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ABSTRACT

Large Reasoning Models (LRMs) have demonstrated strong capabilities in com-
plex multi-step reasoning, opening new opportunities for automating optimization
modeling. However, existing domain adaptation methods, originally designed
for earlier instruction-tuned models, often fail to exploit the advanced reason-
ing patterns of modern LRMs — In particular, we show that direct fine-tuning
on traditional non-reflective datasets leads to limited gains. To fully leverage
LRMs’ inherent reasoning abilities, we propose CALM (Corrective Adaptation
with Lightweight Modification), a framework that progressively refines LRMs
within their native reasoning modes for optimization modeling tasks. In CALM,
an expert intervener identifies reasoning flaws and provides concise corrective
hints, which the LRM incorporates to produce improved reasoning trajectories.
These interventions modify fewer than 2.6% of generated tokens, but generate
high-quality data for soft adaptation through supervised fine-tuning. The adapted
model is then further improved through reinforcement learning. Building on
CALM, we develop STORM (Smart Thinking Optimization Reasoning Model), a
4B-parameter LRM that achieves a new state-of-the-art average accuracy of 68.9%
across five popular optimization modeling benchmarks, matching the performance
of a 671B LRM. These results demonstrate that dynamic, hint-based data synthe-
sis both preserves and amplifies the native reasoning patterns of modern LRMs,
offering a more effective and scalable path towards expert-level performance on
challenging optimization modeling tasks.

1 INTRODUCTION

Operations Research (OR) and optimization modeling techniques are central to decision-making in
areas such as inventory management and airline crew scheduling (Silver, 1981; Vance et al., 1997).
Yet, despite their importance, the translation of real-world problems into mathematical models has
long been a bottleneck, as it requires substantial human expertise (Huang et al., 2025). In this con-
text, Large Language Models (LLMs) introduce a promising path toward automation. With the ad-
vent of instruction-tuned models, early works such as ORLM (Huang et al., 2025), LLMOPT (Jiang
et al., 2024), and Solver-Informed RL (Chen et al., 2025) made notable progress. These methods
establish a prevailing paradigm: constructing non-reflective datasets and training LLMs for direct
generation of an optimization model and its solver code from a problem description (see Figure 1a
for an example). Here, we refer to a non-reflective dataset as a pre-collected set of static prob-
lem–solution pairs without intermediate reasoning or feedback.

However, the emergence of Large Reasoning Models (LRMs) represents a new paradigm in the field.
Unlike LLMs, LRMs possess an inherent capacity for multi-turn reasoning, which we call their
native reasoning patterns. This capability allows iterative and adaptive reasoning within a single
inference pass (Qwen Team, 2025; DeepSeek-AI, 2025), offering greater flexibility than traditional
non-reflective generation.

Although existing methods can still be applied to LRMs (Huang et al., 2025; Jiang et al., 2024),
it exhibits some misalignments. On the one hand, they neglect the native reasoning patterns of
these models, imposing artificial reasoning modes instead. On the other hand, their data synthesis
strategies remain non-reflective, which conflicts with the dynamic reasoning loops that characterize
LRMs. As we empirically demonstrate in Section 2, these misalignments may provide only marginal
improvements and fail to fully exploit the potential of LRMs.
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These observations naturally lead to a central research question: Can we leverage the native reason-
ing of LRMs to solve optimization modeling tasks effectively? Answering this question is essential
for advancing the application of LRMs, especially as high-performance open-source variants be-
come increasingly available.

To address this question, we design an evaluation protocol to systematically examine the flaws in
native reasoning patterns for optimization modeling tasks. The evaluation reveals seven recurring
flaws types, which we categorize into two groups: (1) Code Utilization Distrust and (2) Lack of OR
Expertise. While the latter has been discussed in prior work (Huang et al., 2025; Jiang et al., 2024),
the former remains largely overlooked in research on automated optimization modeling.

These flaws provide a natural entry point for method design. In response, we introduce CALM (Cor-
rective Adaptation with Lightweight Modification), a framework that uses lightweight intervention
to adapt LRM reasoning trajectories, aligning their native reasoning patterns with the requirements
of optimization modeling tasks. Two features make this framework particularly effective. First,
inspired by Li et al. (2025a), we allow the LRM to access a solver’s code compiler, providing im-
mediate execution feedback and thereby strengthening reflective reasoning — an ability absent in
typical LRMs and earlier approaches. Second, the interventions are deliberately lightweight, ac-
counting for fewer than 2.6% of the total tokens.

The expert-level trajectories generated by CALM support a two-stage training pipeline: supervised
fine-tuning for soft adaptation of reasoning habits, followed by reinforcement learning to refine these
skills and achieve autonomous mastery. The final model is denoted as STORM (Smart Thinking
Optimization Reasoning Model).

Our contributions are as follows:

• We provide empirical evidence on the limitations of adapting modern LRMs via fine-tuning
on non-reflective datasets, highlighting the importance of preserving their native reasoning
patterns.

• We propose CALM, a lightweight and scalable framework that leverages solver code exe-
cution to correct and strengthen LRM reasoning trajectories, aligning it with the demands
of optimization modeling tasks.

• Our final model, STORM, with 4B parameters, sets a new state of the art across five opti-
mization modeling benchmarks, matching the performance of a 671B LRM.

• Our controlled analysis of reinforcement learning reveals that CALM-based adaptation is
crucial for success. The adapted model learns faster and reaches a higher performance
ceiling, driven by a shift to a computation-driven reasoning pattern that enables it to more
effectively build and refine expert-level optimization modeling skills.

We situate our work within the broader literature and provide a discussion of related work in Ap-
pendix A. We also clarify the role of LLMs in the preparation of this manuscript in Appendix K.

2 BACKGROUND AND MOTIVATION

2.1 BACKGROUND: LLMS FOR OPTIMIZATION MODELING

Automated optimization modeling is the task of translating a natural language problem description
into a mathematical model and executable solver code (see Figure 1a). For evaluation, the solver
computes a candidate solution, which is deemed correct if its objective value lies within a predefined
relative error of the ground truth. Performance is assessed on benchmarks that span a range of
difficulty, from easy problems in NL4Opt to complex industrial cases in IndustryOR. A detailed
overview of these benchmarks is provided in Appendix E.1. As shown in Figure 1b, this task can be
approached through two mainstream paradigms that differ fundamentally in how the final solution
is obtained.

Non-reflective Generation. Early methods, particularly those based on traditional LLMs, approach
optimization modeling as a non-reflective generation problem (Huang et al., 2025; Jiang et al., 2024).
As shown in Figure 1b (top), the LLM receives a problem description and generates a complete
solution in a single step, including both the mathematical model and the solver code. The reasoning
process is linear, with no opportunity for feedback or revision based on solver execution results.
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Transport 25 tons product via trucks/airplanes/ships.
Costs: $100 / $120 / $130; caps: 10 / 20 / 30.

Truck and ship can’t be chosen together…

Model

from pulp import LpProblem... 
m = LpProblem("OR", LpMinimize) 
x={...}; y={...} 
# ...

Problem

Solver Code (PuLP)

(a) An optimization modeling exam-
ple. Full details in Appendix B.

Problem

LLM Inference
Math
Model Code

Separate Execution Step
Final
Value

Problem

LRM Inference

Think Math
Model Code Output

Non-Reflective Generation

Reflective Generation

Observe
& Revise

Final
Value

(b) Comparison of reasoning paradigms in automated optimization
modeling.

Figure 1: Illustrations of optimization modeling and reasoning paradigms.

Reflective Generation. The advent of modern LRMs (Qwen Team, 2025; DeepSeek-AI, 2025) has
introduced a new paradigm. These models exhibit a range of sophisticated reasoning patterns, with
reflective generation — the capacity for iterative self-correction and refinement — emerging as a
dominant mode (Jaech et al., 2024). We thus treat this as the primary reasoning pattern for LRMs
in our study, as it is well-suited for optimization modeling, which often requires numerical feed-
back and mirrors the trial-and-error process of human experts. Accordingly, we design a reasoning
workflow that integrates solver feedback into this reflective process, as shown in Figure 1b (bottom).
In this paradigm, LRMs behave more like human experts operating in an interactive environment.
They can propose hypotheses, generate code, execute it, observe outputs, and refine their reasoning
accordingly.

2.2 PILOT STUDY: ADAPTING LRMS WITH NON-REFLECTIVE DATA

Given the availability of open-source LRMs and well-established non-reflective datasets from prior
work (Huang et al., 2025; Lu et al., 2025), a natural first step is to test the most direct adaptation
strategy: fine-tuning an LRM on these existing datasets. This pilot study provides a necessary base-
line and examines whether such training improves performance across tasks of varying difficulty.

Table 1: Performance of a base LRM before and after SFT on the existing dataset.

Model NL4OPT MAMO
Easy

MAMO
Complex IndustryOR OptMath Macro

AVG
Base LRM 85.8 73.8 46.5 46.2 33.1 57.1
+ SFT on Non-reflective Data 92.9 88.7 40.5 27.5 6.6 51.2

Absolute Change +7.1 +14.9 -6.0 -18.7 -26.5 -5.9

The results of our pilot study in Table 1 show a clear trade-off. The LRM achieves higher accuracy
on easier tasks such as MAMO-Easy, but its performance declines sharply on more complex bench-
marks like IndustryOR and OptMath. The full experimental setup is described in Appendix E.2.

A plausible explanation is that existing datasets contain only problem–solution pairs, which push
the LRM to replace its native multi-step reasoning with a rigid, non-reflective generation style it is
not optimized for. This shift improves simple cases but undermines the model’s reasoning ability
on complex tasks, a pattern also reported in other domains (Zhang et al., 2025). This observation
highlights the central motivation of our work: To unlock an LRM’s full potential, adaptation
must preserve its native reasoning patterns.

2.3 A TAXONOMY OF FLAWS IN LRM’S NATIVE REASONING

Our pilot study confirms that preserving the LRM’s native reasoning is essential. This finding,
however, raises a further question: are these native patterns sufficient for expert-level performance or
require targeted enhancement? To address this, we first need to systematically examine the inherent
weaknesses of an unguided LRM in optimization modeling tasks.

3
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Establishing a Protocol for Flaw Identification. To perform a rigorous analysis, we establish a
systematic protocol. We first prompted a base LRM to generate solutions for a diverse set of prob-
lems. A team of human experts with backgrounds in OR then analyzed these responses to identify
recurring error patterns. Through a collaborative, multi-stage process of annotation, clustering, and
refinement, the team converged on a set of seven distinct flaw types, which form the basis of our
taxonomy. The complete, detailed protocol for this human-in-the-loop analysis is provided in Ap-
pendix C.

A Two-Category Taxonomy of Flaws. Our analysis of the 7 identified flaw types reveals that 6 are
major reasoning flaws, representing fundamental challenges in the modeling process. The seventh,
a minor procedural error, is detailed in Appendix D. Our taxonomy focuses on the 6 major flaws,
which we group into two high-level conceptual categories:

• Code Utilization Distrust: This category encompasses flaws where the LRM fails to prop-
erly leverage the computational solver, such as attempting manual calculations or writing
fragmented code (Triggers 1-3). This indicates an inefficient reasoning strategy and an
under-reliance on powerful external tools.

• Lack of OR Expertise: This category covers fundamental errors in modeling and logic,
including flawed mathematical formulations, missed constraints, and implementation errors
(Triggers 4-6). These flaws stem from insufficient domain-specific knowledge.

This two-level taxonomy provides a structured framework for understanding and addressing LRM
failures.

Figure 2: Trigger Categorization and Distribution. The left (1) shows the macro-average frequency of each
trigger, the first 6 triggers grouped into two primary categories. The right (2a and 2b) detail the frequency
distribution of these two main categories across the evaluated benchmarks.

Quantifying Flaw Distribution across Benchmarks. With this taxonomy in place, we quantify the
prevalence of these flaws at scale using an expert-level LLM as a consistent, automated annotator.
Details on this quantification process can be found in Appendix J. The distribution, shown in Figure 2
(2a) and (2b), reveals a critical insight: the primary bottleneck varies with problem difficulty. On
easy-to-medium tasks like NL4Opt and MAMO-Easy, flaws are dominated by Code Utilization
Distrust. In contrast, on complex benchmarks like OptMath, a Lack of OR Expertise becomes the
main barrier. This reveals the core challenge for effective adaptation: LRM reasoning must be
enhanced to overcome the bottlenecks of inefficient code use and a lack of OR expertise.

3 METHODOLOGY

3.1 PRELIMINARIES: FORMALIZING THE REFLECTIVE GENERATION FLOW

We formalize the LRM’s problem-solving process as a sequential interaction within a code inter-
preter environment E. Given a problem P , the LRM—referred to as the Reasoner—generates an
iterative Reasoning Flow, represented as

τ (T ) = (s0, a0, o0, s1, a1, o1 . . . , sT , aT , oT ), (1)

4
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where st, at are the textual reasoning and code block at step t, respectively. The sequential reasoning
flow follows these steps:

(st, at) = πθ(τ
(t−1)), ot = E(at),

τ (t) = τ (t−1) ⊕ st ⊕ at ⊕ ot.
(2)

The objective is to refine πθ to produce trajectories that ultimately yield correct solutions.

3.2 CALM: CORRECTING ADAPTATION WITH LIGHTWEIGHT MODIFICATION

At the heart of our approach is the CALM framework, a dynamic data curation method based on a
Reasoner–Intervener collaboration pattern for generating expert-aligned reasoning flows.

Targeted Hints for Specific Flaws. CALM’s strength lies in its one-to-one mapping between rea-
soning flaws and tailored hints injected by the Intervener (see Appendix D). These interventions
address two primary issues:

• For Code Utilization Distrust: When the Reasoner attempts manual solving, the Intervener
injects a hint to redirect it toward using the solver, such as: “Wait, maybe I can use the
‘pulp‘ library and let the solver find the optimal solution.”

• For Lack of OR Expertise: When key concepts like integer constraints are missed, the
Intervener provides concise domain-specific guidance, such as: “A fractional number of
cars isn’t practical, suggesting a missed integer constraint.”

Figure 3: A representative example of Lack of OR Expertise flaw. (1) The model’s native reasoning results
in an incorrect problem formulation, leading to a wrong answer. (2) In contrast, the process under CLAM’s
guidance correct the formulation, enabling the model to find the correct solution.

The Iterative Hinting Loop. CALM implements an iterative refinement loop that transforms flawed
reasoning trajectories into expert-aligned ones. Let τ (i) denote the reasoning flow at iteration i. The
process proceeds as follows:

• Initial Generation (i = 0): The Reasoner generates an initial trajectory τ (0) for a given
problem P .

• Intervention & Evaluation: The Intervener examines τ (i). If no deviation is found, the
process terminates with the final trajectory τ∗ = τ (i). Otherwise, the Intervener identifies
the flawed step t and corresponding action at, and generates a corrective hint hi.

• Localized Revision & Resumption: A modified state is formed by appending the hint hi

to the context at step t. From this new state, the Reasoner continues its reasoning process
to form a corrected trajectory τ (i+1).

This loop continues until the Intervener deems the reasoning trajectory to be complete and free
of flaws. As a practical safeguard to prevent unproductive or infinite correction cycles, we limit
the maximum number of interventions. Each intervention is localized and minimally invasive, pre-
serving the model’s native reasoning (see Appendix H for more examples of specific, single-step
interventions, and Appendix I for a complete, multi-turn case study).
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Filtering of Expert Trajectories. To ensure supervision quality, we construct our SFT dataset,
DCALM , by filtering for ”golden” trajectories (Figure 5). We retain only those that are both correct
in their final answer and assessed as having a flawless reasoning flow by the Intervener.

3.3 TRAINING PIPELINE: FROM SOFT ADAPTATION TO AUTONOMOUS MASTERY

The trajectories curated and filtered by CALM are used in a two-stage training pipeline.

Stage 1: Supervised Fine-Tuning for Soft Adaptation. We fine-tune the base LRM on DCALM ,
using a standard cross-entropy loss. The goal of this stage is not to enhance the final performance
score, but to perform a soft adaptation of the policy πθ. By training on trajectories that align with
the model’s native reasoning, this approach guides its problem-solving habits without constraining
it into a rigid, non-reflective pattern.

Stage 2: Reinforcement Learning for Autonomous Mastery. Following supervised fine-tuning,
we apply reinforcement learning to enable the model to independently optimize for correctness.
We use the Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024), allowing
interaction with the Code Interpreter for up to T = 4 code executions per rollout. The RL stage
aims to maximize the expected reward: J(θ) = Eτ∼πθ(·|P )[R(τ)]. Our reward function is a simple
binary signal based on the final outcome:

R(τ) =

{
1 if

∣∣∣Ans(τ)−Ans∗

Ans∗

∣∣∣ ≤ ϵ,

0 otherwise.
(3)

where Ans(τ) is the final answer extracted from trajectory τ , Ans∗ is the ground-truth solution, and
ϵ = 10−3 in our experiments. We adopt relative error to ensure robustness across problems with
different answer scales. We also apply execution-output masking during gradient computation to
improve training stability. The final model is referred to as STORM.

4 EXPERIMENTS

Our experimental evaluation provides a comprehensive validation of our framework. We first bench-
mark STORM against leading models to establish its state-of-the-art performance. We then conduct
extensive ablation and behavioral analyses to dissect the sources of its effectiveness and reveal the
mechanisms through which CALM reshapes the model’s reasoning.

4.1 EXPERIMENTAL SETUP

Benchmarks and Datasets. Our evaluation is conducted on a diverse suite of five benchmarks:
NL4Opt (Ramamonjison et al., 2023), MAMO-Easy, MAMO-Complex (Huang et al., 2024),
IndustryOR (Huang et al., 2025), and OptMath (Lu et al., 2025). This selection, consistent
with prior state-of-the-art studies (Chen et al., 2025), allows us to rigorously test LRM capabilities
across a spectrum of difficulty. All training and test data originate from a larger collection of public
datasets (Jiang et al., 2024), which we have rigorously partitioned into non-overlapping training and
test sets. A comprehensive breakdown of all data sources and our splitting strategy is provided in
Appendix E.1.

Baselines. We benchmark STORM against a comprehensive set of baselines for a holistic
performance evaluation. The comparison includes: (1) Foundation Models: GPT-3.5-Turbo,
GPT-4 (Achiam et al., 2023) and DeepSeek-V3; (2) Large Reasoning Models: DeepSeek-
R1-0528 (DeepSeek-AI, 2025) and Qwen3-235B-A22B-Thinking-2507 (Qwen Team, 2025); (3)
Agent-Based Methods: Chain-of-Experts (Xiao et al., 2023) and OptiMUS (AhmadiTeshnizi et al.,
2024); (4) Learning-Based Methods: ORLM (Huang et al., 2025), LLMOPT (Jiang et al., 2024),
OptMath (Lu et al., 2025) and SIRL (Chen et al., 2025); and (5) crucially, our Base LRM, Qwen3-
4B-Thinking-2507, which serves as the starting point to directly measure our framework’s impact.

Evaluation Protocol. We report pass@1 accuracy as the primary evaluation metric. To address
the high variance of greedy decoding in LRMs, as noted in DeepSeek-R1 (DeepSeek-AI, 2025),
we follow their recommended evaluation protocol. Specifically, for each problem, we generate 8
independent samples using their specified configuration (temperature=0.6, top-p=0.95). The final
pass@1 score is then reported as the average success rate across these 8 samples. This established
method ensures a more robust and reproducible measure of a model’s performance. For a fair com-
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parison, all LRM-based models are evaluated under this protocol, allowing a maximum of 4 code
executions per reasoning trajectory.

Training Procedure. For CALM data synthesis, we use Qwen3-4B-Thinking-2507 (Qwen Team,
2025) as the Reasoner and Gemini-2.5-Pro (Comanici et al., 2025) as the Intervener. The curated
trajectories are then used in a two-stage training pipeline described in Section 3.3. Our final model,
STORM, is obtained through this pipeline. Detailed implementations are provided in Appendix E.3.

4.2 MAIN RESULTS

Table 2: Main results on optimization modeling benchmarks. Bold indicates the best performance in each
column. Results marked with * are cited from their original papers; all other results are from our own evaluation
under a unified protocol. The colored value next to our model’s scores indicates the absolute performance gain
over its base model.

Models Model
Size NL4OPT MAMO

Easy
MAMO
Complex IndustryOR OptMath Macro

AVG
Baseline Models

GPT-3.5-Turbo NA 78.0* 79.3* 33.2* 21.0* 15.0* 45.3*
GPT-4 NA 89.0* 87.3* 49.3* 33.0* 16.6* 55.0*
DeepSeek-V3 671B 95.9* 88.3* 51.1* 37.0* 32.6* 61.0*
DeepSeek-R1-0528 671B 86.6 78.8 69.1 52.5 50.6 67.5
Qwen3-235B-A22B-Thinking-2507 235B 75.8 77.2 63.6 53.2 49.6 63.9

Agent-Based Methods

Chain-of-Experts NA 64.2* - - - - -
OptiMUS NA 78.8* 77.2* 43.6* 31.0* 20.2* 49.4*

Learning-Based Methods

LLMOPT-Qwen2.5-14B 14B 80.3* 89.5* 44.1* 29.0* 12.5* 51.1*
ORLM-LLaMA-3-8B 8B 85.7* 82.3* 37.4* 38.0* 2.6* 49.2*
OptMATH-Qwen2.5-7B 7B 94.7* 86.5* 51.2* 20.0* 24.4* 55.4*
SIRL-Qwen2.5-7B 7B 96.3* 90.0* 62.1* 33.0* 29.0* 62.1*

Our Framework: Transforming a 4B LRM

Qwen3-4B-Thinking-2507 (Base) 4B 85.8 73.8 46.5 46.2 33.1 57.1
STORM-Qwen3-4B (Ours) 4B 93.3 +7.5 86.3 +12.5 70.3 +23.8 50.0 +3.8 44.5 +11.4 68.9 +11.8

We present the main results in Table 2, which demonstrate how our framework transforms a capable
LRM into a state-of-the-art optimization modeling expert. We highlight three key findings from our
analysis.

First, our method unlocks a significant leap in performance over the base model. The initial
“calm” adaptation through CALM lays the foundation for STORM to achieve a remarkable gain
of +11.8 absolute points in macro-average accuracy (57.1% to 68.9%), with particularly strong im-
provements on challenging benchmarks like MAMO-Complex (+23.8 points). Second, this en-
hancement allows our compact 4B model to exhibit strong parameter efficiency, achieving perfor-
mance comparable to the 671B DeepSeek-R1-0528 (68.9% vs. 67.5%) and setting a new state-of-
the-art on MAMO-Complex (70.3%). Finally, this result advances the frontier for learning-based
methods, moving beyond the performance benchmarks set by prior works, including the previous
SOTA, SIRL (68.9% vs. 62.1%).

These results underscore our central finding: preserving and refining a model’s native reasoning
patterns can achieve expert-level performance with high parameter efficiency.

4.3 ANALYSIS AND ABLATION STUDIES

4.3.1 ABLATION STUDY: THE TWO-STAGE LEAP TO SOTA
We analyze the distinct contributions of our two training stages by tracking the performance evolu-
tion from the base LRM through SFT and RL, as detailed in Figure 4.

SFT as a Calibrator. SFT with CALM-curated data acts as a behavioral calibrator. Unlike direct
SFT (Table 1), our soft adaptation avoids performance degradation on complex tasks, yielding a
modest gain in macro-average accuracy (57.1% to 58.7%). This stage gently corrects reasoning
flaws without overwriting native patterns, laying a stable foundation for subsequent mastery.

RL as the Accelerator. Building on this calibrated foundation, the RL stage acts as an accelerator,
driving a decisive performance leap. The macro-average accuracy rises sharply from 58.7% to
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Figure 4: Ablation study of our two-stage framework.

68.9%, with the most significant gains on complex reasoning benchmarks. As shown in Figure 4,
this “storm” stage propels our 4B model to a level comparable with a 671B LRM, demonstrating a
highly parameter-efficient path to expert performance.

4.3.2 DECONSTRUCTING CALM: AN INSIDE LOOK AT THE CURATION PROCESS

Raw SFT Data
(549 examples) 

Supervised Fine-tuning

Correctness Filtering
443 examples left

CALM Data Curation 

Perfect Pattern Filtering
112 examples left

Selection Rate=20.4% 

Success Rate Lift 

Avg. Token Reduction

Avg. Interventions

+ 16.2%
From 64.5% to 80.7%

From 9120.36 to 6483.83

- 2636.54

4.02
Hints per Problem

Figure 5: The CALM data curation engine.

To understand its mechanics, we decompose the CALM data curation process into three phases as
summarized in Figure 5: diagnosing native flaws, refining trajectories via hinting, and filtering the
results into a high-quality SFT dataset.

Diagnosis of Native Flaws. The diagnosis phase identifies failure modes in the base LRM’s initial
trajectories. The distribution of interventions (Figure 5, left) reveals two dominant flaw categories:
Code Utilization Distrust and Lack of OR Expertise. Consistent with our analysis in Section 2.3, the
former is more prevalent on the low-to-medium difficulty problems common in our SFT set.

Refinement via Lightweight Hinting. The refinement phase uses an iterative hinting loop to cor-
rect flawed trajectories. As shown in Figure 5 (middle), this lightweight process, with minimal inter-
ventions per problem, significantly boosts the success rate while simultaneously reducing response
length. This demonstrates that targeted guidance can enhance both correctness and conciseness.

Filtering of “Golden” Trajectories. Finally, the filtering phase ensures only the highest-quality
expert demonstrations are used for training. Our rigorous filtering funnel (Figure 5, right) is highly
selective, retaining only trajectories that are both correct and deemed flawless by the Intervener,
which guarantees the purity of the supervision signal for the SFT stage.

4.3.3 BEHAVIORAL EVOLUTION: HOW CALM SHAPES REASONING
To understand why CALM-SFT makes reinforcement learning more efficient, we conduct a con-
trolled experiment. We compare two models starting from the same base LRM: RL with CALM,
fine-tuned on our curated ”golden” trajectories, and a control model, RL without CALM, fine-
tuned on the original unguided reasoning flows. This design isolates the effect of the initial SFT
data quality on the RL process. The detailed setup is provided in Appendix E.4.
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(a) RL Performance on Complex Test Sets. (b) Average Number of Code Blocks.

(c) Average Response Length (Tokens). (d) Evolution of Flaws.

Figure 6: Behavioral evolution analysis.

CALM as a Catalyst for Sample-Efficient RL. Figure 6a shows that starting RL from high-quality
reasoning patterns has a profound impact. The RL with CALM model exhibits a steeper and more
stable learning curve, achieving a noticeably higher performance ceiling within the same compu-
tational budget. In contrast, the control model learns far more slowly and shows no indication of
closing the performance gap. This confirms that SFT on CALM trajectories provides a strong in-
ductive bias, acting as a catalyst that makes subsequent RL far more sample-efficient.

A Shift Toward Computation-Driven Reasoning. This efficiency is explained by consistent be-
havioral changes, as shown in Figures 6b and 6c. The RL with CALM model progressively increases
its use of code blocks while reducing average response length. This reflects a shift toward expert-like
behavior: replacing verbose natural language calculations with concise and reliable code execution.
The control model, lacking this guidance, remains verbose and less computation-driven.

The Two-Stage Healing Process. Finally, Figure 6d reveals a complementary “healing process.”
The SFT stage shows a larger impact on reducing Lack of OR Expertise, while the subsequent RL
stage is more effective at reducing Code Utilization Distrust. Together, these stages synergistically
transform the LRM into a specialized optimization modeler. A per-benchmark breakdown of this
evolution is provided in Appendix F.

5 CONCLUSION

This work introduces CALM, a lightweight framework for adapting Large Reasoning Models
(LRMs) to optimization modeling. By aligning targeted interventions with specific reasoning flaws,
CALM preserves native reasoning capabilities while improving optimization modeling accuracy.
Our two-stage training pipeline — combining hint-guided supervised fine-tuning with reinforce-
ment learning — transforms a compact LRM into STORM, which achieves state-of-the-art perfor-
mance across diverse benchmarks. These results demonstrate the effectiveness of minimally inva-
sive, reasoning-aligned adaptation for domain specialization. A promising direction for future work
is to extend STORM to broader optimization modeling agent frameworks, such as OptiMUS (Ah-
madiTeshnizi et al., 2024).
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we provide comprehensive details of our experimental
setup and plan to release our code and models.

• Code and Models: We plan to release our model and code.
• Data Details: Appendix E.1 provides a detailed breakdown of all public benchmarks used,

including their sources, descriptions, and our specific data splitting strategy.
• Training Details: Comprehensive hyperparameters and implementation details for all

training stages are provided in Appendix E.3.
• Computing Infrastructure: The hardware used for all experiments is also described in

Appendix E.3.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. Optimus: Scalable optimization modeling
with (mi) lp solvers and large language models. arXiv preprint arXiv:2402.10172, 2024.

Yitian Chen, Jingfan Xia, Siyu Shao, Dongdong Ge, and Yinyu Ye. Solver-informed rl: Grounding
large language models for authentic optimization modeling. arXiv preprint arXiv:2505.11792,
2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Chenyu Huang, Zhengyang Tang, Shixi Hu, Ruoqing Jiang, Xin Zheng, Dongdong Ge, Benyou
Wang, and Zizhuo Wang. ORLM: A customizable framework in training large models for auto-
mated optimization modeling. Operations Research, 2025.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Llms for mathematical
modeling: Towards bridging the gap between natural and mathematical languages. arXiv preprint
arXiv:2405.13144, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu, Jun Zhou, Aimin Zhou, and Yang Yu. Ll-
mopt: Learning to define and solve general optimization problems from scratch. arXiv preprint
arXiv:2410.13213, 2024.

Chengpeng Li, Zhengyang Tang, Ziniu Li, Mingfeng Xue, Keqin Bao, Tian Ding, Ruoyu Sun,
Benyou Wang, Xiang Wang, Junyang Lin, et al. Cort: Code-integrated reasoning within thinking.
arXiv preprint arXiv:2506.09820, 2025a.

Chengpeng Li, Mingfeng Xue, Zhenru Zhang, Jiaxi Yang, Beichen Zhang, Xiang Wang, Bowen
Yu, Binyuan Hui, Junyang Lin, and Dayiheng Liu. Start: Self-taught reasoner with tools. arXiv
preprint arXiv:2503.04625, 2025b.

Hongliang Lu, Zhonglin Xie, Yaoyu Wu, Can Ren, Yuxuan Chen, and Zaiwen Wen. Optmath:
A scalable bidirectional data synthesis framework for optimization modeling. arXiv preprint
arXiv:2502.11102, 2025.

10

https://arxiv.org/abs/2501.12948


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghad-
dar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, et al. Nl4opt com-
petition: Formulating optimization problems based on their natural language descriptions. In
NeurIPS 2022 competition track, pp. 189–203. PMLR, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Edward A. Silver. Operations research in inventory management: A review and critique. Operations
Research, 29(4):628–645, 1981. doi: 10.1287/opre.29.4.628.

Pamela H. Vance, Cynthia Barnhart, Ellis L. Johnson, and George L. Nemhauser. Airline crew
scheduling: A new formulation and decomposition algorithm. Operations Research, 45(2):188–
200, 1997. doi: 10.1287/opre.45.2.188.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex oper-
ations research problems. In The twelfth international conference on learning representations,
2023.

Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
and Jingren Zhou. On-policy rl meets off-policy experts: Harmonizing supervised fine-tuning and
reinforcement learning via dynamic weighting. arXiv preprint arXiv:2508.11408, 2025.

11

https://arxiv.org/abs/2505.09388


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A RELATED WORK

From Non-Reflective to Reflective OR Modeling. The application of LLMs to OR is undergoing a
fundamental paradigm shift. Early learning-based methods, including ORLM (Huang et al., 2025),
LLMOPT (Jiang et al., 2024), and SIRL (Chen et al., 2025), treated modeling as a non-reflective gen-
eration task, training models to produce a complete solution in a single, static pass. This approach,
however, is misaligned with modern LRMs (Qwen Team, 2025; DeepSeek-AI, 2025), which possess
powerful native reasoning patterns for iterative and adaptive problem-solving. Our work embraces
this shift, aiming to preserve and guide the LRM’s inherent capacity for reflective generation.

Hint-based Reasoning Adaptation. Injecting guidance into a model’s reasoning is a promising
adaptation technique. Concurrent works like START (Li et al., 2025b) use pre-defined, static hint
libraries to encourage code use, while CoRT (Li et al., 2025a) relies on manual, human-in-the-
loop annotation for its Hint Engineering, limiting scalability. In contrast, our CALM framework
introduces a fully automated and dynamic “Reasoner-Intervener” pattern. It moves beyond static
libraries and manual oversight by enabling an expert model to detect flaws and inject tailored hints,
providing scalable, process-level correction that respects the LRM’s native reasoning.

B ILLUSTRATION: INPUT–OUTPUT STRUCTURE OF TRADITIONAL LLMS
FOR OPTIMIZATION PROBLEMS

Example: Optimization Problem in Natural Language and Its Formalization

Input (Natural-Language Problem). A company must transport 25 tons of cargo using
trucks, airplanes, or ships. Per-ton costs are $100, $120, and $130, with capacities 10, 20,
and 30 tons. Trucks and ships cannot be chosen together. The goal is to minimize the total cost
while satisfying the demand.

Output (Mathematical Model and Solver Code).
Variables.

• x1, x2, x3 ∈ {0, 1}: binary variables indicating whether trucks, airplanes, and ships are
selected.

• y1, y2, y3 ≥ 0: transported volumes (tons) by each mode.
Objective and Constraints.

min 100y1 + 120y2 + 130y3

s.t. x1 + x2 + x3 ≥ 1 (4)
y1 ≤ 10x1, y2 ≤ 20x2, y3 ≤ 30x3 (5)
x1 + x3 ≤ 1 (6)
y1 + y2 + y3 ≥ 25 (7)

Program (PuLP).

1 from pulp import LpProblem, LpMinimize, LpVariable, LpBinary, lpSum,
PULP_CBC_CMD, value

2

3 # Data
4 costs = {"trucks":100, "airplanes":120, "ships":130}
5 caps = {"trucks":10, "airplanes":20, "ships":30}
6 demand = 25
7

8 # Model
9 m = LpProblem("Transportation", LpMinimize)

10 x = {k: LpVariable(f"x_{k}", 0, 1, cat=LpBinary) for k in costs}
11 y = {k: LpVariable(f"y_{k}", 0) for k in costs}
12

13 # Objective
14 m += lpSum(costs[k]*y[k] for k in costs)

12
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15

16 # Constraints
17 m += lpSum(x[k] for k in costs) >= 1
18 for k in costs:
19 m += y[k] <= caps[k]*x[k]
20 m += x["trucks"] + x["ships"] <= 1
21 m += lpSum(y[k] for k in costs) >= demand
22

23 # Solve
24 m.solve(PULP_CBC_CMD(msg=False))
25 print("Objective:", value(m.objective))
26 for k in costs:
27 print(f"{k}: x={value(x[k])}, y={value(y[k])}")

C PROTOCOL FOR HUMAN-IN-THE-LOOP FLAW TAXONOMY CREATION

This section details the rigorous, multi-stage protocol our team of four human experts (graduate stu-
dents with OR and STEM backgrounds) followed to establish the seven-flaw taxonomy presented in
Section 2.3. The goal was to move from unstructured observations to a systematic and reproducible
classification of errors.

Stage 1: Initial Data Generation and Independent Annotation. A base LRM (Qwen3-4B-
Thinking-2507) was used to generate solutions for a diverse set of 50 problems selected to cover
a range of difficulties and types from our benchmark suite. Each of the four annotators indepen-
dently reviewed these same 50 responses. For each response, they performed an open-ended anal-
ysis, identifying and documenting any perceived reasoning errors. Annotators were instructed to
assign a descriptive tag (e.g., ”manual-calculation-error,” ”missed-integer-var”) and provide a brief
textual justification for each identified flaw. This initial stage resulted in four independent sets of
annotations, containing a rich but unstructured collection of observed errors.

Stage 2: Collaborative Clustering and Taxonomy Refinement. The team then engaged in a
collaborative session to synthesize the independent findings. The process was as follows:

1. Merging: All unique error tags and justifications from the four annotators were collected
into a single master list.

2. Affinity Clustering: The team collectively grouped semantically similar tags into higher-
level clusters. For example, tags like ”manual-calculation-error,” ”avoids-solver,” and
”solves-by-hand” were grouped into a cluster that would later become ”Premature NL Solv-
ing.”

3. Definition and Refinement: For each cluster, the team collaboratively wrote a precise,
operational definition for the flaw type it represented. This process involved several rounds
of discussion to ensure the definitions were mutually exclusive and collectively exhaustive
for the observed phenomena. Any ambiguous or overlapping clusters were either merged
or further refined.

This iterative process led to the convergence on the seven distinct and recurring flaw types detailed
in Appendix D. This human-in-the-loop methodology ensures that our taxonomy is grounded in
empirical observation and expert consensus.

D TRIGGERS TYPE

As detailed in our protocol (Appendix C), our analysis identified seven recurring flaw types. Six
of these are classified as substantive reasoning flaws as they represent fundamental errors in the
problem-solving process. The seventh, Protocol Violation, is classified as a procedural error as it
relates only to output formatting. Our main analysis in the paper focuses on the six substantive
flaws. The definitions for all seven triggers are as follows:

13
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• [Trigger 1] Premature NL Solving: After formulating the mathematical model, the LRM
starts solving it manually with natural language instead of immediately writing solver code.

• [Trigger 2] Fragmented Coding: The LRM writes small, non-executable, or multiple
solver-running code blocks instead of a single, comprehensive one.

• [Trigger 3] Redundant Manual Verification: After a code output, the LRM manually
re-calculates the exact numerical results that were already provided by the solver.

• [Trigger 4] Lack of Sanity Check/Reflection: The LRM gets a correct code output but
proceeds directly to the final answer without any high-level reflection on the result’s plau-
sibility.

• [Trigger 5] Flawed Reasoning or Modeling: The LRM’s logic is flawed, leading to an
incorrect answer. This includes semantic misunderstanding, a wrong mathematical model,
or missing constraints (e.g., integers).

• [Trigger 6] Implementation Error: The mathematical model is correct, but the code is
buggy or does not faithfully represent the model, leading to an incorrect answer.

• [Trigger 7] Protocol Violation: The LRM violates a clear instruction, especially regarding
the final boxing requirement.

Here, triggers 1-3 exemplify Code Utilization Distrust, pinpointing behaviors such as solving prob-
lems with natural language instead of code or engaging in inefficient coding practices. Triggers 4-6
are indicators of a Lack of OR Expertise, covering fundamental errors in modeling, logical reason-
ing, and code implementation. A final trigger, Protocol Violation (Trigger 7), serves as a procedural
check to ensure the model adheres to specific output formatting instructions. See Table 3 for exam-
ples.

Table 3: This table illustrates seven common LRM error patterns (’triggers’), showing the original error (red)
and analysis of the errors. These triggers include: (1)Premature NL Solving, an attempt at manual calcula-
tion instead of coding; (2)Fragmented Coding, writing separate small code blocks; (3) Redundant Manual
Verification, unnecessarily re-calculating a solver’s result; (4) Lack of Sanity Check, failing to reflect on a
solution’s plausibility; (5) Flawed Reasoning or Modeling, formulating an incorrect mathematical model; (6)
Implementation Error, correctly modeling a question but incorrectly coding a correct model; and (7)Protocol
Violation, ignoring explicit instructions and embedding the boxed number within a sentence.

Error Type [Trigger 1] Premature NL Solving: ... I notice that there is only 5 combinations and
this is an easy task, so I can just try them all first without writing python code. ... Alternatively,
Worker III → B (4), Worker IV → D (3), Worker I → A (9), Worker V → C (7). Total: 4 + 3 +
9 +7 = 23. That’s worse. ...
Analysis: It incorrectly assumed the problem was a simple task involving only five combinations,
thus obviating the need for Python code. The appropriate methodology would be to first construct
a mathematical model and then employ a solver, accessed via code, to obtain the solution.

Error Type [Trigger 2] Fragmented Coding: ... Re-calculating the derivative and solving by
hand is unnecessary ... I’ll calculate the ratio ‘h/r‘ directly from the output. I can even use another
small code block to be precise.

```python
# Calculate the ratio h/r to determine the shape
ratio = h / optimal r
print(f”Height to radius ratio: {ratio.evalf()}”)
```
```output
...
NameError: name 'h' is not defined
```

Analysis: This is fragmented coding and will fail because the variables from the first block are
not available in the second. The ideal workflow is to perform all related calculations in a single,
self-contained solver script.
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Error Type [Trigger 3] Redundant Manual Verification: ... So the code is correct. (But wait,
another way: Let’s see if there’s a possible solution with lower total flavouring. For example,
M = 1, O = 2 gives 10.) ...
Analysis:After correctly executing the solver and getting the optimal result, the LRM shows a
lack of trust in the tool. It proceeds to manually verify the constraints (which is acceptable) but
then attempts to re-solve the problem by hand.

Error Type [Trigger 4] Lack of Sanity Check/Reflection: ...

```output
Total cost: 24.00
Food 1: 0.0
Food 2: 8.0
...
Food 9: 4.0
```

The output shows that the **optimal solution** uses:

- **8 units of Tofu**

- **4 units of Quinoa**

This combination meets all the nutritional requirements at a **minimum total cost of 24.00**.
Analysis: The LRM correctly executes the solver and gets the optimal solution. However, it
moves directly from stating the decision variables (8 Tofu, 4 Quinoa) to declaring the final answer
without performing a brief sanity check. An expert would quickly verify that this proposed
solution indeed satisfies the nutritional constraints and matches the calculated cost.

Error Type [Trigger 5] Flawed Reasoning or Modeling:: ... But maybe in this problem, we can
treat them as continuous variables (since the problem might be designed for linear programming
without integer constraints) ...
Analysis: In the context of this problem, the units of the products must be integers and cannot
be continuous. The LRM incorrectly treated continuous variables as integer variables during the
modeling process, which led to a flawed model formulation.

Error Type [Trigger 6] Implementation Error:: ...
**Constraints**:
1. **Demand Constraint**: For each store j,

∑6
i=1 yij ≥ demandj

2. **Capacity Constraint**: For each DC i,
∑9

j=1 yij ≤ capacityi
3. **Non-negativity**: yij ≥ 0 ...

```python
...
# Create flow variables y[i][j] for each DC i and store j
y = [[pulp.LpVariable(f'y {i} {j}', cat='Continuous') for j in range(9)] for i in range(6)]

...
```
```output
Status: Unbounded
Total cost: 16417.0

```

...
Analysis: Although the LRM was correctly established in the modeling phase with constraints
ensuring the non-negativity of all variables yij , this requirement was overlooked during imple-
mentation, where the code failed to set a lower bound of zero for yij .

Error Type [Trigger 7] Protocol Violation: ...
**Final Answer**
...I’ll now summarize the findings and box the final answer. The optimal solution uses 97.01
square feet of sunflowers and 0 square feet of roses, yielding a maximum profit of 43656.72 .
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Analysis: The LRM’s final answer formulation violates the instructions. It embeds the boxed
number within a sentence, whereas the protocol requires the box to contain only the final numer-
ical answer and be separate from the summary text.

E EXPERIMENTAL DETAILS APPENDIX

E.1 BENCHMARK DATASETS AND SPLITTING STRATEGY

Our study utilizes a broad range of public benchmarks Jiang et al. (2024) for training and evaluation.
To ensure a rigorous and unbiased experimental design, we randomly partitioned all available data
from eight sources into non-overlapping training (SFT and RL) and test sets. Table 4 provides a
comprehensive overview of these sources, their original sizes, and our final partitioning.

While our main evaluation in the paper focuses on five key benchmarks to ensure direct compara-
bility with prior state-of-the-art work (Chen et al., 2025), we provide test splits for all datasets to
facilitate future research.

Table 4: Comprehensive overview of benchmark datasets and our rigorous splitting into non-overlapping SFT,
RL, and Test sets.

Data Source Data Partitioning
Benchmark Description Original Size SFT Set RL Set Test Set
NL4Opt NeurIPS 2022 competition data, focusing on LP

formulation.
46 8 8 30

MAMO-Easy High-school level MILP problems for fundamen-
tal modeling.

650 200 350 100

MAMO-Complex Undergraduate-level MILP/LP problems with in-
tricate structures.

211 55 56 100

IndustryOR Real-world industrial problems across diverse sec-
tors and types.

100 6 12 80

OptMath Challenging mathematical optimization problems
for advanced reasoning.

166 30 36 100

OptiBench A collection of various optimization problems. 607 250 257 100
ComplexOR Complex OR problems from academic and indus-

trial scenarios.
18 0 0 18

NLP4LP LP problems sourced from optimization textbooks
and lecture notes.

12 0 0 12

E.2 IMPLEMENTATION DETAILS FOR THE PILOT STUDY

This section provides the specific implementation details for the pilot study discussed in Section 2.2.

• Base Large Reasoning Model (LRM): The LRM used in this study was Qwen3-4B-
Thinking-2507, a powerful open-source model known for its strong multi-step reasoning
capabilities.

• Non-reflective Dataset: We used OR-Instruct-3K (Huang et al., 2025), a widely-
recognized dataset in the field. It consists of 3,000 problem-solution pairs and is repre-
sentative of the non-reflective data generation paradigm.

• Training Procedure: The base LRM was fine-tuned using a standard supervised fine-
tuning (SFT) objective. The training utilized the same set of hyperparameters as our main
SFT stage, which are detailed in Table 5.

E.3 IMPLEMENTATION DETAILS FOR THE CALM & STORM FRAMEWORK

This section provides a comprehensive overview of the implementation details for our entire frame-
work, including the computing infrastructure, the CALM data curation process, and the two-stage
training pipeline.

Computing Infrastructure. All experiments were conducted on a cluster of four nodes, each
equipped with 8x NVIDIA H800 (80GB) GPUs.
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CALM Data Curation. The expert-aligned trajectories for SFT were generated using our CALM
framework with the following configuration:

• Reasoner Model: Qwen3-4B-Thinking-2507.
• Intervener Model: Gemini-2.5-Pro.
• Process Control: The iterative hinting loop was run for a maximum of N = 5 interventions

per problem. An ”intervention” consists of the Intervener identifying a flaw, injecting a
hint, and the Reasoner regenerating the trajectory from that point. This limit serves as
a practical safeguard to prevent excessively long or unproductive correction cycles. If a
trajectory remains flawed after 5 interventions, it is discarded and not considered for the
final SFT dataset.

• Reasoner Generation Parameters: Temperature set to 0.6, top-p to 0.95. Max response
length was 16384 tokens with a maximum of 4 code executions per turn.

• Intervener Generation Parameters: Temperature set to 1.0 and top-p to 0.95 to encour-
age diverse analytical feedback.

Stage 1: Supervised Fine-Tuning (SFT). The SFT stage used the 112 ”golden” trajectories cu-
rated by the CALM process.

• Base Model: Qwen3-4B-Thinking-2507.
• Optimizer: AdamW.
• Key Hyperparameters: Summarized in Table 5.
• Framework: DeepSpeed Stage 3 with bf16 precision.

Table 5: Key hyperparameters for the supervised fine-tuning (SFT) stage.

Hyperparameter Value
Learning Rate 1e-5
LR Scheduler Cosine
Warmup Ratio 0.1
Total Batch Size 8
Number of Epochs 3
Max Sequence Length 22000

Stage 2: Reinforcement Learning (RL). The RL stage commenced from the final checkpoint of
the SFT model, using the following setup:

• Algorithm: Group Relative Policy Optimization (GRPO) via the Verl framework (Sheng
et al., 2024).

• Key Hyperparameters: Detailed in Table 6.

E.4 IMPLEMENTATION DETAILS FOR THE CONTROLLED EXPERIMENT

This section details the setup for the controlled experiment presented in Section 4.3.3, which was
designed to isolate the impact of the initial SFT data quality on RL dynamics. The experiment
involved a direct comparison between our main model, RL with CALM, and a control model, RL
without CALM. To ensure a rigorous comparison, the control model’s setup was designed to mirror
the main model’s in every aspect except for the SFT data.

SFT Data. The control model was fine-tuned on the 112 original, unguided reasoning trajectories
corresponding to the same problems used for the main model’s SFT stage.

Hyperparameters. To maintain a controlled environment, the hyperparameters for the control
model’s SFT and RL stages were kept identical to those of our main model. Due to computa-
tional resource constraints, the RL training for this specific comparative analysis was conducted for
30 epochs. The complete list of hyperparameters for the control model is provided in Appendix E.3
for full transparency.
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Table 6: Key hyperparameters for the Reinforcement Learning stage.

Hyperparameter Value
General

Start Model Checkpoint Final from supervised fine-tuning
Learning Rate 1e-6
Total Epochs 100
Train Batch Size 64
PPO Mini-batch Size 64
KL Loss Disabled

Rollout Configuration
Samples per Prompt (N) 8
Temperature 0.6
Max Prompt Length 3000
Max Response Length 16384
Max Code Execution per Rollout 4

F DETAILED BREAKDOWN OF FLAW FREQUENCY EVOLUTION

In Section 4.3.3 of the main text, we presented the macro-average trend of flaw frequency reduction.
To provide a more granular view, Figure 7 presents a detailed, per-benchmark breakdown of this
evolution.

Figure 7: A per-benchmark breakdown of the evolution of flaw frequencies. Each subplot shows the average
number of flaws per problem for the two main categories across the three training stages: Base LRM, After
SFT, and After RL. The ‘Macro Average’ plot (bottom right) summarizes the general trend.

The six-panel figure illustrates the change in frequency for the two primary flaw categories—Code
Utilization Distrust (blue solid line) and Lack of OR Expertise (red dashed line)—at each training
stage.

A detailed analysis of the trends reveals the complementary roles of our two-stage approach:

• Stage 1 (SFT): Broad-Spectrum Correction. The supervised fine-tuning stage initiates
a significant reduction in both types of flaws across almost all benchmarks. Notably, we
observe a substantial drop in the red line (Lack of OR Expertise) during this phase (e.g.,
in IndustryOR and MAMO-Complex). This suggests that exposing the LRM to high-
quality, expert-aligned reasoning trajectories in the CALM dataset provides strong initial
guidance, helping it to correct fundamental modeling errors and adopt more expert-like
problem formulations. The blue line (Code Utilization Distrust) also shows a general
downward trend, indicating that the model begins to learn more efficient code-use habits.
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• Stage 2 (RL): Targeted Refinement and Mastery. Building upon the foundation laid
by SFT, the reinforcement learning stage continues to refine the model’s skills. The RL
phase consistently drives down the remaining flaws of both types, pushing the error rates
to their lowest levels. This stage allows the model to move beyond simple imitation and
achieve a deeper, more robust mastery of both domain knowledge and code use through
trial-and-error exploration.

This per-benchmark analysis reinforces our central claim: the two-stage pipeline works synergisti-
cally. SFT provides a strong initial correction across the board, and RL builds upon this to achieve
a state of expert-level proficiency.
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G COMPARISON OF REASONING PARADIGM

Figure 8: An illustrative example comparing the Non-reflective Generation (left) and Reflective Generation
(right) paradigms on a vehicle parking optimization problem

Figure 8 demonstrates the practical differences between the two reasoning paradigms using a parking
optimization task. The Non-reflective Generation approach (left) formulates a mathematical model
and writes the complete code in a single step. However, a subtle error in one of the constraints leads
to a logically incorrect final answer. Due to its non-reflective pattern, the model is unable to detect
or correct this error.

In contrast, the reflective generation approach (right) showcases an iterative refinement process.
The model initially generates code that also contains an error, leading to an implausible output. By
observing this solver output, the model identifies the flaw in its reasoning. It then autonomously
corrects the constraint in the code and re-executes it, successfully arriving at the correct optimal
value. This case clearly highlights the advantage of the reflective paradigm: its ability to leverage
execution feedback for self-correction and robust problem-solving.
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H INTERVENTION PROCESS FOR SPECIFIC FLAWS

Figure 9: A representative example of the Code Utilization Distrust flaw. (1) The model exclusively relies on
verbal reasoning and fails to utilize the solver, leading to an incorrect answer. (2) In contrast, the reasoning
process guided by CLAM successfully employs the solver to reach the correct solution.

I ILLUSTRATIVE CASE STUDY OF THE CALM FRAMEWORK

To complement our quantitative findings, we provide a case study illustrating how CALM works
in practice. Figure 10 traces a multi-turn “Reasoner–Intervener” interaction. The initial trajectory
begins with a Lack of OR Expertise error, mistaking an Integer Linear Program (ILP) for a stan-
dard LP. Even after correction, a secondary issue of Code Utilization Distrust emerges. This case
demonstrates how a sequence of lightweight, targeted hints can progressively guide the Reasoner
through distinct failure modes, ultimately yielding a correct, expert-aligned solution without further
intervention.

Reasoning (τ (0)): ... But maybe in this problem, we can treat them as continuous variables (since the
problem might be designed for linear programming without integer constraints) ... Answer: 798.04
(Wrong!)

Intervention (i = 0, Trigger 5 – “Flawed Reasoning or Modeling” detected ): I’ve correctly identified
the ambiguity around continuous vs. integer variables ... This changes the problem from a Linear Program
(LP) to an Integer Linear Program (ILP). ...

Reasoning (τ (1)): ... So the code is correct. (But wait, another way: Let’s see if there’s a possible solution
with lower total flavouring. For example, M = 1, O = 2 gives 10.) ... 10 (Correct!)

Intervention (i = 1, Trigger 3 – “Redundant Manual Verification” detected ): Okay, the solver returned
M=1, O=2, with a total flavouring of 10. I should trust the solver’s optimality result. ... I’ll proceed to
structure the final answer.

Reasoning (τ (2)): The solver confirms that the **optimal solution** is: 1 order of **matcha ice cream**;
2 orders of **orange sorbet**... 10 (Correct!)

Intervention (i = 2, Trigger 3 – “Redundant Manual Verification” detected ): ... This result is logical, and
I can now confidently format the final answer.

Reasoning (τ (3)): (correct reasoning without any trigger detected)... 10 (Correct!)

Intervention (i = 3, “NO INTERVENTION” )
Figure 10: An illustrative case study of the iterative ”Reasoner–Intervener” collaboration pattern, where tar-
geted hints progressively correct a flawed reasoning trajectory. Here, red represents the error and blue represents
the correction of the Intervener.
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I.1 PROMPT TEMPLATES

The effectiveness of our framework relies on carefully designed prompts for both the Reasoner’s
initial task and the Intervener’s supervisory role.

Initial Prompt for the Reasoner. The Reasoner is initiated with a detailed prompt that outlines
the task, reasoning guidelines, tool usage protocols, and the required final answer format. The full
template is provided below.

Prompt for Reasoner
Given a mathematical problem, follow the instructions below to

solve it.↪→

\#\#\# Instructions:

When solving mathematical problems, you should leverage both
natural language reasoning and Python code execution. Your
goal is to provide clear, detailed explanations while
utilizing Python to perform complex calculations. Follow
these guidelines to ensure a coherent and effective
response:

↪→

↪→

↪→

↪→

↪→

1. **Natural Language Reasoning:**
- Provide comprehensive, step-by-step explanations of your

thought process.↪→

- Formulate your plan BEFORE writing code. Explain what
you are about to do and why.↪→

2. **Code Execution Rules:**
- **Purpose:** Each Python code block must be a complete,

self-contained script that executes a single, logical
step of your plan.

↪→

↪→

- **Output:** The SOLE mechanism for displaying results is
the `print()` function. The purpose of a code block is
to compute a value or set of values and explicitly
`print()` them for the subsequent `output` block.

↪→

↪→

↪→

- **Structure:** Each block must contain all necessary
imports and setups. The code must be directly
executable. Avoid any boilerplate like `if \_\_name\_\_
== '\_\_main\_\_':`.

↪→

↪→

↪→

3. **Recommended Toolkit & Best Practices:**
- To ensure reliability and environment compatibility,

**you must prioritize using the following libraries**
for their respective tasks.

↪→

↪→

- For **symbolic mathematics**: use `sympy`.
- For **numerical operations**: use `numpy`.
- For **scientific computing**: use `scipy`.
- For **optimization problems**: use `pulp`.

4. **Solution Verification and Final Answer:**
A. **Code Output for Verification:** To ensure your

reasoning is transparent and verifiable, your **final
code block** should print all key results needed for the
solution. For optimization problems, this typically
includes:

↪→

↪→

↪→

↪→

* The optimal objective function value.
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* The values of the main decision variables.

C. **Final Answer Formulation:**
* **Full Solution Description:** Briefly summarize

your findings, referencing the key values printed by
your code.

↪→

↪→

* **Final Answer Boxing:** The final step is to put
the **single numerical answer** to the main question
inside `\\boxed{}`.

↪→

↪→

- **Content:** The box should contain **only the
number**, without any units, currency signs, or
explanatory text.

↪→

↪→

- **Example (Correct):** `\\boxed{1234}` or
`\\boxed{1234.37}`↪→

- **Example (Incorrect):** `\\boxed{Total cost is
\$1234.0}`↪→

\#\#\# Problem:
{problem_text}

Prompt for the Intervener. The Intervener is guided by a meta-prompt that defines its role, the
ideal expert workflow, and the specific ‘Deviation Triggers‘ it should look for. This prompt is crucial
for the automated and targeted nature of our hinting process. The full template is provided below.

Prompt for Intervener
\#\#\# CONTEXT AND GOAL
You are an expert Operations Research (OR) engineer and an LLM

Reasoning Pattern Analyst. Your mission is to assist in
generating high-quality training data for fine-tuning Large
Reasoning Models (LRMs).

↪→

↪→

↪→

The ultimate goal is to adapt an LRM's native reasoning pattern
(which is heavily reliant on long-form natural language) to
better emulate the iterative workflow of a human OR expert.
The ideal expert workflow is a cycle of: **1. Understand \&
Model -> 2. Code Solver -> 3. Execute \& Observe -> 4.
Reflect \& Debug -> (Repeat)**.

↪→

↪→

↪→

↪→

↪→

Your specific task is to analyze a given LRM response and, if it
deviates from this ideal workflow, insert a strategic hint
to guide it back on track. This process, called "Auto Hint
Engineering," creates a more efficient and robust reasoning
trace for training.

↪→

↪→

↪→

↪→

\#\#\# INSTRUCTIONS
1. First, carefully review the `TASK_DEFINITION` which contains

the original problem and instructions given to the LRM.↪→

2. Next, analyze the provided `LLM_RESPONSE_TO_REFINE`.
3. Identify the **first point** of deviation based on the

triggers defined below.↪→

4. If a deviation is found, your output MUST be structured
using the custom tags `<action>`, `<trigger_type>`,
`<analysis>`, `<target_text>`, and `<hint_to_insert>`. The
action should be "REPLACE_AND_CONTINUE".

↪→

↪→

↪→
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5. The `<target_text>` tag should contain the exact, unique,
and contiguous block of text from the original response that
needs to be replaced.

↪→

↪→

6. The `<hint_to_insert>` tag should contain the new hint
you've crafted according to the principles below.↪→

7. If the response is ideal, your output should simply be
`<action>NO_INTERVENTION</action>`.↪→

### DEVIATION TRIGGERS
* **Trigger 1: Premature NL Solving:** After formulating the

mathematical model, the LRM starts solving it manually with
natural language instead of immediately writing solver code.

↪→

↪→

* **Trigger 2: Fragmented Coding:** The LRM writes small,
non-executable, or multiple solver-running code blocks
instead of a single, comprehensive one.

↪→

↪→

* **Trigger 3: Redundant Manual Verification:** After a code
output, the LRM manually re-calculates the exact numerical
results that were already provided by the solver.

↪→

↪→

* **Trigger 4: Lack of Sanity Check/Reflection:** The LRM gets
a correct code output but proceeds directly to the final
answer without any high-level reflection on the result's
plausibility.

↪→

↪→

↪→

* **Trigger 5: Flawed Reasoning or Modeling:** The LRM's logic
is flawed, leading to an incorrect answer. This includes
semantic misunderstanding, a wrong mathematical model, or
missing constraints (e.g., integers).

↪→

↪→

↪→

* **Trigger 6: Implementation Error:** The mathematical model
is correct, but the code is buggy or does not faithfully
represent the model, leading to an incorrect answer.

↪→

↪→

* **Trigger 7: Protocol Violation:** The LRM violates a clear
instruction, especially regarding the final boxing
requirement.

↪→

↪→

\#\#\# HINT PRINCIPLES (to guide your hint creation)
* **Be a Guide, Not a Dictator:** Use a first-person,

reflective tone (e.g., "I see, a better way would be...",
"Okay, now I should...").

↪→

↪→

* **Encourage Action:** Frame the hint to prompt a specific,
desirable next action.↪→

* **[FOR TRIGGERS 1 \& 2] Force Code Generation:** End your
hint with `\n\n\`\`\`python` to strongly encourage immediate
and complete code writing.

↪→

↪→

* *Example:* "The model is fully formulated. The best next
step is to implement this using `pulp` to get an exact
solution.\n\n\`\`\`python"

↪→

↪→

* **[FOR TRIGGER 3] Promote Trust in Tools:** Guide the LRM
away from redundant calculation and towards interpretation.↪→

* *Example:* "The solver has already provided the optimal
values. Re-calculating them manually is unnecessary. I
should now focus on interpreting the solution."

↪→

↪→

* **[FOR TRIGGER 4] Encourage Sanity Checks:** Gently guide
the LRM to perform a brief, high-level sanity check. The
goal is to cultivate a habit of reflection, not to force a
rigid process.

↪→

↪→

↪→
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* **Hint for Trigger 4 (Lack of Reflection):** "The solver
returned an optimal cost of \$392,760. Before I finalize
the answer, it's a good practice to quickly reflect on
this. Given the high fixed costs of the distribution
centers, this value seems to be in a reasonable range.
This gives me confidence in the result. Now, I'll
proceed to format the final solution."

↪→

↪→

↪→

↪→

↪→

↪→

* **[Alternate Hint with Code-Assisted Check]:** "The
solver returned an optimal cost of \$392,760. That seems
plausible. To build more confidence, I could write a
quick script to explore a simplified scenario, like
checking the cost if I only open the three cheapest
centers. This will help verify my
understanding.\n\n\`\`\`python"

↪→

↪→

↪→

↪→

↪→

↪→

* **[FOR TRIGGERS 5-7] Inject Focused Expertise:** Craft a
concise hint that addresses the specific flaw found.↪→

* *Hint for Trigger 5 (Model Completeness Error):* "I've
noticed the solution provides a fractional number of
cars, which isn't practical. This suggests I missed an
integer constraint in my original model. I should
correct this by redefining the variables as integers in
my code and re-running it."

↪→

↪→

↪→

↪→

↪→

* *Hint for Trigger 6 (Implementation Error):* "I've
spotted a bug. My math model for the constraint was `A
<= B`, but in the code I wrote `A >= B`. I need to
correct this implementation error to match my model."

↪→

↪→

↪→

\#\#\# OUTPUT STRUCTURE (MUST use these custom tags)
<action>REPLACE_AND_CONTINUE</action>
<trigger_type>[Trigger 1 | Trigger 2 | ... | Trigger

7]</trigger_type>↪→

<analysis>[A brief explanation of why this intervention is
necessary based on the detected trigger]</analysis>↪→

<target_text>[The exact text from the original response to be
replaced]</target_text>↪→

<hint_to_insert>[Your newly crafted hint goes
here]</hint_to_insert>↪→

(OR, if no intervention is needed)

<action>NO_INTERVENTION</action>

\#\#\# --- START OF TASK ---

\#\#\# TASK_DEFINITION:
```text
{task_definition}
```

\#\#\# GROUND_TRUTH_ANSWER (if available)
The known correct final answer for the objective function is:

`\\boxed{[ground_truth_answer]}`↪→

You should use this ground truth to definitively verify the
numerical correctness of the LRM's final boxed answer. If
the LRM's answer is incorrect, your primary goal is to
identify the root cause of the discrepancy.

↪→

↪→

↪→
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\#\#\# LLM RESPONSE TO REFINE:
```text
{llm_response_text}

J FLAW QUANTIFICATION OF NATIVE LRMS

To achieve a scalable and consistent analysis across thousands of model responses, we utilized
Gemini-2.5-Pro as an expert annotator. Its task was to classify flaws in the native LRM’s generated
trajectories based on the seven pre-defined categories described in Appendix D.

Distinction from the CALM Intervener. It is crucial to distinguish this analytical use of an ex-
ternal model from its role as the dynamic Intervener within our CALM data generation framework
(Section 3.2).

• For Quantification (here): The model acts as a static classifier. Its goal is to analyze
a completed response and output a structured list of detected flaws for measurement pur-
poses. It does not interact with the LRM.

• For CALM Intervention (Section 3): The model acts as an interactive agent. Its goal
is to monitor a reasoning process in real-time and inject corrective hints to guide the LRM
towards a better solution, thereby generating new training data.

While both roles leverage the same underlying understanding of OR modeling flaws, their functions
and objectives within our study are entirely separate.

Prompt for Flaw Classification. The prompt below was used to guide the Gemini-2.5-Pro model
in its role as a static classifier.

Prompt for Flaw Classification
### CONTEXT AND GOAL
You are an expert Operations Research (OR) engineer and an LLM

Reasoning Pattern Analyst. Your mission is to assist in
generating high-quality training data for fine-tuning Large
Reasoning Models (LRMs).

↪→

↪→

↪→

The ultimate goal is to adapt an LRM's native reasoning pattern
(which is heavily reliant on long-form natural language) to
better emulate the iterative workflow of a human OR expert.
The ideal expert workflow is a cycle of: **1. Understand &
Model -> 2. Code Solver -> 3. Execute & Observe -> 4.
Reflect & Debug -> (Repeat)**.

↪→

↪→

↪→

↪→

↪→

Your specific task is to analyze a given LRM response and, if it
deviates from this ideal workflow, identify all the triggers
we defined.

↪→

↪→

### INSTRUCTIONS
1. First, carefully review the `TASK_DEFINITION` which contains

the original problem and instructions given to the LRM.↪→

2. Next, analyze the provided `LLM_RESPONSE_TO_REFINE`.
3. Identify at most two deviation based on the triggers defined

below.↪→

4. If an deviation is found, your output MUST be structured
using the custom tags `<trigger_type>`.↪→
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5. The only one found trigger should in <trigger_type>, for
example, <trigger_type>Trigger 1</trigger_type>. If there
are multiple triggers, separate them by `;`, for example,
<trigger_type>Trigger 1;Trigger 7</trigger_type>.

↪→

↪→

↪→

6. If the response is ideal, your output should simply be
<trigger_type>Correct</trigger_type>.↪→

### DEVIATION TRIGGERS
* **Trigger 1: Premature NL Solving:** After formulating the

mathematical model, the LRM starts solving it manually with
natural language instead of immediately writing solver code.

↪→

↪→

* **Trigger 2: Fragmented Coding:** The LRM writes small,
non-executable, or multiple solver-running code blocks
instead of a single, comprehensive one.

↪→

↪→

* **Trigger 3: Redundant Manual Verification:** After a code
output, the LRM manually re-calculates the exact numerical
results that were already provided by the solver.

↪→

↪→

* **Trigger 4: Lack of Sanity Check/Reflection:** The LRM gets
a correct code output but proceeds directly to the final
answer without any high-level reflection on the result's
plausibility.

↪→

↪→

↪→

* **Trigger 5: Flawed Reasoning or Modeling:** The LRM's logic
is flawed, leading to an incorrect answer. This includes
semantic misunderstanding, a wrong mathematical model, or
missing constraints (e.g., integers).

↪→

↪→

↪→

* **Trigger 6: Implementation Error:** The mathematical model
is correct, but the code is buggy or does not faithfully
represent the model, leading to an incorrect answer.

↪→

↪→

* **Trigger 7: Protocol Violation:** The LRM violates a clear
instruction, especially regarding the final boxing
requirement.

↪→

↪→

### OUTPUT STRUCTURE (MUST use these custom tags)
<trigger_type>[Trigger 1 | Trigger 2 | ... | Trigger

7];...;[Trigger 1 | Trigger 2 | ... | Trigger
7]</trigger_type>

↪→

↪→

### --- START OF TASK ---

### TASK_DEFINITION:
```text
{task_definition}
```
### LLM RESPONSE TO REFINE:
```text
{llm_response_text}
```

Validation of the LLM Annotator. To ensure the reliability of the automated quantification pro-
cess, we validated the LLM annotator’s performance against human labels. We randomly sampled
30 responses from the test set, which were independently annotated by both the LLM (using the
aforementioned prompt) and one of our expert human annotators.

The agreement between the LLM and human labels was then measured. The LLM achieved an
accuracy of 93.3% in identifying and correctly classifying the flaw types present in the responses,
calculated based on the instance-level matching of flaw categories. This high level of agreement
provides strong evidence for the validity of using the LLM for scalable and consistent flaw quantifi-
cation across the entire benchmark suite.
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Under review as a conference paper at ICLR 2026

K ROLE OF LARGE LANGUAGE MODELS (LLMS) IN PREPARATION OF THE
MANUSCRIPT

In adherence to the ICLR 2026 submission guidelines, we hereby clarify the role of Large Language
Models (LLMs) in the preparation of this manuscript.

LLMs were utilized as a general-purpose assistive tool, primarily for the purpose of language pol-
ishing and refinement. Specifically, we employed LLMs to improve the clarity, conciseness, and
grammatical correctness of the text. The process involved providing drafted passages to an LLM and
requesting suggestions for alternative phrasing, sentence restructuring, and vocabulary enhancement
to better convey our intended meaning.

It is important to state that all core research ideas, experimental design, data analysis, and the primary
drafting of the manuscript were conducted exclusively by the human authors. The LLM’s role was
strictly confined to that of a writing assistant, and it did not contribute to any of the scientific or
conceptual aspects of this work.

The authors have carefully reviewed and edited all LLM-generated suggestions to ensure they accu-
rately reflect our research and findings. We take full responsibility for all content presented in this
paper, including any text that was refined with the assistance of an LLM.
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