

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INSTRUCTPLM-MU: 1-HOUR FINE-TUNING OF ESM2 BEATS ESM3 IN PROTEIN MUTATION PREDICTIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal protein language models deliver strong performance on mutation-effect prediction, but training such models from scratch demands substantial computational resources. In this paper, we propose a fine-tuning framework called InstructPLM-mu and try to answer a question: *Can multimodal fine-tuning of a pretrained, sequence-only protein language model match the performance of models trained end-to-end?* Surprisingly, our experiments show that fine-tuning ESM2 with structural inputs can reach performance comparable to ESM3. To understand how this is achieved, we systematically compare three different feature-fusion designs and fine-tuning recipes. Our results reveal that both the fusion method and the tuning strategy strongly affect final accuracy, indicating that the fine-tuning process is not trivial. We hope this work offers practical guidance for injecting structure into pretrained protein language models and motivates further research on better fusion mechanisms and fine-tuning protocols.

1 INTRODUCTION

Proteins are vital macromolecules that perform a diverse array of cellular functions, from catalyzing biochemical reactions to maintaining structural integrity and regulating signaling pathways. These functions are determined by the protein’s three-dimensional structure, which in turn is encoded by its amino acid sequence (Bertoline et al., 2023; Kim et al., 2025). During natural evolution, mutations inevitably arise in protein sequences. While most are random, their long-term persistence is shaped by selective pressures that favor variants better adapted to their environments (Hie et al., 2024). Changes at specific residues can significantly impact a protein’s folding stability, functional fitness, or biochemical activity (Parthiban et al., 2006; Wang et al., 2020; Boehr et al., 2009; Sonaglioni et al., 2024; Albanese et al., 2025). While it sometimes leads to a complete loss of function or even toxic effects. Such mutational outcomes are central to both the emergence of new protein functions and the molecular basis of genetic diseases.

Deep mutational scanning (DMS) is an experimental technique that systematically measures the functional impact of a vast number of sequence variants for a given protein (Fowler et al., 2014; Fowler & Fields, 2014; Hanning et al., 2022). By introducing and testing millions of mutations, DMS generates high-resolution maps that link sequence changes to functional outcomes. These datasets have become invaluable for understanding sequence-function relationships, guiding protein engineering, and benchmarking computational prediction models. However, due to the high cost and limited throughput of DMS experiments, it is infeasible to apply them broadly across all proteins or mutation types (Fowler & Fields, 2014). To address this limitation, numerous computational methods have been proposed to predict mutational effects based on sequence features (Lin et al., 2023; Marquet et al., 2024), structural features (Su et al., 2023; Zhang et al., 2024; Sun et al., 2025), and evolutionary information (Meier et al., 2021; Weitzman et al., 2025; Tan et al., 2025a; Sun et al., 2024). Among these, multimodal protein language models (PLMs) have demonstrated strong generalization capabilities, leveraging large-scale unlabeled protein sequences to capture evolutionary and biochemical constraints without explicit supervision (Notin et al., 2023).

However, training multimodal protein language models from scratch typically demands substantial computational resources and large-scale annotated datasets, making such approaches impractical for many researchers (Su et al., 2024). Inspired by recent advances in vision-language models, several studies have explored the use of pretrained PLMs as a backbone, and then fine-tuning them with

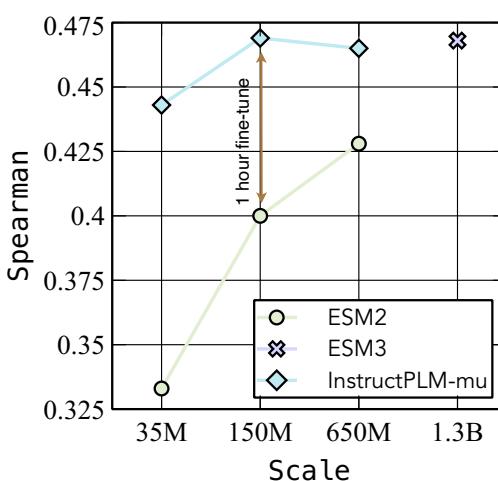


Figure 1: Protein mutation prediction performance of InstructPLM-mu and ESM3. After 1 hour of fine-tuning, InstructPLM-mu on the 150M ESM2 backbone overtakes ESM3.

additional modalities (e.g., structure or evolutionary data) (Zheng et al., 2023; Qiu et al., 2024; Ruffolo et al., 2024). These approaches have demonstrated promising results while remaining data- and resource-efficient. Nevertheless, how to effectively integrate new modalities into pretrained models remains an open research question, with design choices in fusion strategies playing a critical role in downstream performance.

In this paper, we aim to find an efficient way to fuse structure embeddings into protein language models, attempting to answer the question: *Can multimodal fine-tuning achieve comparable or even surpass the multimodal model trained from scratch?* Specifically, we propose a multimodal fine-tuning framework called InstructPLM-mu, and investigate three different strategies: Cross Attention, Channel-wise Concat, and Token-wise Concat. We apply our methods to the widely used protein language model ESM2 (Lin et al., 2023) and two representative structure encoders, Protein-MPNN (Dauparas et al., 2022) and ESM-IF (Hsu et al., 2022), to evaluate the performance on the zero-shot protein mutation prediction task. Through extensive experiments, our results show that fine-tuned models can match the performance of advanced multimodal methods, even surpassing the ESM3 (Hayes et al., 2025), which is a newer, bigger, and multimodal successor of ESM2. More importantly, our ablation shows that choosing the fine-tuning strategy is also critical; an overly aggressive training recipe may lead to knowledge forgetting of the pretrained protein language models. We will release code and checkpoints to facilitate reproducibility.

2 RELATED WORKS

2.1 PROTEIN MUTATION PREDICTION

Protein mutation prediction is central to understanding protein function and guiding protein engineering. Classical approaches such as Rosetta(Alford et al., 2017) and ABACUS2(Xiong et al., 2020) rely on energy-based scoring, but are hindered by sampling limitations and biases in their underlying potentials. Deep learning has opened new directions: models like ESM-1v(Meier et al., 2021) predict mutation effects from large-scale sequence data, while structure-aware methods such as ProSST(Li et al., 2024b) and Pythia(Sun et al., 2025) further improve accuracy by incorporating structural information.

Benchmarking efforts such as ProteinGym (Notin et al., 2023) have underscored the power of pretrained PLMs in protein modeling. ProteinGym evaluated over 250 deep mutational scanning assays, revealing that PLMs effectively capture evolutionary constraints and generalize across diverse proteins. For instance, AIDO.Protein (Sun et al., 2024), a state-of-the-art PLM with a mixture-of-experts architecture, highlights the potential of PLMs to scale up protein modeling tasks with enhanced computational efficiency. Meanwhile, models like VenusREM (Tan et al., 2024) and

108 S3F (Zhang et al., 2024) leverage multimodal information—integrating structure, sequence, evolution,
 109 and surface features—to precisely model local conformational and energetic changes, which
 110 significantly boosts model performance.
 111

112 **2.2 MULTIMODAL ALIGNMENT**
 113

114 Multimodal alignment aligns heterogeneous features across modalities to enhance cross-modal un-
 115 derstanding and specific task performance (Baltrušaitis et al., 2018). This field has gained promi-
 116 nence with advances in large language and vision models (Alayrac et al., 2022). Key challenges
 117 in multimodal learning include Feature Fusion and Training Paradigm, which are critical for model
 118 performance (Tong et al., 2024; Li & Tang, 2024).

119 **Feature Fusion.** Previous studies on multimodal alignment largely focus on the way of projec-
 120 tion between different modalities. For example, MLP projection methods successfully bridge visual
 121 features to LLM token spaces (Liu et al., 2023; 2024; Li et al., 2024a). Query-based resampling
 122 optimizes computational efficiency through cross-attention compression of visual tokens (Bai et al.,
 123 2023). Architectures with gated or sparse cross-attention layers for deeper multimodal integra-
 124 tion (Alayrac et al., 2022; Awadalla et al., 2023). The main goal of these methods is to discuss how
 125 to deal with images with different resolutions and scales. However, recent work highlights that not
 126 only the manipulation of multimodal features but also the manner in which these features are fused
 127 inside the language model is crucial. DeepStack (Meng et al., 2024), for instance, demonstrates
 128 that multimodal performance can be enhanced by injecting vision features into multiple layers of
 129 the LLM. Similarly, a recent study systematically examines four different fusion strategies across a
 130 broad range of NLP tasks (Lin et al., 2025). Despite these advances, multimodal fusion strategies
 131 remain underexplored in the context of protein language models. Notably, unlike vision–language
 132 models, protein structural features can be naturally aggregated at the residue level, which facilitates
 133 fine-grained integration of structural signals into sequence representations and opens up opportuni-
 134 ties for designing more efficient and biologically informed fusion mechanisms.

135 **Training Paradigm.** The end-to-end training paradigm jointly optimizes all parameters in a single
 136 phase, pursuing global optimization at the cost of high computational demand and potential subop-
 137 timal alignment due to limited intermediate refinement (Tong et al., 2024). In contrast, multi-stage
 138 training separately fine-tunes modality-specific modules (e.g., image encoder) before full-model op-
 139 timization, improving efficiency and final performance (Liu et al., 2023; Wadekar et al., 2024; Wu
 140 et al., 2025). Unified pretraining integrates multimodal inputs within a single framework, typically
 141 employing masked or autoregressive objectives to achieve cross-modal fusion (Zhu et al., 2025).
 142 Additionally, strategies such as reinforcement learning have been proposed for supervision-efficient
 143 alignment in specific contexts (Sun et al., 2023; Chu et al., 2025).

144 Inspired by advances in vision-language multimodal alignment, similar sequence-structure align-
 145 ment strategies are now being adapted for protein modeling (Su et al., 2023; Li et al., 2024b; Qiu
 146 et al., 2024; Hayes et al., 2025). Here, we compare multiple alignment mechanisms between pre-
 147 trained sequence and structure modules, evaluating their performance on protein mutation predic-
 148 tion (Notin et al., 2023). This task is central to protein engineering, as accurately predicting the
 149 functional effects of mutations (e.g., on stability, binding, and activity) requires high-quality rep-
 150 resentation and deep integration of both sequence and structural information (Meier et al., 2021).
 151 It thus provides a rigorous test for assessing protein multimodal model quality and their ability to
 152 integrate sequence-structure relationships for precise functional inference.

153 **3 METHODS**
 154

155 In this section, we compare three different multimodal fusion strategies and highlight their key
 156 differences. We denote the embedding of the amino acid sequence with length L as

$$\mathbf{X}^{(seq)} = [x_1, x_2, \dots, x_L], \quad x_i \in \mathbb{R}^{d_s}, \quad (1)$$

157 where d_s is the embedding dimension for sequence tokens after the embedding layer of PLMs. The
 158 corresponding protein structure encoder produces a structural embedding
 159

$$\mathbf{X}^{(str)} = [s_1, s_2, \dots, s_L], \quad s_i \in \mathbb{R}^{d_t}, \quad (2)$$

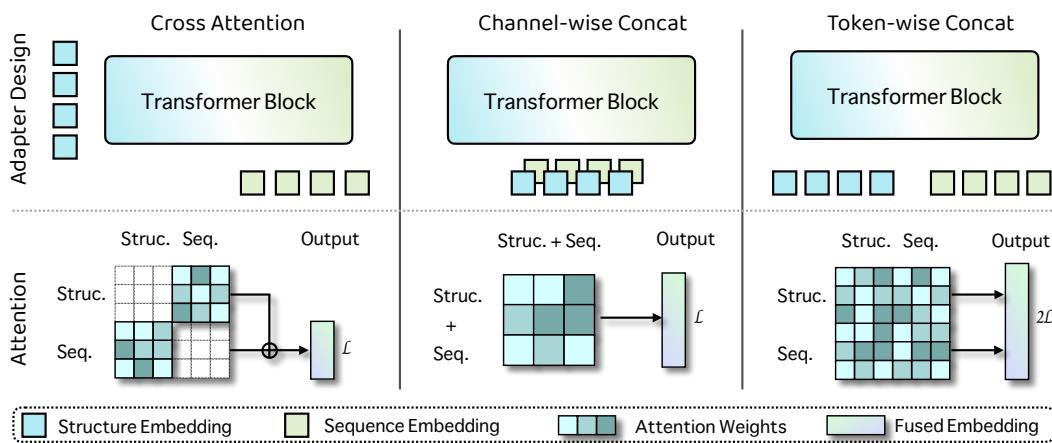


Figure 2: Comparison of three different multimodal fusion strategies of InstructPLM-mu: cross attention (Left), Channel-wise Concat (Middle), and Token-wise Concat (Right).

where d_t is the structural embedding dimension. Before the structure embeddings are fused to sequence embeddings, we use a learned multi-layer perceptron (MLP) $\mathbf{W}_{str} \in \mathbb{R}^{d_t \times d_s}$ to match the dimensions between modalities (Liu et al., 2023):

$$\tilde{\mathbf{X}}^{(str)} = \text{MLP}(\mathbf{X}^{(str)}), \quad \tilde{\mathbf{X}}^{(str)} \in \mathbb{R}^{L \times d_s}. \quad (3)$$

3.1 CROSS ATTENTION

In the Cross Attention strategy, we follow the implementation of LM-Design (Zheng et al., 2023), insert an additional Cross Attention sub-layer into the final transformer block of the PLM. (Fig. 2 left.) Let $\mathbf{H}^{(L-1)} \in \mathbb{R}^{L \times d_s}$ be the sequence representation output from the $(L-1)$ -th Transformer block (i.e., before the final block). The final block is modified to include an additional Cross Attention branch:

$$\mathbf{H}_{self}^{(seq)} = \text{SelfAttn}(\mathbf{H}^{(L-1)}) \quad (4)$$

$$\mathbf{H}_{cross}^{(seq)} = \text{CrossAttn} \left(Q = \mathbf{H}_{self}^{(seq)}, K = \tilde{\mathbf{X}}^{(str)}, V = \tilde{\mathbf{X}}^{(str)} \right) \quad (5)$$

$$\mathbf{H}^{(L)} = \mathbf{H}_{self}^{(seq)} + \mathbf{H}_{cross}^{(seq)} \quad (6)$$

The fused representation $\mathbf{H}^{(L)}$ is then passed to the PLM's output layer for prediction.

The Cross Attention design has several limitations. First, since the structure embeddings $\tilde{\mathbf{H}}^{(str)}$ serve only as the key and value in the Cross Attention operation, there is *no self-attention mechanism among structural tokens themselves*. This prevents the structure modality from refining its internal representation or capturing long-range dependencies purely within the structural space during fusion. Second, this one-way attention flow (sequence \rightarrow structure) does not allow reciprocal updates from structure to sequence across layers; consequently, the structure features will not merge information from sequences.

3.2 CHANNEL-WISE CONCAT

In the Channel-wise Concat strategy, structural features are directly merged with sequence features at the embedding level; this strategy is adopted by ESM 3 (Hayes et al., 2025). (Fig. 2 middle.) Specifically, the projected structure embeddings are added element-wise to the sequence embeddings:

$$\mathbf{Z} = \mathbf{X}^{(seq)} + \tilde{\mathbf{X}}^{(str)}, \quad \mathbf{Z} \in \mathbb{R}^{L \times d_s}. \quad (7)$$

The fused representation \mathbf{Z} is fed into the PLM in place of the original sequence embeddings.

Compared to Cross Attention, Channel-wise concatenation enables attention on both structure and sequences: when the PLM performs self-attention over \mathbf{Z} , information from the structure and sequence modalities can flow jointly. However, the tight coupling also means there is no mechanism

216
 217 Table 1: Summary of datasets used in InstructPLM-mu. The training and validation sets are derived
 218 from CATH 4.3, while evaluation is performed on the ProteinGYM benchmarks, covering activity,
 219 binding, expression, fitness, and stability. The table lists the number of sequences or mutational
 220 assays in each split.

Dataset	CATH 4.3		ProteinGYM				
	train	validation	Activity	Binding	Expression	Fitness	Stability
Number	22727	2525	39	12	16	69	66

225
 226 for *selective* information flow, structural features cannot be dynamically weighted or ignored de-
 227 pending on context. In other words, the model treats the sum of sequence and structure features as a
 228 single representation, which may lead to suboptimal integration when one modality contains noisy
 229 or task-irrelevant information.

230 3.3 TOKEN-WISE CONCAT

232 In the Token-wise Concat strategy, structural embeddings are treated as additional input tokens,
 233 enabling the PLM to process sequence and structure jointly through its self-attention mechanism.
 234 (Fig. 2 right.) Given the projected structure embedding $\tilde{\mathbf{X}}^{(str)}$, we concatenate the structural tokens
 235 and the sequence tokens along the sequence dimension:

$$\mathbf{Z} = [\tilde{s}_1, \dots, \tilde{s}_L, x_1, \dots, x_L] \in \mathbb{R}^{2L \times d_s}. \quad (8)$$

238 To ensure alignment between modalities, we assign the same position index to \tilde{s}_i and x_i , so that the
 239 i -th structural token corresponds to the i -th amino acid in the sequence.

240 We refer to this design as InstructPLM-mu, highlighting its ability to inject *instruction-like* structural
 241 tokens into the PLM. Unlike channel-wise fusion, which enforces a static combination of modalities,
 242 InstructPLM-mu enables dynamic, bidirectional information flow between sequence and structure
 243 tokens through self-attention. This design allows the model to flexibly attend to or ignore structural
 244 cues depending on context, thereby offering richer cross-modal interactions. However, doubling the
 245 sequence length increases computational cost and memory usage, particularly for large L .

246 3.4 TRAINING TARGET

248 For all three fusion strategies, we adopt a masked language modeling (MLM) objective applied to
 249 the protein sequence. Given a wild-type amino acid sequence $\mathbf{X}^{(seq)}$, we randomly select a subset
 250 of positions $\mathcal{M} \subset \{1, \dots, L\}$ to mask. The corresponding residues are replaced with a special
 251 [MASK] token in the sequence branch (align with the original protein language model), while the
 252 structural tokens remain unchanged. The model is trained to recover the original amino acid at each
 253 masked position:

$$\mathcal{L}_{\text{MLM}} = - \sum_{i \in \mathcal{M}} \log p_{\theta}(x_i \mid \mathbf{X}_{\setminus \mathcal{M}}^{(seq)}, \mathbf{X}^{(str)}) \quad (9)$$

256 where p_{θ} denotes the output distribution of the PLM with fused modalities. This setup forces the
 257 model to leverage structural context to reconstruct masked residues, encouraging it to learn comple-
 258 mentary relationships between sequence and structure.

260 3.5 ZERO-SHOT PROTEIN MUTATION PREDICTION

262 We use masked-marginals (Meier et al., 2021) to calculate the mutation score. Let $\mathbf{X}^{(seq,wt)}$ be the
 263 wild-type sequence and $\mathbf{X}^{(seq,mut)}$ a mutant; let \mathcal{M} be the set of mutated positions. For each $i \in \mathcal{M}$
 264 we form a masked input by replacing the residue at i with [MASK] in the sequence branch while
 265 keeping structural tokens unchanged. The per-site score is

$$s_i = \log p_{\theta}(x_i^{(mut)} \mid \mathbf{X}_{\setminus i}^{(seq,mut)}, \mathbf{X}^{(str)}) - \log p_{\theta}(x_i^{(wt)} \mid \mathbf{X}_{\setminus i}^{(seq,mut)}, \mathbf{X}^{(str)}). \quad (10)$$

268 The final mutant score is the sum over mutated sites:

$$S(\mathbf{X}^{(seq,mut)}) = \sum_{i \in \mathcal{M}} s_i. \quad (11)$$

270
 271 Table 2: Comparison of multimodal fine-tuning strategies against single-modal PLMs on zero-shot
 272 mutation effect prediction. The reported values are Spearman correlation coefficients; higher values
 273 indicate better predictive performance, best and second best results are shown in **bold** and underlines
 274 respectively.

Method	Average	Activity	Binding	Expression	Fitness	Stability
ESM2 (35M)	0.333	0.325	0.32	0.357	0.224	0.437
ESM2 (150M)	0.4	0.405	0.358	0.422	0.308	0.507
ESM2 (650M)	0.428	0.44	0.369	0.44	0.372	0.52
ESM2 (3B)	0.421	0.434	0.351	0.429	0.382	0.507
Channel-wise concat	0.435	0.438	<u>0.394</u>	<u>0.443</u>	0.378	0.524
Cross attention	<u>0.44</u>	<u>0.453</u>	0.329	0.428	0.394	<u>0.597</u>
Token-wise concat	0.469	0.462	0.414	0.466	<u>0.389</u>	0.614
Relative Gain	9.5%	5.0%	12.2%	5.9%	3.1%	18.1%

284
 285 Higher S indicates the model favors the mutant residues over the wild type under the given structural
 286 context.
 287

289 4 EXPERIMENTS

291 4.1 IMPLEMENTATION DETAILS

293 We train InstructPLM-mu using the CATH 4.3 dataset (Sillitoe et al., 2021) and tested on the ProteinGYM
 294 benchmark (Notin et al., 2023). We randomly split the CATH 4.3 dataset into train and
 295 validation with a ratio of 9:1, and perform checkpoint selection using the validation loss. To ac-
 296 celerate the fine-tuning process, we crop the training sequence to a maximum of 512 tokens, as the
 297 token-wise concat strategy increases training cost. Notably, as our downstream task does not involve
 298 testing on CATH 4.3, we thus do not adopt a test split of CATH 4.3. We evidence the model’s abil-
 299 ity by examining the prediction scores of the model for mutation outcomes (11) and experimental
 300 scores. The original ProteinGYM benchmark comprises 217 assays. Because most baseline models
 301 can process protein sequences only up to 1,024 residues, we excluded proteins longer than 1,000
 302 residues, resulting in a final set of 201 assays. Details of the datasets are provided in Table 1. All
 303 experiments are done with 4 Nvidia A100 GPUs; other details, including metrics, hyperparameters,
 304 can be found in the Appendix.

305 4.2 MAIN RESULTS

307 **Token-wise concatenation emerges as the superior fusion strategy.** In order to understand how
 308 fusion strategies influence the performance of multimodal fine-tuning, we first investigate the per-
 309 formance across three different structure fusion strategies. Table 2 summarizes the results of zero-shot
 310 mutation effect prediction. Among three fusion strategies, Token-wise Concat obtains the highest
 311 average score (0.469). It also achieves the best performance in four out of five functional categories,
 312 showing that this design not only improves the overall average but also delivers stable gains across
 313 different evaluation aspects. This suggests that treating structural embeddings as extra tokens allows
 314 the model to use them more flexibly, depending on the context. Notably, although Channel-wise
 315 concat and Cross Attention reach similar average scores (0.435 vs. 0.440), their strengths appear
 316 in different places. For example, cross attention performs strong correlation on *activity* and even
 317 achieves a higher score in *fitness* of Token-wise Concat, while Channel-wise Concat gives stronger
 318 results on *binding* and *expression*. This divergence suggests that the way structural features are inte-
 319 grated can have very different effects depending on the functional property being predicted. Overall,
 320 these results highlight the importance of fusion design: while simply incorporating structure boosts
 321 performance, enabling flexible, token-level integration of modalities yields the most consistent and
 322 robust improvements across diverse protein mutation prediction tasks.

323 **InstructPLM-mu consistently outperforms single-modal sequence models.** When comparing
 324 multimodal approaches against the sequence-only baselines, we observe clear and consistent im-
 325 provements. For average performance, all three fusion strategies surpass ESM2 models of different

324
 325 Table 3: Performance comparison of other multimodal methods. Results of InstructPLM-mu are
 326 shown in `gray`. The reported values are Spearman correlation coefficients; higher values indicate
 327 better predictive performance, best and second best results are shown in **bold** and underlines respec-
 328 tively.

Method	Average	Activity	Binding	Expression	Fitness	Stability
MULAN (Frolova et al., 2025)	0.323	0.298	0.344	0.376	0.232	0.366
MIF (Yang et al., 2023)	0.382	0.337	0.320	0.420	0.310	0.521
MIF-ST (Yang et al., 2023)	0.400	0.409	0.306	0.428	0.375	0.483
Channel-wise Concat	0.435	0.438	0.394	0.443	0.378	0.524
ESM-IF (Hsu et al., 2022)	0.440	0.418	0.388	0.437	0.333	0.623
Cross Attention	0.440	0.453	0.329	0.428	0.394	0.597
ProtSSN (Tan et al., 2025b)	0.453	0.475	0.373	0.452	0.399	0.566
S2F (Zhang et al., 2024)	0.460	0.474	0.394	0.462	0.403	0.566
SaProt (Su et al., 2023)	0.462	0.477	0.380	<u>0.486</u>	0.377	0.591
ESM3 (Hayes et al., 2025)	0.468	0.449	0.395	0.466	0.391	0.640
Token-wise Concat	0.469	0.462	<u>0.414</u>	0.466	0.389	0.614
S3F (Zhang et al., 2024)	<u>0.473</u>	0.483	0.403	0.474	<u>0.413</u>	0.592
ProSST (Li et al., 2024b)	0.506	0.479	0.435	0.521	0.441	0.651

341
 342
 343 scales, showing that incorporating structure is more effective than simply enlarging the backbone.
 344 Specifically, our methods achieved 18.1% improvement in the stability function (from 0.52 to 0.614).
 345 In fact, the best and second-best results in every functional category are achieved by fine-tuned mul-
 346 timodal models, underscoring the strong advantage of leveraging structure in this setting. These
 347 results demonstrate that structural context is a key driver of performance in mutation effect pre-
 348 diction, and incorporating it through fine-tuning offers a more reliable path forward than scaling
 349 sequence-only PLMs.

350 **Multimodal fine-tuning achieves competitive results with only a fraction of the resources.** To
 351 understand whether InstructPLM-mu can catch multimodal methods that are trained from scratch,
 352 we make a comparison of the current SOTA structure-sequence methods, including SaProt (Su et al.,
 353 2023), ESM3 (Hayes et al., 2025), S3F (Zhang et al., 2024), and ProSST (Li et al., 2024b). As Ta-
 354 ble 3 shows, while methods trained from scratch obtain strong performance, they typically require
 355 an extensive training cost. For example, ProSST is trained on 8*A100 GPUs for a month (Li et al.,
 356 2024b). In contrast, our fine-tuned models build on existing models and require efficient com-
 357 putational capacity, not only to close the gap but also to surpass larger, scratch-trained baselines.
 358 Notably, Token-wise concat (0.469) outperforms ESM3 (0.468), despite ESM3 being trained with
 359 far greater resources. S3F achieves better performance than InstructPLM-mu by incorporating extra
 360 surface modality into the count; this does not contradict our methods, yet strengthens our conclusion
 361 that multimodal fine-tuning can significantly improve performance. Another interesting observation
 362 is that our methods consistently boost the standalone performance of the original structure encoder
 363 ESM-IF on 4 out of 5 different functions, showing that structural and sequence features reinforce
 364 each other rather than being passively combined. In summarize, these results demonstrate that fine-
 365 tuning with modality fusion offers a resource-efficient yet highly effective alternative to training
 366 multimodal PLMs from scratch.

367 4.3 FINE-TUNING STRATEGIES

368
 369 To teach the pretrained PLMs to understand structures, a new adapter has been introduced to con-
 370 nnect two different modalities (Eq. 3). This raises the question of how to train the added parameters:
 371 Do different training recipes influence the final performance? To answer it, we evaluate three fine-
 372 tuning strategies: Full Fine-tune, LoRA + Adapters, and Adapter-only. These strategies differ in
 373 the fraction of tunable parameters and thus reflect different degrees of intervention on the pretrained
 374 model. Specifically, Adapter-only updates only the adapter parameters (1% of total parameters), di-
 375 rectly controlling how structural embeddings are injected without modifying the backbone. LoRA +
 376 Adapters additionally applies low-rank updates to selected PLM layers (5–10% of total parameters),
 377 offering a middle ground between efficiency and capacity. Full Fine-tune updates all parameters of
 the PLM and adapters, yielding maximum flexibility at the highest computational cost.

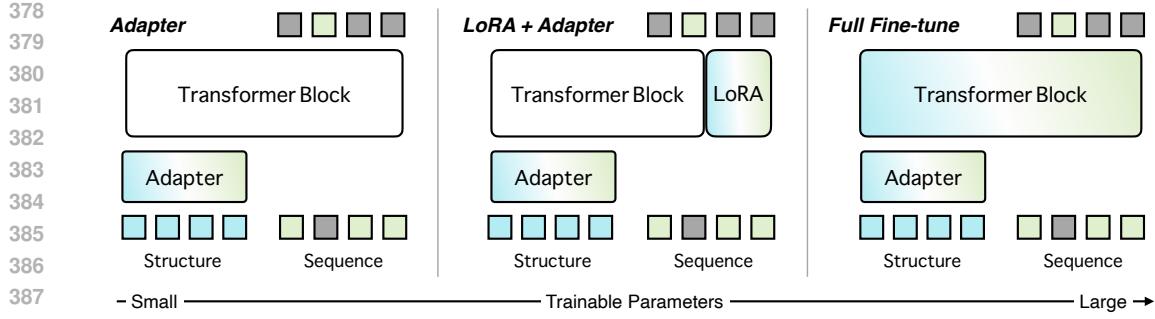


Figure 3: Schematic of the three fine-tuning strategies. **Left**, Adapter-only: the backbone is frozen and only the adapters that project structural features into the PLM are learned. **Middle**, LoRA + Adapter: adapters inject structural embeddings while low-rank (LoRA) updates are applied to selected transformer weights. **Right**, Full Fine-tune: all transformer blocks and adapter modules are updated.

Table 4: Comparison of fine-tuning strategies across model scales (35M, 150M, 650M) and fusion methods (Token-wise vs. Channel-wise).

Fine-tune Strategy (Tunable Parameters)	Token-wise Concat			Channel-wise Concat		
	35M	150M	650M	35M	150M	650M
ESM2	0.333	0.4	0.425	0.333	0.4	0.425
Full Fine-tune (100%)	0.435	0.456	0.463	0.305	0.378	0.029
LoRA + Adapter (5-10%)	0.443	0.469	0.465	0.296	0.395	0.005
Adapter-only (~1%)	0.358	0.407	0.45	0.311	0.385	0.435

As Table 4 shows, the first important message is that more tunable parameters *do not* correspond to better performance. Concretely, in the Token-wise Concat method, the LoRA + Adapter strategy performs best across all three scales of the pre-trained model, followed by Full Fine-tune and Adapter-only strategy. In the Channel-wise Concat method, however, excessive adjustable parameters can even severely impair performance, suggesting that over-tuning the model can destroy previously learned knowledge during pre-training. Secondly, the optimal fine-tune strategy is not generalizable and can be affected by the feature fusion method and even the model size. For example, the LoRA + Adapter strategy performs best in the Token-wise Concat method, while in the Channel-wise Concat method, the LoRA + Adapter strategy (0.296) is worse than the Full Fine-tune (0.305) and the Adapter-only (0.311) methods in the 35M backbone. In terms of the 150M backbone, the LoRA + Adapter strategy obtained the best performance (0.395) with respect to the Full Fine-tune (0.378) and Adapter-only (0.385) strategies, reflecting the high variance of the same fine-tuning strategy on different fusion methods and scales of the backbone model.

Third, clear scaling behavior, i.e., consistent performance improvements as the backbone grows, appears primarily under the Adapter-only setting. While prior work has reported benefits from increasing pretrained model scale for multimodal fine-tuning (Wang et al., 2024; Shukor et al., 2025), our experiments show that this monotonic scaling is mainly observed when only the adapters are tuned. The results of the Adapter-only strategy show a clear increase path as the model scales, both on Token-wise Concat and Channel-wise Concat. For LoRA+Adapter and Full Fine-tune, gains are often present for smaller backbones but can stagnate or become unstable on larger ones, suggesting potential overfitting or interference with pretrained weights. A plausible interpretation is: when the PLM backbone is small, extra adaptation capacity (LoRA updates or full tuning) is needed for the model to absorb structural signals; when the backbone is large, the pretrained model already has sufficient representational power to integrate structure, and minimal interventions (adapter-only) are both sufficient and more stable.

432

433
434
435
Table 5: Ablation results on the 35M backbone with LoRA + Adapter tuning. The top block varies
the depth of the projection MLP used to map structural embeddings. The bottom block compares
structure encoders.

		Average	Activity	Binding	Expression	Fitness	Stability
Layers	2 × MLP	0.443	0.413	0.387	0.449	0.35	0.614
	3 × MLP	0.443	0.412	0.384	0.45	0.351	0.617
	4 × MLP	0.441	0.411	0.384	0.445	0.349	0.614
Encoder	ProteinMPNN	0.42	0.404	0.352	0.429	0.327	0.589
	ESM-IF	0.443	0.412	0.384	0.45	0.351	0.617
	ProteinMPNN + ESM-IF	0.437	0.408	0.379	0.445	0.343	0.609

436

437
438
439
440
441
442
443
444
445
4.4 ABLATION ON MAIN COMPONENTS446
447
448
449
To understand how component design influences the performance, we conducted ablations on
450
adapter layers and structure encoders. Table 5 reports controlled ablations on two axes: the depth of
451
the MLP used to project structural features, and the choice/combination of structure encoders. All
452
experiments are performed on the 35M backbone, and trained using the LoRA + Adapter strategy.453
454
455
456
457
458
459
460
461
For the MLP depth, results are very close across 2, 3, and 4 layers. There is no clear improvement
462
as we add depth: 2×MLP and 3×MLP give essentially the same average performance, while 4×MLP
463
shows a tiny drop. Task-wise differences are also minor (3×MLP marginally helps expression and
464
stability), but the overall gains are negligible compared with the extra parameters and computational
465
cost. Practically, a shallow MLP is sufficient and more efficient; based on this, we use 3 layers as
466
our default setting.467
468
469
470
471
472
473
474
475
476
477
478
For the structure encoder, ESM-IF is the strongest single encoder in our setup, improving average
479
performance and several tasks relative to ProteinMPNN. Interestingly, concatenating both encoders
480
does not produce additive gains; the combined setup performs slightly worse than ESM-IF alone on
481
most metrics. This suggests the encoders carry overlapping or even conflicting signals when naively
482
merged; simple concatenation without per-encoder gating or attention can make it harder for the
483
PLM to extract the most useful structural cues.484
485
486
487
488
In summary, the ablations indicate that using a stronger, better-aligned structure encoder is a promising
489
direction; we therefore leave more systematic exploration of encoder combinations and smarter
490
fusion mechanisms (e.g., per-encoder gating or attention-based fusion) to future work.491
492
493
494
495
5 DISCUSSION496
497
498
499
500
In this paper, we show that multimodal fine-tuning of pretrained protein language models is a
501
practical, effective way to bring structural information into PLMs. Specifically, we introduce
502
InstructPLM-mu and evaluate three fusion designs, including Cross Attention, Channel-wise
503
Concat, and Token-wise Concat. Our experiments demonstrate that multimodal fine-tuning consistently
504
improves zero-shot mutation prediction over sequence-only baselines, and is competitive with sev-
505
eral stronger multimodal methods trained from scratch. Notably, we find that the choice of fusion is
506
critical: Token-wise Concat delivers the most robust gains across multiple backbone scales and dif-
507
ferent downstream functional categories. Further more, extensive ablations evidenced that the fine-
508
tuning recipe is also crucial: parameter-efficient schemes (e.g., LoRA + adapters) often provide the
509
best trade-off between performance and cost, whereas overly aggressive updates (full fine-tuning)
510
can harm larger backbones and lead to catastrophic forgetting.511
512
513
514
515
516
517
518
519
520
Despite these positive results, several limitations point to clear directions for future work. First,
521
stronger or more diverse structural encoders and better encoder-level fusion (for example, per-
522
encoder gating or attention) may unlock further gains beyond what simple concatenation provides;
523
we leave systematic exploration of such fusion mechanisms to future work. Second, more fine-
524
grained tuning protocols can be investigated. Such as staged training schedules, layer-wise unfreez-
525
ing, or hybrid update schemes, can be performed to address the instability and catastrophic forgetting
526
we observe when adapting very large backbones. We consider these directions important next steps
527
to broaden and solidify the practical utility of multimodal fine-tuning for protein modeling.

486 **6 REPRODUCIBILITY STATEMENT**
487488 All datasets used in this paper are publicly available, and preprocessing steps, including sequence
489 filtering and train/validation/test splits, are described in Section 4.1. Implementation details of the
490 InstructPLM-mu model, training hyperparameters, and evaluation protocols are provided in Sec-
491 tion 3 and Appendix A.1. Complete results for all benchmarks, along with ablation studies, are
492 reported in Appendix A.2. We provide an anonymized repository¹ containing the evaluation source
493 code and instructions to reproduce the experiments.
494495 **REFERENCES**
496497 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
498 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
499 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–
500 23736, 2022.
501 Katherine I Albanese, Sophie Barbe, Shunsuke Tagami, Derek N Woolfson, and Thomas Schiex.
502 Computational protein design. *Nature Reviews Methods Primers*, 5(1):13, 2025.
503 Rebecca F Alford, Andrew Leaver-Fay, Jeliazko R Jeliazkov, Matthew J O’Meara, Frank P DiMaio,
504 Hahnbeom Park, Maxim V Shapovalov, P Douglas Renfrew, Vikram K Mulligan, Kalli Kappel,
505 et al. The rosetta all-atom energy function for macromolecular modeling and design. *Journal of
506 chemical theory and computation*, 13(6):3031–3048, 2017.
507 Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani
508 Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open-
509 source framework for training large autoregressive vision-language models. *arXiv preprint
510 arXiv:2308.01390*, 2023.
511 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
512 Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
513 ization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.
514 Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
515 A survey and taxonomy. *IEEE transactions on pattern analysis and machine intelligence*, 41(2):
516 423–443, 2018.
517 Letícia MF Bertoline, Angélica N Lima, Jose E Krieger, and Samantha K Teixeira. Before and after
518 alphafold2: An overview of protein structure prediction. *Frontiers in bioinformatics*, 3:1120370,
519 2023.
520 David D Boehr, Ruth Nussinov, and Peter E Wright. The role of dynamic conformational ensembles
521 in biomolecular recognition. *Nature chemical biology*, 5(11):789–796, 2009.
522 Tianzhe Chu, Yuxiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
523 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
524 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.
525 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
526 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning-
527 based protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.
528 Douglas M Fowler and Stanley Fields. Deep mutational scanning: a new style of protein science.
529 *Nature methods*, 11(8):801–807, 2014.
530 Douglas M Fowler, Jason J Stephany, and Stanley Fields. Measuring the activity of protein variants
531 on a large scale using deep mutational scanning. *Nature protocols*, 9(9):2267–2284, 2014.
532 Daria Frolova, Marina Pak, Anna Litvin, Ilya Sharov, Dmitry Ivankov, and Ivan Oseledets. Mu-
533 lan: Multimodal protein language model for sequence and structure encoding. *Bioinformatics
534 Advances*, pp. vba117, 2025.
535536 ¹<https://anonymous.4open.science/r/InstructPLM-mu-5536/>
537

540 Kyrin R Hanning, Mason Minot, Annmaree K Warrender, William Kelton, and Sai T Reddy. Deep
 541 mutational scanning for therapeutic antibody engineering. *Trends in pharmacological sciences*,
 542 43(2):123–135, 2022.

543

544 Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
 545 Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
 546 of evolution with a language model. *Science*, 387(6736):850–858, 2025.

547

548 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*
 549 *arXiv:1606.08415*, 2016.

550

551 Brian L Hie, Varun R Shanker, Duo Xu, Theodora UJ Bruun, Payton A Weidenbacher, Shaogeng
 552 Tang, Wesley Wu, John E Pak, and Peter S Kim. Efficient evolution of human antibodies from
 553 general protein language models. *Nature biotechnology*, 42(2):275–283, 2024.

554

555 Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexander Rives.
 556 Learning inverse folding from millions of predicted structures. In *International conference on machine learning*, pp. 8946–8970. PMLR, 2022.

557

558 Gyuri Kim, Sewon Lee, Eli Levy Karin, Hyunbin Kim, Yoshitaka Moriwaki, Sergey Ovchinnikov,
 559 Martin Steinegger, and Milot Mirdita. Easy and accurate protein structure prediction using colab-
 560 fold. *Nature Protocols*, 20(3):620–642, 2025.

561

562 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
 563 Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. *arXiv*
 564 preprint *arXiv:2407.07895*, 2024a.

565

566 Mingchen Li, Yang Tan, Xinzhu Ma, Bozitao Zhong, Huiqun Yu, Ziyi Zhou, Wanli Ouyang, Bingxin
 567 Zhou, Pan Tan, and Liang Hong. Prosst: Protein language modeling with quantized structure and
 568 disentangled attention. *Advances in Neural Information Processing Systems*, 37:35700–35726,
 569 2024b.

570

571 Songtao Li and Hao Tang. Multimodal alignment and fusion: A survey. *arXiv preprint*
 572 *arXiv:2411.17040*, 2024.

573

574 Junyan Lin, Haoran Chen, Yue Fan, Yingqi Fan, Xin Jin, Hui Su, Jinlan Fu, and Xiaoyu Shen.
 575 Multi-layer visual feature fusion in multimodal llms: Methods, analysis, and best practices. In
 576 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 4156–4166, 2025.

577

578 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 579 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
 580 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023.

581

582 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 583 *in neural information processing systems*, 36:34892–34916, 2023.

584

585 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 586 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 587 pp. 26296–26306, 2024.

588

589 Céline Marquet, Julius Schlensok, Marina Abakarova, Burkhard Rost, and Elodie Laine. Expert-
 590 guided protein language models enable accurate and blazingly fast fitness prediction. *Bioinformatics*,
 591 40(11):btae621, 2024.

592

593 Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alex Rives. Language
 594 models enable zero-shot prediction of the effects of mutations on protein function. *Advances in*
 595 *neural information processing systems*, 34:29287–29303, 2021.

596

597 Lingchen Meng, Jianwei Yang, Rui Tian, Xiyang Dai, Zuxuan Wu, Jianfeng Gao, and Yu-Gang
 598 Jiang. Deepstack: Deeply stacking visual tokens is surprisingly simple and effective for llms.
 599 *Advances in Neural Information Processing Systems*, 37:23464–23487, 2024.

594 Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood Van Niekerk, Steffanie Paul, Han Spinner, Nathan
 595 Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, et al. Proteingym: Large-scale benchmarks
 596 for protein fitness prediction and design. *Advances in Neural Information Processing Systems*, 36:
 597 64331–64379, 2023.

598 Vijaya Parthiban, M Michael Gromiha, and Dietmar Schomburg. Cupsat: prediction of protein
 599 stability upon point mutations. *Nucleic acids research*, 34(suppl.2):W239–W242, 2006.

600 Jiezhang Qiu, Junde Xu, Jie Hu, Hanqun Cao, Liya Hou, Zijun Gao, Xinyi Zhou, Anni Li, Xiujuan
 601 Li, Bin Cui, et al. Instructplm: Aligning protein language models to follow protein structure
 602 instructions. *BioRxiv*, pp. 2024–04, 2024.

603 Jeffrey A Ruffolo, Aadyot Bhatnagar, Joel Beazer, Stephen Nayfach, Jordan Russ, Emily Hill, Riffat
 604 Hussain, Joseph Gallagher, and Ali Madani. Adapting protein language models for structure-
 605 conditioned design. *BioRxiv*, pp. 2024–08, 2024.

606 Mustafa Shukor, Enrico Fini, Victor Guilherme Turrisi da Costa, Matthieu Cord, Joshua Susskind,
 607 and Alaaeldin El-Nouby. Scaling laws for native multimodal models. *arXiv preprint
 arXiv:2504.07951*, 2025.

608 Ian Sillitoe, Nicola Bordin, Natalie Dawson, Vaishali P Waman, Paul Ashford, Harry M Scholes,
 609 Camilla SM Pang, Laurel Woodridge, Clemens Rauer, Neeladri Sen, et al. Cath: increased struc-
 610 tural coverage of functional space. *Nucleic acids research*, 49(D1):D266–D273, 2021.

611 Daniele Sonagliani, Valeria Libera, Elpidio Tombari, Judith Peters, Francesca Natali, Caterina
 612 Petrelli, Lucia Comez, Simone Capaccioli, and Alessandro Paciaroni. Dynamic personality of
 613 proteins and effect of the molecular environment. *The Journal of Physical Chemistry Letters*, 15
 614 (20):5543–5548, 2024.

615 Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. Saprot: Protein
 616 language modeling with structure-aware vocabulary. *BioRxiv*, pp. 2023–10, 2023.

617 Jin Su, Zhikai Li, Chenchen Han, Yuyang Zhou, Yan He, Junjie Shan, Xibin Zhou, Xing Chang,
 618 Shiyu Jiang, Dacheng Ma, et al. Saprothub: Making protein modeling accessible to all biologists.
 619 *BioRxiv*, pp. 2024–05, 2024.

620 Jinyuan Sun, Tong Zhu, Yinglu Cui, and Bian Wu. Structure-based self-supervised learning enables
 621 ultrafast protein stability prediction upon mutation. *The Innovation*, 6(1), 2025.

622 Ning Sun, Shuxian Zou, Tianhua Tao, Sazan Mahbub, Dian Li, Yonghao Zhuang, Hongyi Wang,
 623 Xingyi Cheng, Le Song, and Eric P Xing. Mixture of experts enable efficient and effective protein
 624 understanding and design. *BioRxiv*, pp. 2024–11, 2024.

625 Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
 626 Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
 627 factually augmented rlfh. *arXiv preprint arXiv:2309.14525*, 2023.

628 Yang Tan, Ruilin Wang, Banghao Wu, Liang Hong, and Bingxin Zhou. Retrieval-enhanced mu-
 629 tation mastery: Augmenting zero-shot prediction of protein language model. *arXiv preprint
 arXiv:2410.21127*, 2024.

630 Yang Tan, Ruilin Wang, Banghao Wu, Liang Hong, and Bingxin Zhou. From high-throughput eval-
 631 uation to wet-lab studies: advancing mutation effect prediction with a retrieval-enhanced model.
 632 *Bioinformatics*, 41(Supplement_1):i401–i409, 2025a.

633 Yang Tan, Bingxin Zhou, Lirong Zheng, Guisheng Fan, and Liang Hong. Semantical and geo-
 634 metrical protein encoding toward enhanced bioactivity and thermostability. *Elife*, 13:RP98033,
 635 2025b.

636 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha
 637 Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully
 638 open, vision-centric exploration of multimodal llms. *Advances in Neural Information Processing
 639 Systems*, 37:87310–87356, 2024.

648 Shakti N Wadekar, Abhishek Chaurasia, Aman Chadha, and Eugenio Culurciello. The evolution of
 649 multimodal model architectures. *arXiv preprint arXiv:2405.17927*, 2024.
 650

651 Menglun Wang, Zixuan Cang, and Guo-Wei Wei. A topology-based network tree for the prediction
 652 of protein–protein binding affinity changes following mutation. *Nature Machine Intelligence*, 2
 653 (2):116–123, 2020.

654 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 655 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 656 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

657 Ruben Weitzman, Peter Mørch Groth, Lood Van Niekerk, Aoi Otani, Yarin Gal, Debora Marks, and
 658 Pascal Notin. Protreiver: End-to-end differentiable protein homology search for fitness prediction.
 659 *arXiv preprint arXiv:2506.08954*, 2025.

660

661 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 662 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 663 2025.

664 Peng Xiong, Xiuhong Hu, Bin Huang, Jiahai Zhang, Quan Chen, and Haiyan Liu. Increasing the
 665 efficiency and accuracy of the abacus protein sequence design method. *Bioinformatics*, 36(1):
 666 136–144, 2020.

667 Kevin K Yang, Niccolò Zanichelli, and Hugh Yeh. Masked inverse folding with sequence transfer for
 668 protein representation learning. *Protein Engineering, Design and Selection*, 36:gzad015, 2023.

669

670 Zuobai Zhang, Pascal Notin, Yining Huang, Aurelie C Lozano, Vijil Chenthamarakshan, Debora
 671 Marks, Payel Das, and Jian Tang. Multi-scale representation learning for protein fitness predic-
 672 tion. *Advances in Neural Information Processing Systems*, 37:101456–101473, 2024.

673

674 Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei Ye, and Quanquan Gu. Structure-informed
 675 language models are protein designers. In *International conference on machine learning*, pp.
 676 42317–42338. PMLR, 2023.

677 Jinguo Zhu, W Wang, Z Chen, Z Liu, S Ye, L Gu, H Tian, Y Duan, W Su, J Shao, et al. Internvl3:
 678 Exploring advanced training and test-time recipes for open-source multimodal models, 2025. *URL*
 679 <https://arxiv.org/abs/2504.10479>, 9, 2025.

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703 A APPENDIX704
705 A.1 TRAINING DETAILS706
707 **Backbone model.** We adopt the publicly released ESM2 protein language models as our back-
708 bone. Three different parameter scales are explored: 35M², 150M³, and 650M.⁴ All checkpoints are
709 initialized from the official HuggingFace releases without additional pre-training.710
711 **Structure encoder.** We adopt the publicly released ProteinMPNN⁵ and ESM-IF1⁶ (ESM-Inverse
712 Folding) checkpoints as our structure encoders. Specifically, we concat 4 vanilla models of
713 ProteinMPNN v_48_002.pt, v_48_010.pt, v_48_020.pt, v_48_030.pt. Input 3D coor-
714 dinates are preprocessed following the official ProteinMPNN pipeline (atom type filtering and coor-
715 dinate centering).716
717 **Multi-model Projector.** To integrate sequence and structural representations, we employ
718 a lightweight multi-modal projector implemented as a multi-layer perceptron (MLP) with
719 GELU (Hendrycks & Gimpel, 2016) activation. The projector maps the concatenated embeddings
720 from the protein language backbone and the structure encoder into a unified latent space with a
721 dimension of the backbone model. Layer normalization is applied after each hidden layer.722
723 **Low-Rank Adapter.** For efficient fine-tuning of the backbone model, we insert Low-Rank Adap-
724 tation (LoRA) modules into every linear layer of the transformer blocks. The LoRA rank is set to
725 32 and the scaling factor (α) to 256. The adapters are trained jointly with the projector while all
726 original backbone weights remain frozen.727
728
729 Table 6: Summary of training hyperparameters for InstructPLM-mu.730
731
732
733

Hyperparameter	Value
Learning rate	1e-4
Batch size	256
Number of training epochs	20
Optimizer	Adam
Warm-up steps	100
Weight decay	1e-1

734
735 **Other Hyperparameters.** Key hyperparameters used in training are summarized in Table 6.736
737 A.2 EVALUATION AND MORE RESULTS738
739 **Metrics.** Model performance is evaluated using the Spearman rank correlation coefficient (Spear-
740 man’s ρ) between the predicted mutation effects and the experimentally measured ground-truth
741 scores. Spearman’s ρ measures the monotonic relationship between two variables and is insensi-
742 tive to the absolute scale of the predictions, making it well-suited for assessing whether the model
743 correctly ranks protein variants by functional effect rather than merely matching their exact values.744
745 **Results per assay.** For each assay, we report the Spearman correlation across all tested variants.
746 Figures 4, 5, and 6 show the performance of the baseline models (ESM2 (650M) and ESM3) as well
747 as our fine-tuned methods. For clarity, we highlight the results of the Token-wise Concat model
748 with the ESMif encoder and trained with the LoRA + adapter strategy. The figures indicate that the
749 improvements are most pronounced on proteins for which the baseline model (ESM2) previously
750 performed poorly (Figure 4), while still maintaining relatively high correlation on assays that were
751 easier for the baseline (Figure 6).752
753 ²https://huggingface.co/facebook/esm2_t12_35M_UR50D754 ³https://huggingface.co/facebook/esm2_t30_150M_UR50D755 ⁴https://huggingface.co/facebook/esm2_t33_650M_UR50D756 ⁵<https://github.com/dauparas/ProteinMPNN>757 ⁶https://huggingface.co/facebook/esm_if1_gvp4_t16_142M_UR50

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

Figure 4: Spearman correlations on individual DMS datasets, sorted by ESM2 (650 M) performance. Baselines use cross markers; InstructPLM-mu are shown as colored circles.

803

804

805

806

807

808

809

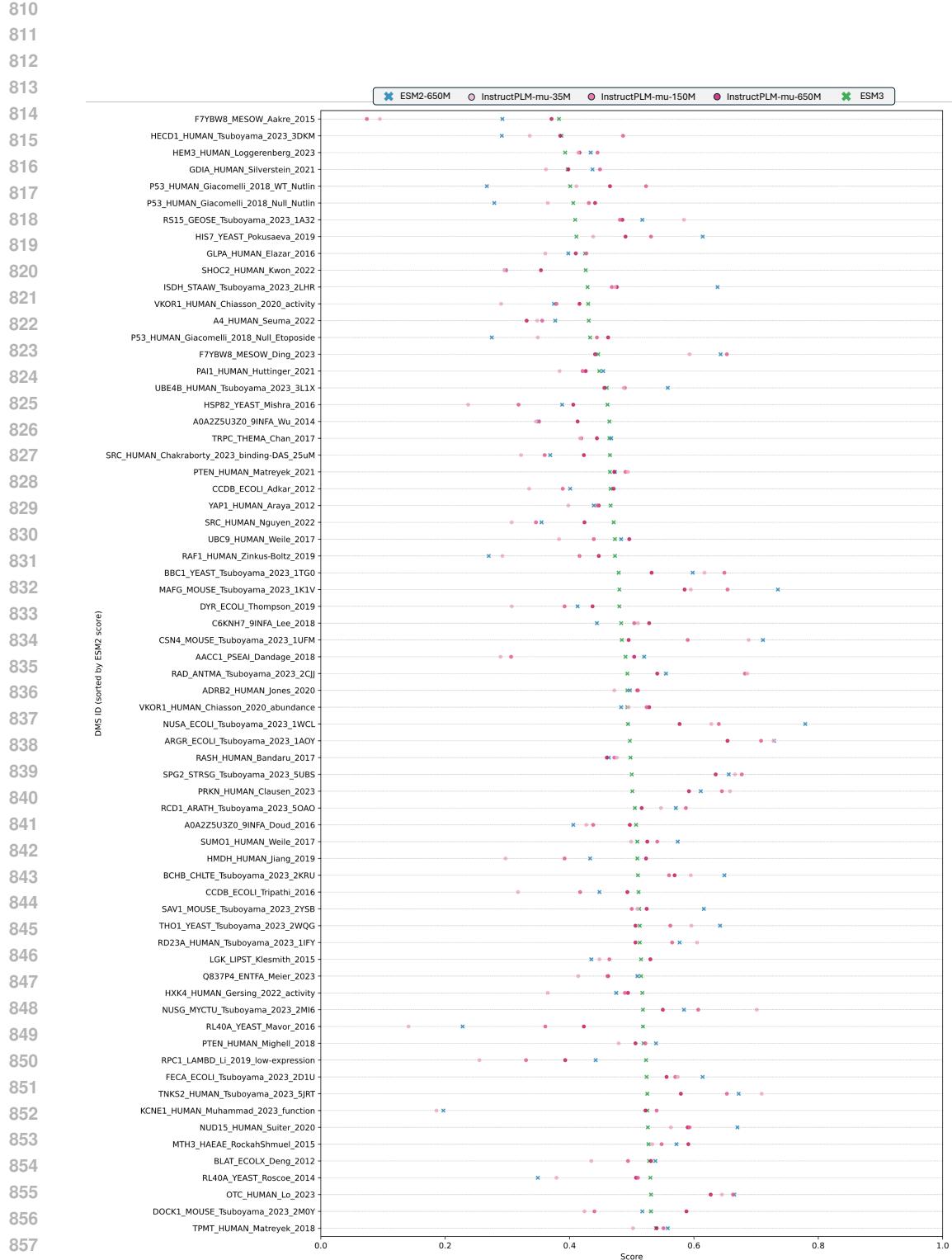


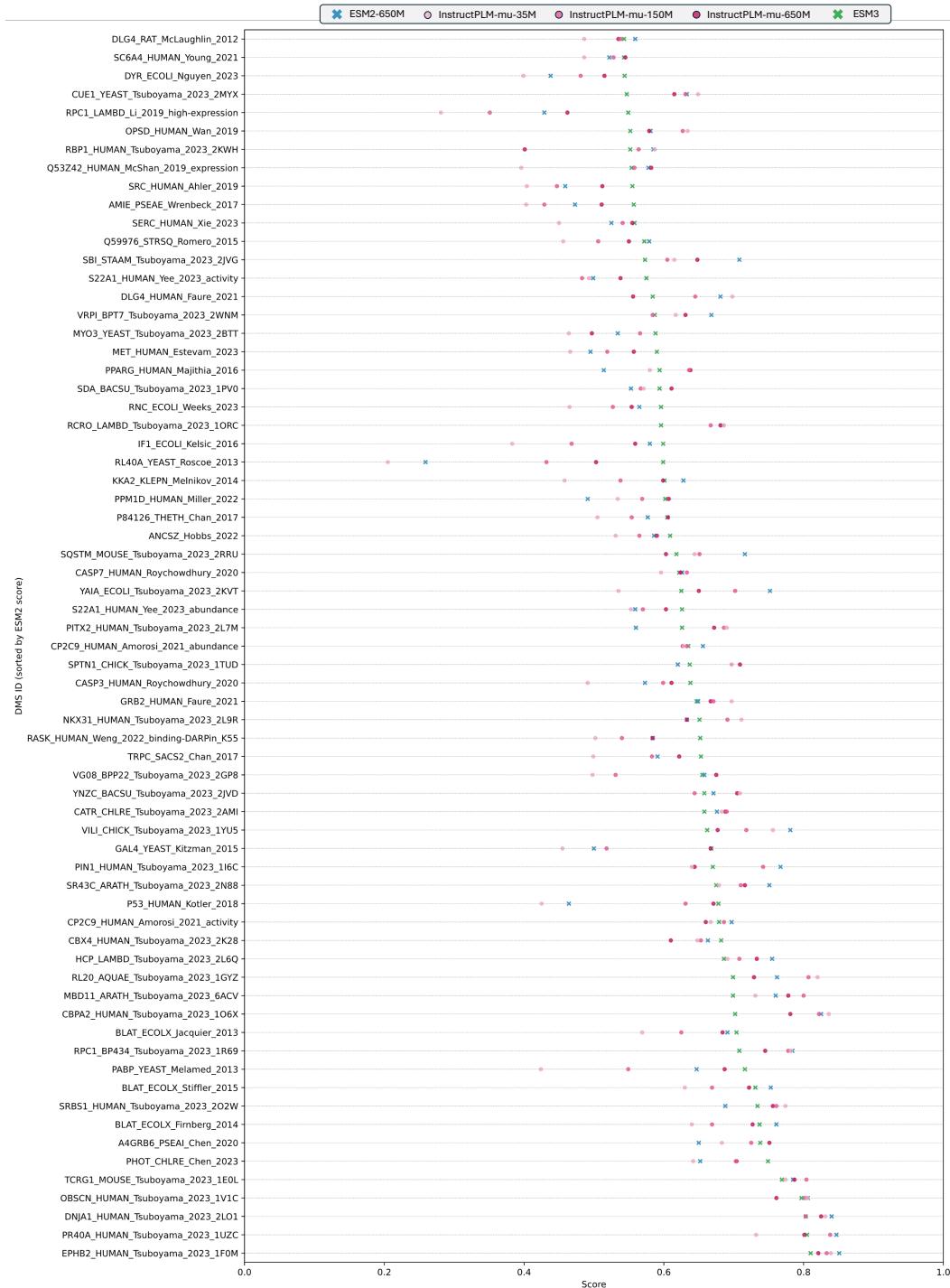
Figure 5: Spearman correlations on individual DMS datasets, sorted by ESM2 (650 M) performance. Baselines use cross markers; InstructPLM-mu are shown as colored circles.

864

865

866

867



913 Figure 6: Spearman correlations on individual DMS datasets, sorted by ESM2 (650 M) performance.
914 Baselines use cross markers; InstructPLM-mu are shown as colored circles.
915

916

917