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Abstract

Recently, inserting task-specific plugins such
as adapters and prompts into a unified pre-
trained model (PTM) to handle multiple tasks
has become an efficient paradigm for NLP. In
this paper, we explore to extend this paradigm
from task adaptation to document representa-
tion. Specifically, we introduce plug-and-play
representation learning of documents (named
PlugD), which aims to represent each document
as a unified task-agnostic plugins. By insert-
ing document plugins as well as task plugins
into the PTM for downstream tasks, we can en-
code a document one time to handle different
tasks, which is more efficient than conventional
methods that learn task-specific encoders to
represent documents. Extensive experiments
on 7 datasets of 5 typical NLP tasks show that
PlugD enables models to encode documents
once and for all with a unified PTM as basis, re-
sulting in a 3.2 X tuning and inference speedup
while achieving comparable or even better per-
formance. Besides, we also find that plugins
can serve as an effective way to inject external
knowledge into task-specific models, improv-
ing model performance without any additional
model training. Our code and plugins will be
released to advance future work.

1 Introduction

In recent years, fine-tuning pre-trained models
(PTMs) (Radford et al., 2018; Devlin et al., 2019;
Raffel et al., 2020) has been widely used in var-
ious NLP tasks and achieved breakthrough per-
formance. But the paradigm of tuning all param-
eters of PTMs for ever-increasing tasks results
in low computational efficiency. For this prob-
lem, many researchers are committed to exploring
parameter-efficient tuning (Houlsby et al., 2019;
Ding et al., 2022), aiming to freeze PTMs and learn
additional task-specific plugins for PTMs, such as
adapters (Houlsby et al., 2019) and prompts (Liu
et al., 2021). Sufficient empirical results show that
we can obtain performance comparable to tuning
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Figure 1: Illustration of plug-and-play representation
learning. The document representation is decoupled
from tasks. By plugging document plugins as well as
task-specific functional plugins into a unified PTM, we
can handle multiple tasks such as question answering
and information retrieval.

all parameters, by inserting these additional plugins
into a frozen PTM. As a result, processing multi-
ple tasks with a unified PTM as the backbone has
gradually become a common paradigm for NLP.
Despite taking a unified model backbone across
tasks, existing methods still need to build task-
specific encoders to generate non-uniform docu-
ment representation for specific tasks, i.e., a docu-
ment has to be encoded multiple times for different
tasks. Hence, a natural question is raised: based on
a unified PTM, can we further learn unified docu-
ment representations for multiple tasks, encoding
documents once and for all and with guaranteed
transferability? If we can obtain unified document
representations based on a unified backbone model,
this can form a new learning paradigm with better
transferability and less computational overhead.
Inspired by parameter-efficient tuning (Ding
et al., 2022) to learn task plugins, we propose to rep-
resent documents as task-agnostic plug-and-play
modules around a unified PTM. Different from
feature-based representation learning (Bengio et al.,
2013; Dai et al., 2015), document plugins are not
only features but also tiny neural layers that can
drive the backbone PTM. In Figure 1, documents
are encoded only once before task adaptation, and



document representations are all pluggable plugins.
By plugging document plugins, the semantics and
knowledge of documents can be injected into the
backbone PTM to serve various downstream tasks.
Due to plug-and-play representation learning, dur-
ing task adaptation and inference, the model is only
required to process task-specific inputs conditioned
on document knowledge, with increasing minimal
computational requirements and no redundant doc-
ument encoding process.

To represent documents as efficient plugins and
generalize these plugins to various tasks, we rep-
resent documents as additional prefix tokens (Li
and Liang, 2021) for the attention layer of Trans-
former (Vaswani et al., 2017). For the task adapta-
tion, we follow delta tuning (Ding et al., 2022) to
learn task plugins such as adapters (Houlsby et al.,
2019). Since task plugins mainly act on the model
weights while prefix tokens act on the hidden states,
both document and task plugins are decoupled and
have good composition, enabling document plugins
to be task-agnostic. To enable document plugins
with sufficient semantics and knowledge, we adopt
two self-supervised tasks to tune plugin parame-
ters, including masked query prediction and inverse
context prediction. Specifically, by plugging a doc-
ument plugin into the PTM, both two tasks require
the model to acquire information from the plugged
module to predict the results.

To fulfill various requirements of different tasks,
we propose two plugging strategies: plugging dur-
ing tuning and plugging after tuning '. For plug-
ging during tuning, document plugins are used in
both tuning and inference stages, and task plugins
are trained when document plugins are plugged
into the PTM. This setting is suitable for tasks
that require documents as input context, such as
question answering. In this way, the document do
not need to be encoded multiple times, which can
significantly reduce the computational cost. For
plugging after tuning, document plugins are only
used in the inference stage. This setting can be
applied in tasks with external knowledge require-
ments, such as relation classification. Different
from previous knowledge-aware methods (Zhang
et al., 2019; Wang et al., 2021a), which require to
re-train the models to inject knowledge, document
plugins can be directly injected into task-specific
models without additional model training.

"Here tuning refers to downstream tuning, such as full-
model fine-tuning and parameter-efficient tuning.

To verify the effectiveness of our plug-and-play
framework, we conduct experiments on 7 datasets
of 5 typical NLP tasks. The results show that
we can generate document plugins once and suc-
cessfully adapt them to various downstream tasks.
Compared to competitive baselines that encode
documents and task-specific inputs simultaneously,
our plugin-based method can achieve more than
3.2X tuning and inference speedup with compara-
ble or even superior performance. Besides, utiliz-
ing document plugins can effectively introduce the
knowledge contained in documents into the down-
stream models. Specifically, via representing tex-
tual knowledge as plugins and injecting them into
downstream models, we achieve significant perfor-
mance improvements without any plugin adapta-
tion on both relation classification (1.22 accuracy
improvements) and entity typing (2.60 F1 improve-
ments). We argue that with the size of PTMs in-
creasing, it is an interesting and promising direction
to learn plug-and-play document representations,
which can be an effective and efficient foundation
to support various NLP tasks.

2 Related Work

2.1 Parameter-efficient Tuning

Recent pre-trained language models (PTMs) have
shown to be effective in transfering the pre-trained
parameters to downstream tasks for language rep-
resentation (Devlin et al., 2019; Liu et al., 2019;
Raffel et al., 2020; Radford et al., 2018; Brown
et al., 2020; Han et al., 2021; Chowdhery et al.,
2022). However, training and tuning large-scale
pre-trained models for ever-increasing tasks is ex-
pensive in computation and storage. To address
this issue, parameter-efficient tuning, which is also
known as delta tuning, is proposed to perform task
adaptation by fine-tuning only small amounts of
parameters and keeping other parameters fixed (Za-
ken et al., 2022; Houlsby et al., 2019; Lester et al.,
2021; Liu et al., 2021; Hu et al., 2021; Ding et al.,
2022). The task-specific modules possess play-
and-play characteristics and can effectively inject
task knowledge into PTMs. In results, PTMs and
parameter-efficient learning raise a paradigm shift:
adopting a unified model to handle multiple tasks.
Based on this, we explore to unify document rep-
resentation across different tasks and attempts to
represent documents as plug-and-play document
modules. Delta tuning methods are suitable for
PlugD to serve as the document representation.



2.2 Language Representation Learning

Language representation learning is a fundamen-
tal NLP task (Bengio et al., 2013; Devlin et al.,
2019; Radford et al., 2018) that aims to effectively
represent rich semantics distributed in text and ben-
efit various downstream tasks. Previous efforts
attempt to map the language inputs into interme-
diate distributed features, such as word embed-
dings (Mikolov et al., 2013; Kiros et al., 2015;
Pennington et al., 2014; Peters et al., 2018), sen-
tence embeddings (Conneau et al., 2017; Reimers
and Gurevych, 2019; Gao et al., 2021), and doc-
ument embeddings (Dai et al., 2015; Wu et al.,
2018). These feature-based representations can be
further used as inputs of downstream task-specific
models for task adaptation. In recent years, after
the emergence of powerful PTMs, many efforts
have been devoted to exploring the use of PTMs to
encode document semantics (Beltagy et al., 2020;
Zaheer et al., 2020; Zhang et al., 2021; Mehta et al.,
2022), and achieve processing multiple tasks with
a unified model. However, these methods still rely
on tuning PTMs into task-specific encoders to en-
code the same documents multiple times for dif-
ferent tasks, leading to expensive computational
cost. Different from previous methods, we explore
task-agnostic plug-and-play representation learn-
ing, aiming to achieve a paradigm based on both
a unified model and unified document representa-
tions to handle various different tasks.

3 Methodology

In this section, we will present the overall frame-
work of PlugD, and introduce how to conduct plu-
gin representation learning with a unified PTM
backbone. Then we show two strategies about how
to utilize plug-and-play document representations.

3.1 Preliminary

We adopt parameter-efficient tuning as our basis
to obtain both document plugins and task plugins.
Therefore, in this section, we will briefly introduce
two typical methods of parameter-efficient tuning,
including prefix-tuning (Li and Liang, 2021) and
adapter-tuning (Houlsby et al., 2019), to facilitate
the introduction of PlugD.

Prefix-tuning adds several continuous virtual to-
kens (i.e. trainable vectors) to the input of the multi-
head attention layer in each transformer block.
Then, the hidden vectors of original input tokens
can attend to these virtual tokens to compute out-

puts. Specifically, we denote the prefix tokens as
P;, the original inputs of the i-th transformer layer
as x;. The prefix tokens are concatenated with the
key and value of the multi-head attention layer to
compute the output hidden states H as follows,

H = Attn(x; Wy, cat(P;, @; ) W, cat(P;, ;) W,) (1)

where Wy, Wy, and W, are the parameters of i-th
attention layer, cat(-) and Attn(-) respectively refer
to the concatenation and attention function.

Adapter-tuning proposes to insert some small
trainable neural layers into PTMs, named adapter
layers. Each adapter layer consists of a down pro-
jection layer and an up projection layer. Given the
hidden vector h € R?, where d is the hidden size,
the output of adapter layer is calculated as:

hout =h + ¢(thown)Wup7 (2)

where Wyoyn € RY", Wy, € R™9, and r <
d refer to the bottleneck dimension. Generally,
adapter layers can be inserted after both the output
of multi-head attention layers and the output of
FFN layers (Houlsby et al., 2019), or only after the
output of FFN layers (Pfeiffer et al., 2021).

3.2 Overall Framework

Our primary goal is to design a framework for plug-
and-play representation learning where both task
model and documents are pluggable modules of
a backbone PTM. As shown in Figure 2, we de-
sign PlugD, which consists of three components:
PTM backbone, document plugins that contain doc-
ument knowledge, and task plugins that can drive
the backbone PTM to handle specific tasks. We
will present these components below.

PTM Backbone PTMs have been proven effec-
tive in a wide range of downstream tasks, and raise
a paradigm shift to solve multiple tasks with one
unified model (Bommasani et al., 2021; Brown
et al., 2020; Chowdhery et al., 2022). In view of
this, we further explore unifying document repre-
sentations across tasks in this paper. PlugD relies
on a large-scale PTM, which can serve as a fun-
damental infrastructure to perform task adaptation
with task-specific plugins. Note that, for our frame-
work, any PTM with a large parameter scale can be
used as the backbone.

Document Plugin Document plugins store docu-
ment knowledge and are obtained before utilizing
these documents for specific tasks. Inspired by re-
cent progress in model interpretation (Petroni et al.,
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Figure 2: The illustration of PlugD in different stages. The modules with the snowflake symbol are frozen. The
document plugins are generated before fine-tuning and inference and can be injected into PTMs to provide document

knowledge. Here modules in yellow refer to training tasks.

2019; Jiang et al., 2020; Roberts et al., 2020; Dai
et al., 2022; Mitchell et al., 2022), which claims
that the parameters of PTMs store vast amounts of
knowledge, we propose to encode the semantics
and knowledge of documents into pluggable pa-
rameters. In this way, when the document plugin of
a specific document is inserted into the backbone
PTM, the PTM is empowered with the correspond-
ing document knowledge.

Specifically, we represent documents as the pre-
fix tokens used in Eq. (1). Given a document d
with L tokens, we first encode the document with
the backbone PTM to get the raw document rep-
resentation Hy; = {hy, ..., hr}. Then, to map the
raw representation into the prefix space, we adopt a
mapping network to project the representation vec-
tors into prefix tokens: Py = {p1, ..., pr}, where
p; = h; + MLP(h;). Similar to prefix-tuning, we
concatenate these prefix tokens with the original
hidden vectors for each attention layer.

Different from encoding documents during task
adaptation or inference, prefix tokens do not in-
volve the computation of FFN layers in Trans-
former. Therefore, these document plugins in the
form of prefix tokens only increase limited compu-
tation requirements, whereas PlugD can achieve a
significant computational speedup as a result. Due
to the high storage requirement of adding different
prefix tokens to different attention layers, we share
P, for all attention layers. To better integrate the
semantics of documents and queries for handling
tasks, document plugins are only inserted in the
near-top layers of the backbone PTM. Note that, we
can also utilize other model structures, such as bias
parameter (Zaken et al., 2022) and LoRA (Hu et al.,
2021), to represent documents in PlugD, which we
leave for future work.

Task Plugin Task plugins store task-specific
knowledge that can help the unified model to han-
dle specific tasks. Task plugins are randomly ini-
tialized and tuned on the task data. During tuning
task plugins for downstream tasks, we freeze the
parameters of the backbone PTM and the inserted
document plugins. Only the task plugin and the
mapping network of the document plugin are train-
able so that the document plugins can be reused
across different tasks. Since parameter-efficient
tuning has been widely studied in NLP, more de-
tails of learning task plugins for specific tasks can
be found in Ding et al. (2022).

3.3 Plugin Representation Learning

The original PTM does not involve document plu-
gins and is not straightforward for plug-and-play
representation learning. We further conduct self-
supervised learning to empower the PTM to gen-
erate task-agnostic document plugins and utilize
their knowledge. In this section, we will detail the
training procedure.

The document plugins are required to provide
document knowledge for query understanding.
Therefore, we design two self-supervised tasks, re-
quiring the model to integrate information from
both queries and documents. Specifically, given
a document with n sentences, d = {si,...,Sn},
we first randomly select k£ sentences as queries
g = {s{,...,s}} and utilize the remaining sen-
tences as context, ¢ = {s{,...,s5_, }, to generate
the document plugin, P.. Then we require the
model to perform the following tasks based on the
query and document plugin.

Masked query prediction. Like masked lan-
guage model (MLM) (Devlin et al., 2019; Raffel
et al., 2020), we randomly replace spans from the
query as special mask tokens, and require the model
to recover the original spans. And the loss is same



as original MLM loss. Here, a high mask rate is
required. If the mask rate is low, the model can
predict the masked spans solely based on the query
content and does not need to utilize knowledge
from the document plugin.

Inverse context prediction. The task requires
the model to predict the relation between queries
and contexts. Given the query ¢, and the document
plugin P, generated from context ¢/, the model is
required to predict whether ¢ and ¢’ comes from
the same document. We concatenate the prompts
“Do the following sentences come from the docu-
ment?” with the query, and require the model to
output “yes” or “no”. We adopt the cross-entropy
classification loss for this task.

Besides, to avoid catastrophic forgetting for
tasks which do not involve documents, we also
adopt the vallina masked language model objective
to train model. The model is trained in a multi-task
fashion, and the final training loss is the sum of
three tasks. During plugin representation learning,
the document plugins are generated in real-time for
different documents. All parameters are tuned for
plugin representation learning. After that, the doc-
ument representations can be calculated and stored
for further downstream fine-tuning and inference.

3.4 Plugging Strategy

As shown in Figure 2, to fulfill requirements of
various tasks, we explore two plugging strategies
to utilize document plugins:

Plugging during tuning aims to adopt docu-
ment plugins during tuning for tasks that require
documents as a necessary part of inputs, such as
question answering. In this way, given an instance
with the query and document as inputs, we first
insert the corresponding document plugin D, com-
puted before fine-tuning, into the backbone PTM.
Then we learn task plugins with the task-specific
objectives. The task plugins will be trained to cap-
ture context from the document plugins. The docu-
ments are encoded only once before downstream
tuning, reducing computational costs.

Plugging after tuning aims to integrate the
knowledge of document plugins into the down-
stream models after tuning. The setting is suit-
able for tasks that do not require documents as
inputs, but the document knowledge can help im-
prove the model performance. In this setting, docu-
ment plugins can directly collaborate with existing
task plugins. During inference, given an instance,

Datasets | Train Test  Task
SQuAD2.0 | 130.3k 118.7k QA
RACE 87.9k 4.9k QA
IMDB 250.0k  250.0k TC
DBPedia 560.0k 70.0k TC
MSMarco 532.8k 59.3k  Rank
Wiki80 8.0k 16.0k RE
Wiki-ET 860.0k 68.2k ET

Table 1: The statistics of evaluation datasets. Here QA,
TC, RE, ET refer to question answering, text classifica-
tion, relation extraction, entity typing, respectively.

we directly insert related document plugins into the
PTM to achieve knowledge injection. This setting
does not require additional training for task plugins
and can be used to inject various knowledge.

4 Experiments

4.1 Evaluation Datasets

As shown in Table 1, we evaluate PlugD on 7
datasets of 5 typical NLP tasks, including 3 tasks,
which require documents as necessary inputs, for
plugging during tuning setting, and 2 tasks, where
documents can serve as additional knowledge, for
plugging after tuning setting. For plugging during
tuning, we adopt three typical document-level tasks
for evaluation: question answering, text classifica-
tion, and document ranking. For question answer-
ing, we adopt widely used datasets, SQuAD2.0 (Ra-
jpurkar et al., 2018), and RACE (Lai et al., 2017).
We use F1 scores, exact match scores (EM), and
no answer F1 scores (NA_F1) for SQuAD?2.0 and
accuracy for RACE as metrics. For text classifi-
cation, we adopt a sentiment classification dataset,
IMDB (Maas et al., 2011), and a topic classifica-
tion dataset, DBPedia (Lehmann et al., 2015) with
accuracy as the metric. For document ranking, we
adopt a large-scale passage reranking dataset, MS-
Marco (Nguyen et al., 2016) with mean reciprocal
ranking (MRR @10) as the metric. We also com-
pute the average performance scores on these 5
datasets to evaluate the overall performance.

For plugging after tuning, we adopt two
knowledge-intensive tasks, relation extraction, and
entity typing, to evaluate PlugD. For relation classi-
fication, we utilize Wiki80 (Han et al., 2018) with
accuracy as metric for evaluation, which contains
80 relation types. For entity typing, we utilize Wiki-
ET (Xin et al., 2018) for evaluation, which contains
68 fine-grained entity types. We adopt precision
(P), recall (R), and F1 scores as metrics for entity
typing. Both two tasks are entity-oriented. We



Setting Models SQUAD2.0 RACE IMDB DBPedia MSMarco
g EM FI NAFI Acc.  Acc. Acc.  MRR@10 &
Task-  ED2LM 7430 7778 6158 7381 9571  99.24 36.89 76.69
Specific ~ Latelnter | 73.00 76.44  61.19 7443 9311  99.31 33.71 75.40
ED2LM-T | 6820 7235 6084 7173 9536 9921 35.37 74.80
Task-  Latelnter-T | 72.92  76.13  61.62  73.67 9394  99.30 32.80 75.17
Agnostic  All-Hidden | 71.34 7633 6192 7629 9533  99.24 35.35 76.51
PlugD 7606 79.89 6233 7782 9558 9925 35.98 77.70

Table 2: The main results of our proposed PlugD and baselines for plugging during tuning.

adopt entity information as knowledge base to im-
prove performance. We encode entity description
in WikidataSM (Wang et al., 2021b) for document
plugins to provide knowledge after tuning.

4.2 Training Details

We utilize the widely used T5-large (Raffel et al.,
2020), as our PTM backbone and adapters as our
task plugins. We conduct plugin representation
learning on a large-scale dataset, C4 (Raffel et al.,
2020) for 28k steps. We set the mask rate of
masked query prediction task as 0.5. We train and
tune models with half precision floating point on
NVIDIA A100 GPUs. We set the learning rate as
10~* and batch size as 1024. We use Adam to opti-
mize our models. All the downstream models are
tuned with adapters. The bottleneck dimension of
adapters is set as 32. Please refer to the Appendix
for details.

4.3 Baselines

Plugging during tuning. Here we compare PlugD
with two representative dual models, which en-
code queries and documents separately to generate
query-agnostic but task-specific document repre-
sentation. 1) ED2LM (Hui et al., 2022) utilize
the encoder-decoder architecture, where the docu-
ments are inputted into the encoder and queries are
inputted into the decoder. 2) Latelnter (Khattab
and Zaharia, 2020) first independently encodes the
queries and documents using the first several layers
of pre-trained model, and then fuses the informa-
tion together with the last two layers. 3) To make
ED2LM and Latelnter task-agnostic, we freeze the
parameters of document encoders and only tune pa-
rameters in the decoder. In this way, the generated
document representation can be used across tasks.
We denote these two models for task-agnostic repre-
sentation as ED2LM-T and LateInter-T. 4) PlugD
regards the generated document representation as
prefix tokens. To verify the effectiveness, we also
compare our method with a competitive baseline,

which preserves all hidden vectors of documents
as document plugins and inserts the vectors into
the PTM layer-by-layer to fuse the query-document
information. We denote the method as All-Hidden.

Plugging after tuning. We attempt to inject un-
structured textual knowledge into PTMs without ad-
ditional model tuning. Existing methods mainly fo-
cus on enhancing PTMs with structural knowledge
during pre-training or fine-tuning (Zhang et al.,
2019; Wang et al., 2021a; Bosselut et al., 2019).
These methods require retraining the downstream
models to achieve knowledge injection, which thus
cannot be easily adopted in this setting. Therefore,
we compare PlugD with the following baseline
models: 1) Original models (Adapter) do not in-
ject knowledge for inference. 2) Concat trains the
models without knowledge injection. After tuning,
Concat directly concatenates the sentence and en-
tity description together as inputs. 3) All-Hidden
preserves the hidden vectors of the entity descrip-
tion from all layers, and inserts these vectors into
the self-attention layers.

4.4 Plugging during Tuning

We present the comparison results between base-
line models and PlugD in Table 2. From this table,
we can observe that: (1) Our proposed PlugD can
significantly outperform baseline models for task-
agnostic representation on almost all downstream
tasks. Besides, PlugD can also achieve comparable
or even superior results with task-specific models,
while reducing lots of computational costs for fine-
tuning. The results suggest that PlugD can effec-
tively capture document semantics and inject them
into the PTM to provide context. (2) Both ED2LM
and Latelnter degrade performance significantly
in task-agnostic setting. It indicates that plug-and-
play representation learning is quite challenging,
and the document information provided by these
two methods can not be well utilized by the PTM.
(3) All-Hidden can achieve competitive results in
the task-agnostic setting and outperform other base-



Datasets Wiki80 Wiki-ET

Acc. P R F1
Adapter 86.32 7924 7222 75.55
Concat 86.78 80.44 69.70 74.69
All-Hidden 86.66 8146 7222 76.56
PlugD \ 87.54 80.92 75.57 78.15

Table 3: The results for plugging after tuning.

lines. It shows that representing documents as plu-
gins to provide context is effective, even though
the model has not been trained to generate plugins.
However, as All-Hidden has to store hidden vec-
tors from all layers, it requires 24 x storage cost
than PlugD and thus is unsuitable for real-world
application. Besides, we highlight the importance
of plugin representation learning tasks, which en-
able PlugD to outperform All-Hidden significantly.
(4) For some tasks which do not require complex
reasoning, including text classification, all models
can achieve comparable results. But on challenging
tasks, including question answering and document
reranking, our proposed PlugD cannot consistently
achieve superior results to task-specific methods,
suggesting that there still require future efforts for
plug-and-play document representation.

4.5 Plugging after Tuning

The comparison results are shown in Table 3. From
the results, we can observe that: 1) The baseline
models cannot achieve consistent improvement on
two tasks. The plugging after tuning setting re-
quires to inject knowledge after downstream tun-
ing, which leads to the gap between training and
evaluation. Thus, this setting is challenging and
straightforward methods are not suitable for this
setting. 2) PlugD can achieve significant improve-
ment on both two datasets (1.22 accuracy improve-
ments on Wiki80, and 2.60 F1 improvements on
Wiki-ET). It indicates that the document plugins
can capture useful knowledge from the entity infor-
mation and inject it into the PTM. It is worthy of
note that we can insert various textual knowledge
into the downstream models via PlugD.

4.6 Ablation Study

In this section, we conduct an ablation study to
verify the effectiveness of our proposed plugin rep-
resentation learning tasks. We show the results
of the models, which are trained without inverse
context prediction (w/o ICP), or are not further
trained (w/ None). As there is no significant per-

Datasets | SQuAD2.0 RACE MSMarco

PlugD 79.89 77.82 35.98
w/o ICP 79.78 77.84 35.28
w/ None 78.19 76.41 34.85

Table 4: The results of ablation study.

formance difference on text classification, we only
present the results on question answering and doc-
ument reranking tasks.

The results are shown in Table 4. We can find
that 1) PlugD with no further trainig leads to a sig-
nificant performance drop, which further indicates
that the proposed training task can help the PTM
to generate and acquire knowledge from the doc-
ument plugins. 2) PlugD with no further trainig
can still achieve comparable results with the All-
Hidden, the best performing baseline model, while
reducing the storage cost. The results prove that
the proposed framework is effective in plug-and-
play representation. Both the training task and
framework empower PlugD to generate document
plugins with sufficient semantics. 3) PlugD with-
out ICP leads to performance drop on document
reranking task, while has limited impact on ques-
tion answering tasks. As the ICP task is similar
to the reranking task, and thus ICP can serve as
a method for data augmentation. We encourage
future researchers to propose more effective tasks
to improve the performance of plug-and-play docu-
ment representation.

4.7 Transferability Analysis

In this section, we want to explore the effectiveness
of training tasks on document representation trans-
ferability. Here we present the results of ED2LM,
which can outperform other baselines. Specifically,
we train the task-specific document encoder on a
source task, and then reuse the encoder on other tar-
get tasks to continually train the rest of the model.
The results are shown in Figure 3.

From the results, we can observe that 1) The
non-diagonal values of the matrix are consistently
smaller than the diagonal values. It suggests that
training the document encoder with existing super-
vised tasks can hardly benefit other target tasks.
PlugD trained with two self-supervised objectives
can provide transferable document representation
and achieve superior results, which indicates the
effectiveness of our proposed plugin representation
learning tasks. 2) The document encoders trained
on the question answering task perform better than
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encoders trained on other tasks. It indicates that
training with challenging tasks may lead to better
performance, which we leave for future work.

4.8 Computational Cost

In this section, we compare the computational cost
of the methods. Here, we present the floating point
operations (FLOPs) required to process one data
in downstream task tuning for each method. We
assume that the document, query, and answer con-
tain 512, 48, and 32 tokens, respectively. These
methods adopt T5-large model as the backbone.
The results are shown in Figure 4. From this
figure, we observe that: 1) The methods for task-
agnostic representation require much less computa-
tional cost than methods for task-specific represen-
tation. That is because methods for task-agnostic
representation can generate document representa-
tion before fine-tuning and do not require to en-
code documents multiple times. Especially, our
method PlugD can achieve 3.23x speed up (139.3
GFLOPs vs. 450.7 GFLOPs). 2) The methods
for task-agnostic representation generally are infe-
rior to task-specific methods. Our proposed PlugD
can achieve better average scores than all baseline

Datasets RACE Tuning Inference
Acc.  FLOPs FLOPs
ED2LM | 73.81 450.8 114.9
PlugD 77.82 139.3 139.3
T5-base | 73.87 131.6 131.6
T5-large | 81.16  453.1 453.1

Table 5: Comparison between our method with query-
specific methods.

(77.70 vs. 76.69) and preserve low computational
cost. It indicates that PlugD can effectively capture
document knowledge and further inject it into PTM
to perform downstream adaptation.

4.9 Comparison with Query-Specific Model

In this section, we compare PlugD with the query-
specific models, which concatenate the query and
document together as the model inputs, which even
need to encode the documents multiple times for
different queries. We present the accuracy on the
challenging question-answering dataset, RACE.
The results are shown in Table 5. From the re-
sults, we can find that 1) Query-agnostic models, in-
cluding ED2LM and PlugD can achieve significant
speedup for inference than corresponding query-
specific models with the same model size. And our
task-agnostic model can further reduce the com-
putational costs of downstream task tuning. 2)
Though there is a gap between the performance
of PlugD and the query-specific model with the
same parameter size, PlugD can significantly out-
perform the query-specific model with similar com-
putational cost. It indicates that training large-scale
PTMs under plug-and-play representation learning
is a promising direction, and can effectively and
efficiently handle document-level tasks.

5 Conclusion

In this paper, we explore a new paradigm, named
plug-and-play representation learning, which aims
to represent documents as pluggable modules for
PTMs. In plug-and-play representation learning,
we can get rid of encoding the same document mul-
tiple times for different tasks and achieve using a
unified model and unified representation for dif-
ferent tasks. The extensive experiments prove that
our proposed PlugD can significantly reduce the
computational cost and effectively inject document
knowledge into PTMs to improve performance. In
the future, we will explore more effective plugin
representation learning tasks and frameworks for
plug-and-play representation learning.
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A Implementation Details

In this section, we introduce the implementation
details for downstream task tuning. We adopt
adapters (Houlsby et al., 2019) to perform task
adaptation. Specifically, following Pfeiffer et al.
(2021), we add the adapters after the layernorm
operation of self-attention layers and feed-forward
layers. The parameters of adapters are initialized
following a zero-mean Gaussian distribution with
standard deviation as 10~2. The learning rate is
selected from {107%,2 x 107*,1073}. The batch
size for downsteram tasks is set as 64. We report
the results of checkpoints which achieve best per-
formance on the validation set. And for datasets
without the validation set, we directly use the test
data for validation. We implement the models with
ModelCenter 2, a efficient implementation for big
models.

SQuAD2.0 We train the model on SQuAD?2.0 fol-
lowing a sequence-to-sequence paradigm, where
the inputs are documents and questions, and the out-
puts are the answers. We set the maximum length
of documents as 512, the maximum length of ques-
tions as 48, and the maximum length of answers as
20. During evaluation, we adopt the greedy decod-
ing strategy. Besides, we will make the generated
answers lowercase, and remove punctuation, arti-
cles and extra blank character for evaluation.

RACE RACE is a multi-choice question answer-
ing dataset. And we inputs the documents, ques-
tions, options into models, and use the decoding
scores of “right” token as the option scores. Then
the cross-entropy function is adopted on the logit
of four options to predict the final answers.

IMDB and DBPedia IMDB and DBPedia are
two text classification datasets. For IMDB, we
adopt the decoding scores of “positive” and “neg-
ative” tokens as the scores for sentiment classifi-
cation. For DBPedia, which contains 14 types of
documents, we use the decoding scores of the first
token in the type name as scores for classification.

MSMarco MSMarco is a large-scale reranking
dataset. In this paper, we adopt the passage ranking
set for evaluation. Following previous work (Hui
et al., 2022), we use BM25 to generate the top1000
candidates for each query, and we utilize the check-
points which are trained for 10, 000 steps for eval-

Zhttps://github.com/OpenBMB/ModelCenter
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uation. We train the model with a binary classifica-
tion objective. The maximum length of documents
is set as 256.

Wiki80 Wiki80 is a large-scale relation extrac-
tion dataset, which contains 80 relation types. We
follow the data split of (Zhang et al., 2019). Simi-
lar to DBPedia, we use the decoding scores of the
first token in the relation name as the classification
scores. And we directly concatenate the descrip-
tion of the head entity and tail entity to generate
document plugs.

Wiki-ET Wiki-ET is a fine-grained entity typing
dataset, which contains 68 entity types. We for-
mulate the task as a multi-label text classification
problem. We adopt binary cross-entropy loss to
optimize the models.

B Limitation

In this paper, we explore a new paradigm, play-
and-play representation learning, which aims to
represent documents as plugins for large-scale pre-
trained language models. However, there are some
limitation of our proposed method. Though our
method can outperform other query-agnostic meth-
ods, but can not outperform the query-specific
method with the same model size, which still need
future exploration. Besides, in this paper, we im-
plement the model with Adapter as the task plugin
and prefix as the document plugin. It is worthy of
exploration that how do other delta tuning method
perform in plug-and-plug representation learning.
In the future, we will still devote effort to plug-
and-plug representation learning to promote the
future progress in large-scale pre-trained language
models.
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