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Abstract

Recent years have witnessed significant progress in understanding the relationship
between the connectivity of a deep network’s architecture as a graph, and the
network’s performance. A few prior arts connected deep architectures to expander
graphs or Ramanujan graphs, and particularly,[7] demonstrated the use of such
graph connectivity measures with ranking and relative performance of various
obtained sparse sub-networks (i.e. models with prune masks) without the need for
training. However, no prior work explicitly explores the role of parameters in the
graph’s connectivity, making the graph-based understanding of prune masks and the
magnitude/gradient-based pruning practice isolated from one another. This paper
strives to fill in this gap, by analyzing the Weighted Spectral Gap of Ramanujan
structures in sparse neural networks and investigates its correlation with final perfor-
mance. We specifically examine the evolution of sparse structures under a popular
dynamic sparse-to-sparse network training scheme, and intriguingly find that the
generated random topologies inherently maximize Ramanujan graphs. We also
identify a strong correlation between masks, performance, and the weighted spec-
tral gap. Leveraging this observation, we propose to construct a new “full-spectrum
coordinate” aiming to comprehensively characterize a sparse neural network’s
promise. Concretely, it consists of the classical Ramanujan’s gap (structure), our
proposed weighted spectral gap (parameters), and the constituent nested regular
graphs within. In this new coordinate system, a sparse subnetwork’s ¢5-distance
from its original initialization is found to have nearly linear correlated with its per-
formance. Eventually, we apply this unified perspective to develop a new actionable
pruning method, by sampling sparse masks to maximize the ¢»-coordinate distance.
Our method can be augmented with the “pruning at initialization" (Pal) method,
and significantly outperforms existing Pal methods. With only a few iterations
of training (e.g 500 iterations), we can get LTH-comparable performance as that
yielded via “pruning after training", significantly saving pre-training costs. Codes
can be found at: https://github.com/VITA-Group/FullSpectrum-PAT,

1 Introduction

Pruning [21]] reduces the size of deep neural networks (DNNs) by generating sparse models suitable
for compute and memory-limited applications while still preserving comparable accuracy as their
dense counterparts. Existing research in this area can broadly be divided into three main components.
Firstly, pruning after training (PaT) that involves creating sparse DNNs by leveraging information
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from a trained dense model. The Lottery Ticket Hypothesis (LTH) [4], a notable work in PaT, suggests
a sparse subnetwork within a dense trained model can achieve comparable performance. Based on
this hypothesis, they propose iterative magnitude pruning (IMP) to identify such “lottery” subnetwork
at an expensive cost. Secondly, Dynamic Sparse Training (DST) [14} [11} 2] starts with training a
sparse network from scratch instead of using a pre-trained dense model. Here, the sparsity mask keeps
on updating throughout the training to reach maturity while maintaining the target sparsity during
each epoch, often referred to as “sparse-to-sparse” training [12]. The mask update in DST primarily
relies on pruning and regrowing operations. Finally, Pruning at Initialization (Pal) [9} 20, 18] keeps
the sparsity mask frozen throughout the training Various proxies have been proposed [9} 20, [18 2]] to
identify the sparsity mask before training, although the Pal-yielded performance so far falls clearly
below LTH and other PaT methods [6] despite the former’s appealing low overheads.

Despite the significant overlap between these methods, particularly in their use of various proxies
like magnitude, they differ in their beliefs on the origin of the inherent knowledge represented by
the proxy used to create the sparsity mask. Pal assumes that the knowledge emerges during the
initialization phase, while PaT and DST hypothesize that the knowledge is acquired from a fully
or partially trained model. Empirical studies ([LL6], [6]) have demonstrated the effectiveness of PaT
over Pal under high sparsity conditions. However, such performance benefits often come at the cost
of high training requirements due to the iterative nature of PaT. Interestingly, a recent work [[10]
highlighted that even randomly pruned subnetworks can achieve similar performance as the dense
model, further raising questions about the applicability of different proxies. These often conflicting
and counter-intuitive results intensify the debate of proxy knowledge generation through matured
training vs. that identified at the beginning.

To unravel this mystery, we draw inspiration from a complementary perspective of graph theory to
precisely understand the relationship between the connectivity of a neural network’s architecture as
a graph and the network’s performance. Specifically, we focus on a subset of the expander graph
family, namely the Ramanujan graphs. Ramanujan graphs have a maximal eigenbound, allowing the
network to be highly sparse and highly connected. This aligns with the primary objective of pruning
— to find a sparse yet highly connected network. Previous works [19} 15 [1} (17, [7]] have provided
empirical evidence supporting this intuition by utilizing the Ramanujan property to guide existing
sparse generators. However, to our understanding, there exists several missing links:

1. Is the formation of the Ramanujan characteristic in sparse structures a natural occurrence
during training? If so, how can we observe and quantify it?

2. What is the role of weight magnitudes in a Ramanujan graph and can they have a relation
with the graph topology? If so, can there be a unified representation to encompass both?

Towards closing this gap, we first investigate the evolution of sparse structures under In-Time Over-
Parameterization (ITOP) [13], a popular DST regime using magnitude pruning and random growth.
Interestingly, we observe that DST’s random growth is inherently a maximizer of Ramanujan graphs
(though not a very efficient one). We then discover a negative correlation between the performance
and the weighted spectral gap (\). To further leverage this observation, we propose to construct a
new “full-spectrum coordinate” aiming to comprehensively characterize a sparse neural network’s
promise, by combining Ramanujan’s bound Ar (structure), weighted spectral gap A\ (parameters),
and the constituent nested regular graphs within (as in the case of Ar;,,qp [7]). Most strikingly, in
the resultant coordinate system, we find that a sparse sub-network’s ¢o-moving distance from its
original initialization has a nearly linear correlation with the network’s performance. Inspired by this,
we maximize this ¢5-distance in the coordinate by greedily sampling sparse masks at initialization,
yielding a new Pal approach. We empirically verify that our new Pal method, dubbed Pruning at
Initialization as Graph Sampling (PAGS), can create significantly better “zero-shot” masks than the
existing Pal methods. Our contributions are outlined as:

* We first uncover how a sparse topology is evolved in a representative dynamic sparse
training scheme (ITOP) by analyzing the weighted spectral gap of Ramanujan structures.
We discover that this mechanism is an inherent yet inefficient Ramanujan maximizer.

» We then establish a full-spectrum coordinate to jointly measure the structure and weight dis-
tance by combining the Ramanujan perspective with the weighted spectral gap, demonstrat-
ing a sparse subnetwork’s ¢5-moving distance from its initialization in the new coordinate
as a strong (linear) performance indicator.



* We propose Pruning at Initialization as Graph Sampling (PAGS) by greedily maximizing
the aforementioned ¢5-moving distance. PAGS can be organically applied as a “zero-shot”
Pal method and outperforms existing Pal methods with large margins. With only a few
iterations of training (e.g. only 500 iterations), we can get LTH-comparable performance as
that yielded via IMP in PaT, significantly saving pre-training costs.

2 Observing Weight and Topology Evolution via Dynamic Sparse Training

2.1 Notations and Definitions

We first introduce two important concepts that are used to explain key observations made later on in
this section. We also summarized the various notations in Table|[I]for easy reference.

Ramanujan gap: Belonging to a subset of the expander graphs, Ramanujan graphs are distin-
guished by their sparse yet highly interconnected nature. High connectivity in a graph implies
smoother information flow, a trait coveted in sparse neural networks. Previous research [19} [15] |1} [17]
interpreted DNNs as a series of bipartite compute graphs (check the appendix for more details). Here,
each layer takes the form of a square adjacency matrix A. Pruning strategies, inspired by Ramanujan
properties, aim to widen the gap between Ramanujan’s upper-bound, 2 * v/d — 1, where d is the
average number of edge per node, and the non-trivial eigenvalue of the compute adjacency matrix,
f1(A). This gap can be viewed in two ways:

* Canonical perspective: Ar = 2% +v/d — 1 — [i(A)
* Iterative perspective: Arymap = ﬁ Zgll (2vd; — 1 — i(Ag;))

While the canonical perspective, Ar, indicates the ease of information propagation by measuring
the network’s degree of connectivity, a more recent take by [7]] introduces the iterative perspective,
Ar;map- This measures the average connectivity limit across all subgraphs K within A, potentially
offering a more comprehensive insight into the network’s connectivity. Note that “imdb” stands for
“iterative mean difference of bound”, following the same naming scheme in [7].

Weighted spectral gap: Of our own devise, the weighted spectral gap, denoted as A, quantifies the
separation between the trivial (o) and non-trivial (/) eigenvalues of the weighted adjacency matrix,
W. X\ provides insights analogous to the Cheeger constant, which evaluates if a graph possesses a
“bottleneck”. Mirroring the two previous perspectives for Ramanujan gap, the weighted spectral gap
is similarly dual-formed:

* Canonical perspective: A = puo(|W|) — a(|W)),

* Iterative perspective: \jpsq = |Tl(\ Z‘Zi{ll (1o (W,

) — (W,

))

In this context, W stands for the layer-specific weight elements. However, unlike Ar and A7, qp,
the interpretations of A and ;.54 are not universally settled in relation to the network’s sparsity
and their performance correlation. However, later on in this section, we reveal them to be reliable
indicators for performance. Note, here “imsg” stands for “iterative mean spectral gap.”

Table 1: Important graph notations, their equations, and descriptions.

Notation Equation Description

Ar 2x+/d—1-—[ji(A) Measure a graph’s degree of connectiv-
ity using Ramanujan bound

ATimdp |Tl(\ lei{ll (2vd; — 1 — p(Ak,)) Iterative mean of Ramanujan gap for set
of subgraphs K in A

A po(|W1) — a(|W1) Spectral gap of weight matrix W

Nimsg ITlf\ SIE (1o(Wk,|) — i([Wk,|))  Iterative mean of spectral gap for set of
subgraphs K in W




2.2 The Role of Dynamic Sparse Training in Pruning with Ramanujan

Limitations of Ramanujan theory in model pruning: Recently Hoang et al. [[7]] extended the
Ramanujan theory to Pal, achieving notable success in ranking Pal-pruned subnetworks with A7;,,,q4p-
Yet, their reliance on graph spectrum properties introduces pressing challenges. These encompass
the absence of a direct pruning strategy, an oversight of weight magnitude, and the inherent non-
differentiability of graph spectrum properties. Such limitations substantially restrict the wider
applicability of the Ramanujan theory to the straightforward pruning approaches.

Foundational assumption: This study is anchored on two pivotal hypothesis. Firstly, we posit
that graph-based metrics can be strategically used as a sampling criterion, allowing for heuristic
optimization and sidestepping issues related to non-differentiability. Secondly, we believe that the
topology and weights of a sparse subnetwork jointly and complementarily influence performance.
To substantiate these hypotheses, we aim to identify a correlation between a mask’s topology, its
corresponding weight, and the ensuing performance of the sparse subnetwork. Ultimately, our goal is
to develop an actionable pruning method that can be leveraged to improve Pal as well as PaT.

Dynamic sparse training as an observational tool: DST [[14, 2} [13] 22| [8] is an efficient sampler
that (i) can swiftly navigate the mask-weight space through training dynamics evolution and (ii) is
known to specialize at the “good performance” subspace (since DST always evolves to lower the
training loss), rather than attempting to fit the full space. This saves the sampling burden considerably.
Note that, focusing on the “good performance” subspace suffices for our scenarios since most pruning
methods deliver “reasonably good” sparse masks. By using DST as an observational tool, we further
provide tantalizing evidence on the natural formation of the graph properties (e.g., Ramanujan
characteristic) during training.

2.3 Observing Temporal Evolution of Sparse DNN using DST

Setup: To generate and evaluate results in this section, we utilize the ITOP framework [[13] for its
reliable performance in monitoring sparse structures and their evolving graph characteristics. Using
magnitude pruning and random growth (initial renewal rate of 50%), we sample model masks and
weights every 1500 iterations over 250 epochs. After training these unique sparse models, we assess
their graph characteristics to base our subsequent observations. Notably, all our sparse subnetworks
maintain a 99 % unstructured sparsity (only 1% trained weights remain non-zero).

2.3.1 Correlation between Performance and Sparse Topology

From Table[T] we distill the distinctions between the canonical Ramanujan bound Ar and its iterative
variation Ar;,, 4. The correlation between these and performance in image classification across
evolving sparse structures is visually captured in Figure[I] with time-sampled data color-coded on a
gradient scale. Key takeaways include:

Effectiveness over time: Our findings show that the performance of fully fine-tuned sparse DNNs
improves over time when sampled during the ITOP process. This reaffirms ITOP’s (and DST’s
overall) capability in pinpointing the “good performance” subspace, as discussed in Section 2.2.

Contradiction to convention: The bottom row of Figure[T|displays a narrowing trend for Ar with
increasing performance, challenging previously held beliefs from [[19,[15]]. This narrowing suggests
that the paths for information flow between layers become progressively more constrained.

Patterned random-growth: Contrary to the notion that random growth is entirely unpredictable,
Figureindicates structured trends between accuracy and both Ar and Ar;,, 4. This min-max pattern
suggests maximizing or minimizing the expansion property, contingent on the chosen informational
boundary metric. Interestingly, the increasing expansion of regular sub-graphs within each layer
aligned with the intuitive link between information flow rate and performance.

2.3.2 Complementary Relationship between Weight and Topology Graphs

Table|l|itemizes one of our contributions in this paper, namely the proposal for a weighted spectral
gap, A and )\, 54 as a comprehensive and reliable performance indicator. Figurepresents a heatmap
that combines information from both the weight magnitudes and graph topology. This heatmap
highlights the region of highly performative models in red, while other regions are shown in blue. By
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Figure 1: The evolution of Ar,,,q, and Ar over time as a performance function using ITOP.

correlating the graph’s “unweighte” topology with our proposed weighted counterparts, we make the
following observations:

Pareto curvature: Figure[2]shows a mutual dependency between the structure of the graph and
corresponding weights. In particular, it depicts the Pareto curvature lines between Ar and ), as well
as Arimap and Ajmsg.

Area of performance: We identify the region of highly performative sparse models that lies within
a range optimizing the forward expansion characteristic represented by Ar;,,,q, While minimizing the
average weight magnitude of sub-graphs represented by A;;,,s4. Conversely, for the relationship be-
tween Ar and A, improved performance is often associated with narrowing the canonical information
flow while increasing the layer-wise weight average.

These observations emphasize the interplay between the structure of the graph and the weights in
achieving optimal performance. The analysis in Figure 2] provides valuable insights into the trade-off
between graph topology and weight magnitudes, shedding light on the relationship between these
factors and performance outcomes. This complex interplay among multiple factors emphasizes the
need for unified coordinates to describe the performance relations in sparse DNNs.

2.4 Full-Spectrum Coordinate Distance as a Strong, Linear Performance Indicator

In Section 2.3, we identified a robust interconnection between the Ramanujan gap and the weighted
spectral gap, from both canonical and iterative angles. Figures|[I|and [2] portray the combined influence
of sparse topology and weights in optimizing sparse DNN performance, prompting us to investigate
the central question: Is is possible to allow them to co-exist in the same representation?

To this end, we introduce a novel coordinate system, the “Full-spectrum”, integrating Ar, A7;q4p,
A, and ;g as its four layer-wise axes, given their ties to both weights and topology. Formally,
it’s represented as R“**, with L denoting the # layers of a model. Navigating this space entails
navigating a complex trade-off landscape. We gauge its utility by assessing its linear correlation
with overall performance via Pearson correlation. Figures [3] and [] visualize the efficacy of the
“Full-spectrum” in contrast to existing graph metrics. From these, we deduce:

Consistent linear correlation with performance: As evidenced by Figure 3| under ITOP’s random
growth regime, the ¢5-moving distance from a sparse subnetwork’s original position within the
“Full-spectrum” aligns almost linearly with performance.
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Figure 3: Full-spectrum ¢»-distance against classification performance on CIFAR-10 across different
models. We denote the associated Pearson correlation (p) to performance in the parentheses.

Superiority over current graph metrics: Figure [ confirms that, relative to Ar and \, our
“Full-spectrum” perspective offers a more direct linear correlation to performance. This affirms the
harmonious co-existence of these metrics within a unified representation, and the potency of this
integrated indicator paves the way for its application in tangible pruning scenarios.

3 Pruning as Graph Sampling

We now present our actionable pruning methodology as graph sampling, which essentially leverages
the proposed ¢>-moving distance metric associated with the “full-spectrum” coordinate, which shows
to be a strong, linear performance predictor. Note that our proposed methodology is applicable to
any pruning setting since it makes no specific assumption on the weight (e.g., randomly initialized or
pre-trained weights) nor the mask (e.g., local layer-wise or global pruning mask). This makes our
methodology generic that can be augmented with various “off-the-shelf” pruning methods.

In this section, two specific variants are introduced, one for Pruning at Initialization (Pal), and the
other for Pruning after Training (PaT), which requires only a few training iterations.
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3.1 Pruning at Initialization as Graph Sampling (PAGS)

Pruning at Initialization as Graph Sampling Algorithm 1: Pruning at Initialization as
(PAGS) is a lightweight pruning method that Graph Sampling (PAGS)
does not require any pre-training and aims

.. . 1: Initialize the weights 0

to maximize the layer-wise full-spectrum /s- 2 S

. . . o . : n < population size
moving distance. It directly “augments” any 5., o oo
existing Pal method, by oversampling the Pal 4. ; . 3 5ling rate
mask generator and selecting the top mask that 5. A W <« GenerateMask(data, &, 6)
tends to maximize the {>-moving distance cri-  6: // generate sparse topology and weights
teria. In other words, PAGS can be viewed asa 7: whilen — 1 > 0do
“meta-framework” applicable on top of (andto  8: A, W <« GenerateMask(data, k, 0)
improving) any existing Pal method. 9:  // sampling new mask L
For proxy-driven Pal methods such as [9, 20, 105 AW « CompareMer.ge((A’.W)’ (A.W))

. 5 11:  // compare and merge if conditions are

18], we first generate a population of sparsity satisfied
masks: to create each mask, we simply leverage 17.  ifp % ; == 0 and A, W are modified then
arandomly selected small minibatch of training 3. Save A, W
data (GenerateMask(.)). For non-proxy-driven 14:  end if
Pal like random pruning or ERK [10], the mask 151 n<+n-—1
population is created by randomly assigning the 16: end while

non-zero values to random weight locations for

each mask. From the population, we sample a mask, perform a layer-wise comparison to the current
best mask, and update the best in case it improves the ¢3-moving distance (CompareMerge(.)). For a
population size of n, the process is repeated n times. During these iterations, we periodically save
the current best mask at an interval of i steps. Algorithm I]illustrates this process.

PAGS is computationally inexpensive, as each mask sampling requires only a forward pass over a
minibatch. In all our experiments, we adopt the default n = 1,000, ¢ = 20, and minibatch size 128.



Table 2: Results on CIFAR-10 of PAGS (with different Pal methods), in comparison to vanilla Pal
methods and LTH (as empirical performance “ceiling"). Baseline refers to the Pal-found sparse mask
(at initialization) without modification by PAGS. v'means no pre-training needed (i.e., ideal Pal). X,
XX, and XXX, represent low, high, and very high pre-training costs, respectively.

Method Baseline with PAGS No Pretraining
acc. %  (Bestacc %) (Avg. acc %) needed
ResNet18
SNIP 89.54 90.17 89.80 + 0.14 v
GraSP 91.39 92.01 91.68 = 0.16 v
ERK 88.92 90.42 91.05+ 0.17 v
Random  85.43 86.03 85.72+ 0.16 v
LTH 91.22 — — XXX
ResNet34
SNIP 91.30 91.80 91.584+0.13 v
GraSP 91.27 91.85 91.48+ 0.16 v
ERK 91.18 92.29 91.984+ 0.13 v
Random  88.23 88.73 88.56+0.10 v
LTH 92.76 — — XXX

3.2 Pruning Early as Graph Sampling (PEGS)

To further improve the classification accuracy at reduced compute, we extend the zero-shot PAGS, to
present Pruning Early as Graph Sampling (PEGS), which incurs only a small amount of pre-training
cost. In PEGS, we “pre-train” the dense network only for a small number of iterations (by default,
for 500 iterations in all our experiments) and then apply PAGS to this lightly trained network. This
draws similar inspiration as LTH rewinding [3]] or early-bird (EB) ticket [23]] in literature.

Compared to the Pal case, we note that it is not as straightforward to directly “sample” masks
using LTH/EB or any other PaT method, since generating a different mask from those methods
would require re-taking an expensive training process: otherwise, the pruning is deterministic on
trained weights and there is no way to inject randomness. Hence, we do not treat PEGS as a “meta-
framework™ on top of PaT methods. Instead, we discover that light enough pre-training, followed by
cheap Pal-based sampling, can yield sparse masks with comparable quality to the top-performing PaT
masks such as LTH, at a significantly cheaper cost. For example, compared to LTH with M rounds of
iterative training, N epochs per training round, and [ iterations each epoch (I = 500 in CIFAR-10):
PEGS in the same setting would only cost 500 iterations of pre-training, which is roughly MN x
more compute-efficient and faster. For example, in CIFAR-10 experiments we have M =23 and N
=250, hence PEGS would yield > 5000 times saving over LTH.

4 Experiments

4.1 Experiment setup

We leverage four Pal generators to facilitate our experiments (both PAGS and PEGS): ¢ Random [[10]]
uniformly prunes every layer with the same pruning ratio assigned globally. Each parameter is
randomly assigned a score based on the normal distribution. e ERK [3] [14] initializes sparse
networks with a Erdds-Rényi graph where small layers are usually allocated more budget, while
bigger layers are assigned fewer parameter budget. Random pruning is then performed following
those layer-wise ratios eSNIP [9]] for any layer [ it issues scores s; = |g; ©® w;| where g; and w;
are gradients and weights respectively. The weights with the lowest scores after one iteration are
pruned before training. eGraSP [20] removes weights that impeded gradient flows by computing the
Hessian-gradient product h; and issue scores s; = —w ©® hy, for a layer .

We also compare with two PaT methods: e Lottery Ticket Hypothesis (LTH) [4] iteratively prunes
the lowest 20% of weights and rewind the remaining weights to some values in the past. To achieve
the desired 99% sparsity, LTH would necessitate 23 rounds of full training and pruning. e Early
Bird (EB) [23]] utilizes one-shot “early pruning”, with a “mask-similarity” signal to automatically
terminate pre-training as a cost-saving mechanism (typically happening around the first 15%-20%
epoches). The original EB was implemented for structured pruning; for a fair comparison, the results
shown in Table [3]are our re-implementation of EB onto unstructured pruning.



Table 3: Results on CIFAR-10 of PEGS (with light pre-training followed by different Pal methods),
in comparison to vanilla Pal methods, LTH and EB (the later two come with much heavier pre-training
costs). Baseline refers to the Pal-found sparse mask (after light pre-training) without modification by
PEGS. X, XX, and XXX, represent low, high, and very high pre-training costs, respectively.

Method Baseline with PEGS No pre-training
acc. %  (Bestacc %) (Avg. acc %) needed
ResNet18
SNIP 91.05 91.53 91.22+ 0.14 X
GraSP 89.97 91.50 91.254+0.23 X
ERK 89.87 91.31 91.05+ 0.17 X
Random  85.37 86.03 90.134+ 0.19 X
EB 90.10 — — XX
LTH 91.22 — — XXX
ResNet34
SNIP 92.38 92.75 92.514 0.10 X
GraSP 92.84 92.90 92.704 0.40 X
ERK 91.10 92.01 91.494 0.23 X
Random  87.86 88.91 88.41+£0.23 X
EB 92.00 — — XX
LTH 92.76 — — XXX

Table 4: Results on CIFAR-100 on ResNet18 using PAGS/PEGS in comparison to vanilla Pal
methods, LTH and EB. Baseline refers to the Pal-found sparse mask. X, XX, and XXX, represent low,
high, and very high pre-training costs, respectively. @100 and @500 refer to different "pre-training"
iterations using PEGS. @0 means we start from random initialization using PAGS.

Method Baseline with PAGS/PEGS No pre-training
acc. %  (Bestacc %) (Avg. acc %) needed
ResNet18@0
SNIP 64.60 65.39 64.89+ 0.26 v
GraSP 65.25 66.05 65.544 0.21 v
ERK 64.54 64.84 64.69 + 0.12 v
ResNet18@100
SNIP 63.22 64.92 64.34+ 0.34 X
GraSP 63.27 65.17 64.35+ 0.33 X
ERK 64.06 64.82 64.41+ 0.22 X
ResNet18@500
SNIP 62.60 64.27 63.46+ 0.30 X
GraSP 61.34 63.95 62.91+ 0.59 X
ERK 64.06 65.05 64.56+ 0.27 X
" EB 6245 — — xXx
LTH 65.50 — — XXX

Unless otherwise stated, we use a high target sparsity of 99% in all our experiments. We demonstrate
results on CIFAR-10/ CIFAR-100 in the main text. We use two representative models, Resnet18
and ResNet34, as the main backbones in this sectior} Additional training details and results on
Tiny-ImangeNet are deferred to the Supplementary due to the space limit.

4.2 Comparison of PAGS and PEGS with Existing Pal methods

Tables 2] and [3| detail our pruning results for CIFAR-10 using PAGS and PEGS, while Tables 4] and 3]
do so for CIFAR-100. As PAGS/PEGS operate on a sampling basis, we list both the peak performance
of the best mask (Best acc) and the mean performance across all n sampled masks (Avg. acc). The
latter is supplemented by the standard deviation. From the presented results, we deduce the following:
D In CIFAR-10/100 trials, our methods consistently surpass the baseline Pal generators in PAGS.
A standout instance is the 2.12% advantage over ERK for ResNet18 using Pal, as seen in Table 2}
@ With light pre-training, our methods still hold an edge against reference generators. For instance,
Tables [4] and [5]indicate about 1% enhancement over the top-performing generator at both the 100 and

'VGG16 is not included since some Pal methods and EB fail on it at 99% high sparsity ratio.



Table 5: Results on CIFAR-100 on ResNet34 using PAGS/PEGS in comparison to vanilla Pal
methods, LTH and EB. Baseline refers to the Pal-found sparse mask. X, XX, and XXX, represent low,
high, and very high pre-training costs, respectively. @100 and @500 refer to different "pre-training"
iterations using PEGS. @0 means we start from random initialization using PAGS.

Method Baseline with PAGS/PEGS No pre-training
acc. %  (Bestacc %) (Avg. acc %) needed
ResNet34@0
SNIP 69.48 70.73 69.8340.27 v
GraSP 67.88 70.59 69.64+ 0.74 v
ERK 68.64 69.90 69.77+ 0.11 v
ResNet34@100
SNIP 68.04 69.41 68.644 0.33 X
GraSP 62.47 66.61 64.43 +1.03 X
ERK 68.91 69.92 69.50 £ 0.16 X
ResNet34 @500
SNIP 67.41 69.23 68.531+ 0.36 X
GraSP 67.18 68.95 68.03 £ 0.41 X
ERK 68.99 69.92 69.45+ 0.22 X
" EB 6522 0 — - — xXx
LTH 68.05 — — XXX

500 iteration marks. (3 Interestingly, optimal outcomes typically manifest during the initialization
phase, implying that light pre-training doesn’t instantaneously refine the weight distribution.

4.3 Comparison with (Much More Expensive) LTH and the Early Bird Ticket

We further compare PAGS/PEGS with the two PaT methods, LTH and EB, and note that the latter
two are significantly costlier. Overall, for Pal setting (table [2), we intend to include LTH as the
“performance ceiling” and show PAGS can get close to or even outperform it often times. For example,
Table 2] shows that ResNet18 utilizing GraSP marginally outperforms LTH, without any pre-training.

For PaT setting (table [3] table 4] and table [5]), we show that with a small fraction of pre-training
costs, our PEGS could solidly outperform both LTH and EB, using either SNIP or GRASP mask
generators. Interestingly, in ResNet18, even the random ERK mask generator can be turned into LTG-
level performance with the aid of PEGS. Our findings suggest that maximizing the full-spectrum’s
£2-moving distance can significantly improve performance by optimizing both the graph’s structure
and weights. This approach allows us to achieve performance levels comparable to LTH but at a
significantly lower cost. By leveraging the insights the Ramanujan perspective provides, we can
achieve notable performance improvements across the board of pruning, while incurring minimal
computational overheads.

5 Conclusion

Recent years have seen the rise of graph theory in analyzing and understanding sparse subnetworks.
However, we still lack a crucial understanding of the role parameters play in graph connectivity. To
fill this gap, in this paper, we study the weighted spectral gap of Ramanujan structures in sparse neural
networks and investigate its correlation with the final performance. By examining the evolution of
sparse structures under DST, we identify a strong correlation between Ramanujan bound, weighted
spectral gap, and performance. Leveraging these observations, we proposed a new “full-spectrum
coordinate” which comprehensively characterizes the complex interplay between various graph
characteristics that further leads to actionable pruning methods both at initialization and after light
pre-training. This unified perceptive is expected to invoke more future exploration into the complex
interplay between topology and weights, not just for sparse NNs but for generic DNNs as well.
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A DNN as bipartite graphs

A bipartite graph is a graph consisting of two distinct sets of vertices L and R that are connected with
E edges as G(L U R, E). Let v denote the total number of vertices in both sets, the more common
way to represent G is as a binary adjacency matrix A € RV*?,

A DNN is a series of bipartite graphs, one for each layer, to represent all of its compute graphs. For a
convolutional layer with parameter tensor @ € RCin X Cout XkinXkout - we unfold the dimensions so
that L = Cj,, * ki * koyy and R = Clyy. For a linear layer with parameter tensor 8 € RCinxCout
we can directly adapt its parameters where L = Cj,, and R = Cl, -

An interesting and relevant property of a bipartite graph, is that when each node has the same number
of d out-edges, its adjacency matrix A has eigenvalues p(A) such that pg > ... > p,,—1, where g
and [f1, 1| are equaled to d. We define ji(A) = maxj,,|+q || as the largest nontrivial eigenvalue.
In the context of unstructured pruning, we often find G to be irregular, in which case Hoang et al. [7]
showed that dg.y < |po| < dimaa-

B Supplementary results for PAGS and PEGS

B.1 Additional Experiments on CIFAR-10

We expanded our experiments on the CIFAR-10 dataset by utilizing weights pre-trained for 100
iterations with a batch size of 128 per iteration. The CIFAR-10 dataset consists of 50,000 training
images and 10,000 testing images, divided into 10 different classes. The results of these experiments
are summarized in Table

We observed performance improvement relative to baseline. However, compared to other modes
of pre-training for CIFAR-10, certain Pal generators exhibited higher-than-expected standard de-
viation and lower average performance, indicating some instability in generating sparse structures.
Specifically, we observed this trend with GraSP in ResNet18 and SNIP in ResNet34.

B.2 Additional Experiments on Tiny-Imagenet

We expanded our experiments on the Tiny-Imagenet dataset by utilizing weights pre-trained for 100
iterations with a batch size of 128 per iteration. The Tiny-Imagenet dataset consists of 100,000
images, divided into 200 different classes. The results of these experiments are summarized in table|7]
and table 8]

C Limitations and Societal Impacts

This work studies the effect of weights under the Ramanujan settings through observation using ITOP.
By gaining insights from these observations, we empirically improve the performance of pruning
methods using PAGS. We do not expect any negative societal impact from this work.
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Table 6: Results on CIFAR10 on ResNet18 and Resnet34 using PEGS in comparison to vanilla Pal
methods, LTH and EB. Baseline refers to the Pal-found sparse mask. X, XX, and XXX, represent
low, high, and very high pre-training costs, respectively. @100 refers to weight pretraining at 100
iterations with batch size 128.

Method Baseline with PEGS No pre-training
acc. %  (Bestacc %) (Avg. acc %) needed
ResNet18@100
SNIP 90.39 91.30 90.06+ 0.17 v
GraSP 86.09 91.11 80.38+ 3.14 v
ERK 90.07 90.41 90.11+£ 0.22 v
" EB 9010  — - - xXx
LTH 91.22 — — XXX
ResNet34 @100
SNIP 92.91 93.22 90.01+£ 1.70 v
GraSP 92.66 93.11 9291+ 0.11 v
ERK 92.04 92.19 91.88+ 0.18 v
" EB 9200 0 — - - xXx
LTH 92.76 — — XXX

Table 7: Results on Tiny-ImageNet on ResNet18 using PAGS/PEGS in comparison to vanilla Pal
methods, LTH and EB. Baseline refers to the Pal-found sparse mask. X, XX, and XXX, represent low,
high, and very high pre-training costs, respectively. @100 and @500 refer to different "pre-training"
iterations using PEGS.

Method Baseline with PAGS/PEGS No pre-training
acc. %  (Bestacc %) (Avg. acc %) needed
ResNet18@100
SNIP 47.13 49.00 48.45 + 0.44 X
GraSP 48.31 49.43 48.82 + 0.32 X
ResNet18@500
SNIP 45.83 47.83 47.11 £0.42 X
GraSP 48.89 50.26 49.48 + 0.29 X
" EB 4743 — - xXx
LTH 49.81 — — XXX

Table 8: Results on Tiny-ImageNet on ResNet34 using PAGS/PEGS in comparison to vanilla Pal
methods, LTH and EB. Baseline refers to the Pal-found sparse mask. X, XX, and XXX, represent low,
high, and very high pre-training costs, respectively. @100 and @500 refer to different "pre-training"
iterations using PEGS.

Method Baseline with PAGS/PEGS No pre-training
acc. %  (Bestacc %) (Avg. acc %) needed
ResNet34 @100
SNIP 53.07 5491 53.65+04 X
GraSP 52.71 53.71 52.80 £ 0.41 X
ResNet34 @500
SNIP 53.57 54.65 54.16 £ 0.25 X
GraSP 53.83 55.48 54.84 £0.35 X
" EB 5340 0 0 — - - xx
LTH 54.00 — — XXX
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