (46) to handle the
matrix factorization in Adafactor. This construction satisfies two properties. First, it’s independent
from Zk in order to disrupt the correlation of stochastic gradients and adaptive step-sizes. Second, it
needs to remain sufficiently close to the original adaptive step-size w(k)

ij to avoid generating divergent
terms.

B.2 TECHNICAL LEMMAS

In the following, we first provide some more necessary technical lemmas. We introduce a concentra-
tion inequality for the martingale difference sequence, see (Li & Orabona, 2020) for a proof.

Lemma B.1. Suppose that {Zs}s∈[T] is a martingale difference sequence with respect to ζ1, · · · , ζT .
Assume that for each s ∈ [T], σs is a random variable dependent on ζ1, · · · , ζs−1 and satisfies that

E
[
exp

(
Z2
s

σ2
s

)
| ζ1, · · · , ζs−1

]
≤ e.

Then for any λ > 0, and for any δ ∈ (0, 1), it holds that

P

(
T∑

s=1

Zs >
1

λ
log

(
1

δ

)
+

3

4
λ

T∑
s=1

σ2
s

)
≤ δ.

Lemma B.2. Following the parameter setting in (5), for any i ∈ [n], j ∈ [m], k ≥ 1, it holds that

R
(i)

G2
k,ϵ1

, R
(i)
Vk

∈ [mϵ1/2,G1], C
(j)

G2
k,ϵ1

, C
(j)
Vk

∈ [nϵ1/2,G2], SG2
k,ϵ1

, SVk
∈ [mnϵ1/2,G].

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. First, using Assumption (A4), we derive that

mnϵ1/2 ≤ SG2
k,ϵ1

=

n∑
i=1

m∑
j=1

((
g
(k)
ij

)2
+ ϵ1

)
= ∥Gk∥2F +mnϵ1 ≤ G,

mϵ1/2 ≤ R
(i)

G2
k,ϵ1

=

m∑
j=1

((
g
(k)
ij

)2
+ ϵ1

)
≤ ∥Gk∥2F +mϵ1 ≤ G1,

nϵ1/2 ≤ C
(j)

G2
k,ϵ1

=

n∑
i=1

((
g
(k)
ij

)2
+ ϵ1

)
≤ ∥Gk∥2F + nϵ1 ≤ G2.

Using the similar deduction for Lemma A.3, we could show that mϵ1(1− β2,1) ≤ R
(i)
Vk

≤ G1. Since

β2,1 = 1/2 from (5), we then obtain the desired result. The bounds for C(j)
Vk

, SVk
could be also

derived by using similar arguments.

We have the following lemma to upper bound each coordinate of the proxy step-size matrix Ak

defined in (46) .
Lemma B.3. For any k ≥ 1, it holds that

β2,k(1− β2,k)ϵ1 ≤ a
(k)
ij ≤ 2min

{
G, G2

mnϵ1
+G+ ϵ1

}
, ∀i ∈ [n], j ∈ [m].

Proof. We first have

β2,kR
(i)
Vk−1

+ (1− β2,k)G1

β2,kSVk−1
+ (1− β2,k)G

≤
β2,kR

(i)
Vk−1

β2,kSVk−1

+
(1− β2,k)G1

(1− β2,k)G
≤ 2. (47)

Then, recalling the definition of a(k)ij in (46) and Lemma B.2, it derives that C(j)
Vk−1

≤ G2 and thereby

β2,kC
(j)
Vk−1

+ (1 − β2,k)G2 ≤ G2 ≤ G. Then combining with (47), we derive a
(k)
ij ≤ 2G. We also

derive a free dimension bound from Lemma B.2 for a(k)ij as follows,

a
(k)
ij ≤ 2G1G2

mnϵ1
=

2(G2 +G(m+ n)ϵ1 +mnϵ21)

mnϵ1
≤ 2

(
G2

mnϵ1
+G+ ϵ1

)
,

where we use m + n ≤ mn when m,n ≥ 2 and β2,kSVk−1
+ (1 − β2,k)G ≥ mnϵ1/2. To lower

bound a
(k)
ij , we derive from Lemma B.2 that β2,kSVk−1

+ (1− β2,k)G ≤ G. Thereby,

a
(k)
ij ≥

β2,k(1− β2,k)
(
R

(i)
Vk−1

G2 + C
(j)
Vk−1

G1

)
G

≥ β2,k(1− β2,k) ·
(mG2 + nG1)ϵ1

2G

= β2,k(1− β2,k) ·
[(m+ n)G2 + 2mnϵ1]ϵ1

2(G2 +mnϵ1)
≥ β2,k(1− β2,k)ϵ1.

Lemma B.4. Let Wk and Vk be defined in Algorithm 1 without update clipping where ηk is given by
(4) and (43) respectively. For any k ≥ 1, it holds that∥∥∥∥ Gk√

Wk

∥∥∥∥2
F

≤ 2G
max{m,n}ϵ1

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

.

Proof. Recalling (45), v(k)ij ≤ R
(i)
Vk

,v(k)ij ≤ C
(j)
Vk

and Lemma B.2, one could verify that(
g
(k)
ij

)2
w

(k)
ij

=

(
g
(k)
ij

)2
SVk

R
(i)
Vk

C
(j)
Vk

≤
2
(
g
(k)
ij

)2
G

nϵ1v
(k)
ij

,

(
g
(k)
ij

)2
w

(k)
ij

=

(
g
(k)
ij

)2
SVk

R
(i)
Vk

C
(j)
Vk

≤
2
(
g
(k)
ij

)2
G

mϵ1v
(k)
ij

,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

which leads to the desired result that

∥Uk∥2F =

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 2G
max{m,n}ϵ1

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

.

The following lemma is inspired by (Défossez et al., 2022, Lemma 5.2) where they considered a
constant β2,k. Here, we generalize the result to the case of time-varying β2,k and provide the proof
detail.
Lemma B.5. For any t ≥ 1, if β2,k are as in (5), then it holds that

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

≤ mn log

(
2(G2 + ϵ1)

ϵ1

)
+ 4mn

t∑
k=1

(1− β2,k).

Proof. Recalling the definition of Vk and since V0 = 0n×m, we have that for any k ≥ 1,

v
(k)
ij = β2,kv

(k−1)
ij + (1− β2,k)

[(
g
(k)
ij

)2
+ ϵ1

]

=

k∑
p=1

(1− β2,p)

[(
g
(p)
ij

)2
+ ϵ1

] k∏
l=p+1

β2,l

 .

Then, we have

(1− β2,k) ·

(
g
(k)
ij

)2
v
(k)
ij

=
xk

yk + θk
, (48)

where we set y0 = 0, θ0 = 0 and

xk = (1− β2,k)
(
g
(k)
ij

)2
, yk =

k∑
p=1

(1− β2,p)
(
g
(p)
ij

)2 k∏
l=p+1

β2,l

 ,

θk = ϵ1

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 , ∀k ≥ 1.

Then we have yk − xk = β2,kyk−1,∀k ≥ 1. Moreover, since yk ≥ xk, we could use log x ≥
1− 1/x,∀x ≥ 1 to derive that

xk

yk + θk
≤ log(yk + θk)− log(yk + θk − xk) = log(yk + θk)− log(β2,kyk−1 + θk)

= log

(
yk + θk

yk−1 + θk−1

)
+ log

(
yk−1 + θk−1

β2,kyk−1 + θk

)
.

Noting that θk = β2,kθk−1 + (1− β2,k)ϵ1, which leads to β2,kθk−1 ≤ θk. Hence, we further have

xk

yk + θk
≤ log

(
yk + θk

yk−1 + θk−1

)
+ log

(
yk−1 + θk−1

β2,k(yk−1 + θk−1)

)
= log

(
yk + θk

yk−1 + θk−1

)
− log β2,k.

(49)

Hence, summing up on both sides of (48) and (49) over k ∈ [t], and noting that x1 = y1, we obtain
that

t∑
k=1

(1− β2,k) ·

(
g
(k)
ij

)2
v
(k)
ij

=
x1

y1 + θ1
+

t∑
k=2

xk

yk + ϵk

≤1 + log

(
yt + θt
y1 + θ1

)
−

t∑
k=2

log β2,k. (50)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Note that y1 + θ1 ≥ (1− β2,1)ϵ1 = ϵ1/2. Moreover, using Lemma A.1 and Assumption (A4), we
have θt = Γtϵ1 ≤ ϵ1 and yt ≤ ΓtG

2 ≤ G2. We then derive that

yt + θt
y1 + θ1

≤ 2(G2 + ϵ1)

ϵ1
. (51)

Noting that for k ≥ 2, c ∈ [1/2, 1], β2,k ≥ β2,2 = 1− 1/2c ≥ 1− 1/
√
2, we then derive that

− log β2,k ≤ 1− β2,k

β2,k
≤

√
2(1− β2,k)√

2− 1
≤ 4(1− β2,k). (52)

Finally, plugging (51), (52) into (50), and then summing (50) up over i ∈ [n], j ∈ [m], we obtain the
desired result.

Next, we have the following probabilistic result relying on the property of the martingale difference
sequence which is commonly used in the analysis of adaptive methods.
Lemma B.6. Following the parameter setting in (5), for any T ≥ 1 and λ > 0, with probability at
least 1− δ, ∀t ∈ [T],

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
24G2(ϵ2 +Θmax)ρ0√

ϵ1
log

(
T

δ

)
.

Proof. Let ζk = −ηk

〈
Ḡk,

ξk√
Ak

〉
and the filtration Fk = σ (Z1, · · · ,Zk) where σ(·) denotes the

σ-algebra. Note that ηk, Ḡk and Ak are dependent by {X1, · · · ,Xk−1} and thereby Fk−1. Since
ξk is dependent by Fk, we could prove that {ζk}k≥1 is a martingale difference sequence since

E [ζk | Fk−1] = −ηk

〈
Ḡk,

E [ξk | Fk−1]√
Ak

〉
= 0,

where we apply that E [ξk | Fk−1] = EZk
[ξk] = 0 from Assumption (A3). Then, using Assumption

(A3) and Assumption (A4), we have

∥Ḡk∥F = ∥EZk
[Gk]∥F ≤ EZk

∥Gk∥F ≤ G, ∥ξk∥F = ∥Gk − Ḡk∥F ≤ 2G.

Let ωk = 2Gηk

∥∥∥ Ḡk√
Ak

∥∥∥
F

. We thus derive from the Cauchy-Schwarz inequality that

E
[
exp

(
ζ2k
ω2
k

)
| Fk−1

]
≤ E

exp

∥∥∥ Ḡk√

Ak

∥∥∥2
F
∥ξk∥2F

4G2
∥∥∥ Ḡk√

Ak

∥∥∥2
F

 | Fk−1

 ≤ exp(1). (53)

Then, using Lemma B.1, it leads to that for any λ > 0, with probability at least 1− δ,

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 3λG2

t∑
k=1

η2k

∥∥∥∥ Ḡk√
Ak

∥∥∥∥2
F

+
1

λ
log

(
1

δ

)

= 3λG2
t∑

k=1

n∑
i=1

m∑
j=1

ηk√
a
(k)
ij

· ηk

(
ḡ
(k)
ij

)2
√
a
(k)
ij

+
1

λ
log

(
1

δ

)
. (54)

Meanwhile, when ∥Xk∥∞ ≤ Θmax, ρk = ρ0/
√
k, we have

RMS(Xk) ≤ Θmax,
ϵ2ρ0√

k
≤ ηk ≤ (ϵ2 +Θmax)ρ0√

k
. (55)

Combining with Lemma B.3, we derive that

ηk√
a
(k)
ij

≤ ηk√
β2,k(1− β2,k)ϵ1

≤ (ϵ2 +Θmax)ρ0√
β2,kϵ1

· k
c/2

√
k

≤ (ϵ2 +Θmax)ρ0√
min{β2,1, β2,2}ϵ1

≤ 2(ϵ2 +Θmax)ρ0√
ϵ1

, (56)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where we use β2,1 = 1/2, β2,2 = 1− 1/2c ≥ 1− 1/
√
2, c ∈ [1/2, 1] from (5) in the last inequality.

Hence, plugging (56) into (54) and then re-scaling the δ, we found that with probability at least 1− δ,
for all t ∈ [T],

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 6λG2(ϵ2 +Θmax)ρ0√

ϵ1

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
1

λ
log

(
T

δ

)
.

Setting λ =
√
ϵ1/(24G

2(ϵ2 +Θmax)ρ0), we derive the desired result.

The following key lemma provides an upper bound for the error brought by the proxy step-size a
(k)
ij ,

illustrating the error is controllable.
Lemma B.7. For any k ≥ 1, i ∈ [n], j ∈ [m], it holds that∣∣∣w(k)

ij − a
(k)
ij

∣∣∣√
a
(k)
ij

≤
√
1− β2,k min{4

√
G, G1 +G2}, (57)

where G is as in (14) and G1, G2 are as in (40).

Proof. To simplify the notation, we let

X = β2,kR
(i)
Vk−1

+ (1− β2,k)R
(i)

G2
k,ϵ1

, ∆X = (1− β2,k)(G1 −R
(i)

G2
k,ϵ1

),

Y = β2,kC
(j)
Vk−1

+ (1− β2,k)C
(j)

G2
k,ϵ1

, ∆Y = (1− β2,k)(G2 − C
(j)

G2
k,ϵ1

),

Z = β2,kSVk−1
+ (1− β2,k)SG2

k,ϵ1
, ∆Z = (1− β2,k)(G − SG2

k,ϵ1
). (58)

Then we have∣∣∣w(k)
ij − a

(k)
ij

∣∣∣ = ∣∣∣∣XY

Z
− (X +∆X)(Y +∆Y)

Z +∆Z

∣∣∣∣ = ∣∣∣∣XY∆Z −XZ∆Y − Y Z∆X − Z(∆X∆Y)

Z(Z +∆Z)

∣∣∣∣ .
Applying Lemma B.2, we could verify that X,Y, Z ≥ 0 and

0 ≤ ∆X ≤ (1− β2,k)G1, 0 ≤ ∆Y ≤ (1− β2,k)G2, 0 ≤ ∆Z ≤ (1− β2,k)G. (59)
Hence, we derive that∣∣∣w(k)

ij − a
(k)
ij

∣∣∣√
a
(k)
ij

=
|XY∆Z −XZ∆Y − Y Z∆X − Z(∆X∆Y)|

Z
√
(X +∆X)(Y +∆Y)(Z +∆Z)

≤ |X∆Y + Y∆X + (∆X∆Y)|√
(X +∆X)(Y +∆Y)(Z +∆Z)︸ ︷︷ ︸

(I)

+
XY∆Z

Z
√

(X +∆X)(Y +∆Y)(Z +∆Z)︸ ︷︷ ︸
(II)

.

(60)
Since XY ≥ 0 from (58), Term (I) could be bounded as

(I) ≤ |X∆Y + Y∆X + (∆X∆Y)|√
(X∆Y + Y∆X + (∆X∆Y))(Z +∆Z)

≤
√

X∆Y + Y∆X + (∆X∆Y)

Z +∆Z
. (61)

Recalling the definition, we have R(i)
Vk−1

≤ SVk−1
, C(j)

Vk−1
≤ SVk−1

for any i ∈ [n], j ∈ [m]. Further,
applying Lemma B.2 and (59), we derive that

X∆Y

Z +∆Z
≤

R
(i)
Vk−1

SVk−1

+
R

(i)

G2
k,ϵ1

G

∆Y ≤ 2(1− β2,k)G2.

Y∆X

Z +∆Z
≤

C
(j)
Vk−1

SVk−1

+
C

(j)

G2
k,ϵ1

G

∆X ≤ 2(1− β2,k)G1,

∆X∆Y

Z +∆Z
≤ ∆X(1− β2,k)G

(1− β2,k)G
≤ (1− β2,k)G1.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

We then derive from (61), G1 ≤ G and G2 ≤ G that

(I) ≤
√
5(1− β2,k)G. (62)

To derive a free dimension bound, we could obtain from Lemma B.2, (59) and G ≥ mnϵ1/2 that
Z +∆Z ≥ mnϵ1/2. Hence,

X∆Y

Z +∆Z
≤ 2(1− β2,k)G1G2

mnϵ1
,

Y∆X

Z +∆Z
≤ 2(1− β2,k)G1G2

mnϵ1
,

∆X∆Y

Z +∆Z
≤ 2(1− β2,k)G1G2

mnϵ1
.

We then derive that

(I) ≤

√
6(1− β2,k)G1G2

mnϵ1
=

√
6(1− β2,k)(G4 +G2ϵ1(m+ n) +mnϵ21)

mnϵ1
≤ G1

√
1− β2,k,

(63)

where we used m + n ≤ mn, and G1 is defined in (40). Then, combining with (62) and (63), we
have

(I) ≤
√

1− β2,k min{
√
5G, G1}, (64)

where we applied that m + n ≤ mn when m,n ≥ 2. Then we move to bound (II). Recalling the
definitions in (58), we have X ≤ Z, Y ≤ Z. Applying (59), we have

(II) ≤ XY∆Z

Z
√
XY∆Z

≤
√
XY∆Z

Z
≤

√
∆Z ≤

√
(1− β2,k)G.

Similarly, we derive from Lemma B.2 that Z ≥ mnϵ1/2, X ≤ G1, Y ≤ G2. Hence,

(II) ≤
√
XY∆Z

Z
≤

2
√
(1− β2,k)G1G2G

mnϵ1

≤ 2
√

1− β2,k

(
G3

mnϵ1
+

2G2

√
mnϵ1

+G+
G√
mn

+
√
ϵ1

)
≤ G2

√
1− β2,k,

where G2 has been defined in (40). We thus derive that

(II) ≤
√

1− β2,k min{
√
G, G2}. (65)

Combining (64) with (65) into (60), we then derive the desired result.

B.3 PROOF OF PROPOSITION B.1

Using the inequality in (15), we have

f(Xk+1) ≤ f(Xk) + ⟨Ḡk,Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2F

≤ f(Xk)− ηk

〈
Ḡk,

Gk√
Wk

〉
+

Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

.

Introducing the proxy step-size matrix Ak in (46) and then summing up both sides over k ∈ [t], we
derive that

f(Xt+1) ≤ f(X1)−
t∑

k=1

ηk

〈
Ḡk,

Gk√
Ak

〉
︸ ︷︷ ︸

A

+

t∑
k=1

ηk

〈
Ḡk,Gk ⊙

(
1√
Ak

− 1√
Wk

)〉
︸ ︷︷ ︸

B

+

t∑
k=1

Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F︸ ︷︷ ︸

C

. (66)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Estimation for A We first introduce ξk into A,

A = −
t∑

k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
. (67)

Then, using Lemma B.6, with probability at least 1− δ, for all t ∈ [T],

A = −3

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
24G2(ϵ2 +Θmax)ρ0√

ϵ1
log

(
T

δ

)
. (68)

Estimation for B Term B is essentially the error brought by the proxy step-size Ak. We will first

calculate the gap of 1/
√
w

(k)
ij and 1/

√
a
(k)
ij as follows,∣∣∣∣∣∣ 1√

w
(k)
ij

− 1√
a
(k)
ij

∣∣∣∣∣∣ = 1√
w

(k)
ij

√
a
(k)
ij

∣∣∣∣√w
(k)
ij −

√
a
(k)
ij

∣∣∣∣ ≤ 1√
w

(k)
ij

√
a
(k)
ij

√∣∣∣w(k)
ij − a

(k)
ij

∣∣∣. (69)

We then apply (69) and Young’s inequality,

B ≤
t∑

k=1

n∑
i=1

m∑
j=1

ηk

∣∣∣ḡ(k)ij g
(k)
ij

∣∣∣
∣∣∣∣∣∣ 1√

w
(k)
ij

− 1√
a
(k)
ij

∣∣∣∣∣∣
≤

t∑
k=1

n∑
i=1

m∑
j=1

ηk

∣∣∣ḡ(k)ij g
(k)
ij

∣∣∣√
w

(k)
ij

√
a
(k)
ij

√∣∣∣w(k)
ij − a

(k)
ij

∣∣∣
≤ 1

4

t∑
k=1

n∑
i=1

m∑
j=1

ηk ·

(
ḡ
(k)
ij

)2
√
a
(k)
ij

+ 4

t∑
k=1

n∑
i=1

m∑
j=1

ηk ·

∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

·

 g
(k)
ij√
w

(k)
ij

2

. (70)

Thus, plugging (57) in Lemma B.7 into (70), we derive that

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G

t∑
k=1

ηk
√
1− β2,k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G

t∑
k=1

(ϵ2 +Θmax)ρ0√
k

√
1− β2,k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G

t∑
k=1

(ϵ2 +Θmax)ρ0(1− β2,k)

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

, (71)

where we used (55) in the second inequality and 1/
√
k ≤ 1/kc/2, c ∈ [1/2, 1]. Furthermore, using

Lemma B.4 and Lemma B.5, we derive that

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
8mnG 3

2 (ϵ2 +Θmax)ρ0
max{m,n}ϵ1

[
log

(
2 +

2G2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
. (72)

Estimating C Using the similar deduction in (71) and (72), we derive that

C ≤ LmnG(ϵ2 +Θmax)
2ρ20

max{m,n}ϵ1

[
log

(
2 +

2G2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
. (73)

Putting together We first re-arrange the order in (66) and use f(Xt+1) ≥ f∗ in Assumption (A2)
to derive that

0 ≤ f(X1)− f∗ +A+B+C. (74)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

We then plug (68), (72), (73) into (74) and set t = T , which leads to that with probability at least
1− δ,

1

2

T∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≤C1 log

(
T

δ

)
+ C2

T∑
k=1

(1− β2,k) + C3, (75)

where C1, C2, C3 are as in Theorem B.1. Moreover, using Lemma B.3 and (55), we have

1

2

T∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≥
T∑

k=1

ηk
∥∥Ḡk

∥∥2
F

2maxi,j

√
a
(k)
ij

≥ ρ0ϵ2

2
√
2G

T∑
k=1

∥∥Ḡk

∥∥2
F√

k
. (76)

Combining with (76) and (75), and using
∑T

k=1 1/
√
k ≥

√
T , we derive that

min
k∈[T]

∥Ḡk∥2 ≤ C0√
T

(
C1 log

(
T

δ

)
+ C2

T∑
k=1

(1− β2,k) + C3

)
,

where C0 has already been defined in (38). We then derive the first desired result that

min
k∈[T]

∥Ḡk∥2 ≤ C0√
T

(
C1 log

(
T

δ

)
+ C2

T∑
k=1

1

kc
+ C3

)
.

Free dimension bound We follow the similar deduction in (71) and use Lemma B.7 to derive that

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4(G1 +G2)(ϵ2 +Θmax)ρ0

t∑
k=1

1

kc/2+1/2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

. (77)

Recalling the definition of w(k)
ij in (45) and Lemma B.2, we derive that

w
(k)
ij =

R
(i)
Vk

C
(j)
Vk

SVk

≥ mnϵ21
4G

,

∥∥∥∥ Gk√
W k

∥∥∥∥2
F

≤ ∥Gk∥2F
mini,j w

(k)
ij

≤ 4G2G
mnϵ21

≤ G3, (78)

where G3 is as in (40). We thus derive from (77) and (78) that

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4G3(G1 +G2)(ϵ2 +Θmax)ρ0

t∑
k=1

1

kc/2+1/2
. (79)

Using (55) and (78), we derive that

C =

t∑
k=1

Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ LG3(ϵ2 +Θmax)
2ρ20

2

t∑
k=1

1

k
. (80)

Plugging the unchanged estimation for A in (68), (79) and (80) into (66), we have that with probability
at least 1− δ, for all t ∈ [T],

1

2

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≤ C1 log

(
T

δ

)
+ C ′

2

t∑
k=1

1

kc/2+1/2
+ C ′

3

t∑
k=1

1

k
, (81)

where C ′
2, C

′
3 are given as in (39) and C1 is as in (37). Further, using Lemma B.3 and the similar

deduction for (76),

1

2

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≥
t∑

k=1

ηk
∥∥Ḡk

∥∥2
F

2maxi,j

√
a
(k)
ij

≥ 1

C ′
0

t∑
k=1

∥∥Ḡk

∥∥2
F√

k
, (82)

where C ′
0 is as in (39). Combining with (81) and (82), and setting t = T , we derive the second

desired result in Proposition B.1 that

min
k∈[T]

∥Ḡk∥2 ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+ C ′

2

T∑
k=1

1

kc/2+1/2
+ C ′

3

T∑
k=1

1

k

)
.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

B.4 PROOF OF THEOREM B.1

Now based on the result in Proposition B.1, we could further derive the final convergence rate. Noting
that when c = 1, we could bound that

T∑
k=1

1

k
≤ 1 +

∫ T

1

1

x
dx ≤ 1 + log T. (83)

Then, we obtain that

min
k∈[T]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+ C2 log T + C2 + C3

)
,

min
k∈[T]

∥Ḡk∥2F ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+ (C ′

2 + C ′
3) log T + C ′

2 + C ′
3

)
.

When 1/2 ≤ c < 1, we have

T∑
k=1

1

kc
≤ 1 +

∫ T

1

1

xc
dx ≤ 1 +

T 1−c

1− c
,

T∑
k=1

1

kc/2+1/2
≤ 1 +

∫ T

1

1

xc/2+1/2
dx ≤ 1 +

2T (1−c)/2

1− c
. (84)

Then, we obtain that

min
k∈[T]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+

C2

1− c
· T 1−c + C2 + C3

)
,

min
k∈[T]

∥Ḡk∥2F ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+

2C ′
2

1− c
· T 1−c + C ′

3 log T + C ′
2 + C ′

3

)
.

C AN EXTENSION TO SUB-GAUSSIAN NOISE WITH BOUNDED GRADIENTS

We first recall the sub-Gaussian noise assumption.

Assumption 1. The gradient oracle g(X,Z) satisfies that for some constant σ > 0,

E
[
exp

(
∥g(X,Z)−∇f(X)∥2

σ2

) ∣∣∣X] ≤ exp(1), ∀X ∈ Rn×m.

We state a standard concentration inequality for sub-Gaussian noise as follows.
Lemma C.1. Given T ≥ 1, let the noise sequence {ξt}t∈[T] where ξt = g(Xt,Zt) − ∇f(Xt)
satisfies Assumption 1. Then, with probability at least 1− δ,

max
t∈[T]

∥ξt∥2 ≤ σ2 log

(
eT

δ

)
.

Proof. See (Li & Orabona, 2020, Lemma 5) for a proof.

We also assume that the gradient is bounded, satisfying that ∥∇f(X)∥ ≤ G0,∀X ∈ Rn×m. Then,
we have the following convergence bound.
Theorem C.1. Let {Xk}k≥1 be generated by Algorithm 1 without update clipping where ηk is given
by (4) for each k ≥ 1. If Assumptions (A1)-(A3) hold, ∥∇f(X)∥F ≤ G0,∀X ∈ Rn×m, Assumption
1 holds, and

β2,1 = 1/2, ρ1 = ρ0,

β2,k = 1− 1/kc, ρk = ρ0/
√
k, ∀k ≥ 2,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

for some constants 1/2 ≤ c ≤ 1, ρ0 > 0, then for any T ≥ 1, δ ∈ (0, 1), with probability at least
1− 2δ,

min
k∈[T]

∥Ḡk∥2F ≤ C̃0√
T

(
C̃1 log

(
T

δ

)
+

C̃2

1− c
· T 1−c + C̃2 + C̃3

)
,

where we define

C̃1 = f(X1)− f∗ +
6σ2(ϵ2 +Θmax)ρ0√

ϵ1
,

C̃0, C̃2, C̃3 follow the definitions of C0, C2, C3 in (38) with G,G replaced by G′,G′ and

G′ = G0 + σ

√
log

(
eT

δ

)
,G′ = (G′)

2
+mnϵ1.

The proof begins with the probabilistic estimations and follows the deterministic estimations. We
will show the key steps as follows.

C.1 PROBABILISTIC BOUNDS

We will rely on the definition of sub-Gaussian to estimate the summation of the martingale difference
sequence as shown in (67). Letting ζk = −ηk

〈
Ḡk,

ξk√
Ak

〉
and ω′

k = σηk

∥∥∥ Ḡk√
Ak

∥∥∥
F

, we could derive

from Assumption 1 and Cauchy-Schwarz inequality that for any k ∈ [T],

E

[
exp

(
ζ2k

(ω′
k)

2

)
| Fk−1

]
≤ exp(1).

Thereby, relying on Lemma B.1, we derive a similar result to Lemma B.6: with probability at least
1− δ, for all t ∈ [T],

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 3λσ2

4

t∑
k=1

η2k

∥∥∥∥ Ḡk√
Ak

∥∥∥∥2
F

+
1

λ
log

(
T

δ

)
. (85)

Using (56) where ηk/
√
a
(k)
ij ≤ 2(ϵ2 +Θmax)ρ0/

√
ϵ1, we have

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 3λσ2(ϵ2 +Θmax)ρ0

2
√
ϵ1

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
1

λ
log

(
T

δ

)
.

Setting λ =
√
ϵ1/(6σ

2(ϵ2 +Θmax)ρ0), we then derive that with probability at least 1− δ,

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
6σ2(ϵ2 +Θmax)ρ0√

ϵ1
log

(
T

δ

)
.

Relying on the bounded gradient ∥∇f(X)∥ ≤ G0 and Lemma C.1, we could derive the second
probability event: with probability at least 1− δ,

∥g(Xt,Zt)∥ ≤ G0 + σ

√
log

(
eT

δ

)
, ∀t ∈ [T]. (86)

where we let G′ = G0 + σ
√
log
(
eT
δ

)
,G′ = (G′)

2
+mnϵ1.

C.2 DETERMINISTIC BOUNDS

Then, we will assume both two events, (85) and (86), always happen. Based on the events, stochastic
gradients are now bounded with G′. Then, recalling (67) and using (85), we derive that

A ≤ −3

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
6σ2(ϵ2 +Θmax)ρ0√

ϵ1
log

(
T

δ

)
. (87)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Using the same deduction in Lemma B.7, the gap in the following is now bounded as∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

≤ 4
√
1− β2,k

√
G′.

Then, following the same result in (70), we derive that

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G′

t∑
k=1

(ϵ2 +Θmax)ρ0(1− β2,k)

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

.

Further, using Lemma B.4 and Lemma B.5 with G,G replaced by G′,G′,

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
8mnG′ 32 (ϵ2 +Θmax)ρ0

max{m,n}ϵ1

[
log

(
2 +

2G′2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
.

(88)

Similarly, we replace G,G with G′,G′ in (73) and (76), leading to

C ≤ LmnG′(ϵ2 +Θmax)
2ρ20

max{m,n}ϵ1

[
log

(
2 +

2G′2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
, (89)

and

1

2

T∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≥ ρ0ϵ2

2
√
2G′

T∑
k=1

∥∥Ḡk

∥∥2
F√

k
. (90)

As we assume two probability events happen, we then plug (87), (88), (89) and (90) into (66), and
use β2,k = 1− 1/kc, leading to with probability at least 1− 2δ,

min
k∈[T]

∥Ḡk∥2F ≤ C̃0√
T

(
C̃1 log

(
T

δ

)
+ C̃2

T∑
k=1

1

kc
+ C̃3

)
.

Finally, we shall estimate
∑T

k=1 1/k
c following the same deduction in Appendix B.4, which leads to

the desired convergence bounds as follows:

min
k∈[T]

∥Ḡk∥2F ≤ C̃0√
T

(
C̃1 log

(
T

δ

)
+

C̃2

1− c
· T 1−c + C̃2 + C̃3

)
.

D PROOF DETAIL FOR STOCHASTIC ADAFACTOR WITH UPDATE CLIPPING

We first provide the detailed version of Theorem 7.1 as follows.

Theorem D.1. Let {Xk}k≥1 be the sequence generated by Algorithm 1 with (6). If Assumptions
(A1) -(A4) hold, and

ρk = ρ0/
√
k, dk = k

c
2(α−1) , ∀k ≥ 1,

β2,1 = 1/2, β2,k = 1− 1/kc,∀k ≥ 2.

When c = 1, with probability at least 1− δ,

min
k∈[T]

∥Ḡk∥2F ≤ D0√
T

(
C1 log

(
T

δ

)
+ (C2 +D1(α)) log T + C2 +D1(α) + C3

)
, (91)

min
k∈[T]

∥Ḡk∥2F ≤ D0√
T

(
C1 log

(
T

δ

)
+ (C ′

2 + C ′
3 +D1(α)) log T + C ′

2 + C ′
3 +D1(α)

)
. (92)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

When 1/2 ≤ c < 1, with probability at least 1− δ,

min
k∈[T]

∥Ḡk∥2F ≤ D0√
T

(
C1 log

(
T

δ

)
+

C2 +D1(α)

1− c
· T 1−c + C2 +D1(α) + C3

)
, (93)

min
k∈[T]

∥Ḡk∥2F ≤ D0√
T

(
C1 log

(
T

δ

)
+ C ′

3 log T +
2(C ′

2 +D1(α))

1− c
· T

1−c
2 + C ′

2 + C ′
3 +D1(α)

)
,

(94)

where C1, C2, C3, C
′
2, C

′
3 are as in Theorem B.1 and

D0 = min{C0, C
′
0}, D1(α) =

G1+αG1−α
4

√
G(ϵ2 +Θmax)ρ0√
mnϵ1

, G4 =
mnϵ1

2
√
G
. (95)

Calculation of hyper-parameters’ dependency We first calculate the dependency on m,n, ϵ1, α
in the additional coefficient D1(α) as follows,

D1(α) ∼ O

((√
1 +mnϵ1
mnϵ1

)α−1
√

1

mnϵ21
+

1

ϵ1

)
, (96)

which is free of the curse of dimension since mn exists in the denominator. Recalling the definitions
of C ′

0, C1, C
′
2, C

′
3 in (37) and (39), it’s easy to verify that these coefficients are also free of the

curse of dimension factor m,n since m,n exist in the denominator. Thereby, we also derive a free
dimension bound selecting (92) and (94).

To calculate the dependency on ϵ1, we could combine with (41) and (96) to derive that

C0D1(α) ∼ O
(
ϵ−α
1

)
, C0C1 ∼ O

(
1/ϵ

−1/2
1

)
, C0C3 ∼ O

(
ϵ−1
1 log(1/ϵ1)

)
.

Thereby, selecting the bounds in (91) and (93) and noting that α > 1, we derive that the order on ϵ1 is

O
(

1

ϵα1
log

(
1

ϵ1

))
.

Moreover, it’s clear to reveal that there exists mn in the denominator, which could improve the
dependency on ϵ1. If we suppose that mn is comparable to ϵ1, then we derive that C0D1(α) ∼
O(ϵ

−1/2
1) and the order on ϵ1 is

O
(

1

ϵ1
log

(
1

ϵ1

))
.

D.1 PROOF OF THEOREM D.1

We define

G̃k =
Gk

max{1, ∥Uk∥F /(dk
√
mn)}

, ρ̂k = max{ϵ2,RMS(Xk)}ρk. (97)

Since RMS(Uk) = ∥Uk∥F /
√
mn, RMS(Xk) ≤ Θmax, we derive that

Xk+1 = Xk − ρ̂k
G̃k√
Wk

,

ϵ2ρ0√
k

≤ ρ̂k ≤ (ϵ2 +Θmax)ρ0√
k

≤ (ϵ2 +Θmax)ρ0
√
1− β2,k, (98)

where we applied that 1/
√
k ≤ 1/kc/2, c ∈ [1/2, 1] and β2,k = 1−1/kc in the last inequality. Using

the inequalities in (15) and (98), we have

f(Xk+1) ≤ f(Xk) + ⟨Ḡk,Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2F

≤ f(Xk)− ρ̂k

〈
Ḡk,

G̃k√
Wk

〉
+

Lρ̂2k
2

∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F

.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Summing up both sides over k ∈ [t] and using f(Xt+1) ≥ f∗ from Assumption (A2), we derive that

0 ≤ f(X1)− f∗ +

t∑
k=1

−ρ̂k

〈
Ḡk,

G̃k√
Wk

〉
︸ ︷︷ ︸

D

+

t∑
k=1

Lρ̂2k
2

∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F︸ ︷︷ ︸
E

. (99)

Introducing Ak in (46), we further have the following decomposition,

D = −
t∑

k=1

ρ̂k

〈
Ḡk,

G̃k√
Ak

〉
+

t∑
k=1

ρ̂k

〈
Ḡk,

(
1√
Ak

− 1√
Wk

)
⊙ G̃k

〉
︸ ︷︷ ︸

D.1

= −
t∑

k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+D.1

−
t∑

k=1

ρ̂k

〈
Ḡk,

G̃k√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

D.2

+

t∑
k=1

ρ̂k

〈
Ḡk,

Ḡk√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

D.3

. (100)

Estimating E Hence, using (97), (98), Lemma B.4 and Lemma B.5, we derive that

E ≤ L

2

t∑
k=1

ρ̂2k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ L(ϵ2 +Θmax)
2ρ20

2

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ LmnG(ϵ2 +Θmax)
2ρ20

max{m,n}ϵ1

[
log

(
2 +

2G2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
. (101)

To avoid the curse of dimension, we drive from (97) and (78) that∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F

=
1

(max{1, ∥Uk∥F /(dk
√
mn)})2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤
∥∥∥∥ Gk√

Wk

∥∥∥∥2
F

≤ G3. (102)

Then, using (98) and (102), we derive that

E ≤ LG3(ϵ2 +Θmax)
2ρ20

2

t∑
k=1

1

k
. (103)

Estimating D.1 We could follow the similar deduction in (69) and (70) to derive that

D.1 ≤
t∑

k=1

n∑
i=1

m∑
j=1

ρ̂k|ḡ(k)ij g̃
(k)
ij |

∣∣∣∣∣∣ 1√
w

(k)
ij

− 1√
a
(k)
ij

∣∣∣∣∣∣
≤

t∑
k=1

n∑
i=1

m∑
j=1

ρ̂k
|ḡ(k)ij g̃

(k)
ij |√

w
(k)
ij

√
a
(k)
ij

√∣∣∣w(k)
ij − a

(k)
ij

∣∣∣
≤ 1

4

t∑
k=1

n∑
i=1

m∑
j=1

ρ̂k ·

(
ḡ
(k)
ij

)2
√
a
(k)
ij

+ 4

t∑
k=1

n∑
i=1

m∑
j=1

ρ̂k ·

∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

·

 g̃
(k)
ij√
w

(k)
ij

2

. (104)

Using Lemma B.7 and (104), we further derive that

D.1 ≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G

t∑
k=1

ρ̂k
√

1− β2,k

∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F

≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G

t∑
k=1

ρ̂k
√

1− β2,k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Using (98), Lemma B.4 and Lemma B.5, we further have

D.1 ≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G(ϵ2 +Θmax)ρ0

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
8mnG 3

2 (ϵ2 +Θmax)ρ0
max{m,n}ϵ1

[
log

(
2 +

2G2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
.

(105)

To avoid the curse of dimension, we apply Lemma B.7, (98) and (78) to derive that

D.1 ≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4(G1 +G2)

t∑
k=1

ρ̂k
√
1− β2,k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4(G1 +G2)(ϵ2 +Θmax)ρ0

t∑
k=1

1

kc/2+1/2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4G3(G1 +G2)(ϵ2 +Θmax)ρ0

t∑
k=1

1

kc/2+1/2
. (106)

Estimating D.2 Since Ak is independent from Zk, it further leads to

D.2 = −
t∑

k=1

ρ̂k

〈
Ḡk√
Ak

, G̃k − EZk

[
G̃k

]〉
.

Then, the deduction for estimating D.2 follows the similar idea as in Lemma B.6, relying on a
martingale difference sequence.

Let us set φk = −ρ̂k

〈
Ḡk√
Ak

, G̃k − EZk

[
G̃k

]〉
and the filtration Fk = σ (Z1, · · · ,Zk). Noting that

ρ̂k, Ḡk and Ak are dependent by Fk−1. Since ξk is dependent by Fk, we could prove that {φk}k≥1

is a martingale difference sequence by showing that

E [φk | Fk−1] = −ρ̂k

〈
Ḡk√
Ak

,EZk

[
G̃k − EZk

[G̃k]
]〉

= 0.

In addition, using Assumptions (A3), (A4) and Jensen’s inequality, we have

∥G̃k∥F =
∥Gk∥F

max{1, ∥Uk∥/(dk
√
mn)}

≤ ∥Gk∥F ≤ G, ∥EZk
[G̃k]∥F ≤ EZk

∥G̃k∥F ≤ G.

Therefore, we derive that

∥G̃k − EZk
[G̃k]∥F ≤ ∥G̃k∥F + ∥EZk

[G̃k]∥F ≤ 2G. (107)

Let ω′
k = 2Gρ̂k

∥∥∥ Ḡk√
Ak

∥∥∥
F

. We thus derive from the Cauchy-Schwarz inequality and (107) that

E
[
exp

(
φ2
k

(ω′
k)

2

)
| Fk−1

]
≤ E

exp

∥∥∥ Ḡk√

Ak

∥∥∥2
F
∥G̃k − EZk

[G̃k]∥2F

4G2
∥∥∥ Ḡk√

Ak

∥∥∥2
F

 | Fk−1

 ≤ exp(1).

Then, using Lemma B.1, it leads to that for any λ > 0, with probability at least 1− δ,

D.2 =

t∑
k=1

φk ≤ 3λG2
t∑

k=1

ρ̂2k

∥∥∥∥ Ḡk√
Ak

∥∥∥∥2
F

+
1

λ
log

(
1

δ

)

= 3λG2
t∑

k=1

n∑
i=1

m∑
j=1

ρ̂k√
a
(k)
ij

· ρ̂k

(
ḡ
(k)
ij

)2
√
a
(k)
ij

+
1

λ
log

(
1

δ

)
.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Since {β2,k}k≥2 is non-decreasing, we could apply Lemma B.3 to derive that

1√
a
(k)
ij

≤

√
1

β2,k(1− β2,k)ϵ1
≤

√
1

min{β2,1, β2,2}(1− β2,k)ϵ1
≤ 2√

(1− β2,k)ϵ1
.

Then, we apply (98), and re-scale δ to obtain that for any λ > 0, with probability at least 1− δ, for
all t ∈ [T],

D.2 ≤ 6λG2ρ0(ϵ2 +Θmax)√
ϵ1

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
1

λ
log

(
T

δ

)
.

Setting λ =
√
ϵ1/(24G

2ρ0(ϵ2 +Θmax)), we derive that

D.2 ≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
24G2ρ0(ϵ2 +Θmax)√

ϵ1
log

(
T

δ

)
. (108)

Estimating D.3 First, since Ak is independent from Zk and EZk
[Gk] = Ḡk, we have

D.3 =

t∑
k=1

ρ̂k

〈
Ḡk,

EZk
[Gk]√
Ak

− EZk
[G̃k]√
Ak

〉

≤
t∑

k=1

ρ̂k

∥∥∥∥ Ḡk√
Ak

∥∥∥∥
F

·

∥∥∥∥∥∥∥∥∥EZk

[
Gk − Gk

max{1, ∥Uk∥F /(dk
√
mn)}

]
︸ ︷︷ ︸

Ωk

∥∥∥∥∥∥∥∥∥
F

. (109)

We define the random variable S
(1)
k , S(2)

k and S̃
(1)
k using the indicator function χ and G4 in (95) as

follows,

S
(1)
k = χ{∥Uk∥F>dk

√
mn}, S

(2)
k = χ{∥Uk∥F≤dk

√
mn}, S̃

(1)
k = χ{∥Gk∥F≥dkG4}.

From (78), we derive that

∥Uk∥F ≤ ∥Gk∥F · 2
√
G√

mnϵ1
.

Hence, S(1)
k ≤ S̃

(1)
k ,∀k ≥ 1. Note that when S

(2)
k = 1, it’s equivalent to Ωk = 0. Then, we derive

that

∥EZk
[Ωk]∥F =

∥∥∥EZk
[ΩkS

(1)
k] + EZk

[ΩkS
(2)
k]
∥∥∥
F
=
∥∥∥EZk

[ΩkS
(1)
k]
∥∥∥
F

≤ EZk

∥∥∥ΩkS
(1)
k

∥∥∥
F
≤ EZk

∥∥∥ΩkS̃
(1)
k

∥∥∥
F
≤ EZk

∥∥∥GkS̃
(1)
k

∥∥∥
F
≤ Gα (dkG4)

1−α
, (110)

Furthermore, we use Assumption (A4) and Lemma B.2 to derive a lower bound for a(k)ij where

a
(k)
ij ≥ mnϵ21

4G
,

∥∥∥∥ Ḡk√
Ak

∥∥∥∥
F

≤ ∥Ḡk∥F

mini,j

√
a
(k)
ij

≤ 2G
√
G√

mnϵ1
. (111)

Combining with (98), (109), (110) and (111), we thus derive that

D.3 ≤ 2G1+αG1−α
4

√
G(ϵ2 +Θmax)ρ0√
mnϵ1

t∑
k=1

1

dα−1
k

√
k
. (112)

Putting together Both E and D.1 are bounded with two estimations, one of which owns a better
dependency to 1/ϵ1 and the other avoids the curse of the dimension. We thereby derive two results.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Plugging (105), (108) and (112) into (100) and then combining with (101) and (99), we then derive
that with probability at least 1− δ, for all t ∈ [T],

1

2

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≤ C1 log

(
T

δ

)
+ C2

t∑
k=1

(1− β2,k) + C3 +D1(α)

t∑
k=1

1

dα−1
k

√
k
, (113)

where C1, C2, C3 are as in Theorem B.1 and D1(α) is as in (95). Plugging (106), (108) and (112)
into (100), then combining with (103) and (99), we then derive that with probability at least 1− δ,
for all t ∈ [T],

1

2

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≤ C1 log

(
T

δ

)
+ C ′

2

t∑
k=1

1

kc/2+1/2
+ C ′

3

t∑
k=1

1

k
+D1(α)

t∑
k=1

1

dα−1
k

√
k
.

(114)

where C ′
2, C

′
3 are as in Theorem B.1. Moreover, using (98), we reveal that the lower bound for ρ̂k is

the same the one for ηk in (55). Thereby, following the same deduction in (76) and (81), we derive
that

1

2

T∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≥
T∑

k=1

ρ̂k
2

∥∥Ḡk

∥∥2
F

maxi,j

√
a
(k)
ij

≥ 1

D0

T∑
k=1

1√
k

∥∥Ḡk

∥∥2
F
, (115)

where D0 = min{C0, C
′
0} that has been defined in (95). Setting t = T on (113) and (114), and then

using (115), we then derive that

min
t∈[T]

∥∥Ḡk

∥∥2
F
≤ D0∑T

t=1 1/
√
k

(
C1 log

(
T

δ

)
+ C2

t∑
k=1

(1− β2,k) + C3 +D1(α)

t∑
k=1

1

dα−1
k

√
k

)
,

min
t∈[T]

∥∥Ḡk

∥∥2
F
≤ D0∑T

t=1 1/
√
k

(
C1 log

(
T

δ

)
+ C ′

2

t∑
k=1

1

k(c+1)/2
+ C ′

3

t∑
k=1

1

k
+D1(α)

t∑
k=1

1

dα−1
k

√
k

)
.

Then, using the results in (83) and (84), we could derive the desired result in Theorem D.1.

E SOME COMPLEMENTARY EXPERIMENTS

E.1 TEST ACCURACY OF TRAINING BERT-BASE MODEL

First, we report the test accuracy for the experiment in Section 9, using Adafactor with different c
and Adam to train BERT-Base.

Table 1: The test accuracy after 5 epochs. We use Adafactor and Adam to train BERT-Base on
GLUE/MNLI dataset. All the setup is aligned with the one in Figure 1.

c = 0.5 c = 0.6 c = 0.8 c = 0.9 c = 1.0 Adam

accuracy 0.7785 0.7803 0.7795 0.7827 0.7802 0.8014

Table 1 implies that the performance of Adafactor and Adam is comparable. It’s also reasonable that
Adafactor sacrifices some accuracy as the memory is saved in comparison to Adam.

E.2 EXPERIMENTS ON RESNET MODEL

In the following experiments, the initialization is R0 = 0m and C0 = 0⊤
n . We use a learning rate

with the warm-up technique as described in (Shazeer & Stern, 2018), specifically ρk = min{10−6 ·
k, 1/

√
k} for all experiments unless otherwise specified. The batch size is set to 256, and the total

number of epochs is 400 by default. Our models are ResNet-20 and ResNet-110 (He et al., 2016),
and we use the CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) without any data
augmentation. The experiments are conducted using the PyTorch implementation of Adafactor on a
single NVIDIA GeForce RTX 4090 GPU.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

E.3 REPORT ON EXPERIMENT 1

We train ResNet-20 and ResNet-110 using Adafactor (no update clipping) with decay rate parameter
c ranging from 0.5 to 1.0 in increments of 0.05, while keeping other hyper-parameters at their default
values. Each experiment is run 10 times with 100 epochs, and we plot the average training curve
and the average test accuracy with standard deviation (shallow blue region) in Figure 2 and Figure 3,
respectively. The training curves under different decay rates c are not obviously different. Hence, we
turn to use the test accuracy as the measurement. Figure 3 indicates that c = 1.0 yields better test
performance and stability compared to c < 1.0 on different models and datasets, corresponding to
the highest test accuracy and thinner shallow blue band. These performances align roughly with the
results in Theorem 6.1.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

E.4 REPORT ON EXPERIMENT 2

Table 2: The test accuracy after 400 epochs. We use Adafactor without update clipping under different
ϵ1 and other hyper-parameters are set by default.

ϵ1 ResNet 20 / CIFAR 10 ResNet 20 / CIFAR 100 ResNet 110 / CIFAR 100

10−30 0.7526 0.4072 0.4159
10−15 0.7439 0.3936 0.4288
10−8 0.7425 0.4157 0.4266
10−5 0.7480 0.4141 0.3951
10−3 0.6864 0.3247 0.3377

In the second experiment, we test Adafactor (no update clipping) under different ϵ1 values. We
plot the training loss curve against the step t on different models and datasets in Figure 4. We also
report the test accuracy after training 400 epochs in Table 2. The performance for ϵ1 = 10−8 and
ϵ1 = 10−5 is nearly identical to that for ϵ1 = 10−30. Moreover, even a larger value of 10−3 achieves
comparable training performance, though with a slower decrease in loss and a worse test accuracy
compared to other values of ϵ1. Notably, ϵ1 = 10−3 requires approximately the same number of
steps (t ≈ 20000) as ϵ1 = 10−30 to achieve near-zero training loss. We conclude that Adafactor is
not sensitive to the choice of ϵ1, and a relatively large ϵ1 can still lead to convergence, making the
polynomial dependency O(1/ϵ1) in our convergence bounds acceptable.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000
Step t

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

c = 0.5
c = 0.6
c = 0.7
c = 0.8
c = 0.9
c = 1.0

(a) ResNet-20 on CIFAR-10

0 5000 10000 15000 20000
Step t

0

2

4

6

Tr
ai

ni
ng

 L
os

s

c = 0.5
c = 0.6
c = 0.7
c = 0.8
c = 0.9
c = 1.0

(b) ResNet-20 on CIFAR-100

0 5000 10000 15000 20000
Step t

0

2

4

6

Tr
ai

ni
ng

 L
os

s

c = 0.5
c = 0.6
c = 0.7
c = 0.8
c = 0.9
c = 1.0

(c) ResNet-110 on CIFAR-100

Figure 2: Average training loss curve under different decay rate parameters c.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0.5 0.6 0.7 0.8 0.9 1.0
decay rate parameter c

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

(a) ResNet-20 on CIFAR-10

0.5 0.6 0.7 0.8 0.9 1.0
decay rate parameter c

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 A
cc

ur
ac

y

(b) ResNet-20 on CIFAR-100

0.5 0.6 0.7 0.8 0.9 1.0
decay rate parameter c

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

(c) ResNet-110 on CIFAR-100

Figure 3: Average test accuracy and standard deviation (shallow blue region) under different decay
rate parameters c.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

E.5 REPORT ON EXPERIMENT 3

Table 3: The test accuracy after 400 epochs. We use Adafactor with different time-varying clipping
thresholds and other hyper-parameters are set by default. We do not apply the warm-up technique.

α (no warm up) ResNet 20 / CIFAR 10 ResNet 20 / CIFAR 100 ResNet 110 / CIFAR 100

α = 4.0 0.6947 0.3096 0.3508
α = 6.0 0.7420 0.3600 0.4359
α = 7.0 0.7558 0.3564 0.4483
α = 8.0 0.7556 0.3729 0.4586
α = 9.0 0.7751 0.3771 0.4401
α = 1.0 (default) 0.8031 0.4535 0.4906

Table 4: The test accuracy after 400 epochs. We use Adafactor with different time-varying clipping
thresholds and other hyper-parameters are set by default. We apply the warm-up technique.

α(warm up) ResNet 20 / CIFAR 10 ResNet 20 / CIFAR 100 ResNet 110 / CIFAR 100

α = 4.0 0.6331 0.2753 0.2958
α = 6.0 0.6812 0.2988 0.3433
α = 7.0 0.6811 0.3111 0.3547
α = 8.0 0.6930 0.3195 0.3658
α = 9.0 0.6969 0.2969 0.3855
α = 1.0 (default) 0.7371 0.3812 0.4085

In this experiment, we explore the appropriate values of α in Theorem 7.1 and compare the training
performance to the default setting of d = 1. As indicated by Theorem 7.1, a relatively small α is
desirable for better dependency on ϵ1. We train models with α set to 4, 6, 7, 8, and 9, keeping other
hyper-parameters at their default values. We also train models with the default d = 1 setting as the
baseline. We report the test accuracy after training 400 epochs. We also plot the training loss against
the steps in Figure 5 without step-size warm-up and Figure 6 with step-size warm-up.

The results indicate that, for the values of α = 6, 7, 8, 9, Adafactor achieves comparable convergence
speed compared to the default threshold (represented by "Baseline"), which helps to complement the
theoretical results in Theorem 7.1.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

0 20000 40000 60000 80000
Step t

0

1

2

3

4

Tr
ai

ni
ng

 L
os

s

1 = 10 30

1 = 10 15

1 = 10 8

1 = 10 5

1 = 10 3

1 = 10 1

(a) ResNet-20 on CIFAR-10

0 20000 40000 60000 80000
Step t

0

2

4

6

Tr
ai

ni
ng

 L
os

s

1 = 10 30

1 = 10 15

1 = 10 8

1 = 10 5

1 = 10 3

1 = 10 1

(b) ResNet-20 on CIFAR-100

0 20000 40000 60000 80000
Step t

0

2

4

6

8

Tr
ai

ni
ng

 L
os

s

1 = 10 30

1 = 10 15

1 = 10 8

1 = 10 5

1 = 10 3

1 = 10 1

(c) ResNet-110 on CIFAR-100

Figure 4: Training loss vs. steps using Adafactor without update clipping under different ϵ1. The
step-size ηt, decay rate β2,k, and learning rate warm-up are set by default.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

0K 2K 4K 6K 8K 10K
Step t

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

= 9.0
= 8.0
= 7.0
= 6.0
= 4.0

Baseline

(a) ResNet-20 on CIFAR-10

0K 5K 10K 15K 20K
Step t

0

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

= 9.0
= 8.0
= 7.0
= 6.0
= 4.0

Baseline

(b) ResNet-20 on CIFAR-100

0K 2K 4K 6K 8K 10K
Step t

0

2

4

6

Tr
ai

ni
ng

 L
os

s

= 9.0
= 8.0
= 7.0
= 6.0
= 4.0

Baseline

(c) ResNet-110 on CIFAR-100

Figure 5: Training loss vs. steps on different models and datasets. We use step-size without warm-up
technique and test under different α.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

0K 5K 10K 15K 20K 25K 30K
Step t

0

1

2

3

Tr
ai

ni
ng

 L
os

s

= 9.0
= 8.0
= 7.0
= 6.0
= 4.0

Baseline

(a) ResNet-20 on CIFAR-10

0K 10K 20K 30K 40K 50K
Step t

0

2

4

6

Tr
ai

ni
ng

 L
os

s

= 9.0
= 8.0
= 7.0
= 6.0
= 4.0

Baseline

(b) ResNet-20 on CIFAR-100

0K 5K 10K 15K 20K 25K 30K
Step t

0

2

4

6

Tr
ai

ni
ng

 L
os

s

= 9.0
= 8.0
= 7.0
= 6.0
= 4.0

Baseline

(c) ResNet-110 on CIFAR-100

Figure 6: Training loss vs. steps on different models and datasets. We use step-size with warm-up
technique by default and test under different α.

43

	Introduction
	Related work
	Problem setup
	A review of Adafactor
	Convergence result for full-batch Adafactor
	Stochastic Adafactor without update clipping
	Discussion of the hyper-parameter dependency.

	Convergence of Adafactor with update clipping
	Summary of proof challenges and techniques
	Experiments
	Conclusions
	Proof detail for full-batch case
	Preliminary
	Technical lemmas
	Proof of Theorem A.1

	Proof detail for stochastic Adafactor without update clipping
	Preliminary
	Technical lemmas
	Proof of Proposition B.1
	Proof of Theorem B.1

	An extension to sub-Gaussian noise with bounded gradients
	Probabilistic bounds
	Deterministic bounds

	Proof detail for stochastic Adafactor with update clipping
	Proof of Theorem D.1

	Some complementary experiments
	Test accuracy of training BERT-Base model
	Experiments on ResNet model
	Report on Experiment 1
	Report on Experiment 2
	Report on Experiment 3

