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Abstract

We introduce Nuclear Co-Learned Representa-
tions (NuCLR), a deep learning model that pre-
dicts various nuclear observables, including bind-
ing and decay energies, and nuclear charge radii.
The model is trained using a multi-task approach
with shared representations and obtains state-of-
the-art performance, achieving levels of precision
that are crucial for understanding fundamental
phenomena in nuclear (astro)physics. We also
report an intriguing finding that the learned repre-
sentations of NuCLR exhibit the prominent emer-
gence of crucial aspects of the nuclear shell model,
namely the shell structure, including the well-
known magic numbers, and the Pauli Exclusion
Principle. This suggests that the model is capable
of capturing the underlying physical principles,
and that our approach has the potential to offer
valuable insights into nuclear theory.

1. Introduction

The nucleus is the incredibly small and dense region at
the center of an atom, consisting of protons and neutrons
bound together by the strong nuclear force. Despite having
been discovered over a century ago—and the fundamental
theory of the strong nuclear force (quantum chromodynam-
ics, QCD) having been discovered 50 years ago—we still
lack a precise quantitative understanding of nuclear physics.
In principle all nuclear properties are calculable from the
theory of QCD, though in practice such calculations are
intractable for all but the smallest few nuclei.

Qualitatively, a major breakthrough in understanding nuclei
came just after World War II with the development of the
nuclear shell model by Goeppert-Mayer and Jensen (Nobel
Prize in Physics, 1963), which analogous to the atomic shell
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model describes the structure of the nucleus in terms of
quantum energy states. A key component of this model is
the Pauli Exclusion Principle, that no two identical fermions,
e.g. nucleons (protons or neutrons), can occupy the same
quantum state. Since nucleons have spin 1/2, two such par-
ticles can occupy the same energy state, one with spin up
and the other with spin down, leading to even numbers of
protons and neutrons being preferred (more strongly bound).
As in the atomic shell model, the most stable states are those
with filled shells. Therefore, when adding nucleons to a
nucleus, there are magic numbers where the binding energy
of the next nucleon is substantially less than the previous
one, i.e. there are configurations that are much more tightly
bound due to having a filled shell. The shells for protons
and neutrons are filled independently since they are distin-
guishable particles; however, the number of protons does
affect the neutron quantum states and vice versa. There are
well known magic numbers such as 2, 8, 20, 28, 50, and 82
for both proton and neutron number, Z and N, respectively,
and in addition N = 126.

A major goal of the modern nuclear physics community is to
accurately predict nuclear properties, among which binding
energies and charge radii are some of the most important.
Traditionally, analytical models have been used, motivated
by the known physics—but simplified to make the calcu-
lations tractable—and augmented with empirical input to
improve their agreement with data (Goriely et al., 2001;
Bender et al., 2003; Geng et al., 2005; Mdller et al., 2012;
Wang et al., 2014)." The most accurate of these models,
referred to as WS4 (Wang et al., 2014), is able to predict
nuclear binding energies and charge radii with a precision
of about 300keV and 0.02 fm, respectively. More recently,
machine learning (ML) models have received some atten-
tion due to their superior performance potential. Thus far,
most ML models were designed for a single-task learning
(STL) purpose, namely predicting binding energies (Niu
& Liang, 2018; Wu et al., 2021; Niu & Liang, 2022; Wu
et al., 2022) or charge radii (Utama et al., 2016; Wu et al.,
2020; Dong et al., 2022; Ma & Zhang, 2022). An exception
is the kernel ridge regression model of (Wu et al., 2022)
which utilizes multi-task learning (MTL) to simultaneously

'With an increase in computational power nuclear ab initio
methods have recently gained momentum (Navratil et al., 2009;
Hagen et al., 2014; Ekstrom et al., 2015; Novario et al., 2023).
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Figure 1. Most important principal components of the neutron embedding representations from (left) early and (right) late in the training.
The left panel shows that the most crucial aspects of the nuclear shell model, namely the shell structure, including the magic numbers, and
the Pauli Exclusion Principle, arise already early in the training. (The Pauli principle is evident with the even (odd) numbers represented
as negative (positve) values of PC2. The ends of the even chains of numbers are the magic numbers where each nuclear shell become full.)
In the right panel, the even-odd split now occurs in PC dimension 4, hence is not shown. The shell structure has grown into 3-dimensional
spirals, with the largest 4 magic numbers all occurring at local maxima in PC2 and each shell represented as one revolution around an
approximately conic surface. Interpreting this spiral structure is ongoing work.

predict both binding and separation energies, achieving a
world-leading precision of about 140 keV; n.b. this model
uses the WS4 predictions as important inputs. ML models
have yet to substantially improve upon analytic-model pre-
dictions for charge radii. We note that the precision needed
for understanding fundamental phenomena in nuclear (as-
tro)physics, are below 100keV for binding energies and
0.01 fm for charge radii;e.g. for r-process nucleosynthesis
see (Martin et al., 2016; Mumpower et al., 2016).

A major drawback of the previous ML-based approaches is
that they lack interpretability. The nuclear shell model is
intuitive and surprisingly accurate given its simplicity. We
propose an ML-based approach designed to learn a task-
independent representation of the nucleus, analogous to the
human-learned nuclear shell model picture. To decouple
the nuclear representation from task-specific model features,
we train to predict a variety of nuclear properties in an
MTL setting, all based on the same nuclear representation
model, referred to as Nuclear Co-Learned Representations
(NuCLR). By exploiting all information available about
nuclei, we show that we are able to build a more meaningful
model and improve prediction quality that achieves state-of-
the-art performance. More importantly, as shown in Fig. 1
we can clearly identify the most important aspects of the
nuclear shell model in the latent representations of the model
that are shared between all tasks, such as the shell structure,
including the well-known magic numbers, and the Pauli
Exclusion Principle.

2. More Tasks, More Information

Improving generalization of a prediction task can be
achieved in many ways, including by obtaining more or

more precise data. However, collecting such data is often
expensive, and in the case of nuclear data technologically
challenging or even infeasible. Another avenue is exploiting
the joint information between different known and mea-
sured properties of the nucleus to increase the effective
amount of data available for any specific prediction task.
This can be achieved by training jointly on all tasks. To
exploit data correlations over multiple tasks, a prediction
model needs to process data through dependent channels.
For neural networks, that most often means sharing weights
and layers between tasks. To what degree a model should
share processing channels between tasks depends on how
similar those tasks are. In the limit of tasks with no joint
information, there is no evident benefit to joint training.

In the MTL literature there exist many ways to either man-
ually or automatically control information sharing (Craw-
shaw, 2020). In order to introduce and motivate choices
made for this MTL task, we first show proof of concept with
a toy model. The task is to predict the result of the following
arithmetic binary functions of two input real numbers: a + b,
la —b|, (a4 b)3/2,log(a 4+ b+ 1), and exp(—v/a + b/5).
The input numbers are treated like symbols or tokens in a
language task by embedding them randomly into a high-
dimensional space. Once embedded, they lose all their rela-
tional properties. The representation vectors are trainable
parameters during the learning process that allows the archi-
tecture to arrange them in a beneficial way. Schematically,
the architecture for this toy-model regression processes in-
puts is as follows: embed both numbers, concatenate these
embeddings, then send the resulting vector through a stack
of residual blocks.

In the regime of limited data, we find that using multiple
tasks improves generalization on all tasks simultaneously.
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Figure 2. For the toy-model arithmetic problem, the multi-task
with embeddings (MTE) model generalizes better than the multi
task (MT) and single task (ST) models on all tasks in the regime
of limited data. Here, only 400 examples for each task are used,
10% for training and the rest for testing.

Figure 2 shows the performance obtained when training on
individual targets (single-task, ST) versus joint training on
all tasks at once (multi-task, MT), where the latter is superior
for all tasks. Here, the MT model has the same layout as
the ST models except that the last layer of the model has
an output for each task. Note how this architecture hard-
codes a high degree of shared computation between tasks.
Regardless of the regression target, input numbers undergo
the same transformations up to the last layer.

Next, we show that far superior performance is achieved by
using a different approach to multi-tasking. Traditionally in
MTL, architectures define hyperparameters to control the de-
gree of weight sharing for different tasks. Taking inspiration
from language models—which do implicit multi-tasking by
conditioning on the task as an additional input—we instead
treat the binary operations as trainable embeddings in the
same way as the input numbers, and concatenate all three
embedding vectors for processing through the model. As in
the MT model, the last layer has one output per task. Our
approach lets the model decide to which degree tasks are
similar and how computations should be shared by moving
the task embeddings closer together or farther apart in la-
tent space. Figure 2 shows that this model—labelled MTE,
shown schematically in Fig. 3—yields superior performance
over both single-target and naive multi-target training.

3. Predicting Nuclear Properties

We now use the MTE approach presented in the previous
section to predict nuclear properties. We base our train-
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Figure 3. MTE architecture: input-data and task embeddings are
concatenated, projected, and passed through a sequence of residual
blocks. Different readout heads output predictions for each task.
The fact that the same input-data embeddings are used for all tasks
encourages structure formation in the embedding space which
encodes task-independent information.

ing on the AME2020 dataset (Wang et al., 2021) for the
energy-based quantities and on the compilation of (Angeli
& Marinova, 2013) for the charge radii, in both cases using
all well-measured nuclei with Z, N > 8.2 The only inputs
are three embeddings: proton and neutron number, Z and
N, and the task. We choose the following nuclear properties
to predict: binding energy per nucleon; charge radius; neu-
tron and proton separation energies, defined as the energy
required to remove one neutron or proton from the nucleus;
and the energy available for «, 3, electron-capture (EC), and
(B-n decays. All targets are scaled to be contained in the in-
terval [0,1]. In addition, for binding energies we predict the
residuals relative to the semi-empirical Bethe-Weizsiacker
(BW) mass formula, a direct consequence of the famous
liquid-drop model of the nucleus (Weizsacker, 1935; Bethe
& Bacher, 1936). The BW formula itself has a prediction
precision of about 3 MeV, which is 30 times worse than our
target performance. Removing the BW predictions does not
greatly affect the prediction performance; however, it does
affect the interpretability (discussed later).

When evaluating our models, we must avoid prediction
biases such as correlations between the separation energies
of a nucleus and the binding energies of its neighboring
nuclei, which could be used to artificially obtain excellent
performance (Wu et al., 2022); e.g., it is possible to directly
obtain (and memorize) the binding energy, B(Z, N), from
B(Z,N) = B(Z,N — 1) + 5,(Z, N) where S,, denotes
the neutron separation energy. Therefore, we train many
independent models (100-fold cross-validation), where for
each, we withhold 1% of the nuclei from training to be used
for validation. In addition, we also remove the separation

>More details on the dataset, model, and validation procedure
are provided in an appendix.
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Figure 4. Residuals for NuCLR predictions compared to experimental measurements for (left) binding energy (keV) and (right) charge
radius (fm). The vast majority of our predictions are highly precise, especially from the 5" shell up (N, Z > 28) where the RMS of our
binding energy predictions is only 79 keV c¢f. the binding energies themselves which are O(7000) - (Z + N) keV.

energies of the neighboring nuclei for each nucleus in a
validation sample.

All inputs are embedded into a 1024-dimensional space. The
model consists of one linear layer that takes the concatenated
embeddings in 3 x 1024 dimensions and maps them back to
1024 dimensional space, 4 residual blocks with 2 layers of
width 1024 each, and one final output layer with one output
for each task. We use SiLU activation after each linear layer.
This results in a total of 11 869 194 parameters. We train
each model for 50 000 epochs with learning rate of 0.01,
weight decay of 0.01, and a batch size of 4096. The learning
rate is cosine-annealed to 10~° during the training.

Figure 4 shows the residuals for our predictions for binding
energy and charge radius. The vast majority of our predic-
tions are highly precise, especially for larger nuclei. The
root-mean-square (RMS) of the prediction performance of
our model on the various tasks is as follows: 130keV for
binding energy; 0.011 fm for charge radius; 130keV and
140keV for neutron and proton separation energies; and
139keV, 180keV, 179keV, 196keV for the energy avail-
able for o, 3, EC, and -n decays. We believe that these
results establish a new state of the art. In addition, we note
that to get competitive performance, previous works con-
sidered more human-designed inputs, for instance binding
energy predictions of high-precision analytical models (Niu
& Liang, 2022; Wu et al., 2022). We could likely improve
our results by also including such inputs, especially for
smaller nuclei; however, our focus here was to demonstrate
the ability to self learn the nuclear shell structure in an
interpretable way.

4. Gaining Understanding via Embeddings

The deep learning literature suggests that the crucial phe-
nomenon of capability emergence arises as one scales up

the number of parameters, dataset size, and compute across
modalities, and in particular, this phenomenon is extremely
important in language models (Brown et al., 2020; Wei
et al., 2022). A plausible explanation for the performance
gains attributed to this phenomenon is the emergence of spe-
cialized neural circuits and higher-quality representations.
Similarly, since we use the same nuclear embeddings to
tackle a range of tasks, we expect our training procedure to
lead to the emergence of physically-meaningful representa-
tions. Furthermore, if most of the information stored in the
embeddings lies on a low-dimensional manifold, then the
learned solution could be interpretable, allowing us to gain
both confidence in and understanding from the model.

To study the embeddings, we project them down into a
low-dimensional space via a principal component analysis
(PCA). Figure 1 (left) shows the first two principle com-
ponents of the neutron embeddings at an early stage in the
training. We clearly see that the model has learned to sepa-
rate the even and odd values of N (vertically on the plot).
Recall that IV is not given to the machine as an integer, that
fact is obscured by providing N as a randomly initialized
vector in a 1024-dimensional space. This clear separation
of even and odd is a striking statement that it has learned the
consequences of the Pauli Exclusion Principle. Furthermore,
already at this early stage of training we see chains of con-
nected numbers arise with clear breaks between the chains.
The break points in the even chains are the well-known
magic numbers for IV, i.e. these break points occur where
the nuclear shells become full. Therefore, we conclude
that the earliest stages of learning correspond to building
embeddings that represent the famous nuclear shell model!

Figure 1 (right) shows the N embeddings at the end of
training, where the clear even-odd split due to the Pauli
principle remains. Interestingly, we see that the chains of
numbers attributed to the shell structure have evolved into
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3-dimensional spirals, where the numbers from each shell
are roughly equidistant around a circle in the 2-dimensional
subspace with the different shells separated along the third
PCA dimension. There are many potential explanations
for this sturcture, though more detailed study is required to
understand this structure. Nevertheless, this spiral structure
appears crucial to NuCLR being able to provide state-of-
the-art precision for nuclear predictions. Finally, we note
that the final embeddings and the observable predictions
obtained both with and without the use of the imprecise
BW binding-energy predictions as inputs are similar. The
primary benefit of using the BW predictions is the clear
emergence of the nuclear shell model early in the training.

5. Discussion and Future Directions

NuCLR achieves state-of-the-art performance predicting
nuclear observables using a multi-task approach with shared
representations. Amazingly, these learned representations
exhibit the prominent emergence of the most crucial aspects
of the nuclear shell model, suggesting the model is capa-
ble of capturing the underlying physical principles. Future
directions include more detailed study of the embedding
structures, and more generally how to encourage embedding
as much information as possible into an interpretable low-
dimensional manifold. On the nuclear-physics side, NuCLR
could potentially be used to make accurate predictions about
many exciting topics in nuclear (astro)physics, including
r-process nucleosynthesis (Burbidge et al., 1957), the nu-
clear neutron skin and its consequences for the structure of
neutron stars (Brown, 2000; Horowitz & Piekarewicz, 2001;
Gandolfi et al., 2012), the exploration of the boundaries of
the nuclear landscape (Erler et al., 2012), and of exotic phe-
nomena such as halo nucleii (Nortershauser et al., 2009) and
shape coexistence (Heyde et al., 1983; Wood et al., 1992),
and the CKM unitarity puzzle (Seng et al., 2018; Belfatto &
Trifinopoulos, 2023; Seng, 2023).

Broader Impact

A generalized view of the method proposed here is that
the scientific endeavor itself is a representation-learning
problem. Nature presents us with high-dimensional seem-
ingly unorganized data, from which scientists attempt to find
low-dimensional representations of the relevant information.
Once a low-dimensional representation is found, a model
can be built that is not only precise but also trustworthy be-
cause we can understand how its predictions arise. In many
scientific applications, ML models can easily achieve supe-
rior performance but they lack interpretability. Our method
re-formulates the ML approach to science in a way that is
more aligned with how traditional human-led science works.
We showed that if most of the information stored in the
embeddings lies on a low-dimensional manifold, then the

ML solution could be interpretable, allowing us to gain both
confidence in and understanding from the ML model. In
this way, we not only obtain more precise models—but we
can potentially learn from the machine. We believe that our
approach could be applied to any scientific problem where
understanding what the ML model has learned is desired.
Finally, we do not foresee any ethical concerns associated
with our work.
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Appendix: Additional NuCLR Details

Dataset: The dataset is built from the nuclei in the
AME?2020 collection, which contains both experimentally
measured nuclear data and model predictions for as-yet-
unobserved nuclei. Only experimentally measured nuclei
with Z, N > 8 are considered when evaluating model per-
formance; however, predictions for unobserved nuclei are
used in the training, which helps in regions where there
is little experimental information. In total, about 3k nu-
clei are used in the training and testing. Note that most
nuclei do not have measurements for all of the proper-
ties that we predict, e.g., only around one third of the
AME2020 nuclei posses a charge-radius measurement. For
more details, the AME2020 sample can be inspected inter-
actively at https://www-nds.iaea.org/relnsd/
vcharthtml/VChartHTML.html.

Model: Figure 3 shows a schematic diagram of the model
that takes as input the embedding vectors for proton and neu-
tron number, along with the specific prediction task. During
a forward pass, all 3 inputs (proton number, neutron number,
task ID) are embedded in a 1024-dimensional space using a
learned embedding function. These are then concatenated to
form a 3 x 1024-dimensional vector. This vector is passed
through a set of residual blocks of size 1024, ending in one
readout linear layer that transforms the 1024-dimensional
penultimate activation into a vector with entries for each
task. Thus, branching for multi-tasking happens on two
levels: (1) the task embedding and (2) the last-layer routing.
One data point is defined as (Z, N, Task ID), and the loss
for that point considers only the task-relevant output of the
network.

Cross-Validation: We use 100-fold cross validation because
neighboring nuclei must be excluded in the training (see
(Wu et al., 2022), and discussion in the main text above).
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For each nucleus in the validation set, all neighbor energies
are removed from the training sample, leading to 4-5x
validation set cardinality removed from the training data
in each fold. This requires that each validation set be kept
small to allow for a large enough training sample. Thus,
a large number of folds are needed so that each nucleus
appears in at least one validation sample. We note that
the previous state-of-the-art model for predicting nuclear
properties (Wu et al., 2022) does a much higher number of
folds; they train one model per nucleus.
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