
Plug-and-Play Representation Learning of Documents
for Pre-trained Models

Anonymous ACL submission

Abstract
Recently, inserting task-specific plugins such001
as adapters and prompts into a unified pre-002
trained model (PTM) to handle multiple tasks003
has become an efficient paradigm for NLP. In004
this paper, we explore to extend this paradigm005
from task adaptation to document representa-006
tion. Specifically, we introduce plug-and-play007
representation learning of documents (named008
PlugD), which aims to represent each document009
as a unified task-agnostic plugins. By insert-010
ing document plugins as well as task plugins011
into the PTM for downstream tasks, we can en-012
code a document one time to handle different013
tasks, which is more efficient than conventional014
methods that learn task-specific encoders to015
represent documents. Extensive experiments016
on 7 datasets of 5 typical NLP tasks show that017
PlugD enables models to encode documents018
once and for all with a unified PTM as basis, re-019
sulting in a 3.2× tuning and inference speedup020
while achieving comparable or even better per-021
formance. Besides, we also find that plugins022
can serve as an effective way to inject external023
knowledge into task-specific models, improv-024
ing model performance without any additional025
model training. Our code and plugins will be026
released to advance future work.027

1 Introduction028

In recent years, fine-tuning pre-trained models029

(PTMs) (Radford et al., 2018; Devlin et al., 2019;030

Raffel et al., 2020) has been widely used in var-031

ious NLP tasks and achieved breakthrough per-032

formance. But the paradigm of tuning all param-033

eters of PTMs for ever-increasing tasks results034

in low computational efficiency. For this prob-035

lem, many researchers are committed to exploring036

parameter-efficient tuning (Houlsby et al., 2019;037

Ding et al., 2022), aiming to freeze PTMs and learn038

additional task-specific plugins for PTMs, such as039

adapters (Houlsby et al., 2019) and prompts (Liu040

et al., 2021). Sufficient empirical results show that041

we can obtain performance comparable to tuning042

Where did Stephen
Curry born?

Ohio

QA
PTM

Q

Famous NBA player in
Warriors

Relevant

IR
PTM

R

Q R Task
Plugin

Document
PluginPTM

Pre-trained
Model

PTM

Information RetrievalQuestion AnsweringDocument Encoding

…

…

Figure 1: Illustration of plug-and-play representation
learning. The document representation is decoupled
from tasks. By plugging document plugins as well as
task-specific functional plugins into a unified PTM, we
can handle multiple tasks such as question answering
and information retrieval.

all parameters, by inserting these additional plugins 043

into a frozen PTM. As a result, processing multi- 044

ple tasks with a unified PTM as the backbone has 045

gradually become a common paradigm for NLP. 046

Despite taking a unified model backbone across 047

tasks, existing methods still need to build task- 048

specific encoders to generate non-uniform docu- 049

ment representation for specific tasks, i.e., a docu- 050

ment has to be encoded multiple times for different 051

tasks. Hence, a natural question is raised: based on 052

a unified PTM, can we further learn unified docu- 053

ment representations for multiple tasks, encoding 054

documents once and for all and with guaranteed 055

transferability? If we can obtain unified document 056

representations based on a unified backbone model, 057

this can form a new learning paradigm with better 058

transferability and less computational overhead. 059

Inspired by parameter-efficient tuning (Ding 060

et al., 2022) to learn task plugins, we propose to rep- 061

resent documents as task-agnostic plug-and-play 062

modules around a unified PTM. Different from 063

feature-based representation learning (Bengio et al., 064

2013; Dai et al., 2015), document plugins are not 065

only features but also tiny neural layers that can 066

drive the backbone PTM. In Figure 1, documents 067

are encoded only once before task adaptation, and 068

1

document representations are all pluggable plugins.069

By plugging document plugins, the semantics and070

knowledge of documents can be injected into the071

backbone PTM to serve various downstream tasks.072

Due to plug-and-play representation learning, dur-073

ing task adaptation and inference, the model is only074

required to process task-specific inputs conditioned075

on document knowledge, with increasing minimal076

computational requirements and no redundant doc-077

ument encoding process.078

To represent documents as efficient plugins and079

generalize these plugins to various tasks, we rep-080

resent documents as additional prefix tokens (Li081

and Liang, 2021) for the attention layer of Trans-082

former (Vaswani et al., 2017). For the task adapta-083

tion, we follow delta tuning (Ding et al., 2022) to084

learn task plugins such as adapters (Houlsby et al.,085

2019). Since task plugins mainly act on the model086

weights while prefix tokens act on the hidden states,087

both document and task plugins are decoupled and088

have good composition, enabling document plugins089

to be task-agnostic. To enable document plugins090

with sufficient semantics and knowledge, we adopt091

two self-supervised tasks to tune plugin parame-092

ters, including masked query prediction and inverse093

context prediction. Specifically, by plugging a doc-094

ument plugin into the PTM, both two tasks require095

the model to acquire information from the plugged096

module to predict the results.097

To fulfill various requirements of different tasks,098

we propose two plugging strategies: plugging dur-099

ing tuning and plugging after tuning 1. For plug-100

ging during tuning, document plugins are used in101

both tuning and inference stages, and task plugins102

are trained when document plugins are plugged103

into the PTM. This setting is suitable for tasks104

that require documents as input context, such as105

question answering. In this way, the document do106

not need to be encoded multiple times, which can107

significantly reduce the computational cost. For108

plugging after tuning, document plugins are only109

used in the inference stage. This setting can be110

applied in tasks with external knowledge require-111

ments, such as relation classification. Different112

from previous knowledge-aware methods (Zhang113

et al., 2019; Wang et al., 2021a), which require to114

re-train the models to inject knowledge, document115

plugins can be directly injected into task-specific116

models without additional model training.117

1Here tuning refers to downstream tuning, such as full-
model fine-tuning and parameter-efficient tuning.

To verify the effectiveness of our plug-and-play 118

framework, we conduct experiments on 7 datasets 119

of 5 typical NLP tasks. The results show that 120

we can generate document plugins once and suc- 121

cessfully adapt them to various downstream tasks. 122

Compared to competitive baselines that encode 123

documents and task-specific inputs simultaneously, 124

our plugin-based method can achieve more than 125

3.2× tuning and inference speedup with compara- 126

ble or even superior performance. Besides, utiliz- 127

ing document plugins can effectively introduce the 128

knowledge contained in documents into the down- 129

stream models. Specifically, via representing tex- 130

tual knowledge as plugins and injecting them into 131

downstream models, we achieve significant perfor- 132

mance improvements without any plugin adapta- 133

tion on both relation classification (1.22 accuracy 134

improvements) and entity typing (2.60 F1 improve- 135

ments). We argue that with the size of PTMs in- 136

creasing, it is an interesting and promising direction 137

to learn plug-and-play document representations, 138

which can be an effective and efficient foundation 139

to support various NLP tasks. 140

2 Related Work 141

2.1 Parameter-efficient Tuning 142

Recent pre-trained language models (PTMs) have 143

shown to be effective in transfering the pre-trained 144

parameters to downstream tasks for language rep- 145

resentation (Devlin et al., 2019; Liu et al., 2019; 146

Raffel et al., 2020; Radford et al., 2018; Brown 147

et al., 2020; Han et al., 2021; Chowdhery et al., 148

2022). However, training and tuning large-scale 149

pre-trained models for ever-increasing tasks is ex- 150

pensive in computation and storage. To address 151

this issue, parameter-efficient tuning, which is also 152

known as delta tuning, is proposed to perform task 153

adaptation by fine-tuning only small amounts of 154

parameters and keeping other parameters fixed (Za- 155

ken et al., 2022; Houlsby et al., 2019; Lester et al., 156

2021; Liu et al., 2021; Hu et al., 2021; Ding et al., 157

2022). The task-specific modules possess play- 158

and-play characteristics and can effectively inject 159

task knowledge into PTMs. In results, PTMs and 160

parameter-efficient learning raise a paradigm shift: 161

adopting a unified model to handle multiple tasks. 162

Based on this, we explore to unify document rep- 163

resentation across different tasks and attempts to 164

represent documents as plug-and-play document 165

modules. Delta tuning methods are suitable for 166

PlugD to serve as the document representation. 167

2

2.2 Language Representation Learning168

Language representation learning is a fundamen-169

tal NLP task (Bengio et al., 2013; Devlin et al.,170

2019; Radford et al., 2018) that aims to effectively171

represent rich semantics distributed in text and ben-172

efit various downstream tasks. Previous efforts173

attempt to map the language inputs into interme-174

diate distributed features, such as word embed-175

dings (Mikolov et al., 2013; Kiros et al., 2015;176

Pennington et al., 2014; Peters et al., 2018), sen-177

tence embeddings (Conneau et al., 2017; Reimers178

and Gurevych, 2019; Gao et al., 2021), and doc-179

ument embeddings (Dai et al., 2015; Wu et al.,180

2018). These feature-based representations can be181

further used as inputs of downstream task-specific182

models for task adaptation. In recent years, after183

the emergence of powerful PTMs, many efforts184

have been devoted to exploring the use of PTMs to185

encode document semantics (Beltagy et al., 2020;186

Zaheer et al., 2020; Zhang et al., 2021; Mehta et al.,187

2022), and achieve processing multiple tasks with188

a unified model. However, these methods still rely189

on tuning PTMs into task-specific encoders to en-190

code the same documents multiple times for dif-191

ferent tasks, leading to expensive computational192

cost. Different from previous methods, we explore193

task-agnostic plug-and-play representation learn-194

ing, aiming to achieve a paradigm based on both195

a unified model and unified document representa-196

tions to handle various different tasks.197

3 Methodology198

In this section, we will present the overall frame-199

work of PlugD, and introduce how to conduct plu-200

gin representation learning with a unified PTM201

backbone. Then we show two strategies about how202

to utilize plug-and-play document representations.203

3.1 Preliminary204

We adopt parameter-efficient tuning as our basis205

to obtain both document plugins and task plugins.206

Therefore, in this section, we will briefly introduce207

two typical methods of parameter-efficient tuning,208

including prefix-tuning (Li and Liang, 2021) and209

adapter-tuning (Houlsby et al., 2019), to facilitate210

the introduction of PlugD.211

Prefix-tuning adds several continuous virtual to-212

kens (i.e. trainable vectors) to the input of the multi-213

head attention layer in each transformer block.214

Then, the hidden vectors of original input tokens215

can attend to these virtual tokens to compute out-216

puts. Specifically, we denote the prefix tokens as 217

Pi, the original inputs of the i-th transformer layer 218

as xi. The prefix tokens are concatenated with the 219

key and value of the multi-head attention layer to 220

compute the output hidden states H as follows, 221

H = Attn(xiWq, cat(Pi,xi)Wk, cat(Pi,xi)Wv) (1) 222

where Wq, Wk, and Wv are the parameters of i-th 223

attention layer, cat(·) and Attn(·) respectively refer 224

to the concatenation and attention function. 225

Adapter-tuning proposes to insert some small 226

trainable neural layers into PTMs, named adapter 227

layers. Each adapter layer consists of a down pro- 228

jection layer and an up projection layer. Given the 229

hidden vector h ∈ Rd, where d is the hidden size, 230

the output of adapter layer is calculated as: 231

hout = h+ ϕ(hWdown)Wup, (2) 232

where Wdown ∈ Rd×r, Wup ∈ Rr×d, and r ≪ 233

d refer to the bottleneck dimension. Generally, 234

adapter layers can be inserted after both the output 235

of multi-head attention layers and the output of 236

FFN layers (Houlsby et al., 2019), or only after the 237

output of FFN layers (Pfeiffer et al., 2021). 238

3.2 Overall Framework 239

Our primary goal is to design a framework for plug- 240

and-play representation learning where both task 241

model and documents are pluggable modules of 242

a backbone PTM. As shown in Figure 2, we de- 243

sign PlugD, which consists of three components: 244

PTM backbone, document plugins that contain doc- 245

ument knowledge, and task plugins that can drive 246

the backbone PTM to handle specific tasks. We 247

will present these components below. 248

PTM Backbone PTMs have been proven effec- 249

tive in a wide range of downstream tasks, and raise 250

a paradigm shift to solve multiple tasks with one 251

unified model (Bommasani et al., 2021; Brown 252

et al., 2020; Chowdhery et al., 2022). In view of 253

this, we further explore unifying document repre- 254

sentations across tasks in this paper. PlugD relies 255

on a large-scale PTM, which can serve as a fun- 256

damental infrastructure to perform task adaptation 257

with task-specific plugins. Note that, for our frame- 258

work, any PTM with a large parameter scale can be 259

used as the backbone. 260

Document Plugin Document plugins store docu- 261

ment knowledge and are obtained before utilizing 262

these documents for specific tasks. Inspired by re- 263

cent progress in model interpretation (Petroni et al., 264

3

PTM

Plugging during Tuning

Results

PTM

Plugging after Tuning

Document
Encoding

Task Loss Task Loss

Query Query

PTM

Query

Inference

PTM

Downstream
Task Tuning

Plugin Representation Learning

PTM

Context

PTM

Query

MLM ICP

Figure 2: The illustration of PlugD in different stages. The modules with the snowflake symbol are frozen. The
document plugins are generated before fine-tuning and inference and can be injected into PTMs to provide document
knowledge. Here modules in yellow refer to training tasks.

2019; Jiang et al., 2020; Roberts et al., 2020; Dai265

et al., 2022; Mitchell et al., 2022), which claims266

that the parameters of PTMs store vast amounts of267

knowledge, we propose to encode the semantics268

and knowledge of documents into pluggable pa-269

rameters. In this way, when the document plugin of270

a specific document is inserted into the backbone271

PTM, the PTM is empowered with the correspond-272

ing document knowledge.273

Specifically, we represent documents as the pre-274

fix tokens used in Eq. (1). Given a document d275

with L tokens, we first encode the document with276

the backbone PTM to get the raw document rep-277

resentation Hd = {h1, ...,hL}. Then, to map the278

raw representation into the prefix space, we adopt a279

mapping network to project the representation vec-280

tors into prefix tokens: Pd = {p1, ...,pL}, where281

pi = hi + MLP(hi). Similar to prefix-tuning, we282

concatenate these prefix tokens with the original283

hidden vectors for each attention layer.284

Different from encoding documents during task285

adaptation or inference, prefix tokens do not in-286

volve the computation of FFN layers in Trans-287

former. Therefore, these document plugins in the288

form of prefix tokens only increase limited compu-289

tation requirements, whereas PlugD can achieve a290

significant computational speedup as a result. Due291

to the high storage requirement of adding different292

prefix tokens to different attention layers, we share293

Pd for all attention layers. To better integrate the294

semantics of documents and queries for handling295

tasks, document plugins are only inserted in the296

near-top layers of the backbone PTM. Note that, we297

can also utilize other model structures, such as bias298

parameter (Zaken et al., 2022) and LoRA (Hu et al.,299

2021), to represent documents in PlugD, which we300

leave for future work.301

Task Plugin Task plugins store task-specific 302

knowledge that can help the unified model to han- 303

dle specific tasks. Task plugins are randomly ini- 304

tialized and tuned on the task data. During tuning 305

task plugins for downstream tasks, we freeze the 306

parameters of the backbone PTM and the inserted 307

document plugins. Only the task plugin and the 308

mapping network of the document plugin are train- 309

able so that the document plugins can be reused 310

across different tasks. Since parameter-efficient 311

tuning has been widely studied in NLP, more de- 312

tails of learning task plugins for specific tasks can 313

be found in Ding et al. (2022). 314

3.3 Plugin Representation Learning 315

The original PTM does not involve document plu- 316

gins and is not straightforward for plug-and-play 317

representation learning. We further conduct self- 318

supervised learning to empower the PTM to gen- 319

erate task-agnostic document plugins and utilize 320

their knowledge. In this section, we will detail the 321

training procedure. 322

The document plugins are required to provide 323

document knowledge for query understanding. 324

Therefore, we design two self-supervised tasks, re- 325

quiring the model to integrate information from 326

both queries and documents. Specifically, given 327

a document with n sentences, d = {s1, ..., sn}, 328

we first randomly select k sentences as queries 329

q = {sq1, ..., s
q
k} and utilize the remaining sen- 330

tences as context, c = {sc1, ..., scn−k}, to generate 331

the document plugin, Pc. Then we require the 332

model to perform the following tasks based on the 333

query and document plugin. 334

Masked query prediction. Like masked lan- 335

guage model (MLM) (Devlin et al., 2019; Raffel 336

et al., 2020), we randomly replace spans from the 337

query as special mask tokens, and require the model 338

to recover the original spans. And the loss is same 339

4

as original MLM loss. Here, a high mask rate is340

required. If the mask rate is low, the model can341

predict the masked spans solely based on the query342

content and does not need to utilize knowledge343

from the document plugin.344

Inverse context prediction. The task requires345

the model to predict the relation between queries346

and contexts. Given the query q, and the document347

plugin Pc′ generated from context c′, the model is348

required to predict whether q and c′ comes from349

the same document. We concatenate the prompts350

“Do the following sentences come from the docu-351

ment?” with the query, and require the model to352

output “yes” or “no”. We adopt the cross-entropy353

classification loss for this task.354

Besides, to avoid catastrophic forgetting for355

tasks which do not involve documents, we also356

adopt the vallina masked language model objective357

to train model. The model is trained in a multi-task358

fashion, and the final training loss is the sum of359

three tasks. During plugin representation learning,360

the document plugins are generated in real-time for361

different documents. All parameters are tuned for362

plugin representation learning. After that, the doc-363

ument representations can be calculated and stored364

for further downstream fine-tuning and inference.365

3.4 Plugging Strategy366

As shown in Figure 2, to fulfill requirements of367

various tasks, we explore two plugging strategies368

to utilize document plugins:369

Plugging during tuning aims to adopt docu-370

ment plugins during tuning for tasks that require371

documents as a necessary part of inputs, such as372

question answering. In this way, given an instance373

with the query and document as inputs, we first374

insert the corresponding document plugin D, com-375

puted before fine-tuning, into the backbone PTM.376

Then we learn task plugins with the task-specific377

objectives. The task plugins will be trained to cap-378

ture context from the document plugins. The docu-379

ments are encoded only once before downstream380

tuning, reducing computational costs.381

Plugging after tuning aims to integrate the382

knowledge of document plugins into the down-383

stream models after tuning. The setting is suit-384

able for tasks that do not require documents as385

inputs, but the document knowledge can help im-386

prove the model performance. In this setting, docu-387

ment plugins can directly collaborate with existing388

task plugins. During inference, given an instance,389

Datasets Train Test Task

SQuAD2.0 130.3k 118.7k QA
RACE 87.9k 4.9k QA
IMDB 250.0k 250.0k TC
DBPedia 560.0k 70.0k TC
MSMarco 532.8k 59.3k Rank
Wiki80 8.0k 16.0k RE
Wiki-ET 860.0k 68.2k ET

Table 1: The statistics of evaluation datasets. Here QA,
TC, RE, ET refer to question answering, text classifica-
tion, relation extraction, entity typing, respectively.

we directly insert related document plugins into the 390

PTM to achieve knowledge injection. This setting 391

does not require additional training for task plugins 392

and can be used to inject various knowledge. 393

4 Experiments 394

4.1 Evaluation Datasets 395

As shown in Table 1, we evaluate PlugD on 7 396

datasets of 5 typical NLP tasks, including 3 tasks, 397

which require documents as necessary inputs, for 398

plugging during tuning setting, and 2 tasks, where 399

documents can serve as additional knowledge, for 400

plugging after tuning setting. For plugging during 401

tuning, we adopt three typical document-level tasks 402

for evaluation: question answering, text classifica- 403

tion, and document ranking. For question answer- 404

ing, we adopt widely used datasets, SQuAD2.0 (Ra- 405

jpurkar et al., 2018), and RACE (Lai et al., 2017). 406

We use F1 scores, exact match scores (EM), and 407

no answer F1 scores (NA_F1) for SQuAD2.0 and 408

accuracy for RACE as metrics. For text classifi- 409

cation, we adopt a sentiment classification dataset, 410

IMDB (Maas et al., 2011), and a topic classifica- 411

tion dataset, DBPedia (Lehmann et al., 2015) with 412

accuracy as the metric. For document ranking, we 413

adopt a large-scale passage reranking dataset, MS- 414

Marco (Nguyen et al., 2016) with mean reciprocal 415

ranking (MRR@10) as the metric. We also com- 416

pute the average performance scores on these 5 417

datasets to evaluate the overall performance. 418

For plugging after tuning, we adopt two 419

knowledge-intensive tasks, relation extraction, and 420

entity typing, to evaluate PlugD. For relation classi- 421

fication, we utilize Wiki80 (Han et al., 2018) with 422

accuracy as metric for evaluation, which contains 423

80 relation types. For entity typing, we utilize Wiki- 424

ET (Xin et al., 2018) for evaluation, which contains 425

68 fine-grained entity types. We adopt precision 426

(P), recall (R), and F1 scores as metrics for entity 427

typing. Both two tasks are entity-oriented. We 428

5

Setting Models SQuAD2.0 RACE IMDB DBPedia MSMarco AverageEM F1 NA_F1 Acc. Acc. Acc. MRR@10

Task-
Specific

ED2LM 74.30 77.78 61.58 73.81 95.71 99.24 36.89 76.69
LateInter 73.00 76.44 61.19 74.43 93.11 99.31 33.71 75.40

Task-
Agnostic

ED2LM-T 68.20 72.35 60.84 71.73 95.36 99.21 35.37 74.80
LateInter-T 72.92 76.13 61.62 73.67 93.94 99.30 32.80 75.17
All-Hidden 71.34 76.33 61.92 76.29 95.33 99.24 35.35 76.51
PlugD 76.06 79.89 62.33 77.82 95.58 99.25 35.98 77.70

Table 2: The main results of our proposed PlugD and baselines for plugging during tuning.

adopt entity information as knowledge base to im-429

prove performance. We encode entity description430

in Wikidata5M (Wang et al., 2021b) for document431

plugins to provide knowledge after tuning.432

4.2 Training Details433

We utilize the widely used T5-large (Raffel et al.,434

2020), as our PTM backbone and adapters as our435

task plugins. We conduct plugin representation436

learning on a large-scale dataset, C4 (Raffel et al.,437

2020) for 28k steps. We set the mask rate of438

masked query prediction task as 0.5. We train and439

tune models with half precision floating point on440

NVIDIA A100 GPUs. We set the learning rate as441

10−4 and batch size as 1024. We use Adam to opti-442

mize our models. All the downstream models are443

tuned with adapters. The bottleneck dimension of444

adapters is set as 32. Please refer to the Appendix445

for details.446

4.3 Baselines447

Plugging during tuning. Here we compare PlugD448

with two representative dual models, which en-449

code queries and documents separately to generate450

query-agnostic but task-specific document repre-451

sentation. 1) ED2LM (Hui et al., 2022) utilize452

the encoder-decoder architecture, where the docu-453

ments are inputted into the encoder and queries are454

inputted into the decoder. 2) LateInter (Khattab455

and Zaharia, 2020) first independently encodes the456

queries and documents using the first several layers457

of pre-trained model, and then fuses the informa-458

tion together with the last two layers. 3) To make459

ED2LM and LateInter task-agnostic, we freeze the460

parameters of document encoders and only tune pa-461

rameters in the decoder. In this way, the generated462

document representation can be used across tasks.463

We denote these two models for task-agnostic repre-464

sentation as ED2LM-T and LateInter-T. 4) PlugD465

regards the generated document representation as466

prefix tokens. To verify the effectiveness, we also467

compare our method with a competitive baseline,468

which preserves all hidden vectors of documents 469

as document plugins and inserts the vectors into 470

the PTM layer-by-layer to fuse the query-document 471

information. We denote the method as All-Hidden. 472

Plugging after tuning. We attempt to inject un- 473

structured textual knowledge into PTMs without ad- 474

ditional model tuning. Existing methods mainly fo- 475

cus on enhancing PTMs with structural knowledge 476

during pre-training or fine-tuning (Zhang et al., 477

2019; Wang et al., 2021a; Bosselut et al., 2019). 478

These methods require retraining the downstream 479

models to achieve knowledge injection, which thus 480

cannot be easily adopted in this setting. Therefore, 481

we compare PlugD with the following baseline 482

models: 1) Original models (Adapter) do not in- 483

ject knowledge for inference. 2) Concat trains the 484

models without knowledge injection. After tuning, 485

Concat directly concatenates the sentence and en- 486

tity description together as inputs. 3) All-Hidden 487

preserves the hidden vectors of the entity descrip- 488

tion from all layers, and inserts these vectors into 489

the self-attention layers. 490

4.4 Plugging during Tuning 491

We present the comparison results between base- 492

line models and PlugD in Table 2. From this table, 493

we can observe that: (1) Our proposed PlugD can 494

significantly outperform baseline models for task- 495

agnostic representation on almost all downstream 496

tasks. Besides, PlugD can also achieve comparable 497

or even superior results with task-specific models, 498

while reducing lots of computational costs for fine- 499

tuning. The results suggest that PlugD can effec- 500

tively capture document semantics and inject them 501

into the PTM to provide context. (2) Both ED2LM 502

and LateInter degrade performance significantly 503

in task-agnostic setting. It indicates that plug-and- 504

play representation learning is quite challenging, 505

and the document information provided by these 506

two methods can not be well utilized by the PTM. 507

(3) All-Hidden can achieve competitive results in 508

the task-agnostic setting and outperform other base- 509

6

Datasets Wiki80 Wiki-ET
Acc. P R F1

Adapter 86.32 79.24 72.22 75.55
Concat 86.78 80.44 69.70 74.69
All-Hidden 86.66 81.46 72.22 76.56

PlugD 87.54 80.92 75.57 78.15

Table 3: The results for plugging after tuning.

lines. It shows that representing documents as plu-510

gins to provide context is effective, even though511

the model has not been trained to generate plugins.512

However, as All-Hidden has to store hidden vec-513

tors from all layers, it requires 24× storage cost514

than PlugD and thus is unsuitable for real-world515

application. Besides, we highlight the importance516

of plugin representation learning tasks, which en-517

able PlugD to outperform All-Hidden significantly.518

(4) For some tasks which do not require complex519

reasoning, including text classification, all models520

can achieve comparable results. But on challenging521

tasks, including question answering and document522

reranking, our proposed PlugD cannot consistently523

achieve superior results to task-specific methods,524

suggesting that there still require future efforts for525

plug-and-play document representation.526

4.5 Plugging after Tuning527

The comparison results are shown in Table 3. From528

the results, we can observe that: 1) The baseline529

models cannot achieve consistent improvement on530

two tasks. The plugging after tuning setting re-531

quires to inject knowledge after downstream tun-532

ing, which leads to the gap between training and533

evaluation. Thus, this setting is challenging and534

straightforward methods are not suitable for this535

setting. 2) PlugD can achieve significant improve-536

ment on both two datasets (1.22 accuracy improve-537

ments on Wiki80, and 2.60 F1 improvements on538

Wiki-ET). It indicates that the document plugins539

can capture useful knowledge from the entity infor-540

mation and inject it into the PTM. It is worthy of541

note that we can insert various textual knowledge542

into the downstream models via PlugD.543

4.6 Ablation Study544

In this section, we conduct an ablation study to545

verify the effectiveness of our proposed plugin rep-546

resentation learning tasks. We show the results547

of the models, which are trained without inverse548

context prediction (w/o ICP), or are not further549

trained (w/ None). As there is no significant per-550

Datasets SQuAD2.0 RACE MSMarco

PlugD 79.89 77.82 35.98
w/o ICP 79.78 77.84 35.28
w/ None 78.19 76.41 34.85

Table 4: The results of ablation study.

formance difference on text classification, we only 551

present the results on question answering and doc- 552

ument reranking tasks. 553

The results are shown in Table 4. We can find 554

that 1) PlugD with no further trainig leads to a sig- 555

nificant performance drop, which further indicates 556

that the proposed training task can help the PTM 557

to generate and acquire knowledge from the doc- 558

ument plugins. 2) PlugD with no further trainig 559

can still achieve comparable results with the All- 560

Hidden, the best performing baseline model, while 561

reducing the storage cost. The results prove that 562

the proposed framework is effective in plug-and- 563

play representation. Both the training task and 564

framework empower PlugD to generate document 565

plugins with sufficient semantics. 3) PlugD with- 566

out ICP leads to performance drop on document 567

reranking task, while has limited impact on ques- 568

tion answering tasks. As the ICP task is similar 569

to the reranking task, and thus ICP can serve as 570

a method for data augmentation. We encourage 571

future researchers to propose more effective tasks 572

to improve the performance of plug-and-play docu- 573

ment representation. 574

4.7 Transferability Analysis 575

In this section, we want to explore the effectiveness 576

of training tasks on document representation trans- 577

ferability. Here we present the results of ED2LM, 578

which can outperform other baselines. Specifically, 579

we train the task-specific document encoder on a 580

source task, and then reuse the encoder on other tar- 581

get tasks to continually train the rest of the model. 582

The results are shown in Figure 3. 583

From the results, we can observe that 1) The 584

non-diagonal values of the matrix are consistently 585

smaller than the diagonal values. It suggests that 586

training the document encoder with existing super- 587

vised tasks can hardly benefit other target tasks. 588

PlugD trained with two self-supervised objectives 589

can provide transferable document representation 590

and achieve superior results, which indicates the 591

effectiveness of our proposed plugin representation 592

learning tasks. 2) The document encoders trained 593

on the question answering task perform better than 594

7

IMDB DBPedia SQuAD2.0 RACE MSMarco Average
Target Task

IM
DB

DBP
ed

ia

SQ
uA

D2.0
RA

CE

MSM
arc

o
Plu

gD

So
ur

ce
 T

as
k

100 100 89.6 92.4 98.1 96.2

98.6 100 86.3 86.7 94.1 93.6

99 99.9 97.4 91.6 97.8 97.3

99.6 100 85 94.8 96.4 95.5

98.2 99.9 79.2 81.8 103 91.9

100 100 100 100 100 100

Figure 3: Relative transfer performance (transfer perfor-
mance / PlugD’s performance)(%).

ED2LM LateInter Allhidden LateInter-T PlugD ED2LM-T
74.5

75.0

75.5

76.0

76.5

77.0

77.5

78.0

A
ve

ra
ge

 S
co

re

100

150

200

250

300

350

400

450

500

FL
O

P
s

(G
)

Figure 4: The average scores and FLOPs for each
method. The models are arranged in reverse order of
computational cost.

encoders trained on other tasks. It indicates that595

training with challenging tasks may lead to better596

performance, which we leave for future work.597

4.8 Computational Cost598

In this section, we compare the computational cost599

of the methods. Here, we present the floating point600

operations (FLOPs) required to process one data601

in downstream task tuning for each method. We602

assume that the document, query, and answer con-603

tain 512, 48, and 32 tokens, respectively. These604

methods adopt T5-large model as the backbone.605

The results are shown in Figure 4. From this606

figure, we observe that: 1) The methods for task-607

agnostic representation require much less computa-608

tional cost than methods for task-specific represen-609

tation. That is because methods for task-agnostic610

representation can generate document representa-611

tion before fine-tuning and do not require to en-612

code documents multiple times. Especially, our613

method PlugD can achieve 3.23× speed up (139.3614

GFLOPs vs. 450.7 GFLOPs). 2) The methods615

for task-agnostic representation generally are infe-616

rior to task-specific methods. Our proposed PlugD617

can achieve better average scores than all baseline618

Datasets RACE Tuning Inference
Acc. FLOPs FLOPs

ED2LM 73.81 450.8 114.9
PlugD 77.82 139.3 139.3

T5-base 73.87 131.6 131.6
T5-large 81.16 453.1 453.1

Table 5: Comparison between our method with query-
specific methods.

(77.70 vs. 76.69) and preserve low computational 619

cost. It indicates that PlugD can effectively capture 620

document knowledge and further inject it into PTM 621

to perform downstream adaptation. 622

4.9 Comparison with Query-Specific Model 623

In this section, we compare PlugD with the query- 624

specific models, which concatenate the query and 625

document together as the model inputs, which even 626

need to encode the documents multiple times for 627

different queries. We present the accuracy on the 628

challenging question-answering dataset, RACE. 629

The results are shown in Table 5. From the re- 630

sults, we can find that 1) Query-agnostic models, in- 631

cluding ED2LM and PlugD can achieve significant 632

speedup for inference than corresponding query- 633

specific models with the same model size. And our 634

task-agnostic model can further reduce the com- 635

putational costs of downstream task tuning. 2) 636

Though there is a gap between the performance 637

of PlugD and the query-specific model with the 638

same parameter size, PlugD can significantly out- 639

perform the query-specific model with similar com- 640

putational cost. It indicates that training large-scale 641

PTMs under plug-and-play representation learning 642

is a promising direction, and can effectively and 643

efficiently handle document-level tasks. 644

5 Conclusion 645

In this paper, we explore a new paradigm, named 646

plug-and-play representation learning, which aims 647

to represent documents as pluggable modules for 648

PTMs. In plug-and-play representation learning, 649

we can get rid of encoding the same document mul- 650

tiple times for different tasks and achieve using a 651

unified model and unified representation for dif- 652

ferent tasks. The extensive experiments prove that 653

our proposed PlugD can significantly reduce the 654

computational cost and effectively inject document 655

knowledge into PTMs to improve performance. In 656

the future, we will explore more effective plugin 657

representation learning tasks and frameworks for 658

plug-and-play representation learning. 659

8

References660

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.661
Longformer: The long-document transformer. CoRR,662
abs/2004.05150.663

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent.664
2013. Representation learning: A review and new665
perspectives. IEEE Trans. Pattern Anal. Mach. Intell.,666
35(8):1798–1828.667

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ668
Altman, Simran Arora, Sydney von Arx, Michael S.669
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma670
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dal-671
las Card, Rodrigo Castellon, Niladri S. Chatterji,672
Annie S. Chen, Kathleen Creel, Jared Quincy673
Davis, Dorottya Demszky, Chris Donahue, Moussa674
Doumbouya, Esin Durmus, Stefano Ermon, John675
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea676
Finn, Trevor Gale, Lauren Gillespie, Karan Goel,677
Noah D. Goodman, Shelby Grossman, Neel Guha,678
Tatsunori Hashimoto, Peter Henderson, John He-679
witt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing680
Huang, Thomas Icard, Saahil Jain, Dan Jurafsky,681
Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-682
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh,683
Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,684
and et al. 2021. On the opportunities and risks of685
foundation models. CoRR, abs/2108.07258.686

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-687
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.688
2019. COMET: commonsense transformers for auto-689
matic knowledge graph construction. In Proceedings690
of the ACL, pages 4762–4779.691

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie692
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind693
Neelakantan, Pranav Shyam, Girish Sastry, Amanda694
Askell, Sandhini Agarwal, Ariel Herbert-Voss,695
Gretchen Krueger, Tom Henighan, Rewon Child,696
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,697
Clemens Winter, Christopher Hesse, Mark Chen, Eric698
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,699
Jack Clark, Christopher Berner, Sam McCandlish,700
Alec Radford, Ilya Sutskever, and Dario Amodei.701
2020. Language models are few-shot learners. In702
Proceedings of NeurIPS.703

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,704
Maarten Bosma, Gaurav Mishra, Adam Roberts,705
Paul Barham, Hyung Won Chung, Charles Sutton,706
Sebastian Gehrmann, Parker Schuh, Kensen Shi,707
Sasha Tsvyashchenko, Joshua Maynez, Abhishek708
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-709
odkumar Prabhakaran, Emily Reif, Nan Du, Ben710
Hutchinson, Reiner Pope, James Bradbury, Jacob711
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,712
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,713
Sunipa Dev, Henryk Michalewski, Xavier Garcia,714
Vedant Misra, Kevin Robinson, Liam Fedus, Denny715
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,716
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,717

David Dohan, Shivani Agrawal, Mark Omernick, An- 718
drew M. Dai, Thanumalayan Sankaranarayana Pil- 719
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, 720
Rewon Child, Oleksandr Polozov, Katherine Lee, 721
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark 722
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy 723
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, 724
and Noah Fiedel. 2022. Palm: Scaling language mod- 725
eling with pathways. CoRR, abs/2204.02311. 726

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc 727
Barrault, and Antoine Bordes. 2017. Supervised 728
learning of universal sentence representations from 729
natural language inference data. In Proceedings of 730
EMNLP, pages 670–680. 731

Andrew M. Dai, Christopher Olah, and Quoc V. Le. 732
2015. Document embedding with paragraph vectors. 733
CoRR, abs/1507.07998. 734

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao 735
Chang, and Furu Wei. 2022. Knowledge neurons 736
in pretrained transformers. In Proceedings of ACL, 737
pages 8493–8502. 738

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 739
Kristina Toutanova. 2019. BERT: pre-training of 740
deep bidirectional transformers for language under- 741
standing. In Proceedings of NAACL-HLT, pages 742
4171–4186. 743

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong- 744
han Yang, Yusheng Su, Shengding Hu, Yulin Chen, 745
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, 746
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei 747
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong 748
Sun. 2022. Delta tuning: A comprehensive study of 749
parameter efficient methods for pre-trained language 750
models. CoRR, abs/2203.06904. 751

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 752
Simcse: Simple contrastive learning of sentence em- 753
beddings. In Proceedings of EMNLP, pages 6894– 754
6910. 755

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao 756
Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao, Ao Zhang, 757
Liang Zhang, Wentao Han, Minlie Huang, Qin Jin, 758
Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu Lu, 759
Xipeng Qiu, Ruihua Song, Jie Tang, Ji-Rong Wen, 760
Jinhui Yuan, Wayne Xin Zhao, and Jun Zhu. 2021. 761
Pre-trained models: Past, present and future. AI 762
Open, 2:225–250. 763

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, 764
Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A 765
large-scale supervised few-shot relation classification 766
dataset with state-of-the-art evaluation. In Proceed- 767
ings of EMNLP, pages 4803–4809. 768

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 769
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges- 770
mundo, Mona Attariyan, and Sylvain Gelly. 2019. 771
Parameter-efficient transfer learning for NLP. In Pro- 772
ceedings of ICML, volume 97, pages 2790–2799. 773

9

http://arxiv.org/abs/2004.05150
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
https://doi.org/10.18653/v1/p19-1470
https://doi.org/10.18653/v1/p19-1470
https://doi.org/10.18653/v1/p19-1470
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.18653/v1/d17-1070
https://doi.org/10.18653/v1/d17-1070
https://doi.org/10.18653/v1/d17-1070
https://doi.org/10.18653/v1/d17-1070
https://doi.org/10.18653/v1/d17-1070
http://arxiv.org/abs/1507.07998
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/arXiv.2203.06904
https://doi.org/10.48550/arXiv.2203.06904
https://doi.org/10.48550/arXiv.2203.06904
https://doi.org/10.48550/arXiv.2203.06904
https://doi.org/10.48550/arXiv.2203.06904
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
http://proceedings.mlr.press/v97/houlsby19a.html

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan774
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu775
Chen. 2021. Lora: Low-rank adaptation of large776
language models. CoRR, abs/2106.09685.777

Kai Hui, Honglei Zhuang, Tao Chen, Zhen Qin,778
Jing Lu, Dara Bahri, Ji Ma, Jai Prakash Gupta,779
Cícero Nogueira dos Santos, Yi Tay, and Donald Met-780
zler. 2022. ED2LM: encoder-decoder to language781
model for faster document re-ranking inference. In782
Findings of ACL, pages 3747–3758.783

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham784
Neubig. 2020. How can we know what language785
models know. TACL, 8:423–438.786

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-787
cient and effective passage search via contextualized788
late interaction over BERT. In Proceedings of SIGIR,789
pages 39–48.790

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,791
Richard S. Zemel, Raquel Urtasun, Antonio Torralba,792
and Sanja Fidler. 2015. Skip-thought vectors. In793
Proceedings of NeurIPS, pages 3294–3302.794

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,795
and Eduard H. Hovy. 2017. RACE: large-scale read-796
ing comprehension dataset from examinations. In797
Proceedings of EMNLP, pages 785–794.798

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,799
Dimitris Kontokostas, Pablo N. Mendes, Sebastian800
Hellmann, Mohamed Morsey, Patrick van Kleef,801
Sören Auer, and Christian Bizer. 2015. Dbpedia -802
A large-scale, multilingual knowledge base extracted803
from wikipedia. Semantic Web, 6(2):167–195.804

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.805
The power of scale for parameter-efficient prompt806
tuning. In Proceedings of EMNLP, pages 3045–807
3059.808

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:809
Optimizing continuous prompts for generation. In810
Proceedings of ACL-IJCNLP, pages 4582–4597.811

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,812
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-813
train, prompt, and predict: A systematic survey of814
prompting methods in natural language processing.815
CoRR, abs/2107.13586.816

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-817
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,818
Luke Zettlemoyer, and Veselin Stoyanov. 2019.819
Roberta: A robustly optimized BERT pretraining820
approach. CoRR, abs/1907.11692.821

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,822
Dan Huang, Andrew Y. Ng, and Christopher Potts.823
2011. Learning word vectors for sentiment analysis.824
In Proceedings of ACL-HLT, pages 142–150.825

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and 826
Behnam Neyshabur. 2022. Long range lan- 827
guage modeling via gated state spaces. CoRR, 828
abs/2206.13947. 829

Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. 830
Corrado, and Jeffrey Dean. 2013. Distributed repre- 831
sentations of words and phrases and their composi- 832
tionality. In Proceedings of NeurIPS, pages 3111– 833
3119. 834

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 835
Finn, and Christopher D. Manning. 2022. Fast model 836
editing at scale. In Proceedings of ICLR. 837

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, 838
Saurabh Tiwary, Rangan Majumder, and Li Deng. 839
2016. MS MARCO: A human generated machine 840
reading comprehension dataset. In Proceedings of 841
NeurIPS (Workshop), volume 1773. 842

Jeffrey Pennington, Richard Socher, and Christopher D. 843
Manning. 2014. Glove: Global vectors for word 844
representation. In Proceedings of EMNLP, pages 845
1532–1543. 846

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt 847
Gardner, Christopher Clark, Kenton Lee, and Luke 848
Zettlemoyer. 2018. Deep contextualized word rep- 849
resentations. In Proceedings of NAACL-HLT, pages 850
2227–2237. 851

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, 852
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, 853
and Alexander H. Miller. 2019. Language models 854
as knowledge bases? In Proceedings of EMNLP- 855
IJCNLP, pages 2463–2473. 856

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 857
Kyunghyun Cho, and Iryna Gurevych. 2021. 858
Adapterfusion: Non-destructive task composition for 859
transfer learning. In Proceedings of EACL, pages 860
487–503. 861

Alec Radford, Karthik Narasimhan, Tim Salimans, and 862
Ilya Sutskever. 2018. Improving language under- 863
standing with unsupervised learning. 864

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 865
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 866
Wei Li, and Peter J. Liu. 2020. Exploring the limits 867
of transfer learning with a unified text-to-text trans- 868
former. JMLR, 21:140:1–140:67. 869

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. 870
Know what you don’t know: Unanswerable questions 871
for squad. In Proceedings of ACL, pages 784–789. 872

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 873
Sentence embeddings using siamese bert-networks. 874
In Proceedings of EMNLP-IJCNLP, pages 3980– 875
3990. 876

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020. 877
How much knowledge can you pack into the parame- 878
ters of a language model? In Proceedings of EMNLP, 879
pages 5418–5426. 880

10

http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/2022.findings-acl.295
https://doi.org/10.18653/v1/2022.findings-acl.295
https://doi.org/10.18653/v1/2022.findings-acl.295
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://proceedings.neurips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://doi.org/10.18653/v1/d17-1082
https://doi.org/10.18653/v1/d17-1082
https://doi.org/10.18653/v1/d17-1082
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-1015/
https://doi.org/10.48550/arXiv.2206.13947
https://doi.org/10.48550/arXiv.2206.13947
https://doi.org/10.48550/arXiv.2206.13947
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob881
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz882
Kaiser, and Illia Polosukhin. 2017. Attention is all883
you need. Advances in neural information processing884
systems, 30.885

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,886
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin887
Jiang, and Ming Zhou. 2021a. K-adapter: Infusing888
knowledge into pre-trained models with adapters. In889
Findings of ACL, volume ACL/IJCNLP 2021, pages890
1405–1418.891

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan892
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021b.893
KEPLER: A unified model for knowledge embed-894
ding and pre-trained language representation. TACL,895
9:176–194.896

Lingfei Wu, Ian En-Hsu Yen, Kun Xu, Fangli Xu,897
Avinash Balakrishnan, Pin-Yu Chen, Pradeep Raviku-898
mar, and Michael J. Witbrock. 2018. Word mover’s899
embedding: From word2vec to document embedding.900
In Proceedings of EMNLP, pages 4524–4534.901

Ji Xin, Yankai Lin, Zhiyuan Liu, and Maosong Sun.902
2018. Improving neural fine-grained entity typing903
with knowledge attention. In Proceedings of AAAI,904
pages 5997–6004.905

Manzil Zaheer, Guru Guruganesh, Kumar Avinava906
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-907
tañón, Philip Pham, Anirudh Ravula, Qifan Wang,908
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-909
formers for longer sequences. In Proceedings of910
NeurIPS.911

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.912
2022. Bitfit: Simple parameter-efficient fine-tuning913
for transformer-based masked language-models. In914
Proceedings of ACL, pages 1–9.915

Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li,916
Jiancheng Lv, Nan Duan, and Weizhu Chen. 2021.917
Poolingformer: Long document modeling with pool-918
ing attention. In Proceedings of ICML, volume 139,919
pages 12437–12446.920

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,921
Maosong Sun, and Qun Liu. 2019. ERNIE: enhanced922
language representation with informative entities. In923
Proceedings of ACL, pages 1441–1451.924

A Implementation Details 925

In this section, we introduce the implementation 926

details for downstream task tuning. We adopt 927

adapters (Houlsby et al., 2019) to perform task 928

adaptation. Specifically, following Pfeiffer et al. 929

(2021), we add the adapters after the layernorm 930

operation of self-attention layers and feed-forward 931

layers. The parameters of adapters are initialized 932

following a zero-mean Gaussian distribution with 933

standard deviation as 10−2. The learning rate is 934

selected from {10−4, 2× 10−4, 10−3}. The batch 935

size for downsteram tasks is set as 64. We report 936

the results of checkpoints which achieve best per- 937

formance on the validation set. And for datasets 938

without the validation set, we directly use the test 939

data for validation. We implement the models with 940

ModelCenter 2, a efficient implementation for big 941

models. 942

SQuAD2.0 We train the model on SQuAD2.0 fol- 943

lowing a sequence-to-sequence paradigm, where 944

the inputs are documents and questions, and the out- 945

puts are the answers. We set the maximum length 946

of documents as 512, the maximum length of ques- 947

tions as 48, and the maximum length of answers as 948

20. During evaluation, we adopt the greedy decod- 949

ing strategy. Besides, we will make the generated 950

answers lowercase, and remove punctuation, arti- 951

cles and extra blank character for evaluation. 952

RACE RACE is a multi-choice question answer- 953

ing dataset. And we inputs the documents, ques- 954

tions, options into models, and use the decoding 955

scores of “right” token as the option scores. Then 956

the cross-entropy function is adopted on the logit 957

of four options to predict the final answers. 958

IMDB and DBPedia IMDB and DBPedia are 959

two text classification datasets. For IMDB, we 960

adopt the decoding scores of “positive” and “neg- 961

ative” tokens as the scores for sentiment classifi- 962

cation. For DBPedia, which contains 14 types of 963

documents, we use the decoding scores of the first 964

token in the type name as scores for classification. 965

MSMarco MSMarco is a large-scale reranking 966

dataset. In this paper, we adopt the passage ranking 967

set for evaluation. Following previous work (Hui 968

et al., 2022), we use BM25 to generate the top1000 969

candidates for each query, and we utilize the check- 970

points which are trained for 10, 000 steps for eval- 971

2https://github.com/OpenBMB/ModelCenter

11

https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
https://aclanthology.org/D18-1482/
https://aclanthology.org/D18-1482/
https://aclanthology.org/D18-1482/
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16321
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16321
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16321
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
http://proceedings.mlr.press/v139/zhang21h.html
http://proceedings.mlr.press/v139/zhang21h.html
http://proceedings.mlr.press/v139/zhang21h.html
https://doi.org/10.18653/v1/p19-1139
https://doi.org/10.18653/v1/p19-1139
https://doi.org/10.18653/v1/p19-1139

uation. We train the model with a binary classifica-972

tion objective. The maximum length of documents973

is set as 256.974

Wiki80 Wiki80 is a large-scale relation extrac-975

tion dataset, which contains 80 relation types. We976

follow the data split of (Zhang et al., 2019). Simi-977

lar to DBPedia, we use the decoding scores of the978

first token in the relation name as the classification979

scores. And we directly concatenate the descrip-980

tion of the head entity and tail entity to generate981

document plugs.982

Wiki-ET Wiki-ET is a fine-grained entity typing983

dataset, which contains 68 entity types. We for-984

mulate the task as a multi-label text classification985

problem. We adopt binary cross-entropy loss to986

optimize the models.987

B Limitation988

In this paper, we explore a new paradigm, play-989

and-play representation learning, which aims to990

represent documents as plugins for large-scale pre-991

trained language models. However, there are some992

limitation of our proposed method. Though our993

method can outperform other query-agnostic meth-994

ods, but can not outperform the query-specific995

method with the same model size, which still need996

future exploration. Besides, in this paper, we im-997

plement the model with Adapter as the task plugin998

and prefix as the document plugin. It is worthy of999

exploration that how do other delta tuning method1000

perform in plug-and-plug representation learning.1001

In the future, we will still devote effort to plug-1002

and-plug representation learning to promote the1003

future progress in large-scale pre-trained language1004

models.1005

12

