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Abstract

Open-Vocabulary Multi-Object Tracking (OVMOT) aims to detect and track multi-
category objects including both seen and unseen categories during training. Cur-
rently, a significant challenge in this domain is the lack of large-scale annotated
video data for training. To address this challenge, this work aims to effectively
train the OV tracker using only the existing limited and sparsely annotated video
data. We propose a comprehensive training sample space expansion strategy that
addresses the fundamental limitation of sparse annotations in OVMOT training.
Specifically, for the association task, we develop a diffusion-based feature gener-
ation framework that synthesizes intermediate object features between sparsely
annotated frames, effectively expanding the training sample space by approxi-
mately 3x and enabling robust association learning from temporally continuous
features. For the detection task, we introduce a dynamic group contrastive learn-
ing approach that generates diverse sample groups through affinity, dispersion,
and adversarial grouping strategies, tripling the effective training samples for
classification while maintaining sample quality. Additionally, we propose an
adaptive localization loss that expands positive sample coverage by lowering IoU
thresholds while mitigating noise through confidence-based weighting. Extensive
experiments demonstrate that our method achieves state-of-the-art performance on
the OVMOT benchmark, surpassing existing methods by 3.8% in TETA metric,
without requiring additional data or annotations. The code will be available at
https://github.com/zekunqian/DOVTrack.

1 Introduction

Open-Vocabulary Multi-Object Tracking (OVMOT) aims to track objects of any given category within
a scene, including unseen classes during training [1]. Unlike traditional Multi-Object Tracking (MOT)
tasks, OVMOT is not limited to specific categories of objects, such as pedestrians and vehicles; instead,
it can handle a broader range of object categories. This capability enhancement significantly improves
the applicability of tracking problems but introduces greater challenges. One major challenge is
building datasets that are both large-scale and diverse in object categories. However, most existing
large MOT datasets [2—6] often suffer from limited categories, making it difficult to train effective
OVMOT algorithms.

To obtain effective training data, most current approaches [1, 7, 8] primarily rely on large-scale image
datasets like LVIS [9], which facilitates OVMOT training by augmenting single images into image
pairs. While such image data can supplement target categories and increase annotation scale, they
are fundamentally limited by their static nature and lack of temporal information. This limitation
restricts the model’s ability to learn essential dynamic features of videos, such as object deformations,
viewpoint changes, and gradual occlusion. Therefore, while modern OVMOT research relies on these
image datasets, training a robust OV tracker using continuous video data appears more promising.
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Recently, the TAO dataset [10], with its 833 categories, is the only suitable video training set that
meets the diversity requirements for current OVMOT research. Although TAO offers a rich variety
of categories, its small size and sparse annotations pose significant challenges for model training.
Specifically, although TAO consists of 500 videos, one annotated frame is provided every 30 frames,
resulting in an average of only 37 annotated frames per video. Additionally, each frame has a
limited number of annotated targets, with an average of only 2 annotated objects per frame. This
spatiotemporal sparse annotation format and limited data scale make it difficult for the model to
effectively capture temporal dynamic changes of the targets and the spatially dense objects in each
frame, thus leading to challenges in OVMOT training. As validated by experiments in OVTrack [1]
and SLAck [11], using such a small-scale dataset with sparse annotations cannot be used to train a
usable OV tracker. This leads us to a key question: Is it possible to train an effective and robust OV
tracker directly using the TAO dataset with only limited and sparsely annotated data? This problem
is challenging for two key reasons. First, it is essential to effectively utilize the temporally sparse
annotated data to obtain more continuous target features at intervals (un-annotated frames), thereby
enhancing the continuity of the tracking training. Second, the training is constrained by the limited
size of data, necessitating the learning of sufficient meaningful information from the small-scale data
for efficient training.

For the temporal sparse annotation issue, the sole work, SLAck [11], has attempted to train an
OVMOT using the TAO dataset. It utilizes annotations from previous frames and the targets detected
at intervals to generate pseudo labels based on Intersection over Union (IoU) for training. This
method aims to convert the originally sparse annotations in the videos into a denser format, enhancing
the continuity of the video annotations and increasing the number of learnable samples. However, this
approach has notable limitations: First, pseudo labels built on previous frames are only effective for
adjacent frames. Those generated at longer intervals often exhibit significant deviations, especially
for rapidly moving targets. Second, this method relies on frame-by-frame processing of un-annotated
images and on the quality of the detector, resulting in time-consuming preprocessing and unstable
performance. Third, this approach computes IoU only with a single annotated frame to predict
annotations, without considering relationships with neighboring annotated frames. It focuses solely
on unidirectional continuity and fails to align pseudo labels generated within intervals with annotations
on both sides.

To address these challenges, we No Real Interval Frame Needed Denoising
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tained during the denoising pro-
cess as usable outputs. This leads
to a novel diffusion-based ap-
proach for generating object fea-
tures at the intervals from sparse
annotations. As illustrated in Fig-
ure 1(a). For the first time, we
model the denoising process of diffusion as the temporal evolution of target features, simulating the
changes in target features between the two sparse annotated frames to acquire the object features in
the intervals. Specifically, we construct the starting point of the diffusion model’s denoising process
by adding Gaussian noise ¢ to the object features at the initial annotated frame 7. We then perform
denoising at various time steps to learn the target features at the interval frames. The output of the
denoising process is the next annotated frame 7'. To ensure the reliability of the object features
during interval frames, we develop 1) a reconstruction loss that utilizes interpolation information as
supervision to ensure the feature reliability; 2) an endpoint loss to guarantee that the endpoint of the

Figure 1: Illustration of our strategies for effectively enriching
trainable samples. (a) Generating unlabeled object features at
intervals using a diffusion model. (b) Generating approximately
three times more samples via a dynamic grouping strategy. (c)
Harvesting additional low-confidence samples by lowering the
IoU threshold between detections and ground truth.



denoising path accurately aligns with the object from 7’; 3) a smoothness loss that balances feature
smoothness between un-annotated frames and neighboring annotated frames to achieve smooth object
feature transitions. By training the diffusion model, we simulate the object feature variations and
obtain the object features at intervals between two annotated frames. These features will subsequently
be used for training, addressing the challenges of effective training with sparse annotations.

Furthermore, most existing detection-based OVMOT methods directly use LVIS pre-trained Open-
Vocabulary Detector (OVD) and do not consider OVD during the tracker training process. To
investigate thoroughly, we first find that fine-tuning the pre-trained OVD on small-scale datasets,
like TAO with long-tailed category distributions, leads to a significant decline in performance. The
primary reason for this issue is that models pre-trained on large-scale datasets, like LVIS (164K
samples), struggle to effectively adapt to the smaller and unevenly distributed samples in datasets
like TAO. Since detection is very important for OVMOT, we explore how to effectively fine-tune the
OVD using the TAO with small-scale data and annotations. For this purpose, we propose a couple
of new strategies to address the issue of insufficient learnable samples in TAO, thereby improving
object classification and localization performance. First, as shown in Figure 1(b), we design a
dynamic group contrastive learning strategy that categorizes object features into affinity groups,
dispersion groups, and adversarial groups, respectively, to enhance the object category diversity. With
this strategy, the available samples have increased approximately threefold, effectively improving
the contrastive learning for object classification under sparse and limited data conditions. It also
effectively increases category diversity by adding the implicit new samples. Additionally, we introduce
an adaptive localization loss strategy. Specifically, as shown in Figure 1(c), by deliberately lowering
the sampler IoU threshold between detection boxes and ground truth (GT), we first incorporate more
low-confidence positive samples. Then, for the localization task, we dynamically adjust loss weights
to make full use of the low-confidence samples, effectively mining the information of valid samples.
These two strategies significantly increase the quantity of learnable samples, resulting in higher
accuracy and robustness in the model’s localization and classification tasks. Our contributions can be
summarized as follows:

1. Addressing the OVMOT association training problem under sparse annotations: We propose
a novel diffusion-based model to simulate the features of targets at (un-annotated) interval
moments, effectively enriching the feature space by enhancing the continuity of association
features, thereby overcoming key challenges posed by temporal sparse annotations.

2. Achieving efficient fine-tuning of OV detectors under small-scale data: We propose a new
dynamic group contrastive learning strategy to improve the classification by implicitly
constructing new training samples. We also propose an adaptive localization loss that not
only significantly expands the sample size but also alleviates the influence of low-confidence
samples for localization learning.

3. Achieving state-of-the-art (SOTA) performance on the OV-TAO benchmark: Extensive
results show that the proposed method achieves SOTA results, and verify the effectiveness
and superiority of each component in our method.

2 Related Work

Open-world/vocabulary object detection. Open-world object detection diverges from traditional
approaches by discovering salient objects without relying on a predefined label set [13—15]. Rather
than assigning instances to known categories, it formulates recognition as clustering around learned
class prototypes, enabling the discovery of novel objects [14]. Open vocabulary detection (OVD)
takes this a step further by requiring explicit prediction of unseen class names [16], commonly
achieved by integrating text embeddings into the detector’s training pipeline [17, 18]. The emergence
of vision—language models like CLIP [19], which align visual features with textual descriptions,
has markedly enhanced open-vocabulary classification. Building on CLIP, recent studies [20-22]
adapt these pre-trained models for both open-vocabulary and few-shot object detection. Furthermore,
prompt-learning techniques that refine class-description embeddings [23-25] have been shown to
boost detection accuracy in open-vocabulary scenarios. Unlike existing OVMOT approaches that
simply deploy a pretrained OVD in downstream tasks to avoid performance loss, our method explicitly
addresses the degradation in detection performance that occurs when fine-tuning OVD on small-scale
datasets, substantially enhancing both detection and classification accuracy.



Open-world/vocabulary object tracking. Research on open-world tracking remains limited. Early
methods either segment or follow every moving object in a video [26, 27] or employ class-agnostic
detectors for generic object tracking [28-30]. The TAO-OW benchmark [31] is introduced to
drive progress in this area, but it evaluates only class-agnostic metrics and overlooks class-specific
performance. To address these gaps, OVTrack [1] brings open-vocabulary capabilities to tracking by
integrating OVD into a framework to recognize a wide variety of scene objects. It also establishes
a new baseline and benchmark built upon the TAO dataset. However, most existing OVMOT
methods [1, 32, 8] rely on a frozen OVD and train the association head exclusively on large sets of
static image pairs, thereby ignoring the temporal continuity present in video data. In contrast, our
approach achieves effective OVD fine-tuning with only a few samples and introduces a diffusion-
based target-feature association learning algorithm that attains SOTA performance using merely
sparsely annotated frames. Moreover, when compared to other TAO-trained OVMOT algorithms [11],
i.e., SLAck, our method surpasses its tracking accuracy despite not using any interval frames.
While SLAck augments appearance features with motion and classification cues, we still exceed its
performance by relying solely on appearance information.

Diffusion model. The diffusion model is a recently popular class of deep-learning-based generative
models that recover valid samples from a random distribution via an iterative denoising process. It
has achieved remarkable success in image generation, e.g., DALL-E 2 [33], Stable Diffusion [34] and
VQ-Diffusion [35], efc. Following the trajectory of the success of image generation, video generation
methods [36—40] have also made significant progress, using text prompts to guide diffusion models in
producing coherent frame sequences. However, existing pixel-level video diffusion models demand
large size of data to generate intermediate frames, incurring substantial computational costs and
training time. They also cannot generate accurate annotations for those synthesized frames, leaving
the problem of learning from sparsely labeled datasets unaddressed. To address this problem, we
propose a feature-level diffusion framework that models object state transformation between sparsely
annotated frames. Our method uses only a few sparse annotations to directly simulate each target’s
feature evolution between labeled frames, efficiently generating intermediate object representations
and thus enabling high-performance OV tracker training.

3 Proposed Method

This work primarily focuses on addressing the challenges of training the OVMOT model with limited
sparsely annotated data, rather than on the design of the model structure itself. Therefore, we utilize
the baseline architecture from OVTrack [1], which is built upon the ResNet-50 backbone and includes
the localization, classification and association heads as below:

Localization: It employs a class-agnostic object proposal approach from Faster R-CNN [41] to
localize objects for both base and novel categories, generating bounding boxes and confidence scores.

Classification: The classification head enhances the framework’s open-vocabulary capabilities
through feature distillation with CLIP [19]. It obtains classification features F¢s of objects and aligns
them with the text features Fiey generated by CLIP’s text encoder. By calculating the cosine similarity
between these features and predefined novel class names, the framework determines if the similarity
exceeds a threshold, thereby identifying the corresponding novel classes.

Association: The association head links detected objects across frames by learning object appearance
features Fq, for similarity measurements. If the appearance similarity between objects exceeds a
certain threshold, they are considered the same target and assigned to the same tracking trajectory.

3.1 Diffusion-based Data Generation for Association Training

Inspired by the success of diffusion models in various generative tasks, we aim to leverage this frame-
work for feature association in OVMOT. Classical diffusion methods typically focus on obtaining a
final denoised feature representation. However, our approach takes a novel perspective by utilizing
intermediate results throughout the diffusion process instead of solely relying on the final output.

As shown in Figure 2, given the object features from one annotated frame 7 as the key feature
Fey € RE*d We denote the features of the same object from the next annotated frame 7’ as the
reference feature F; € RP*?, where B is the batch size and d is the dimension of the features. We
model the denoising process as learning the mapping from Fiey to Frer. The aim is to utilize the
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Figure 2: lustration of the denoising process in our diffusion model, which simulates the transforma-
tion of object features from Fiey to Fier to obtain the un-annotated object features at interval frames.

diffusion model to simulate the intermediate states of the object and extract associated features at
different timesteps.

Forward Process. The forward noise perturbing process at time ¢ is defined as

go(F'|F*1) = N(F'5 /1= B, F' 1 Bil), (M
which gradually adds Gaussian noise to the data according to a variance schedule 5i,..., 0.

The construction of features at time ¢ can be expressed as F'* = Vi Fiey + /1 — aye, where

oy = HZ:1(1 — Bs) and € ~ N(0,1). Here, o represents the cumulative product of the variance

schedule up to time ¢.
Reversed Process. The reverse process pe(Ft_l |Ft, Fer) then simulates the transition from Fiey to
F,.t, systematically obtaining Fj.; from F* through the denoising process, as

B 1 11—«
Pl = o= | P - ———=—=1(F" Furt) | . @
1—]limy

where f is a neural network that estimates the noise present in F'*, incorporating Fj as a crucial
input for refining its predictions.

Loss Functions. To ensure effective training of the diffusion model, we define the following loss
functions that encapsulate the mapping process from Fiey to Frer. In the following, we denote the
intermediate features F'* as F, , corresponding to the association features in OVMOT at timestep .

asso?
1) Reconstruction loss. To ensure that the features at frame ¢ accurately represent the changes

between Fiey and Fir, we construct a reconstruction loss through interpolation. We use time ¢ to
balance the interpolation ratio, resulting in the following loss

1
Lrecon = N Z ||Fatsso - [t/ery + (1 - t/)Fref] ||§a (3)

te{t1,ta,....tn}

where ¢; are the timesteps, IV is the number of sampled timesteps, and ¢’ € [0, 1] is the normalized
timesteps. This loss encourages the model to reconstruct F) as a linear interpolation between Fiey

and Fyr based on the current normalized timestep ¢/, reinforcing the model to approximate the state
between the key and reference features.

2) Endpoint loss. In addition to ensuring the accuracy of the reconstructed features at intermediate
timesteps, it is also essential that the final denoised features align with Fi.s to establish a complete
transformation chain from Fiey to Fre, resulting in the following loss

Lena = ||Fa2so*FrefH3~ 4)

This loss ensures that the final associated features F0

o (resulting from the complete denoising
process) exactly match the reference features Fies.

3) Smoothness loss. Although the two losses above ensure the accuracy of the results at each
timestep, they do not account for the smoothness of the feature changes at each timestep, while the



objects always change smoothly in a continuous video. To address this, we consider the consistency
relationship between features during the transformation process and construct the following loss
2

Jte{ty,ta, .., tN}- )
2

t t
Fasso - ery Frer — F,

asso

F;sso_ery” - HF‘ref_Ft ”

asso

Lsmonth = H ||

This loss encourages smooth transitions between the associated features across timesteps, preventing
abrupt changes in feature representation, which can occur due to the inherent noise in observed data.

Overall, these losses assist the diffusion model in constructing accurate and smooth feature represen-
tations at intermediate timesteps, facilitating the overall mapping from Fiey to Frer. The intermediate
features F, obtained during the denoising process of the diffusion model will be utilized as the
object association features at un-annotated interval frames for association training, addressing the
issue of sparse annotations.

Enhanced Association Training with Generated Features. Our diffusion model fundamentally
transforms sparse association training by generating intermediate features F at multiple timesteps

between annotated frames. This enhancement operates through two complementary mechanisms:

1) Quantitative Sample Space Expansion. For each object trajectory originally containing only
two annotated features (Fiey and Frer separated by 30 frames), our method generates N intermediate
features where N corresponds to sampling steps (typically 3). This directly expands the positive
sample set QT (q) for each object identity from 2 to 5 features, while simultaneously enriching the
negative sample set ()~ with generated features from different object trajectories. Consequently,
the total training samples increase by approximately 3x, providing substantially more positive and
negative pairs for robust contrastive learning.

2) Qualitative Feature Continuity Enhancement. Beyond quantity expansion, our generated
intermediate features F exhibit superior temporal continuity compared to sparse annotations.
The diffusion-based generation ensures smooth feature transitions through: (1) reconstruction loss
enforcing accurate interpolations between keyframes; (2) smoothness loss guaranteeing consistent
feature evolution; (3) endpoint loss ensuring precise alignment with reference features. This results
in temporally coherent feature representations that better capture object state transitions, providing

higher-quality training samples for association learning.

Building upon these enhancements, we employ the same association loss framework as OVTrack [1]
but with significantly enhanced effectiveness due to our enriched sample space. The complete tracking
loss Lick is formulated as:

.y exp(q - q*/7)
Lirack = Z QT (q)] Z log (PosD(q) T2 q-co(a eXP(Q'Q/ﬂ) @

qeQ qteQ*(q)

where PosD(q) = |Q+71(q)| dqteq+ (@ €XP(a - q"/7) and 7 is the temperature parameter. The

enriched Q*(q) contains both original keyframe features and our generated intermediate features,
while @~ (q) includes negative samples from different trajectories.

3.2 Training Sample Extending for Detection

Besides association, we next consider how to train (fine-tune) the detection model using the limited
data in TAO, which includes both the classification and localization heads. Given that TAO is a
long-tailed dataset with limited annotations, we aim to address two main challenges. First, for
classification, we need to overcome the limitations of sample quantity and diversity to effectively
learn class representations from a small number of samples. This way, we propose a dynamic
group contrastive learning approach, which increases the number of samples used in contrastive
learning by approximately 3 times, thereby significantly enhancing classification training. Second, for
localization, we seek to increase the number of localization samples (bounding boxes) by lowering
the IoU threshold for positive samples, and we apply adaptive confidence weights to reduce the noise
from low-confidence samples. We will elaborate on the methods in detail below.

Dynamic Group Contrastive Learning. We present the proposed dynamic group contrastive
learning from 1) how to construct dynamic groups and why dynamic groups effectively enhance
sample quality, and 2) how to utilize the generated dynamic groups for contrastive learning.
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Figure 3: Illustration of the construction of our dynamic groups, which generates diverse and robust
group samples, effectively tripling the training samples. For clarity, the diagram depicts only the
construction process for a group size of two; other group sizes follow the same principles.

1) Dynamic group construction. As shown in Figure 3, given the classification features (obtained
from the classification head as discussed above) of all /N, samples in each class, for each sample i,
we first calculate the Euclidean distance d* to its corresponding text center features Fiex, of this class.

Then, we sort the samples in ascending order of distance, resulting in F3, Fl}, .. Ffl\i -t chl\i .
This sorting process ranks the samples according to their similarity to the CLIP text embeddmg of
this class, which reflects the difficulty of each sample. We then group these samples in each class by
dividing all samples into g groups, where g = 2,4, 8,16, ... up to 2L°&2Ne—1 'with N, as the total
number of samples. The number of groups follows a geometric progression, where each number is
double the previous one. The total count of groups formed can be derived from the geometric sum
formula, i.e., 210g2Ne=1]+1 _ 9 with an order of magnitudes of O(/V,). After determining the groups,
each group aggregates the features of its respective samples, which is achieved by the averaging
process. To enhance the diversity and robustness of the newly constructed groups, we have designed
three distinct types of grouping manners:

@ Affinity group: The samples are sorted according to their distances to the corresponding text center.
After that, each group consists of several samples that are closest to each other. We achieve this by
minimizing the sum of variances of all g groups. The aggregated features from each similarity group
serves to reinforce the shared features among similar samples, thereby improving the model’s ability
to distinguish fine-grained differences.

@ Dispersion group: Similar to the above operation, instead of clustering the closest samples, this
manner selects the mutually dispersed samples within each class as much as possible. This is achieved
by maximizing the sum of variances of all g groups. By doing so, each dispersion group ensures a mix
of representative samples that capture varying aspects of the feature space. This manner enhances the
model’s exposure to a broader range of features, ultimately improving its generalization capabilities.
The detailed implementation and theoretical proof of grouping process are provided in Appendix A.

® Adversarial group: In constructing the adversarial group, samples are randomly selected from the
pool without considering their similarity-based ordering. Following the selection, Gaussian noise is
added to the features of the chosen samples to create adversarial conditions. This randomness and the
addition of noise help to simulate challenging scenarios for the model, forcing it to learn more robust
feature representations that can withstand variations and perturbations during testing.

2) Contrastive learning with augmented samples. With the enhanced dataset containing N, + 3
O(N,) samples, which includes the N, original samples and the 3 O(V.) newly generated samples
from 3 types of groups, we can perform contrastive learning to improve model robustness and feature
representation. The overall training objective for this augmented dataset is to minimize the InfoNCE
loss [42] formulated as follows:

N
1 exp(cos(Fl, Fit
LinfoNCE = — =7 Z log p(cos(Fa, Fa)/p) o

K 3
i=1 > k=1 eXP(COS(Fclw cls)/p) + exp(cos(F, i )/P)

where N is the total number of samples, i.e., No + 3 O(V,), I is the feature representation of
the i-th sample, F;! is the positive sample paired with Fli, K is the total number of negative
samples in the batch, cos(-, -) denotes the cosine similarity function, p is a temperature parameter
that controls the distribution sharpness. The InfoNCE loss encourages the model to bring the same
class samples closer together in the feature space while pushing different class samples further apart.

By leveraging the increased sample size from the augmented groups, the effectiveness of this loss



function is enhanced, improving the model’s ability to discern differences between classes. For
scalability analysis of this approach with large category sets, please refer to Appendix B.4.

Adaptive Localization Loss. In object localization subtasks of OVD, it is a common operation to
compute losses only for the positive samples that exceed a certain IoU threshold with the ground
truth (GT). This is acceptable for training on large-scale datasets. For limited data, to enlarge the
sample size, we propose to increase the number of positive training samples by lowering the loU
threshold, but this also introduces additional disturbance into the training process. To address this
issue, we implement an adaptive localization loss that considers the confidence of each sample.

We define the bounding box for the i-th sample as B; = (x;,y;, w;, h;), with x; and y; as the
coordinates of the top-left corner and w; and h; as the width and height, respectively. The corre-
sponding ground truth bounding box is denoted as B;. To manage the disturbance created by the
low-IoU bounding boxes, we employ a smoothing weight strategy defined for the i-th object as
w; = m € (0, 1], where ¢; = || B; — B} || denotes the absolute error between the predicted

and ground truth bounding box. This smoothing weight strategy assigns lower weights to the boxes
with larger errors. The intuition behind this approach is that predictions that significantly deviate
from the ground truth are often less reliable. By reducing their impact on the overall loss, we extend
the sample variety while emphasizing more accurate predictions, which positively contributes to the
training process. The overall adaptive localization loss can then be formulated as

N,

1 P
> " w; + LsmootL1 (Bi, By), ®)

L:Adaptive = Np :
i=1

where IV, is the total number of positive samples and we use the Smooth L, loss in Faster R-CNN [41]

0.5|B; — B|* if||Bi — B} <1

|B; — Bf|| — 0.5 otherwise. ®)

LSmoothLl (B27 Bz*) = {

This formulation of the adaptive localization loss effectively balances the inclusion of more training
samples and the necessity of disturbance management. By applying adaptive weights based on the
confidence of each prediction, we enhance the model’s robustness and accuracy during training,
ultimately improving its performance on the object localization subtask.

3.3 Implementation Details

We adopt the OVTrack [1] architecture and replicate its original pre-training protocol. In the proposed
TAO training stage, we jointly optimize the association, localization and classification branches on
the base set of the TAO training set. Training is performed for 10 epochs on only 2 RTX 3090 GPUs.
In the association training, we employ a D*MP-based diffusion model to denoise samples drawn
from a standard normal distribution. fy is implemented as a three-layer fully-connected network,
with each layer followed by a ReLU activation and layer normalization. During the first five epochs,
the diffusion model is trained on features produced by the association head (without generating
new samples), and in the subsequent 5 epochs, we freeze the diffusion model and use it to generate
augmented data for further association training. The association loss, consisting of a contrastive loss
and an auxiliary loss, is identical to that used in OVTrack. In the classification training, we apply an
InfoNCE loss with p = 0.1 in Eq. 7 and also employ the standard cross-entropy loss used in OVTrack.
In the localization training, the IoU threshold is lowered to 0.3. In the inference stage, we retain
all OVTrack settings except that we change the maximum detections per frame to 80, the matching
threshold to 0.38 and the memory length to 30.

4 Experimental Results

4.1 Datasets and Metrics

Following other OVMOT methods [1, 11, 7, 8], we perform our evaluation with standard OV settings
on the TAO dataset, which categorizes rare classes as novel and the others as base classes, similar to
LVIS [9]. Comparative experiments are carried out on both the validation and test sets of TAO. For
performance assessment, we implement the standard OVMOT metric tracking-everything accuracy
(TETA) [43], which encompasses evaluation of localization accuracy (LocA), classification accuracy



Table 1: Comparison of tracking performance on validation and test sets of the open-vocabulary TAO
benchmark [1]. All methods use ResNet-50 as the backbone. f represents using the same detector.

Method Novel | Base

TETA LocA AssocA CIsA [ TETA LocA AssocA CIsA

Validation set
QDTrack [44] 22.5 42.7 244 0.4 27.1 45.6 24.7 11.0
TETer [43] 25.7 459 31.1 0.2 30.3 47.4 31.6 12.1
DeepSORT (ViLD) [45] 21.1 46.4 14.7 2.3 26.9 47.1 15.8 17.7
Tracktor++ (VILD) [46] 22.7 46.7 19.3 22 28.3 474 20.5 17.0
ByteTrack' [47] 22.0 48.2 16.6 1.0 28.2 50.4 18.1 16.0
OC-SORT [48] 23.7 49.6 20.4 1.1 28.9 51.4 19.8 15.4
OVTrack' [1] 27.8 48.8 33.6 1.5 355 49.3 36.9 20.2
MASA (R50) [32] 30.0 54.2 34.6 1.0 36.9 55.1 36.4 19.3
OVTR [7] 314 54.4 34.5 5.4 36.6 522 37.6 20.1
OVSORT ' [8] 30.8 53.0 37.6 1.9 38.2 553 39.9 19.4
SLAck' [11] 31.1 54.3 37.8 1.3 37.2 55.0 37.6 19.1
Ours’ 35.2 59.2 40.3 6.2 40.4 58.6 42.1 20.5
Test set

QDTrack [44] 20.2 39.7 20.9 0.2 25.8 432 23.5 10.6
TETer [43] 21.7 39.1 259 0.0 29.2 44.0 30.4 10.7
DeepSORT (ViILD) [45] 17.2 38.4 11.6 1.7 24.5 433 14.6 15.2
Tracktor++ (VILD) [46] 18.0 39.0 13.4 1.7 26.0 44.1 19.0 14.8
OVTrack' [1] 24.1 41.8 28.7 1.8 32.6 45.6 354 16.9
OVTR [7] 27.1 47.1 32.1 2.1 34.5 51.1 375 14.9
OVSORT ' [8] 28.1 48.0 334 2.7 35.1 51.6 38.3 154
SLAck™ [11] 27.1 49.1 30.0 2.0 34.7 52.5 35.6 16.1
Ours’ 30.1 53.0 335 39 38.7 56.6 41.8 17.7

(CIsA), and association accuracy (AssocA). For clear evaluation, we evaluate the performance of
base and novel classes separately.

4.2 Comparison with State-of-the-Arts

We compare our method with recent tracking methods on both the validation and test sets of TAO. For
a fair comparison, all methods utilize ResNet-50 as the backbone. We include closed-set baselines
trained on all categories, established off-the-shelf trackers such as ByteTrack [47], OC-SORT [48],
and MASA [32], as well as specialized OVMOT methods like OVTrack [1], the state-of-the-art
methods, SLAck [11], OVSORT [8], and transformer-based OVTR [7].

As shown in Table 1, our method demonstrates a significant performance improvement over all
competing methods in terms of the TETA metric on both the validation and test sets. Notably, we
achieve a TETA score of 35.2% on the validation set and 38.7% on the test set, surpassing the
second-best method by 3.8% and 3.6%, respectively. In terms of individual metrics, our method
achieves particularly strong results in both novel and base AssocA. Specifically, we report a novel
AssocA of 40.3% and a base AssocA of 42.1%, marking significant increases of 4.9% and 4.5% over
SLAck, which is also trained on the TAO dataset. Note that we only use sparse annotation data, without
the interval frames used in SLAck. These improvements highlight the efficacy of our approach for
improving tracking performance. Additionally, we observe substantial improvements in both the CIsA
and LocA metrics. These gains are particularly notable under limited data, where effective fine-tuning
plays a crucial role in maximizing performance, which indicates that our proposed strategies for
sample augmentation for OVD are highly effective. Importantly, although our approach uses the
same architecture as OVTrack and is trained on sparse data, our results significantly outperform those
of OVTrack. This demonstrates the high efficiency of our training strategy with limited, sparse data.

4.3 Ablation Study

Effectiveness of diffusion-based data generation. As shown in the Association module section of
Table 2, the results indicate that the three proposed loss functions significantly enhance the association
performance. Furthermore, consistent with the findings of SLAck [11], we observe that training solely
on the original sparse TAO dataset, without supplementing intermediate frame object features, leads
to poor association results. Additionally, we compared our approach with a direct linear interpolation
data generation method. Although this method showed some performance improvement, the overall
results remained inadequate. These ablation experiments demonstrate that the intermediate target
features generated by our diffusion-based method substantially improve the association in OVMOT.

Effectiveness of dynamic group contrastive learning. As shown in the Classification module of
Table 2, first, by removing some additional groups in the top three rows, we observe a decline in



Table 2: Ablation study results on the validation set. We compare the results of different ablation
methods. Each module corresponds to a different aspects of association, classification and localization.

. Novel Base
Module Ablation Method TETA LocA AssocA CBA | TETA LocA  AssocA  CHA
w/o reconstruction loss 343 594 389 4.7 39.3 58.6 39.7 19.7
w/o smoothness loss 34.7 59.1 39.3 5.8 39.9 58.5 41.2 20.1
Association w/o endpoint loss 34.8 59.2 39.6 5.6 39.8 58.6 40.7 20.1
w/o diffusion-based data generation 31.1 58.1 31.7 3.6 36.7 58.3 335 18.2
linear interpolation data generation 31.3 57.1 327 42 37.2 57.9 343 19.5
w/o affinity group 343 589 40.0 4.1 39.9 58.8 41.5 19.4
w/o dispersion group 34.7 59.3 39.8 4.9 39.8 58.5 41.8 19.2
Classification | w/o adversarial group 342 58.8 39.9 4.0 39.6 58.3 41.6 19.0
w/o extra group data on contrastive learning | 33.2 58.7 39.6 1.2 39.0 58.1 41.2 17.6
w/o dynamic group contrastive learning 335 58.8 39.9 1.7 39.4 58.5 41.5 18.2
Localization w/o adaptive weight 31.8 52.7 38.1 4.6 36.1 51.3 38.3 18.7
w/o lower sampler IOU 32.3 54.7 37.6 4.7 38.1 55.8 39.9 18.5
Ours 35.2 59.2 40.3 6.2 40.4 58.6 4.1 20.5

the final classification results. In the fourth row, we can see a significant impact when we perform
contrastive learning using only the limited original samples, without providing the additional training
samples derived from our groups. The results in this case are even worse than those in the fifth row,
where we eliminate contrastive learning altogether and rely solely on cross-entropy loss. Additionally,
the experiments in the fifth row further prove the effectiveness of our contrastive learning approach.

Effectiveness of adaptive localization loss. In the Localization section of Table 2, we can see that the
proposed adaptive weights effectively reduce the impact of noise during localization training. Also,
utilizing a lower IoU threshold allows us to obtain a greater number of available training samples.

Impact of different sampling steps. In Table 3, we examine the impact of different sampling steps
on the results. Notably, even with a sampling step of just 1, there is a significant improvement
compared to the approach without data generation. Although the results fluctuate with an increase in
sampling steps, the differences are relatively small. This indicates that our proposed diffusion-based
data generation method is quite stable when training with sparse data.

Table 3: Ablation study results of different sampling steps on the validation set.

Sampling Steps Novel Base
TETA LocA AssocA CIsA TETA LocA AssocA CIsA
1 332 58.0 37.4 43 38.7 57.8 38.4 19.9
2 34.8 59.1 40.4 4.9 40.2 58.3 423 20.1
3 35.2 59.2 40.3 6.2 40.4 58.6 42.1 20.5
4 35.1 58.7 41.5 52 40.1 58.4 422 19.8
5 35.1 59.8 40.5 5.1 40.2 58.6 42.0 20.0

Additional analysis on detection fine-tuning necessity, challenging scenarios, scalability, and
association-centric metrics including IDF1 and MOTA are provided in Appendix B. More visu-
alization results are provided in Appendix C.

5 Conclusion

In this work, we have proposed a data-efficient OVMOT method. Based on the existing OV video
dataset with sparse and limited annotations, we develop a series of methods to explore higher data
utilization. We consider three sub-tasks in OVMOT: for the association task, we develop a diffusion-
based method for temporal object feature construction to generate intermediate features between
sparsely annotated frames; for classification, we design a dynamic group construction method to
increase the data diversity of each object class; for localization, we excavate more candidate boxes
and adaptively use them. Experimental results verify the effectiveness of our method. Through this
work, we hope to promote the efficient training of OVMOT and provide some insights for effective
learning of other detection and tracking problems on limited data.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract briefly outlines our main contributions and the focus of our work
in the field of OVMOT, while the introduction provides a detailed overview of the relevant
topics.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer:
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Justification: This paper does not discuss limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The supplementary materials include proof of the variance for different group
designs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Our experimental results can be easily replicated.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be made publicly available after the paper is accepted.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 2.4.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Work in the OVMOT field typically does not involve this type of error analysis.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section 2.4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our paper fully complies with the Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: The paper does not include a discussion related to the design.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper includes references for all the codes and datasets used.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: This paper includes the code for the relevant new algorithms.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: This paper uses the CLIP model.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Variance Implications of the Grouping Strategy

A.1 Minimizing Variance Sum through Affinity Group Construction

Problem Statement. Given a set of numbers x1, x2, . . ., £,, We want to construct k groups, denoted
as G1,Ga, ..., Gy, such that the sum of each group is Tj. The mean of each group is defined as
Ty

Pk = .=, where my, is the number of elements in group k. We aim to minimize the overall variance

52 of the sample set can be expressed as:

2 1 : 1 - 2
i3y S
i=1 j=1

Strategy for Minimizing 52. To minimize S?, we adopt a sequential grouping strategy as follows:
First, sort the data values x1, z9, .. ., z, in ascending order by the similarity from the Fi.. Then
divide the sorted data into & contiguous groups. The first group contains the smallest values, while
the last group contains the largest values.

Proof. Next, we will provide a detailed proof of why this affinity group construction strategy can
effectively achieve the minimization of S? as follows:

* Definitions and Setup: Let the mean of each group be u; = T%, where my, is the number
of elements in each group.

Exchange Argument: Suppose there are two groups ¢ and j, with y; and p; as their
respective means. Let there exist an element < y such that x € G; and y € G;. Based on
the grouping method, we can conclude that T; < T}, meaning that the sum of group 7 is less
than the sum of group j. We consider swapping these two elements:

T =T, —z+v,

TJ/ = Tj ) + x.

The new group means after the swap will be:

Ky = =
m; m;
, T Tj—y+a
Hj = — = :
m; my

Next, we need to calculate the updated variances for groups ¢ and j:

1 my
2 2
St = g (@ — i),
j=1
1 &
2 2
S DL
J j=1

+ Calculating the Change in Variance: The change in the overall variance AS? due to the
swap is given by:

AS* =87+ 85 — (57 + 53).

Calculating AS? directly can be complex; however, by swapping the larger value y from
group G; with the smaller value = from group G;, we significantly alter the internal
distribution of the elements within each group. The introduction of the larger value y
in group G; increases its variance because it increases the deviation from the new mean.
Similarly, swapping the smaller value x into group G; will also increase the variance of that
group. Therefore, as a result of these changes, it can be inferred that:
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AS? > 0.

This indicates that the overall variance increases after any swap, which suggests that the
process of selective grouping can minimize the spread of variance across the groups.

* Conclusion: Therefore, using a sequential grouping method (i.e., partitioning the data into
contiguous segments) will minimize the overall variance S2.

A.2 Maximizing Variance Sum through Dispersion Group Construction

Problem Statement. Given a set of numbers x1, zs, . . ., Z,,, We want to construct k groups, denoted
as G, Gg, ..., G, such that the sum of each group is Tj. The mean of each group is defined as
UE = Where my, is the number of elements in group k. The overall variance S? of the sample set
can be expressed as:

mp

k
1 Z 1 Z
Tk my — 1 (2 = )"
i=1 j=1

Expanding this yields:

This can be rearranged to show a fixed term:

1 k mp
*%; e — 1 z; M?

The term Z?:l x? is a fixed quantity determined by the sample set. Therefore, to maximize S2, we
need to minimize the term: Y% 1.2,

Strategy for Minimizing Zle 2. To minimize Zle 12, we adopt a two-end grouping strategy as
follows: First, sort the data values x1, o, ..., x, in ascending order by the similarity from the Fiey;.
Then, each group should be formed by selecting elements such that each group contains the largest

and smallest values available. Specifically, we can construct each group G; by taking the maximum
and minimum values from the remaining elements.

Proof. To prove that these strategies effectively minimize Zle 2, consider the following:

* Assuming Constant Total: Let’s assume the overall sum of group means is constant, i.e.,
1+ po + ...+ pr =T The goal is to minimize Zle 2 under this constraint.

* Applying Cauchy-Schwarz Inequality: By applying the Cauchy-Schwarz inequality in the
context of these means:

k(i + 5+ ) = (1 +pe+ o+ ) = T2
This implies that:

2 2 , T?
/‘1+/~L2+"'+Mk2?'

Therefore, minimizing Zle 2 occurs under the condition that the means are as equal as
possible.
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* Validating the Construction Method: Our group construction method ensures that all
w; values are as equal as possible because we are taking elements from both ends of the
distribution. This approach ensures that the means converge to the overall mean of the

sample set, thereby fulfilling the necessary condition for minimizing Zle w2

* Conclusion: By focusing on strategies that leverage the largest and smallest available
values for group construction and maintaining the overall sum of means as constant, we can
effectively.minimize the sum of squares of the means 3, i3, . .., 2, thus maximizing the
overall variance.

B Additional Experimental Analysis

B.1 Detection Model Fine-tuning Necessity

To better demonstrate the necessity of the detection fine-tuning stage, we conduct comprehensive
ablation experiments that demonstrate the effectiveness of our approach even without detection fine-
tuning. As shown in Table 4, we evaluate our method without detection fine-tuning on TAO, using only
our diffusion-based association enhancement. Our method still achieves competitive performance,
particularly in association accuracy, indicating the core effectiveness of our diffusion-based approach.

Table 4: Performance comparison without detection fine-tuning on TAO validation set.

Method Novel Base
TETA | LocA | AssoA | CIsA | TETA | LocA | AssoA | CIsA
OVTrack 27.8 48.8 33.6 1.5 35.5 49.3 36.9 20.2
SLAck 31.1 54.3 37.8 1.3 37.2 55.0 37.6 19.1
OVTR 314 54.4 34.5 5.4 36.6 52.2 37.6 20.1
Ours (w/o det. fine-tune) 324 55.3 39.9 2.1 38.7 55.3 41.1 19.8

Overall, our proposed method benefits from but is not dependent on detection fine-tuning. The
complete version with fine-tuning constructs a comprehensive data-efficient training paradigm that
maximizes the utility of limited sparse annotations, creating a holistic approach that leverages both
association improvements (via diffusion) and detection improvements (via fine-tuning) to achieve
optimal performance under data-constrained conditions.

B.2 Analysis on Challenging Scenarios

To comprehensively assess our method’s robustness, we systematically selected the most challenging
videos from the TAO validation set (93 videos out of 988 total videos) using multiple quantitative
criteria. Videos satisfying any of the following conditions were included in our challenging subset:

Selection Criteria:

* Heavy Occlusion Scenarios: Videos with substantial mutual occlusions where object
bounding boxes exhibit IoU > 0.4 with other objects for more than 20% of the total frames.

* Rapid Motion Patterns: Videos with fast-moving objects where the average displacement
ratio (bounding box center displacement to box diagonal length) > 0.3 across consecutive
frames.

* Frequent Entry/Exit Dynamics: Videos where objects exhibit frequent entry/exit behaviors
(more than 3 entry/exit cycles per trajectory on average).

* High Object Density: Videos containing crowded scenes with more than 8 concurrent
objects per frame on average.

Using these systematic criteria, we identified videos presenting challenging tracking conditions,

which we refer to as TAO-Hard. The evaluation results are shown in Table 5. ) )
The results show different levels of performance degradation in these challenging scenarios, which

is natural given the unpredictable object states, significant appearance changes, and objects leaving
and re-entering the scene. Nevertheless, our method maintains superior performance compared to
existing approaches, demonstrating strong robustness across diverse scenarios.
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Table 5: Performance comparison on challenging scenarios (TAO-Hard).

Method Novel Base
TETA LocA AssoA CIsA TETA LocA AssoA CIsA
OVTrack 27.8 48.8 33.6 1.5 35.5 493 36.9 20.2
OVTrack on TAO-Hard | 25.9(-1.9) 453 31.3 1.1 33.9(-1.6)  49.1 33.4 19.3
OVTR on TAO 31.4 54.4 34.5 5.4 36.6 52.2 37.6 20.1
OVTR on TAO-Hard 28.4(-2.0) 51.2 32.1 1.9 352(-1.4) 512 35.2 19.1
Ours on TAO 35.2 59.2 40.3 6.2 40.4 58.6 42.1 20.5
Ours on TAO-Hard 33.4(-1.8) 57.6 39.2 34 39.2(-1.2) 57.1 40.3 20.1

B.3 Additional Association-Centric Metrics

To provide a more comprehensive evaluation of association performance, we include additional
association-centric metrics as suggested by reviewers. Table 6 shows our experimental results on
IDF1 and ID switches (IDSW) metrics.

Table 6: Association-centric metrics comparison on TAO validation set.

Methods | IDF1 (%) | IDSW | MOTA (%)
OVTrack 69.3 18,962 44.4
OVTR 72.6 12,128 48.2
Ours 76.2 10,393 57.3

Our method demonstrates strong association capability with the highest IDF1 (76.2%) and lowest ID
switches (10,393), confirming the effectiveness of our diffusion-based approach for object association.

B.4 Scalability Analysis

To analyze the computational efficiency with larger category sets, we conduct comprehensive exper-
iments with class counts ranging from 10 to 1200 in Table 7. We measure the average time taken
for dynamic group contrastive learning per batch, which includes both the construction of dynamic
groups and the calculation of contrastive learning loss.

Table 7: Scalability analysis of dynamic group contrastive learning.
Class counts 10 100 | 200 | 400 | 800 | 1200
Sec/batch 0.11 | 0.13 | 0.15 | 0.20 | 0.24 | 0.27

The results demonstrate good scalability of the proposed method. Even at 1200 classes, the average
time consumed per batch is only 0.27 seconds, with the majority of this time spent on dynamic group
construction. The time required for contrastive learning loss calculation remains below 0.1 seconds
across all class counts, demonstrating that our dynamic group contrastive learning approach scales
efficiently and is not computationally prohibitive for very large category sets.

C Qualitative Analysis

We compare our method with the baseline method OVTrack across several challenging scenarios
involving novel object classes. As shown in Figure 4, in the first construction site scene, our approach
effectively and accurately tracks fast-moving drones, whereas OVTrack fails to detect the drones
at all. Moreover, our method precisely classifies the bulldozer as a novel object category, while
OVTrack misclassifies it as a truck and initially fails to detect the object entirely. Our method also
demonstrates superior detection and tracking capabilities for base object classes (persons).

In the second racing scenario, characterized by high-speed vehicles and occlusion, our method
successfully tracks and correctly classifies the race cars. In contrast, OVTrack struggles to detect
occluded targets and exhibits incorrect ID switching. Its classification is also less precise, categorizing
the vehicles under the broader “car” class instead of the specific “race car” category.

Figure 5 depicts a scene from the African savanna, featuring a novel category hippopotamus and two
lions chasing it. Our method successfully classifies the hippopotamus correctly, whereas OVTrack
misidentifies it as an “elephant”. Additionally, OVTrack incorrectly labels the lion as a “horse” and
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“cow”. Moreover, our approach demonstrates superior detection and tracking accuracy compared to
OVTrack.

Figure 6 illustrates the tracking performance in a field scenario, featuring a fast-moving dragonfly
belonging to a novel category. Compared to OVTrack, our proposed method demonstrates superior
detection and tracking capabilities, successfully identifying the dragonfly. In contrast, OVTrack fails
to detect the dragonfly in most frames and cannot accurately classify it.

These results demonstrate that our method, through efficient training, significantly enhances localiza-
tion, classification, and association capabilities across diverse and challenging tracking scenarios.

Ours

Figure 4: Visualization results from construction sites and race tracks with novel object categories,
including drones and bulldozers in the construction scene, along with race cars in the racing track.

Ours

Figure 5: Visualization results in the African savanna with the novel object category, hippopotamus.
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Ours

Figure 6: Visualization results in the field with the novel object category, dragonfly.
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