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ABSTRACT

Object goal navigation aims to steer an agent towards a target object based on
observations of the agent. It is of pivotal importance to design effective visual
representations of the observed scene in determining navigation actions. In this
paper, we introduce a Visual Transformer Network (VTNet) for learning infor-
mative visual representation in navigation. VTNet is a highly effective structure
that embodies two key properties for visual representations: First, the relation-
ships among all the object instances in a scene are exploited; Second, the spatial
locations of objects and image regions are emphasized so that directional naviga-
tion signals can be learned. Furthermore, we also develop a pre-training scheme
to associate the visual representations with navigation signals, and thus facilitate
navigation policy learning. In a nutshell, VTNet embeds object and region fea-
tures with their location cues as spatial-aware descriptors and then incorporates
all the encoded descriptors through attention operations to achieve informative
representation for navigation. Given such visual representations, agents are able
to explore the correlations between visual observations and navigation actions.
For example, an agent would prioritize “turning right” over “turning left” when
the visual representation emphasizes on the right side of activation map. Experi-
ments in the artificial environment AI2-Thor demonstrate that VTNet significantly
outperforms state-of-the-art methods in unseen testing environments.

1 INTRODUCTION

The goal of target-driven visual navigation is to guide an agent to reach instances of a given target
category based on its monocular observations of an environment. Thus, it is highly desirable to
achieve an informative visual representation of the observation, which is correlated to directional
navigation signals. In this paper, we propose a Visual Transformer Network (VTNet) to achieve an
expressive visual representation. In our VTNet, we develop a Visual Transformer (VT) to extract
image descriptors from visual observations and then decode visual representations of the observed
scenes. Then, we present a pre-training scheme to associate visual representations with directional
navigation signals, thus making the representations informative for navigation. After pre-training,
our visual representations are fed to a navigation policy network and we train our entire network in
an end-to-end manner. In particular, our VT exploits two newly designed spatial-aware descriptors
as the key and query, (i.e., a spatial-enhanced local descriptor and a positional global descriptor) and
then encodes them to achieve an expressive visual representation.

Our spatial-enhanced local descriptor is developed to fully take advantage of all detected objects for
the exploration of spatial and category relationships among instances. Unlike the prior work (Du
et al., 2020) that only leverages one instance per class to mine the category relationship, our VT
is able to exploit the relationship of all the detected instances. To this end, we employ an object
detector DETR (Carion et al., 2020) since features extracted from DETR not only encode object
appearance information, such as class labels and bounding boxes, but also contain the relations be-
tween instances and global contexts. Moreover, DETR features are scale-invariant (output from the
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Figure 1: Motivation of the Visual Transformer Network (VTNet). A target class (cellphone) is
highlighted by green bounding boxes. An agent first detects objects of interest from its observation.
Then, the agent attends detected objects to the global observation by the visual transformer (VT).
High attention scores are achieved on the left side of the observation, which correspond to the target
(cellphone). Then, the agent will choose RotateLeft to reach targets.

same layer) in comparison to features used in ORG (Du et al., 2020). Considering that object posi-
tions cannot be explicitly decoded without the feed-forward layer of DETR, we therefore enhance
all the detected instance features with their locations to obtain spatial-enhanced local descriptors.
Then, we take all the spatial-enhanced local descriptors as the key of our VT encoder to model the
relationships among detected instances, such as category concurrence and spatial correlations.1

Furthermore, we introduce a positional global descriptor as the query for our VT decoder. In partic-
ular, we associate the region features with image region positions (such as bottom and top) and thus
facilitate exploring the correspondences between navigation actions and image regions. To do so, we
divide a global observation into multiple regions based on spatial layouts and assign a positional em-
bedding to each region feature as our spatial-enhanced global descriptor. After obtaining the global
query descriptor, we attend the spatial-enhanced local descriptor to the positional global descriptor
query to learn the relationship between instances and observation regions via our VT decoder.

However, we found directly training our VTNet with a navigation policy network fails to converge
due to the training difficulty of the transformers (Vaswani et al., 2017). Therefore, we present a pre-
training scheme to associate visual representations and directional navigation signals. We endow
our VT with the capability of encoding directional navigation signals by imitating expert experi-
ence. After warming-up through human instructions, VT can learn instructional representations for
navigation, as illustrated in Figure 1.

After pre-training our VT, we employ a standard Long Short Term Memory (LSTM) network to
map the current visual representation and previous states to an agent action. We adopt A3C archi-
tecture (Mnih et al., 2016) to learn the navigation policy. Once our VTNet has been fully trained,
our agent can exploit the correlations between observations and navigation actions to improve visual
navigation efficiency. In the popular widely-used navigation environment AI2-Thor (Kolve et al.,
2017), our method significantly outperforms the state-of-the-art. Our contributions are summarized
as follows:

• We propose a novel Visual Transformer Network (VTNet) to extract informative feature
representations for visual navigation. Our visual representations not only encode relation-
ships among objects but also establish strong correlations with navigation signals.

• We introduce a positional global descriptor and a spatial-enhanced local descriptor as the
query and key for our visual transformer (VT), and then the visual representations decoded
by our VT are attended to navigation actions via our presented pre-training scheme, thus
providing a good initialization for our VT.

• Experimental results demonstrate that our learned visual representation significantly im-
proves the efficiency of the state-of-the-art visual navigation systems in unseen environ-
ments by 14.0% relatively on Success Weighted by Path Length (SPL).

1As observed in DETR, the number of objects of interest in a scene is usually less than 100. Thus, we set
the key number to 100 in the VT encoder.
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2 RELATED WORKS

Visual navigation, as a fundamental task in robotic and artificial intelligence, has attracted increasing
attention recently. Traditional methods (Oriolo et al., 1995) often leverage environment maps for
navigation and divide a navigation task into three steps: mapping, localization and path planning.
Some approaches employ a given map to obviate obstructions (Borenstein & Koren, 1989; 1991).
Dissanayake et al. (2001) infer robot positions by simultaneous localization and mapping (SLAM).
However, maps are usually unavailable in unseen environments.

Recently, reinforcement learning (RL) has been applied in visual navigation. In general, it takes vi-
sual observations as inputs and predicts navigation actions directly. Mirowski et al. (2016) develop
a navigation approach in 3D maze environments and introduce depth prediction and loop closure
classification tasks to improve navigation performance. Parisotto & Salakhutdinov (2017) investi-
gate a memory system to navigate in mazes. Some methods (Sepulveda et al., 2018; Chen et al.,
2019; Savinov et al., 2018) use both visual features and the topological guidance of scenes for nav-
igation, while natural-language instructions are employed to guide an agent to route among rooms
(Anderson et al., 2018b; Wang et al., 2019; Deng et al., 2020; Hu et al., 2019; Majumdar et al., 2020;
Hao et al., 2020). We notice that transformer architectures are also employed by Hao et al. (2020),
named Prevalenet. However, Prevalenet is used to model languages and predict camera angles rather
than encoding local and global visual features. Hence, Prevalenet is essentially different from our
VT. Furthermore, Kahn et al. (2018) design a self-supervised approach to model environments by
reinforcement learning. Tang et al. (2021) customize a specialized network for visual navigation via
an Auto-Navigator. A Bayesian relational memory is introduced by Wu et al. (2019) to explore the
spatial layout among rooms rather than steering an agent to desired objects with least steps. Mean-
while, Shen et al. (2019) employ multiple visual representations to generate multiple actions and
then fuse those actions to produce an effective one. However, requesting such a large number of
visual representations may restrict the transferring ability of a navigation system and increases the
difficulty of data labeling. Note that Fang et al. (2019) propose a transformer to select the embedded
scene memory slot, while our VT is designed to learn expressive visual representations correlated
with directional signals.

Target-oriented visual navigation methods aim at steering an agent to object instances of a specified
category in an unseen environment using least steps. Zhu et al. (2017) search a target object given
in an image by employing RL to produce navigation actions based on visual observations. Mousa-
vian et al. (2019) take semantic segmentation and detection masks as visual representations and also
employ RL to learn navigation policies. Yang et al. (2018) exploit relationships among object cate-
gories for navigation, but they need an external knowledge database to construct such relationships.
Wortsman et al. (2019) exploit word embedding (i.e., GloVe embedding) to represent the target cat-
egory and introduce a meta network mimicking a reward function for navigation. Furthermore, Du
et al. (2020) introduce an object relation graph, dubbed ORG, to encode visual observations and
design a tentative policy for deadlock avoidance during navigation. In ORG, object features are
extracted from the second layer of the backbone in Faster R-CNN (Ren et al., 2015) and thus not the
most prominent ones across the feature pyramid. Additionally, ORG chooses one instance with the
highest confidence per category from detection results, and it may be affected by the false positive.

3 VISUAL NAVIGATION REVISIT

In this section, we mainly revisit the definition of object goal navigation and its general pipeline.

3.1 TASK DEFINITION AND SETUP

In this object goal visual navigation task, prior knowledge about the environment, i.e. topologi-
cal map and 3D meshes, and additional sensors, i.e. depth cameras, are not available to an agent.
RGB images in an egocentric view are the only available source to an agent, and the agent predicts
its actions based on the current view and previous states. Following the works (Wortsman et al.,
2019; Du et al., 2020), an environment is divided into grids and agents move between grid points
via 6 different actions, consist of MoveAhead, RotateLeft, RotateRight, LookUp,
LookDown, Done. To be specific, the forward step size is 0.25 meters, and the angles of turning-
left/right and looking-up/down are 45◦ and 30◦, respectively. An episode is defined as a success
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Figure 2: Overview of our visual transformer navigation system. Our visual transformer navi-
gation network (VTNet) involves a visual transformer (VT) and a navigation policy network. The
agent first fuses instance features and spatial features into spatial-enhanced local descriptor. Mean-
while, the positional global descriptor is obtained by adding a positional embedding to the global
feature. Then the visual representation is decoded from these two spatial-aware descriptors by our
VT. Our VTNet is pre-trained with the supervision of optimal navigation actions. The navigation
policy network adopts A3C architecture and is trained with navigation rewards after pre-training.

when the following three requirements are met simultaneously: (i) the agent chooses the ending
action Done within allowed steps; (ii) a target is in the view of the agent; (iii) the distance between
the agent and the target is less than the threshold (i.e. 1.5 meters). Otherwise, the episode will be
regarded as a failure.

A target class T ∈ {Sink, . . . ,Microwave} and a start state s = {x, y, θr, θh} are set randomly
at the beginning of each episode, where x and y represent the coordinates, θr and θh indicate the
view of a monocular camera. At each timestamp t, the agent records the observed RGB image Ot

from its monocular camera. Given the observation Ot and the previous state ht, the agent employs
a visual navigation network to generate a policy π(at|Ot, ht), where at represents the distribution
of actions at time t. The agent selects the action with the highest probability for navigation.

3.2 PIPELINE

A typical pipeline of visual navigation consists of two parts, visual representation learning and nav-
igation policy learning. (i) Visual representation learning: To encode the current observation in
a compact way, existing works extract visual features from an image and then transform them into
a vector-based representation, where direct concatenation (Wortsman et al., 2019) or graph embed-
ding (Du et al., 2020) are used. (ii) Navigation driven by visual features: Once visual features
are extracted, a navigation policy network that generates an action in each step for an agent will be
learned. There are several ways to learn policy networks, such as Q-learning (Watkins & Dayan,
1992), PPO (Schulman et al., 2017) and A3C (Mnih et al., 2016). As navigation policy learning is not
our focus, we adopt the standard Asynchronous Advantage Actor-Critic (A3C) architecture (Mnih
et al., 2016). The navigation policy network takes the combination of the current visual represen-
tation, the previous action and state embedding as input, and outputs the action distribution and
value. The agent selects actions with the highest probability from the predicted policy and uses the
predicted value to train the navigation policy network.

4 PROPOSED VISUAL TRANSFORMER NETWORK

As illustrated in Figure 2, our visual navigation system includes two parts: (i) learning visual rep-
resentations from RGB observations; (ii) learning navigation policy from the visual representations
and previous states. In our VTNet, we introduce a visual transformer (VT) in the first part to ex-
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plore the relationship among all objects and their spatial correlations. In VT, we further design
two spatial-aware descriptors, i.e., a spatial-enhanced local descriptor and a positional global de-
scriptor, to allow us extract visual information effectively. Then, our VT fuses these two types of
descriptors with a multi-head attention operation to produce final visual representations. Moreover,
our VT enforces visual representations to be highly correlated to navigation signals via our devel-
oped pre-training scheme, thus easing the training difficulty of VT and facilitating navigation policy
learning.

4.1 SPATIAL-ENHANCED LOCAL DESCRIPTOR

To learn the relationship among all the instances, we first perform object detection and locate all the
object instances of interest by a detector DETR (Carion et al., 2020). DETR transforms N encoded
d-dimension features RN×d from the same layer to N detection results, including the bounding
boxes, confidence and semantic labels by a feed forward network. Note that ORG (Du et al., 2020)
extracts object features from the second layer of the backbone in Faster R-CNN based on the pre-
dicted bounding-boxes rather than the penultimate layer of the classifier in Faster R-CNN as in
the work (Anderson et al., 2018a). Hence, ORG features are not the most prominent ones across
the feature pyramid and scale-sensitive. In contrast, features extracted by DETR not only contain
bounding-boxes and class labels but also are scale-robust as features are aligned by DETR decoder,
i.e., output from the penultimate layer.

Remark. Benefiting from our VT, we leverage all the information of the detected objects while
Du et al. (2020) only select the proposal with the highest confidence in each category. Therefore,
the agents in ORG will miss important information from other objects of the same class or might
be severely affected if selected proposals are false positive. In contrast, our VT preserves all the
information, and thus our agents are able to exploit the relationship among instances. This makes
our visual representation more comprehensive and essentially different from prior works.

Our local spatial feature is obtained by concatenating the normalized bounding box, confidence and
top-rated semantic label for each object. To indicate the target class to an agent, we also concatenate
a one-hot encoded target vector RN×1 with our spatial feature RN×7. After obtaining the instance
feature and spatial feature, we employ a multi-layer perceptron (MLP) (i.e., two fully-connected
layers with ReLU) and fuse them to a spatial-enhanced local descriptor L ∈ RN×d so as to act as
the key of our VT encoder.

4.2 POSITIONAL GLOBAL DESCRIPTOR

In addition to the spatial-enhanced local descriptor, agents require a global feature to describe the
surrounding environment. Similar to SAVN (Wortsman et al., 2019), we adopt ResNet18 (He et al.,
2016) pretrained on ImageNet (Deng et al., 2009) to extract global features of the observations.
Given a global feature Rh×w×D, we first employ 1×1 convolution to reduce the channel dimension
of a high-level activation map from D to a smaller dimension d, where h and w represent the
height and width of activation maps, respectively. This ensures that global descriptors have the
same dimension as the key of our VT.

Unlike previous works that directly concatenate a global feature as a part of the visual representation,
we introduce a positional global descriptor as the query in our VT decoder. A region feature only
represents visual contents in each region. To emphasize the region position information, we incorpo-
rate a positional embedding to each region feature. Then we add positional encoding Rh×w×d to the
global feature. Let u and v represent the row and column indexes of an image region respectively,
and i is the index along the dimension d. Our positional embedding is expressed as:

PE2i(u, v)=

{
sin( u

100002i/d
), 0 < i ≤ d

2

sin( v
100002i/d

), d
2 < i ≤ d PE2i+1(u, v)=

{
cos( u

100002i/d
), 0 < i ≤ d

2

cos( v
100002i/d

). d
2 < i ≤ d (1)

Therefore, each global feature represents one particular region of the observation. Finally, we re-
shape positional embedded global features into a matrix-based representation, namely positional
global descriptor G ∈ Rhw×d.
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4.3 VISUAL TRANSFORMER

After obtaining our extracted spatial-enhanced and positional global descriptors, we introduce our
visual transformer.

Encoder. In order to exploit the spatial relationship between detected instances and observed re-
gions, we attend spatial-enhanced local descriptors to positional global descriptors via a transformer.
We first feed the spatial-enhanced local descriptors into the encoder as keys and values by employing
multi-head self-attention. Following the transformer architecture (Vaswani et al., 2017; Fan et al.,
2021), each encoder layer consists of a multi-head self-attention module and a feed-forward layer.

Decoder. Inspired by human navigation behaviors, we aim to explore the correspondences between
observation regions and navigation actions. For example, once an agent notices a target lying on the
right side of the field of view, it should prioritize to select RotateRight instead of RotateLeft.
Since each positional global descriptor corresponds to a certain region of the observation, we refer to
the positional global descriptor as the location query and feed the query into the decoder. Given po-
sitional global descriptorG and encoded spatial-enhanced local descriptor L′, our attention function
of visual transformer decoder is expressed as:

Attention(G,L’) = softmax(
GL′T√

d
L′). (2)

4.4 PRE-TRAINING VISUAL TRANSFORMER

We observed that directly feeding the decoded representation from our VT to a navigation network,
we fail to learn successful navigation policy. This is mainly because training a deep VT is very
difficult especially when the supervision signals are provided by a weak reward from reinforcement
learning. Therefore, the decoded features might be uninformative and confuse an agent. The agent
would prefer to choose the termination action (often around 5 steps in our experiments) in order to
reduce penalties from reinforcement learning.

To address the aforementioned issue, we propose a pre-training scheme for our VT. To be specific,
we enforce the decoded features to be expressive by introducing an imitation learning task, as seen in
Figure 2. Concretely, human navigation behaviors can be predicted from the decoded representations
in a step-wise fashion. We use Dijkstra’s Shortest Path First algorithm to generate optimal action
instructions as human expert experience. Under the supervision of optimal action instructions, our
VT learns to imitate the optimal navigation action selection.

In the pre-training stage, we do not employ our navigation network (i.e., LSTM), and previous
actions as well as states are not available. Note that, in our navigation network, previous actions,
previous states and current visual representations are exploited, as seen in Figure 2. Thus, we replace
our LSTM with an MLP and predict action distributions based on the current visual representation.
A cross-entropy loss Lvt = CE(at, â) is employed to train our VT and the MLP, where at is the
predicted action, â represents the optimal action instruction and CE indicates the cross-entropy
function. After pre-training, features from our VT also exhibit strong association with directional
navigation signals as only an MLP is employed on top of the features. Therefore, the decoded
features will facilitate the navigation network training.

5 EXPERIMENTS

5.1 PROTOCOLS AND EXPERIMENTAL DETAILS

Dataset. We perform our experiments on AI2-Thor (Kolve et al., 2017), an artificial 3D environment
with realistic photos. It contains 4 types of scenes, i.e., kitchen, living room, bedroom and bathroom.
In each type of scenes, there are 30 different rooms with various furniture placements and items.
Following Du et al. (2020), we choose 22 categories as the target classes and ensure that there are at
least 4 potential targets in each room.

We use the same training and evaluation protocols as the works (Wortsman et al., 2019; Du et al.,
2020). 80 rooms out of 120 are selected as the training set while each scene contains 20 rooms.
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Table 1: Comparison with the state-of-the-art. We report the average success rate (%) and SPL as
well as their variances in parentheses by repeating experiments five times. L > 5 represents the
episodes which require at least 5 steps.

Method ALL L ≥ 5
Success SPL Success SPL

Random 8.0 (1.3) 0.036 (0.006) 0.3 (0.1) 0.001 (0.001)

WE 33.0 (3.5) 0.147 (0.018) 21.4 (3.0) 0.117 (0.019)

SP (Yang et al., 2018) 35.1 (1.3) 0.155 (0.011) 22.2 (2.7) 0.114 (0.016)

SAVN (Wortsman et al., 2019) 40.8 (1.2) 0.161 (0.005) 28.7 (1.5) 0.139 (0.005)

ORG (Du et al., 2020) 65.3 (0.7) 0.375 (0.008) 54.8 (1.0) 0.361 (0.009)

ORG+TPN (Du et al., 2020) 69.3 (1.2) 0.394 (0.010) 60.7 (1.3) 0.386 (0.011)

Baseline 62.6 (0.9) 0.364 (0.006) 51.5 (1.2) 0.345 (0.007)

VTNet 72.2 (1.0) 0.449 (0.007) 63.4 (1.1) 0.440 (0.009)

VTNet + TPN (Du et al., 2020) 73.5 (1.3) 0.440 (0.009) 63.9 (1.5) 0.440 (0.011)

We equally divide the remaining 40 rooms into validation and test sets. We report the results of the
testing data by using the model with the highest success rate on the validation set.

Evaluation metrics. We evaluate our model performance by success rate and Success Weighted
by Path Length (SPL). The success rate measures navigation effectiveness and is computed by
1
N

∑N
n=0 Sn, where N is the number of episodes and Sn is a success indicator of the n-th episode.

We adopt SPL to measure the navigation efficiency. Given the length of the n-th episode Lenn and
its optimal path Lenopt, SPL is formulated as 1

N

∑N
n=0 Sn

Lenn

max(Lenn,Lenopt)
.

Training details. We use a two-stage training strategy. In Stage 1, we train our visual transformer
for 20 epochs with the supervision of optimal action instructions. In this fashion, we explicitly
construct the association between visual representations and navigation actions. In Stage 2, we train
the navigation policy for 6M episodes in total with 16 asynchronous agents. We set a penalization
−0.001 on each action step and a large reward 5 when an agent completes an episode successfully.
We adopt DETR as the object detector and fine-tune DETR on the AI2-Thor training dataset. In
training DETR, we applied data augmentation, such as resize and random crop. We use the Adam
optimizer (Kingma & Ba, 2014) to update the policy network with a learning rate 10−4 and the
pre-trained VT with a learning rate 10−5. Our codes and pre-trained model will be publicly released
for reproducibility.

5.2 COMPETING METHODS

We compare our method with the following ones: Random policy. An agent chooses actions based
on a uniform action probability. Thus, the agent will walk or stop in a scene randomly. Scene Prior
(SP) (Yang et al., 2018) learns a graph neural network from the FastText database (Joulin et al.,
2016) and leverages the scene prior knowledge and category relationships for navigation. Word
Embedding (WE) uses GloVe embedding (Pennington et al., 2014) to indicate the target category
rather than detection. The association between object appearances and GloVe embeddings is learned
through trail and error. Self-adaptive Visual Navigation (SAVN) (Wortsman et al., 2019) introduces
a meta reinforcement learning method that allows an agent to adapt to unseen environments. Ob-
ject Relationship Graph (ORG) (Du et al., 2020) is a visual representation learning method to
encode correlation among categories and employs a tentative policy network (TPN) to escape from
deadlocks. Baseline is a vanilla version of VTNet. We feed the concatenation of the local instance
features from DETR and the global feature to A3C for navigation. Note that, our baseline does not
employ spatial-enhanced local and positional global descriptors as well as our visual transformer.

5.3 EVALUATION RESULTS

Improvement over Baseline. Table 1 indicates that VTNet surpasses the baseline by a large margin
on both success rate (+9.6%) and SPL (+0.085). Baseline only resorts to the detection features and
global feature for navigation. The relations among local instances and the association between the
visual observations and actions are not exploited. This comparison suggests that our VT leads to
informative visual representations for navigation, and thus significantly improves the effectiveness
and efficiency of our navigation system.

Comparison with competing methods. As indicated in Table 1, we observe that VTNet signifi-
cantly outperforms SP (Yang et al., 2018) and SAVN (Wortsman et al., 2019). Since SP and SAVN
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Figure 3: Visual results of four different models in testing environments. The target objects
(i.e., RemoteControl) are highlighted by the blue boxes. Green and red curves represent success
and failure cases, respectively. The episode produced by our VTNet is successful in reaching the
target and use shortest steps. In comparison, ORG takes more steps to reach the target. SAVN and
Baseline miss both targets.

employ word embedding as a target indicator while VTNet replaces word embedding with our VT,
our method achieves expressive object and image region representations for navigation. In addition,
SP and SAVN concatenate features from various modalities directly to generate visual represen-
tations. The gap between different modalities may not facilitate navigation policy learning. In
contrast, benefiting from our pre-training, features from our VT are more correlated to navigation
actions, thus expediting navigation policy learning.

Our method outperforms the state-of-the-art method ORG (Du et al., 2020) by +2.9% in success
rate and +0.055 in SPL. Moreover, when ORG does not employ TPN, the advantage of our method
becomes more obvious (6.9% improvement), and this mainly comes from our superior visual presen-
tations. Since ORG only chooses an object with the highest confidence in each class, the relationship
among objects is not comprehensive. On the contrary, our method can exploit all the detected in-
stances to deduce the relationships among objects due to our VT architecture. Moreover, since
DETR infers the relations between object instances and the global image context, the local features
output by the DETR are more informative compared to the object features used in ORG. This can be
proved by the result when we use Faster R-CNN as our backbone, as indicated by Table 2. We also
show a case study in Figure 3 (more visual results are provided in the appendix). Furthermore, we
also try to employ TPN to improve our navigation policy. As seen in Table 1, VTNet+TPN improves
the success rates but the improvement is not as much as ORG+TPN. This also implies that our visual
representations significantly facilitate navigation action selections.

Case Study. As illustrated in Figure 3, SAVN and Baseline both issue the termination command
after navigating a few steps (7 and 19 steps, respectively), but fail to reach the target. This indicates
that the relationships among categories are not clear in SAVN and Baseline. In contrast, both ORG
and VTNet find the target. Since our visual transformer provides clear directional signals, VTNet
uses the least steps to find the object.

5.4 VARIANT AND ABLATION STUDY

In this section, we analyze the impact of each component in VTNet, including the spatial-enhanced
local descriptor, positional global descriptor, visual transformer that fuses these two spatial-aware
descriptors and pre-training scheme.

To illustrate the necessity of the spatial enhancement, we directly use the object features without
spatial enhancement. In this case, our network fails to converge because the feed-forward layers that
predict bounding-boxes and class labels in DETR are not used in VTNet and spatial information
cannot be decoded by the navigation network. Thus, spatial enhancement allows an agent to exploit
instance location information explicitly.

As indicated in Table 2, we achieve better navigation performance using instance features from
DETR compared to employing Faster R-CNN features following the feature extraction of Du et al.
(2020) (“Faster R-CNN”). Unlike Faster R-CNN, DETR infers the relations between object in-
stances and the global image context via its transformer to output the final predictions (i.e., class
labels and bounding boxes). Although DETR and Faster R-CNN achieve similar detection perfor-
mance (Carion et al., 2020), features extracted by DETR are more informative and robust than those
of Faster R-CNN used in ORG. Specifically, ORG extracts features from the second layer of the
backbone in Faster R-CNN based on the predicted bounding-boxes to ensure the features are com-
parable, but the features are not the most prominent ones across the feature pyramid. Therefore, the
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Table 2: Impacts of different components on navigation performances. Faster R-CNN and Faster
R-CNN† represent instance features extracted by Faster R-CNN following Du et al. (2020) and
Anderson et al. (2018a), respectively.

Method w/o
global

w/o
decoder

w/o
pe VTNetg

Baseline VTNet
Faster

R-CNN
Faster

R-CNN
† DETR Faster

R-CNN
Faster

R-CNN
† DETR

ALL Success 67.0
(2.8)

67.0
(1.4)

71.0
(0.7)

70.1
(1.3)

56.4
(0.9)

57.2
(1.1)

62.6
(0.8)

70.1
(1.0)

70.3
(1.2)

72.2
(1.0)

SPL 0.390
(0.021)

0.373
(0.013)

0.432
(0.009)

0.411
(0.009)

0.319
(0.007)

0.308
(0.008)

0.365
(0.010)

0.396
(0.010)

0.387
(0.012)

0.449
(0.007)

L ≥ 5
Success 54.5

(3.1)
53.2
(1.6)

61.2
(0.9)

60.6
(1.5)

42.5
(1.2)

46.7
(1.3)

51.5
(1.0)

61.7
(1.2)

62.1
(1.4)

63.4
(1.1)

SPL 0.357
(0.021)

0.343
(0.017)

0.416
(0.010)

0.395
(0.011)

0.270
(0.009)

0.276
(0.010)

0.345
(0.012)

0.399
(0.016)

0.376
(0.012)

0.440
(0.009)

object features “Faster R-CNN” extracted by ORG are inferior to DETR features, and our navigator
employing DETR features outperforms ORG.

Moreover, we adopt the instance features from Faster R-CNN following the feature extraction fash-
ion of Anderson et al. (2018a) (“Faster R-CNN†”). Thus, we obtain the instance features from the
penultimate layer of the classifier in Faster R-CNN. We observe that instance features from DETR
also improve the navigation performance compared to the Faster R-CNN† features. We speculate the
improvements mainly come from the fact that the features output by DETR decoder have embedded
global context information, and those features are more suitable for the feature fusion operations.

As seen in Table 2, we first remove the global feature from our system (“VTNet w/o global”), and
the navigation performance degrades significantly. This validates the importance of global features,
which provide contextual guidance to an agent. Moreover, when we remove the positional embed-
ding from the global feature (“VTNet w/o pe”), we observe that both effectiveness and efficiency of
the navigation decrease. This indicates that the position embeddings facilitate our VT to exploit the
spatial information of observation regions. Furthermore, when we remove the VT decoder (“VTNet
w/o decoder”) and concatenate the global and local descriptors directly, our method suffers per-
formance degradation. This demonstrates that our VT plays a critical role in attending the global
descriptors to local ones. Additionally, we feed the positional global features into the transformer
encoder (“VTNetg”). The navigation performance of VTNetg is superior to that of ORG but slightly
inferior to the performance of our VTNet. This demonstrates the transformer architecture is effective
to extract informative visual representations, and assigning different functions to different modules
would further facilitate the establishment of mappings in our VT.

When the pre-training scheme is not applied to our VT, our agent fails to learn any effective navi-
gation policy and thus we do not report the performance. This manifests that our VT pre-training
procedure provides a good initialization to our transformer and prior knowledge on associating vi-
sual observations with navigation actions to agents.

6 CONCLUSION

In this paper, we proposed a powerful visual representation learning method for visual navigation,
named Visual Transformer Network (VTNet). In our VTNet, a visual transformer (VT) has been
developed to encode visual observations. Our VT leverages two newly designed spatial-aware de-
scriptors, i.e., a spatial-enhanced local object descriptor and a positional global descriptor, and then
fuses those two types of descriptors via multi-head attention to achieve our final visual representa-
tion. Thanks to our VT architecture, all the detected instances will be exploited for understanding
the current observation. Therefore, our visual representation is more informative compared to that
used in state-of-the-art navigation methods. Benefiting from our pre-training strategy, our VT is able
to associate visual representations with navigation actions, thus significantly expediting navigation
policy learning. Extensive results demonstrate that our VTNet outperforms the state-of-the-art in
terms of effectiveness and efficiency.
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A APPENDIX

A.1 FEATURE DETAILS IN VTNET
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Figure 4: Illustration feature flowchart in VTNet.

For reproducibility, we illustrate the detailed feature flowchart of our VTNet in Figure 4. We extract
instance features R100×256 and location features R100×249, and concatenate them into a spatial-
enhanced local descriptor R100×256. The local branch integrates semantic labels R100×1, bounding
boxes R100×4, confidences R100×1 and the target labels R100×1 for the current observation. In
the global branch, the positional embedding R7×7×256 is added to the global feature R7×7×256,
leading to a positional global descriptor R49×256. The spatial-enhanced local and positional global
descriptors are fused by VT encoder and then the visual representation R49×256 is output by our VT
decoder.

A.2 FAILURE CASE STUDY

1.572𝑚 > 1.5𝑚1.530𝑚 > 1.5𝑚

Target: LaptopTarget: Bowl

Figure 5: Visual results of failure cases in testing environments. The target objects (i.e., Bowl
and Laptop) are highlighted by the blue boxes. Red lines indicate the distance between the agent and
the target object. Gray curves represent trajectories of agents. Both episodes fail because distances
(i.e., 1.530m and 1.572m) between the agent and the target in the field of view are larger than the
threshold (i.e., 1.5m).

As demonstrated in Figure 5, our VTNet fails to reach targets because the distances between agents
and targets are larger than the threshold distance (i.e., 1.5m). In these two failure cases, agents find
targets but implement the termination action before reaching a position closer than the threshold.
Due to the lack of depth information and variances of target object sizes, an agent may predict that
it is within a 1.5 meter radius of the target by mistake and thus terminates current episode.
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A.3 CASE STUDY

SAVN Baseline ORG VTNet

10 steps14 steps8 steps12 steps

M
ic

ro
w

av
e

25 steps 100 steps 19 steps 6 steps

B
o

w
l

48 steps 70 steps 12 steps 8 steps

C
el

lP
h

o
n

e

32 steps 18 steps 100 steps 16 steps

Fl
o

o
rL

am
p

10 steps 20 steps 100 steps 19 steps

A
la

rm
C

lo
ck

A
la

rm
C

lo
ck

28 steps 17 steps 21 steps 27 steps

Si
n

k

13 steps 3 steps 2 steps 3 steps

Figure 6: Visual results of four different models in testing environments. We compare VTNet
with SAVN (Wortsman et al., 2019), Baseline and ORG (Du et al., 2020). The target objects are
highlighted by the blue boxes. Green and red curves indicate success and failure cases, respectively.
Our VTNet successfully reaches targets and uses the shortest steps.
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A.4 DIFFERENT VISUAL TRANSFORMER ARCHITECTURES.

Table 3: Comparison of visual transformer architectures. We report the pre-training accuracy on the
validation dataset, navigation success rate and SPL on the test dataset.

Multi-head numbers Encoder layers Decoder layers Accuracy Success SPL

4
1 1 0.722 71.2 0.433
2 2 0.723 72.2 0.449
4 4 0.715 70.0 0.419

8

1 1 0.707 70.4 0.422
2 2 0.718 70.9 0.436
4 4 0.710 68.9 0.423
6 6 0.701 68.2 0.411

We construct different transformer architectures by varying the number of encoder and decoder
layers. Table 3 summarizes the performance of these architectures. We observe that as a visual
transformer becomes too deep, a transformer may fail to converge to an optimal policy. On the other
hand, a transformer with a single encoder and decoder layer does not have sufficient network capa-
bility to produce representative features. The highest success rate is achieved when a VT contains
four multi-head self-attention mechanism modules and two layers in the encoder and decoder.

A.5 NECESSITY OF PRE-TRAINING SCHEME

Figure 7: Average episode lengths of VTNet and VTNet without pre-training during training.
We compare VTNet with VTNet without pre-training scheme. Blue and orange curves represent
VTNet and VTNet w/o pre-training, respectively.

As demonstrated in Figure 7, our VTNet spends nearly 10 steps per episode in training, while the
navigator w/o pre-training scheme often fails to reach targets and stops around 5 steps after being
trained tens of thousands of episodes. Due to the large parameters and complex architectures of
transformers, it is often difficult to train our transformers from scratch (Liu et al., 2020). Without a
good initialization for our VT, it is very difficult to learn our VT and policy network in an end-to-end
fashion with RL rewards. This is because the visual representations from VT are not informative
or even meaningless and the inferior visual representations would harm policy network learning.
As a result, the navigation policy network may be trapped into a local minimum (i.e., terminating
navigation early to avoid more penalties) and our VT cannot receive positive rewards from preceding
trajectories.
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A.6 ADDITIONAL VISUALIZATION RESULTS
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Figure 8: Visualizations of attention scores. The target classes (i.e., StoveBurner, GarbageCan,
Kettle) are highlighted by green bounding boxes. Our agent detects the instances of interest and then
attends the detected instances to the global image regions by our VT. We observe that high attention
scores are obtained on the areas corresponding to the targets. Guided by the visual representations,
the agent selects actions to approach the targets.
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