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ABSTRACT

Long chain-of-thought (CoT) significantly enhances the reasoning capabilities
of large language models (LLMs). However, extensive reasoning traces lead to
inefficiencies and increased time-to-first-token (TTFT). We propose a novel train-
ing paradigm that uses reinforcement learning (RL) to guide reasoning LLMs
to interleave thinking and answering for multi-hop questions. We observe that
models inherently possess the ability to perform interleaved reasoning, which
can be further enhanced through RL. We introduce a simple yet effective reward
scheme to incentivize correct intermediate steps, guiding the policy model toward
correct reasoning paths by leveraging intermediate signals generated during inter-
leaved reasoning. Extensive experiments across five diverse datasets and three RL
algorithms (PPO, GRPO, and REINFORCE++) demonstrate consistent improve-
ments over traditional think-answer reasoning, without requiring external tools.
Our method improves final task accuracy and overall efficiency by enabling more
effective credit assignment during RL. Specifically, our approach reduces TTFT by
over 80% on average, reduces overall reasoning length by 37%, and achieves an
average 12.5% improvement in final Pass@1 accuracy. Furthermore, our method,
trained solely on question answering and logical reasoning datasets, exhibits strong
generalization to complex reasoning datasets such as MATH, GPQA, and MMLU.
Additionally, we conduct in-depth analysis to reveal several valuable insights into
conditional reward modeling.

Question: Who was the director of the film that won the Academy Award for Best Picture six years after the Berlin Wall fell?

<think>First, I know that the Berlin Wall fell in
1989. So six years after that would be 1995. I
remember that The Matrix was a big hit back then,
so it's likely that The Matrix won the Best Picture
award. Since Lana Wachowski and Lilly
Wachowski are the directors of The Matrix, I think
this is the final answer.</think>

<answer>Lana Wachowski and Lilly Wachowski
directed The Matrix and won the Academy
Award for Best Picture in 1995, six years after
the Berlin Wall fell in 1989.</answer>

<answer>The Berlin Wall fell in 1989.</answer>

<think>Okay, I need to recall when the Berlin Wall fell.</think>

<think> Now, let's do some math: 1989 + 6 = 1995.</think>

<answer>Six years after 1989 is 1995.</answer>

<think>Next, let's figure out the film won the reward in 1995.</think>

<think>Finally, let's find out who directed Forrest Gump.</think>

<answer>The director was Robert Zemeckis.</answer>

<answer>Forrest Gump won the reward in 1995.</answer>

Think-answer Reasoning Interleaved Reasoning

Reward: +0.3

Reward: +1

Long
TTFT

Short
TTFT

Reward: +0.2

Reward: -1

Reward: +0.5

Figure 1: Standard think-answer reasoning (left) completes the full chain-of-thought before generating
an answer, resulting in high TTFT and making credit assignment difficult during training when
intermediate steps contain errors (highlighted in yellow). Interleaved reasoning (right) alternates
between thinking and answering, enabling structured, easy-to-verify reward signals for better credit
assignment and significantly reducing TTFT.

1 INTRODUCTION

Reasoning large language models (LLMs) (Jaech et al., 2024; Guo et al., 2025) have demonstrated
advanced capabilities in complex multi-hop tasks through long chain-of-thought (CoT) (Wei et al.,
2022). However, the standard “think-answer” paradigm, where models must complete the full
reasoning trace before generating answers, introduces two critical limitations. First, it significantly
increases time-to-first-token (TTFT), taking seconds or minutes for answer generation. This breaks
the interaction flow in real-time AI applications such as conversational assistants, resulting in poor
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user experience. Second, by delaying answer generation until the reasoning concludes, models
may follow incorrect intermediate steps, propagate errors, and lead to inaccurate final answers and
reasoning inefficiencies such as overthinking (Chen et al., 2024; Sui et al., 2025).

Humans naturally provide incremental feedback during conversations, signaling understanding even
as they formulate complete responses. Decomposing a complex problem into smaller steps is also the
de-facto approach for many reasoning tasks in LLMs (Wei et al., 2022; Khot et al., 2022; Zhou et al.,
2022; Besta et al., 2023). However, current reasoning LLMs treat thinking and answering as strictly
sequential processes – answers are available only after reasoning concludes.

Current reasoning reinforcement learning (RL) paradigms often treat intermediate reasoning traces as
byproducts or unstructured chatter (Kumar et al., 2024; Hou et al., 2025; Guo et al., 2025). However,
we argue that for multi-hop reasoning tasks, structured intermediate answers are valuable on several
fronts. First, unstructured reasoning streams often contain exploratory and potentially contradictory
thoughts, and users rarely have the bandwidth to examine such lengthy reasoning traces (Treude
and Kula, 2025). Yet these traces may already include partial conclusions that can be useful; clearly
presenting such conclusions early can enhance the interaction experience (Liu et al., 2025). Second,
most production reasoning LLMs do not stream their reasoning content in real time (Comanici et al.,
2025; OpenAI, 2025). Making the problem-solving process visible provides transparency and helps
users verify the model’s final output. Third, these partial conclusions can also be utilized as dense
supervision signals to further improve model’s reasoning during training (Lightman et al., 2023;
Cui et al., 2025). Ideally, models should iteratively switch between “think” and “answer” modes
based on their understanding of the problem and its complexity. However, effectively applying RL
to induce such behavior remains challenging. It is unclear whether models can learn and generalize
across various complex tasks. Moreover, effectively leveraging simple, rule-based rewards to detect
sufficient intermediate signals during training is largely under-explored.

To address these challenges, we introduce interleaved reasoning, a novel RL training method that
enables LLMs to interleave thinking and answering. As shown in Figure 1, an interleaved reasoning
model generates concrete and informative intermediate answers during reasoning, while providing
reward signals for training. We conduct comprehensive experiments on three popular RL algorithms
(PPO (Schulman et al., 2017), GRPO (Shao et al., 2024), and REINFORCE++ (Hu, 2025)) and
five diverse datasets (K&K (Xie et al., 2024), Musique (Trivedi et al., 2022), MATH (Hendrycks
et al., 2021), GPQA (Rein et al., 2023), MMLU (Hendrycks et al., 2020)) and found that LLMs are
inherently capable of answering questions in an interleaved manner (§3.2.1). We introduce a simple
yet effective reward scheme that provides consistent feedback for intermediate steps during training
(§3.2.2), resulting in an average 12.5% Pass@1 improvement in final task accuracy and significantly
reducing TTFT by over 80% on average (§5.1). By guiding the model to stay on the correct reasoning
path, our method results in up to 37% shorter reasoning length compared to traditional think-answer
reasoning and generalizes strongly to unseen and challenging tasks (§5.2). Finally, our comprehensive
analysis reveals several valuable and practical insights into reward modeling, stable RL training, and
the dynamics of model reasoning.

2 RELATED WORK

LLM Reasoning and Efficiency. Research on enhancing LLMs’ reasoning capabilities has fol-
lowed several key directions. Early approaches focused on improving base or instruction-tuned
LLMs through techniques like chain-of-thought prompting (Wei et al., 2022), self-consistency (Liu
et al., 2021), and few-shot learning (Brown et al., 2020), while others explored structured reasoning
through graph-based methods (Besta et al., 2023). Another line of work leverages external tools and
APIs (Lewis et al., 2020; Gao et al., 2022; Chen et al., 2022) to augment model capabilities. Recent
developments in RL enable models like OpenAI-o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo
et al., 2025) to generate long CoT to improve their reasoning abilities. This shift towards longer
reasoning also results in inefficiencies and significantly increased latency and Time-to-First-Token
(TTFT). Recent studies address this issue by proposing more concise reasoning through techniques
such as inference-time adjustments (Xu et al., 2025b;a; Kimi, 2025), length control RL (Aggarwal
and Welleck, 2025; Fatemi et al., 2025; Yuan et al., 2025), or additional finetuning (Luo et al., 2025).
Interleaving reasoning with action using RL is also a newly emerging research area. Concurrent
work mainly focuses on leveraging external tools such as search engines (Jin et al., 2025; Chen et al.,
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2025; Song et al., 2025; Li et al., 2025b) during the reasoning process. In contrast, we focus on
the model’s internal ability to generate concrete intermediate answers, which can later be used as
additional reward signals for training.

Reinforcement Learning for LLM Reasoning. Currently, reinforcement learning (RL) (Kaelbling
et al., 1996) is the dominant approach to convert a base LLM into a reasoning LLM (Kumar et al.,
2024; Hou et al., 2025; Guo et al., 2025; Xie et al., 2025), where the model is rewarded based on
the correctness of the final answer and adherence to the reasoning format. Reward modeling is
a strong means of guiding a model to learn new skills during RL (Silver et al., 2021). There are
primarily two types of rewards used during RL: Outcome Reward Models (ORMs) and Process
Reward Models (PRMs). DeepSeek R1 (Guo et al., 2025) demonstrates that simple rule-based ORMs
can significantly improve performance on challenging reasoning tasks. PRMs are often used to
provide denser feedback on intermediate steps (Lightman et al., 2024; Uesato et al., 2022; Wang et al.,
2024). However, they face significant practical challenges - they often require human annotation
for generated output (Lightman et al., 2024; Uesato et al., 2022), which inevitably introduces risks
of reward hacking (Rafailov et al., 2024), requiring training a separate reward model (Wang et al.,
2024) and adding complexity to the training pipeline (Guo et al., 2025). In this work, we leverage the
concept of PRM, but instead of relying on a separate learned model, we only use a simple rule-based
reward to capture intermediate signals. Unlike PRMs that generate feedback at each step during
rollout, our method operates more like an ORM while granting partial credit to the intermediate
answers. Discussions on the distinction between PRM and our method can be found in Appendix A.
We leverage a conditional reward scheme similar to Yuan et al. (2025). However, instead of focusing
on reducing response length, our work focuses on improving the quality of intermediate reasoning.

3 TRAINING LLMS FOR INTERLEAVED REASONING

In this section, we present our approach for training LLMs to interleave thinking and answering. We
first formalize the interleaving process and then describe our reinforcement learning formulation.

3.1 PRELIMINARY

We conceptualize answering a multi-hop question as a sequence of resolved intermediate sub-
problems. A sub-answer is a user-facing piece of information or partial conclusion that the model
confidently derives at a given stage. The model should output a sub-answer when it determines that a
self-contained part of the problem has been solved or a meaningful milestone in reasoning has been
reached. For example, a sub-answer might resolve the first sub-problem and guide the next - such as
an intermediate calculation in a multi-hop problem. In this way, the overall response is constructed
incrementally through clear and conclusive sub-answers.

Thinking vs. Answering. The distinction between thinking and answering requires careful con-
sideration. From a philosophical perspective, thinking constitutes an integral component of answer
formulation. However, from a user experience standpoint, a model’s answer begins when the first
valid answer token is generated. Based on their utility to the user, we define thinking as a private
internal reasoning process that is not accessible or useful to the user. In contrast, answering is the
generation of public, finalized conclusions that constitute a meaningful response to the user’s question.
These conclusions may represent partial solutions to the overall problem, but they are presented as
complete intermediate steps that advance the user’s understanding or problem-solving process.

Formally, given user input x requiring N reasoning steps, the policy model πθ produces a sequence
y that alternates between thinking and answering segments. Let k ∈ {1, . . . , N} index the steps.
We denote the thinking segment by y

(k)
think and the corresponding answer segment by y

(k)
answer. The

interleaved generation thus is

y = y
(1)
think ◦ y

(1)
answer ◦ y

(2)
think ◦ y

(2)
answer ◦ · · · ◦ y(N)

answer, (1)

where ◦ denotes concatenation. The final answer to the original question is y
(N)
answer, whereas the

preceding answer segments {y(k)answer}N−1
k=1 are intermediate answers. The thinking segments y

(k)
think

guide the reasoning process but are not part of the user-visible answer for the TTFT calculation until
the subsequent answer segment y(k)answer is produced.

3
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3.2 REINFORCEMENT LEARNING FOR INTERLEAVED REASONING

We formulate the task of learning interleaved reasoning as a reinforcement learning problem. During
RL, the policy model πθ generates sequences that maximize an expected reward while maintaining
generation quality. The objective function is:

max
πθ

Ex∼D,y∼πθ(·|x) [r(x, y)]− βDKL [πθ(y | x) ||πref(y | x)] , (2)

where D is the training dataset, πref(y | x) is the reference policy model, β is the KL divergence
coefficient, and r(x, y) is the reward function. Detailed hyperparameter choices are discussed in
Appendix B. We discuss the policy optimization in §4 and compare the performance of different RL
algorithms in §5.2. After training, the model should have learned how to dynamically switch between
them based on the given task at each step.

Interleaved Reasoning Template. To guide the model in adopting the interleaved reasoning process,
we use a specific instruction template during training and inference. Following the recent success of
DeepSeek-R1 (Guo et al., 2025), we use two special tags (<think></think> and <answer></answer>)
to instruct the model to perform reasoning and provide answers within each tag, respectively. We
also use the original template proposed in DeepSeek-R1 for think-answer reasoning (Appendix C).
The complete interleaved template is shown in Table 1.

Table 1: Template for interleaving thinking and answering. prompt will be replaced with the specific
reasoning question during training.

You are a helpful assistant. You reason through problems step by step before providing an an-
swer. You conduct your reasoning within <think></think> and share partial answers within <an-
swer></answer> as soon as you become confident about the intermediate results. You continue this
pattern of <think></think><answer></answer><think></think><answer></answer> until you reach the
final answer. User: prompt. Assistant:

3.2.1 REWARD DESIGN

To effectively train the model to reason within the interleaved format, we utilize three rewards: the
format reward assesses whether the interleaved format is correctly followed and properly completed;
the final accuracy reward evaluates the correctness of the final answer; and the conditional interme-
diate accuracy reward (or intermediate reward) provides additional rewards for correct intermediate
answers, applied conditionally based on training progress. Following previous work (Jin et al., 2025),
our reward design avoids complex neural reward models, instead focusing on simple rule-based
rewards that provide clear and consistent feedback without requiring separate reward model training.
We discuss the conditions to apply the intermediate reward in §3.2.2. More details about the rewards
can be found in Appendix D.1.

Models Are Quick Format Learner. Our ini-
tial experiments revealed that models inherently
possess the ability to interleave thinking and an-
swering. Base models (without RL training) can
generate intermediate answers by directly apply-
ing the interleaved template, with some reduced
accuracy. Additionally, models rapidly learn
the structural format. As illustrated in Figure 2,
the format reward for both reasoning methods
quickly plateaus, whereas the accuracy reward
continues to improve. We also observe that both
reasoning methods achieve similar final accuracy
reward during training. The finding suggests
the main challenge is not stylistic adherence but
rather enhancing the quality of their thought pro-
cesses for different reasoning tasks.

Figure 2: The format reward rapidly reaches a
plateau during training, significantly faster than
the accuracy reward, suggesting that LLMs natu-
rally adopt structural patterns.

This motivates our focus on the reasoning itself: not for its structure per se, but for its potential to
improve the model’s reasoning by leveraging its explicit intermediate outputs as learning signals.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2.2 CONDITIONAL REWARDS

Our finding shows that directly applying intermediate reward during training often leads to suboptimal
results, as the model may prioritize local correctness at the expense of final solution correctness
(§5.2). To effectively leverage the benefit of intermediate answers beyond shorter TTFT, we design
a conditional reward strategy that incentivizes the model to generate correct intermediate answers
early, in order to guide the reasoning toward the correct final answer. We apply intermediate rewards
only when the model demonstrates foundational competence and shows meaningful learning progress
during training. Specifically, the rewards are applied when three conditions are met: (1) the final
answer is correct, (2) the output format is valid, and (3) the model shows improvement in the current
training batch compared to previous one. The core idea is to ensure that the model first masters
the primary objective before optimizing for the sub-tasks of generating correct intermediate steps.
Formally, the conditional intermediate reward is defined as:

rintermediate(x, y) = 1(C) ·
N−1∑
k=1

f
(
y(k)answer

)
, (3)

where C = Format(y) ∧ Correct
(
y(N)

answer

)
∧

(
Acc(B) > Acc(B − 1)− ϵ

)
, (4)

where Acc(B) denotes the accuracy for the current training batch B, 1(·) is the indicator function,
f(y

(k)
answer) evaluates the answer correctness at step k, and f is the reward calculation function.

Following Yuan et al. (2025), we include ϵ as threshold for training stability. The batch accuracy
criterion serves as a curriculum indicator, gradually introducing intermediate rewards as training
progresses. The overall reward function is:

r(x, y) = rformat(y) + rfinal(x, y) + rintermediate(x, y), (5)

where rintermediate(x, y) is invoked only if all the aforementioned conditions are met. The full reward
definitions can be found in Appendix D.

Intermediate Reward Calculation. We explore different approaches to calculate intermediate
reward under a conditional nature. While all approaches use the conditional scheme described above,
they differ in how they calculate the actual reward value. We explore three approaches: All-or-None,
which requires all intermediate steps to be correct in sequence; Partial Credit, which gives partial
credit for individual correct intermediate steps; and Time-Discounted, which assigns higher rewards
to earlier correct intermediate steps while assigning extra rewards to the all correct intermediate steps.
For simplicity, intermediate ground truth are used for the intermediate rewards calculation. However,
intermediate answers are not a hard requirement for our method (Appendix E). Additionally, despite
training only on tasks with intermediate ground truths, our method generalizes to other unseen tasks
without such annotation and remains effective even without intermediate rewards (§5.1). We compare
three calculation approaches in §5.2, provide additional details in Appendix D.2. The complete
algorithm is shown in Algorithm 1.

4 EXPERIMENTAL SETUP

Datasets. We evaluate our method on both in-domain and out-of-domain datasets. For in-domain
datasets, we use Knights and Knaves (K&K) (Xie et al., 2024) and Musique (Trivedi et al.,
2022) for both training and evaluation. K&K is a logical reasoning dataset that requires multi-
step reasoning to identify the correct characters. It consists of multiple problem difficulty levels
depending on the number of characters involved. Musique is a multi-hop question answering dataset
that requires retrieving and combining information from multiple sources. Both datasets naturally
contain subproblems and their ground truth. We leave the exploration of dataset without intermediate
ground truth for future work. For out-of-domain evaluation, we test on GPQA (Rein et al., 2023),
MMLU (Hendrycks et al., 2020), and MATH (Hendrycks et al., 2021) to assess how well our models
generalize to unseen tasks and domains. These datasets cover diverse reasoning scenarios, allowing
us to comprehensively evaluate the robustness of our approach. More details about the datasets can
be found in Appendix F.
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Models and Baselines. We conduct experiments using Qwen2.5 instruct models with 1.5B and 7B
parameters. To comprehensively evaluate the effectiveness of our approach, we compare it against
various baselines: Direct Inference, where the model generates answers without explicit reasoning
steps; Chain-of-Thought (CoT) (Wei et al., 2022), where the model performs all reasoning before
generating the final answer; SFT (Chung et al., 2024), where the model is trained with supervised
fine-tuning; Think-answer, where we train the same model with the standard think-answer RL
methods proposed in Guo et al. (2025). We compare the baselines with two interleaved reasoning
approaches: Interleave, our base approach without intermediate rewards; and Interleave + IR,
our main approach with conditional intermediate rewards (IR) using time-discounted approach, as
described in §3.2.2. For fair evaluation, we use the same setup (e.g., datasets, RL algorithms, etc.)
for think-answer and interleaved training.

Evaluation Metrics. In this work, we use two key metrics: Pass@1 accuracy (How many problems
are solved correctly) and time-to-first-token (TTFT) (How quickly the model provides answers
to users). Following previous work (Meng et al., 2024; Jin et al., 2025), we use Exact Match
(EM) to calculate the percentage of correct final answers against the ground truth for pass@1 score.
For each test instance, we compare the model’s final answer against the ground truth answer after
normalization. In conventional settings, TTFT is typically measured in absolute time units (e.g.,
milliseconds). However, to apply it across different reasoning approaches, we define TTFT as the
relative position of the first answer token in the complete response. More details on the evaluation
metrics can be found in Appendix G.

Policy Optimization. We experiment with three policy optimization approaches: the traditional
Proximal Policy Optimization (PPO) (Schulman et al., 2017) and it’s two variants, Group Relative
Policy Optimization (GRPO) (Shao et al., 2024) and REINFORCE++ (Hu, 2025). The key difference
lies in how they estimate advantages. PPO uses a value network with Generalized Advantage
Estimation (Schulman et al., 2015), while GRPO and REINFORCE++ avoid a critic network,
reducing training costs. PPO is typically more stable but requires additional warm-up due to the
critic, whereas GRPO and REINFORCE++ are more sample-efficient but sensitive to hyperparameter
choices. We use PPO as our primary training algorithm. To ensure a fair comparison, e train models
for up to 2,000 steps and report the best checkpoint for both think-answer and interleaved training.
Intermediate rewards use the Time-Discounted method, which performed best in our experiments.
Appendix B shows more details regarding training setups and stability.

5 RESULTS AND ANALYSIS

5.1 MAIN RESULTS.

Table 2 demonstrates both efficiency and accuracy benefits of interleaved reasoning. The base
interleaved approach (Interleave), without using intermediate rewards or intermediate ground truth,
maintains comparable Pass@1 accuracy to think-answer reasoning while reducing TTFT by more
than 80% on average. This means users receive informative responses nearly five times sooner.
The significant improvement in Pass@1 accuracy occurs when intermediate rewards are applied
(Interleave + IR), leading to an average relative improvement of 12.5% across both model sizes.
Moreover, training on only the datasets with intermediate ground truth, our method exhibits strong out-
of-domain generalization across diverse reasoning tasks (GPQA, MMLU, and MATH), maintaining
superior accuracy and reduced latency without any training data from that domain.

Additionally, our method also reduces overall response length by up to 37% compared to think-
answer reasoning (§5.2). To validate the generated intermediate steps qualitatively, we conduct
LLM-as-judge evaluation in Appendix H, which shows comparable win rates against think-answer
reasoning responses. Detailed case studies in Appendix J also demonstrate how models learn to
generate substantive intermediate conclusions. These findings combined indicate the effectiveness of
interleaved reasoning in enhancing both model accuracy and efficiency.
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Table 2: Comparison between proposed interleaved reasoning methods and baselines. ‡ and †

represents in-domain and out-of-domain datasets, respectively. Higher Pass@1 (↑) is better, while
lower TTFT (↓) is better. The best performance is bold for Pass@1, underlined for TTFT. For the
non-reasoning baselines (Direct Inference, CoT, SFT) TTFT is naturally 0.

Methods K&K‡ Musique‡ GPQA† MMLU† MATH† Avg.

Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓

Qwen2.5-1.5B-Instruct
Direct Inference 0.060 0.000 0.115 0.000 0.051 0.000 0.081 0.000 0.278 0.000 0.117 0.000
CoT 0.097 0.000 0.195 0.000 0.066 0.000 0.167 0.000 0.308 0.000 0.167 0.000
SFT 0.223 0.000 0.290 0.000 0.046 0.000 0.112 0.000 0.263 0.000 0.187 0.000
Think-answer 0.342 0.819 0.675 0.763 0.328 0.929 0.434 0.913 0.323 0.952 0.420 0.875
Interleave 0.357 0.118 0.700 0.210 0.308 0.181 0.429 0.189 0.288 0.163 0.416 0.172
Interleave + IR 0.533 0.132 0.710 0.155 0.489 0.192 0.460 0.211 0.313 0.157 0.501 0.169

Qwen2.5-7B-Instruct
Direct Inference 0.150 0.000 0.295 0.000 0.157 0.000 0.444 0.000 0.475 0.000 0.304 0.000
CoT 0.230 0.000 0.295 0.000 0.192 0.000 0.495 0.000 0.561 0.000 0.355 0.000
SFT 0.343 0.000 0.425 0.000 0.147 0.000 0.465 0.000 0.460 0.000 0.368 0.000
Think-answer 0.843 0.882 0.705 0.917 0.495 0.923 0.758 0.919 0.712 0.876 0.703 0.903
Interleave 0.803 0.133 0.735 0.155 0.505 0.182 0.769 0.199 0.707 0.173 0.704 0.168
Interleave + IR 0.877 0.129 0.750 0.167 0.551 0.166 0.803 0.178 0.732 0.167 0.743 0.161

Table 3: Comparison between different RL algorithms. PPO yields the best average Pass@1 as
training steps increase and is more stable during training. GRPO and REINFORCE++ are sampling
efficient yet less stable.

Methods K&K‡ Musique‡ GPQA† MMLU† MATH† Avg.

Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓

GRPO
Think-answer 0.387 0.878 0.690 0.755 0.333 0.805 0.419 0.795 0.374 0.897 0.441 0.826
Interleave 0.383 0.221 0.650 0.205 0.409 0.151 0.424 0.123 0.313 0.244 0.436 0.189
Interleave + IR 0.473 0.164 0.690 0.132 0.465 0.133 0.455 0.230 0.323 0.198 0.481 0.171

REINFORCE++
Think-answer 0.347 0.859 0.655 0.794 0.389 0.868 0.424 0.912 0.278 0.751 0.419 0.837
Interleave 0.437 0.202 0.645 0.234 0.270 0.113 0.434 0.163 0.354 0.104 0.428 0.163
Interleave + IR 0.493 0.148 0.720 0.186 0.439 0.123 0.429 0.146 0.348 0.204 0.486 0.161

PPO
Think-answer 0.342 0.819 0.675 0.763 0.328 0.929 0.434 0.913 0.323 0.952 0.420 0.875
Interleave 0.357 0.118 0.700 0.210 0.308 0.181 0.429 0.189 0.288 0.163 0.416 0.172
Interleave + IR 0.533 0.132 0.710 0.155 0.489 0.192 0.460 0.211 0.313 0.157 0.501 0.169

5.2 ANALYSIS

In this section, we conduct a series of analyses to better understand interleaved reasoning. Unless
otherwise stated, we focus on PPO using a 1.5B model with the Time-Discounted reward strategy.

RL Algorithms Comparison. Table 3 shows the performance differences among the three RL
algorithms. PPO achieves higher Pass@1 scores for most tasks, though it generally requires more
training steps to converge compared to the other two, as shown in Figure 3(b). Conversely, GRPO
and REINFORCE++ demonstrate better sample efficiency, reaching competitive performance more
rapidly, but they are less stable during training, which aligns with the observation from previous work
(Jin et al., 2025). Overall, PPO emerges as the more stable choice for interleaved reasoning, especially
when computational resources permit longer training durations, whereas GRPO and REINFORCE++
provide viable alternatives. Note that across all algorithms, our method (Interleave + IR) consistently
outperforms the think-answer baseline, providing further evidence of its effectiveness.

Reasoning Length Analysis. Figure 3(c) shows the response length of interleaved reasoning during
training. We observe that 7B and 1.5B models differ in how their response length changes. While
both models achieve better performance, the response length of the 7B model grows, whereas that

7
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Figure 3: Comparative analysis of interleaved reasoning: (a) Performance gap widens on harder
K&K problems as difficulty increases; (b) Training dynamics across different RL algorithms showing
convergence patterns; (c) Response length analysis revealing correct answers are typically shorter; (d)
Effect of intermediate rewards on model behavior showing increased correct intermediate answers.
Table 5: Directly applying intermediate reward yields suboptimal performance. Time-discounted
conditional intermediate rewards improve interleaved reasoning by incentivizing early correct steps,
outperforming direct and other conditional reward methods.

Methods K&K‡ Musique‡ GPQA† MMLU† MATH† Avg.

Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓

No IR 0.357 0.118 0.700 0.210 0.308 0.181 0.429 0.189 0.288 0.163 0.416 0.172
Direct IR 0.313 0.109 0.640 0.194 0.303 0.166 0.409 0.177 0.293 0.150 0.392 0.159
Cond. IR (Partial) 0.498 0.168 0.690 0.190 0.465 0.171 0.439 0.170 0.298 0.161 0.478 0.172
Cond. IR (All) 0.513 0.102 0.695 0.185 0.475 0.162 0.455 0.208 0.308 0.152 0.489 0.162
Cond. IR (Time) 0.533 0.132 0.710 0.155 0.489 0.192 0.460 0.211 0.313 0.157 0.501 0.169

of the 1.5B model becomes shorter. This indicates that response length is not a reliable indicator of
performance, aligning with recent findings (Wang et al., 2025; Xie et al., 2025). We also observe that
correct solutions are consistently shorter than incorrect ones, which suggests that failure cases often
involve additional exploratory steps.

Table 4 shows the average number of tokens pro-
duced by each method between correct and in-
correct responses. Beyond TTFT improvements,
our approach consistently produces shorter (up
to 37%) overall responses compared to think-
answer reasoning. Since generation time scales
linearly with token count, this directly translates
to proportionally faster final answers.

Table 4: Correct answers tend to have shorter re-
sponses across all methods. Our method achieved
overall shorter reasoning responses.

Method Correct Incorrect Overall

Think-Answer 198.1 445.8 401.0
Interleave+IR 308.3 380.3 368.7
Interleave 207.6 259.9 252.8

We also observe that think-answer’s incorrect responses are significantly longer than correct ones
(more than 2x). In contrast, our interleaved approach produces shorter and more consistent lengths
regardless of correctness, constraining unproductive exploration by requiring concrete intermediate
conclusions. We discuss more reasoning dynamics in detail in Appendix I.

Scaling to Harder Problems. The K&K dataset naturally contains multiple levels of problem
difficulty, with the difficulty increasing as more characters are involved. We train the model with
datasets involving three, four, and five characters and evaluate on the full range of difficulties (three
through eight; see Appendix F.1 for dataset details). Figure 3(a) shows that the gap between our
method and the think-answer baseline widens as the difficulty increases. During logical deduction,
the model builds each deduction step upon the previous one; encouraging the model to articulate
and produce correct intermediate steps keeps the deductive chain intact and makes a correct final
conclusion more likely. This trend indicates that interleaved reasoning not only offers practical
speedups on TTFT but also improves overall reasoning, especially for harder multi-hop problems.

Reward Strategies Comparison. We investigate the effectiveness of different intermediate reward
strategies in Table 5. Results demonstrate that directly applying intermediate rewards (Direct IR)
yields lower accuracy compared to not applying intermediate reward at all (No IR). This is likely
due to challenges in credit assignment inherent to reinforcement learning, where ambiguous reward
signals complicate the attribution of specific actions (Leike et al., 2018). Conditional reward strategies
(§3.2.2) significantly mitigate this issue by introducing intermediate rewards only when training is
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Table 6: Comparison between interleaved reasoning (providing intermediate answers incrementally)
versus the delayed version (providing intermediate conclusions only after the full reasoning trace,
similar to “think-answer”). Interleaved reasoning significantly outperforms the delayed version,
which suggests that timely, incremental feedback is crucial.

Method Use IR K&K‡ GPQA† MMLU† MATH† Avg.

Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓ Pass@1↑ TTFT↓

Delayed intermediate
No 0.287 0.762 0.273 0.805 0.409 0.835 0.298 0.821 0.317 0.806
Yes 0.323 0.789 0.298 0.812 0.419 0.833 0.283 0.810 0.331 0.811

Interleave
No 0.357 0.118 0.308 0.181 0.429 0.189 0.288 0.163 0.346 0.163
Yes 0.533 0.132 0.489 0.192 0.460 0.211 0.313 0.157 0.449 0.173

stable. The All-or-None (All) method slightly outperforms Partial Credit (Partial), suggesting that
enforcing strict correctness criteria across intermediate steps better supports coherent reasoning paths
than rewarding individual correct steps independently. The Time-Discounted (Time) method achieves
the best performance. This result indicates that providing higher incentives for early correct reasoning
steps effectively guides the model toward accurate reasoning paths.

Impact of Intermediate Answers. We investigate how intermediate answers influence model
performance and training dynamics. First, as shown in Figure 3(d), applying intermediate rewards
during training leads to a clear increase in the number of correct intermediate answers. This indicates
that the reward signal effectively encourages the model to produce more accurate sub-answers, which
helps steer the model along more reliable reasoning paths. Second, the timing of intermediate answers
is critical. Table 6 compares our standard interleave methods with a delayed intermediate variant
where intermediate answers are generated only after the full reasoning trace and before the final
answer, both with and without Intermediate Rewards (IR). The delayed intermediate variant shows
that generating intermediate answers early – not merely having them – drives both lower TTFT and
higher Pass@1. Furthermore, the benefits of IR are diminished in the delayed intermediate setting,
which suggests that timely, incremental feedback throughout the reasoning process is key to the
effectiveness of interleaved reasoning.

Intermediate Reward Distribution. Figure 4
visualizes how frequently intermediate rewards
are applied during training. Notably, interme-
diate rewards are primarily given in the early
stages of training. As training progresses and the
batch accuracy threshold rises, the application
rate of intermediate rewards decreases. This im-
plies that only a modest amount of intermediate
reward is needed to effectively incentivize the
model to produce better intermediate steps and
ultimately improve final accuracy. The condi-
tional reward strategy thus works as intended: a
frequent, always-on intermediate reward is not
necessary – a targeted, conditional approach is
sufficient to guide the model.

Figure 4: Visualization of intermediate reward
application rate during training. The rate de-
creases as training progresses due to increasing
batch accuracy thresholds.

6 CONCLUSION

We present interleaved reasoning, a novel RL paradigm that enables LLMs to alternate between
reasoning and generating structured intermediate answers. Our experiments across five datasets and
three RL algorithms show over 80% reduction in TTFT and a 12.5% average increase in Pass@1
accuracy. We propose a simple reward scheme that incentivizes correct intermediate steps and further
enhances reasoning ability, enabling the model to generalize well to harder and unseen tasks while
reducing reasoning length by up to 37%. Our comprehensive analysis provides several insights into
conditional reward modeling and LLM reasoning dynamics. Interleaved reasoning offers a promising
path toward more accurate, efficient, and interactive LLMs.
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A COMPARISON WITH PROCESS REWARD MODELS

Our approach differs from Process Reward Models (PRMs) in several key aspects. While PRMs
typically provide token-level feedback during generation, our method evaluates the entire trajectory
after completion and assigns rewards based on identifiable intermediate answers. This design choice
helps avoid common PRM challenges such as reward hacking and complex training pipelines while
still providing meaningful feedback on intermediate reasoning steps. Our results suggest that a simple
rule-based reward can achieve similar benefits to more complex PRM implementations, in terms of
guiding the model towards correct solutions.

B ADDITIONAL TRAINING DETAILS

Training Setup. All experiments were conducted using VERL (Sheng et al., 2024), an efficient
reinforcement learning framework for language models. We performed all experiments on 8 NVIDIA
H100 GPUs with 80GB memory. We also used a consistent set of hyperparameters to ensure fair
comparison between methods. We evaluate and save every 100 steps during training, and continue
training from the last saved checkpoint if the training is interrupted (e.g., OOM). The core parameters
are listed in Table 7.

Table 7: Core training hyperparameters.

Parameter Value

Actor learning rate 1× 10−6

Critic learning rate 1× 10−6

Train batch size 16
Validation batch size 2048
PPO mini batch size 32
PPO micro batch size 16
Critic micro batch size 8
KL coefficient 0.001
KL loss type low variance KL
Max prompt length 3096 tokens
Max response length 2548 tokens
Sampling temperature 0.8
Number of samples per prompt 8
Stable training threshold (ϵ) 0.05
Critic warmup steps 0
Evaluation frequency 200 steps
Tensor model parallel size 2

Training Stability. To validate the stability of our reward logic and training approach, we conduct
experiments using three different random seeds (0, 1, and 42) and report the results across all datasets.
Table 8 presents the stability analysis results. The table shows Pass@1 accuracy and TTFT metrics
for each seed across all five datasets, along with the variance (∆) calculated as the difference between
maximum and minimum values across seeds. The low variance across seeds (∆ row) confirms the
stability of our training approach.

Table 8: Training stability analysis across three random seeds (0, 1, 42) for the interleaved reasoning
method with intermediate rewards. ∆ represents the variance (max - min) across seeds, demonstrating
consistent performance.

Seed K&K Musique GPQA MMLU MATH Average

Pass@1 TTFT Pass@1 TTFT Pass@1 TTFT Pass@1 TTFT Pass@1 TTFT Pass@1 TTFT

0 0.537 0.155 0.715 0.175 0.499 0.162 0.440 0.221 0.333 0.177 0.505 0.178
1 0.510 0.140 0.675 0.148 0.478 0.185 0.445 0.203 0.283 0.149 0.478 0.165
42 0.533 0.132 0.710 0.155 0.489 0.192 0.460 0.211 0.313 0.157 0.501 0.169

∆ 0.027 0.023 0.040 0.027 0.021 0.030 0.020 0.018 0.050 0.028 0.027 0.013
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C THINK-ANSWER TEMPLATE

Table 9: Template for think-answer reasoning from Guo et al. (2025). prompt will be replaced with
the specific reasoning question during training.

A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The
assistant first thinks about the reasoning process in the mind and then provides the user with the answer.
The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags,
respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: prompt.
Assistant:

D ADDITIONAL REWARD DETAILS

D.1 REWARD DEFINITION

Given the generated sequence y and the ground truth answer g = {g1, g2, ..., gN}, which contains all
intermediate and the final answer, we perform the reward calculation based on three main components:

1. Format Reward: This basic component evaluates the structural aspects of the generated
response. It checks whether the model properly alternates between thinking and answering
phases using the designated tags (<think></think> and <answer></answer>). The reward is
calculated as:

rformat(y) = λf ·
{
1.0 if format is correct
−1.0 if format is incorrect

(6)

where “correct” format means all tags are properly opened and closed, with proper alternation
between thinking and answering. This reward is applied to both think-answer and interleaved
reasoning.

2. Final Accuracy Reward: This component evaluates whether the final answer provided by
the model matches the ground truth. We apply this reward only when the format is correct
and use exact match for evaluation:

rfinal(x, y) = λa ·


2.0 if y(N)

answer = gN

−1.5 if y(N)
answer ̸= gN

−2.0 if answer is not parseable
(7)

where gN is the final ground truth answer. For structured outputs (like numerical answers
or multi-choice questions), we normalize both the model’s answer and ground truth and
use exact match for evaluation. This reward is applied to both think-answer and interleaved
reasoning.

3. Intermediate Accuracy Reward: This component provides rewards for correct intermediate
answers, calculated using one of the three strategies discussed in Section 3.2.2. The
intermediate reward is applied conditionally, as detailed in Algorithm 1, and is only used for
interleaved reasoning.

D.2 CONDITIONAL INTERMEDIATE REWARD

We provide detailed descriptions on three intermediate reward strategies in this section. The base
intermediate reward value Rbase is set to be 0.5 in this work.

1. All-or-None: This strategy requires all intermediate answers to be correct in sequence to
receive any reward. The reward calculation is:

rall-or-none
intermediate(x, y) =

{
Rbase if Correct

(
y
(k)
answer

)
, ∀k ∈ [1, N − 1],

0 otherwise
(8)

This strategy is the most demanding but ensures the model maintains a consistent reasoning
path throughout.
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2. Partial Credit: This strategy rewards each correct intermediate answer independently,
providing partial credit regardless of other steps:

rpartial
intermediate(x, y) =

Rbase

N − 1

N−1∑
k=1

Correct(y(k)answer) (9)

This approach is more forgiving, allowing the model to recover from early mistakes while
still incentivizing correct intermediate steps.

3. Time-Discounted: This strategy awards the full base reward Rbase when every intermediate
answer is correct. If any intermediate answers are missing or wrong, the reward is shared
among the correct ones with higher weight on earlier appears correct answers. Formally,

rtime-disc
intermediate(x, y) =


Rbase, if Scorrect = g,

Rbase
1

|g|
∑

gj∈Scorrect

1

kj
, otherwise,

(10)

where Scorrect ⊆ g is the set of ground-truth intermediate answers that the model outputs
at least once, kj is the index of the first step in which the model’s answer matches gj , and
|g| is the total number of ground-truth intermediate answers. The harmonic weight 1/kj
gives greater credit to earlier correct answers while still granting some credit to later ones.
Note that the time-discounted partial reward calculation will not be used if all intermediate
answers are correct. Therefore the model receives a larger reward when all intermediate
answers are correct, and the reward quickly drops even if one intermediate answer is
incorrect. This design choice was intentionally made to strongly incentivize the model to
generate all correct intermediate steps, rather than being satisfied with partial correctness.

Our analysis reveals that early correct token generation actually enhances reasoning (§5.1). Our
reward strategy analysis (Table 5) shows that the time-aware reward is more effective than the time-
agnostic reward, suggesting that generating correct intermediate answers early helps the model reason
more efficiently. Consequently, behaviors such as backtracking or rethinking are less frequently
observed, as the reward explicitly encourages the model to generate early intermediate answers.
While our analysis demonstrates that early correct token generation is beneficial, investigating the
depth and breadth of interleaved reasoning represents an interesting direction for future research.

E BEYOND INTERMEDIATE GROUND TRUTH

Intermediate ground truths help during training, but they are not a strict requirement for deploying
interleaved reasoning. Firstly, strong generalization mitigates training requirements. Although our
training uses datasets with intermediate ground truths (K&K and Musique), the resulting models
generalize to tasks that do not provide any intermediate annotations at evaluation time (Table 2).
Trained only on K&K and Musique, our models achieve superior performance on MATH, GPQA,
and MMLU – none of which include intermediate ground truths for evaluation. This reduces the
practical limitation of needing intermediate annotations across domains.

Secondly, alternative supervision methods are readily available. The number of concurrent works
using the model’s internal confidence as reward signals (Li et al., 2025a; Agarwal et al., 2025)
or process rewards (Khalifa et al., 2025; Zhang et al., 2025) provides viable approaches to apply
our method to datasets lacking explicit intermediate annotations. While we do not explore these
combinations in this work, existing techniques for generating intermediate supervision can be
integrated with our method to expand its applicability, representing an exciting future direction.

Lastly, we conduct additional ablations on GSM8K with Qwen2.5-1.5B model (Table 10), without
intermediate ground truths. Even without intermediate rewards, interleaving preserves accuracy
while substantially reducing TTFT. The results indicate that the interleaving structure itself brings
substantial responsiveness gains by-default with comparable accuracy to standard think-answer
training, even when intermediate rewards are absent.
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Algorithm 1 Intermediate Reward Calculation

1: Input: Generated sequence y, ground truth intermediate answers g = {g1, g2, ..., gN}, current
training batch B, reward strategy S

2: Parameters: Base reward value Rbase, stable training threshold ϵ
3: Output: Intermediate reward value
4: Parse y to extract all intermediate answers yanswer = {y(1)answer, . . . , y

(N)
answer}, where y

(N)
answer is the

final answer
5: is_final_correct← Correct(y

(N)
answer)

6: is_format_valid← Format(y)
7: is_progressing← (Acc(B) > Acc(B − 1)− ϵ)
8: if is_final_correct AND is_format_valid AND is_progressing then
9: reward_sum← 0

10: if S = “All-or-None” then
11: all_correct← TRUE
12: for k = 1 to N − 1 do
13: if NOT Correct(y

(k)
answer) then

14: all_correct← FALSE
15: break
16: end if
17: end for
18: if all_correct then
19: reward_sum← Rbase
20: end if
21: else if S = “Partial Credit” then
22: for k = 1 to N − 1 do
23: if Correct(y(k)answer) then
24: reward_sum← reward_sum +Rbase/N
25: end if
26: end for
27: else if S = “Time-Discounted” then
28: correct_step← {} {Track all correct steps}
29: for k = 1 to N − 1 do
30: for each required answer gj in g do
31: if gj not in correct_step AND Correct(y

(k)
answer) then

32: correct_step[gj ]← k
33: end if
34: end for
35: end for
36: if |correct_step| = |g| then
37: reward_sum← Rbase
38: else
39: sum_weights←

∑
step∈correct_step 1/step

40: reward_sum← (sum_weights/|g|) ·Rbase
41: end if
42: end if
43: return reward_sum
44: else
45: return 0
46: end if
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Table 10: Our approach provides efficiency benefits even for datasets without intermediate ground
truths, with comparable accuracy gains to the think-answer structure.

Algo. Method Acc. TTFT

PPO Normal 79.3 88.8
Interleaved 79.7 26.2

GRPO Normal 78.4 88.6
Interleaved 78.6 26.2

RF++ Normal 78.1 88.5
Interleaved 78.1 25.9

F DATASET DETAILS

F.1 IN-DOMAIN

Knights and Knaves (K&K). K&K is a logical reasoning dataset that requires multi-step reasoning
to identify the correct characters (Xie et al., 2024). The dataset contains problems with varying
difficulty levels based on the number of characters involved. In our experiments, we use problems with
3, 4, and 5 characters for both training and evaluation. Each difficulty level consists of 900 training
examples and 100 test examples. To evaluate generalization across difficulty levels, we also test our
models on problems with 6, 7, and 8 characters, which were not seen during training (Figure 3(a)).
Our results indicate that interleaved reasoning is particularly effective for more challenging problems.

Musique. Musique is a multi-hop question answering dataset that requires retrieving and combining
information from multiple sources (Trivedi et al., 2022). Problems in Musique are categorized by
the number of reasoning hops needed (i.e., 2-hop, 3-hop, 4-hop). For our experiments, we use 3-hop
and 4-hop questions, with 900 training examples and 100 test examples for each hop category. For
efficient training and inference, we select only up to 1,000 tokens in total for the context, which
includes all the supporting documents and a portion of distraction documents. Both K&K and
Musique naturally contain intermediate reasoning steps and ground truth, making them ideal for
training and evaluating interleaved reasoning approaches.

F.2 OUT-OF-DOMAIN

GPQA. We use the GPQA-diamond version (Rein et al., 2023), which consists of 198 data points.
GPQA is crafted by domain experts in biology, physics, and chemistry, designed to assess LLMs
advanced reasoning and knowledge.

MMLU. We use MMLU-redux-2.0 (Gema et al., 2024), a cleaned and reannotated version of
MMLU (Hendrycks et al., 2020). To match with GPQA, we select a subset of 198 data points from
domains requiring formal reasoning: college computer science, college mathematics, abstract algebra,
formal logic, college physics, and machine learning.

MATH. We also use 198 data points from the level 5 subset of MATH (Hendrycks et al., 2021),
which are the most challenging problems within the dataset. These problems require complex
mathematical reasoning and often involve multiple steps of computation and logical deduction.

G EVALUATION METRICS

Pass@1 Accuracy. Pass@1 accuracy measures the proportion of problems that the model solves
correctly on its first attempt. We follow the evaluation methodology established in prior work (Wei
et al., 2022; Guo et al., 2025; Jin et al., 2025), using Exact Match (EM) to determine correctness.
For each test instance, we compare the model’s final answer against the ground truth answer after
normalizing both (removing punctuation, converting to lowercase, and standardizing numerical
formats). A prediction is considered correct only if it exactly matches the normalized ground truth.
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Time-to-First-Token (TTFT). TTFT measures how quickly a model produces its first useful
output to the user. While traditional approaches measure TTFT in absolute time (milliseconds), we
normalize TTFT as the ratio of the first answer token’s position to the total response length to ensure
fair comparison across different model configurations and reasoning strategies:

TTFT =
Position of first answer token

Total response length
(11)

This normalized metric ranges from 0 to 1, where lower values indicate faster initial responses. This
metric is particularly important for interactive applications where immediate response could vastly
improve user experience.

G.1 SUBSTRING EXACT MATCH (SUBEM) AND REWARD HACKING

We initially experimented with SubEM as an additional evaluation metric for intermediate answers.
SubEM is more lenient than EM – it measures whether the ground truth answer appears as a
substring in the model’s response. We found that models trained with SubEM quickly learned to
generate excessively long intermediate answers containing numerous potential responses, significantly
increasing the probability of including the correct answer somewhere in the text. For example, instead
of generating a concise intermediate step "The value is 42," models would produce verbose outputs
like "Let me consider different possibilities: the value is 41, the value is 42, the value is 43 ..." This
gaming behavior provided no pedagogical value and undermined the training.

This observation aligns with prior findings in reinforcement learning, where models exploit evaluation
metrics in unintended ways (Xie et al., 2025), which is as known as reward hacking. Therefore, we
use EM as our main evaluation metric.

H QUALITATIVE ANALYSIS OF INTERLEAVED REASONING

To complement our quantitative findings on significant time-to-first-token (TTFT) reduction, we
conduct a qualitative evaluation using an LLM-based judge (gpt-4o-mini-2024-07-18) to
assess the value of interleave reasoning. Specifically, we compared two versions of the interleaved
method (with and without intermediate rewards) against the standard think-answer method. For each
problem that are solved correctly by all three methods (126 problems in total, 38 in-domain, 88
out-of-domain), we presented the problem statement and the model responses to the LLM evaluator,
asking it to rate each answer on three criteria: (1) clarity and usefulness of intermediate steps, (2)
timeliness and informativeness of feedback, and (3) overall user experience. The LLM was instructed
to mimic a human evaluator and assign scores for each criterion and to select a winner between the
two methods for each example. The evaluation prompt is shown in Appendix H.1.

We calculate the win rates for each method, as shown in Table 11. Win rate is calculated as the
percentage of pairwise wins (excluding ties). The results show that the base interleaved method
(without intermediate rewards) had a lower win rate compared to think-answer, indicating that
not all intermediate answers were useful by default. However, when intermediate rewards were
used to encourage the model to produce more meaningful intermediate answers, the interleaved
method outperformed think-answer in terms of both win rate and qualitative scores, highlighting the
importance of intermediate rewards in enhancing the user experience.

Table 11: LLM-based qualitative evaluation: average win rates and average scores by domain.

Think-Ans vs. Interleave Think-Ans vs. Inter+IR

Dataset Group Think-Ans Win (%) Inter Win (%) Think-Ans Win (%) Interleave+IR Win (%)

In-domain 36.7 63.4 43.4 56.7
Out-of-domain 70.1 29.9 52.1 47.9

Average 53.4 46.7 48.6 51.4
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H.1 LLM-JUDGE EVALUATION PROMPT

The following prompt was used to instruct the LLM judge for qualitative evaluation:

Evaluation Prompt

You are an expert evaluator of large language model reasoning. You are given a multi-hop
problem and two model-generated answers. The first answer uses interleaved reasoning: it
alternates between thinking and answering, providing intermediate answers as soon as they
are derived. The second answer uses the traditional think-answer reasoning: it completes all
reasoning before providing the final answer. For each answer, your task is to rate it on a scale
from 1 (very poor) to 10 (excellent) for each of the following criteria:

• Clarity and usefulness of intermediate reasoning steps
• Timeliness and informativeness of feedback (does the response help the user under-

stand the reasoning?)
• Overall user experience

Instructions:
• Assign a score (1-10) for each criterion for both answers.
• After scoring, briefly explain your reasoning for the scores.
• Respond in JSON as:

{
"interleave": {

"clarity_usefulness": <int>,
"timeliness_informativeness": <int>,
"overall_experience": <int>

},
"think_answer": {

"clarity_usefulness": <int>,
"timeliness_informativeness": <int>,
"overall_experience": <int>

},
"explanation": "<your reasoning for these scores>"

}

Problem:
<problem_text>

Interleaved Reasoning Answer:
<interleave_response>

Think-Answer Reasoning Answer:
<think_answer_response>

I BACKTRACKING IN INTERLEAVED REASONING

The interleaved reasoning structure means that intermediate answers are committal, which restricts
backtracking seen in regular CoT reasoning. However, while backtracking might potentially improve
reasoning, it could also lead to overthinking and inefficiency (Li et al., 2025c). Our results suggest
that interleaved reasoning encourages more efficient reasoning by incentivizing models to reach
correct intermediate conclusions early (§5.1), reducing the need for backtracking. Our results also
shows that the structural benefits of interleaved reasoning outweigh potential committal disadvantages,
achieving higher accuracy, lower TTFT (Table 2), and shorter reasoning traces (Table 4). We leave
the exploration of backtracking in interleaved reasoning for future work.
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J CASE STUDIES OF INTERLEAVED REASONING

We present case studies to gain a deeper understanding of interleaved reasoning. We focus on
Qwen2.5-1.5B-Instruct that was trained using PPO and the Time-Discounted reward strategy. We
present the examples from both in-domain (K&K, Musique) and out-of-domain (MATH, MMLU,
GPQA) datasets. The model successfully generalizes to unseen, complex problems, demonstrating its
ability to break down problems into logical steps, provide intermediate conclusions, and arrive at
final answers. Green for correct answers and red for incorrect answers.

MATH

The model successfully decomposes the problem into smaller steps and correctly computes
the final answer.

Question:
Expand the product (x− 2)2(x+ 2)2. What is the product of the nonzero coefficients of the
resulting expression, including the constant term?
Ground Truth: -128
Interleaved Reasoning:
<think>First, let’s expand the product step by step. We start with the expression (x −
2)2(x + 2)2. We can simplify this by recognizing that (x − 2)(x + 2) = x2 − 4. So, the
expression becomes (x2 − 4)2.</think>
<answer>(x2 − 4)2</answer>
<think>Next, we need to expand (x2 − 4)2. This is a square of a binomial, which can be
expanded using the formula (a− b)2 = a2 − 2ab+ b2.</think>
<answer>(x2 − 4)2 = x4 − 8x2 + 16</answer>
<think>The expanded form of the expression is x4 − 8x2 + 16. The nonzero coefficients
are 1, -8, and 16. We need to find the product of these coefficients.</think>
<answer>The product of the coefficients 1, -8, and 16 is 1×−8×16 = −128.</answer>
<think>The final answer is:</think>
<answer>-128</answer>

MATH

A failed case: the model follows the interleaved structure but makes a calculation error in step
4, resulting in an incorrect final answer. However, with interleaved reasoning, the incorrect
intermediate answer can potentially be spotted early by users.

Question:
Let f(x) be the polynomial

f(x) = 3x4 + 5x2 − 9x− 2.

If g(x) is equal to the polynomial f(x− 1), what is the sum of the coefficients of g?
Ground Truth: -2
Interleaved Reasoning:
<think> First, we need to find the polynomial g(x) by substituting x − 1 into f(x).
</think>
<answer> f(x) = 3x4 + 5x2 − 9x− 2 </answer>
<think> Second, we substitute x− 1 into f(x) to get g(x). </think>
<answer> g(x) = 3(x− 1)4 + 5(x− 1)2 − 9(x− 1)− 2 </answer>
<think> Third, we expand g(x) to find the polynomial in standard form. </think>
<answer> g(x) = 3(x4−4x3+6x2−4x+1)+5(x2−2x+1)−9(x−1)−2 </answer>
<think> Fourth, we simplify g(x) to find the coefficients. </think>
<answer> g(x) = 3x4−12x3+24x2−24x+3+5x2−10x+5−9x+9−2 </answer>
<think> Fifth, we combine like terms to get the polynomial in standard form. </think>
<answer> g(x) = 3x4 − 12x3 + 29x2 − 43x+ 15 </answer>
<think> Sixth, we find the sum of the coefficients of g(x). </think>
<answer> 3− 12 + 29− 43 + 15 = −4 </answer>
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<think> Seventh, the final answer is:</think>
<answer> -4 </answer>

Knights and Knaves

The model successfully breaks down a multi-hop logic puzzle, providing correct intermediate
conclusions at each step, and arrives at the correct final answer.

Question:
A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 5 inhabitants: Victoria, Mia, Sebastian, Ethan, and Olivia.
"Mia is a knave and Ethan is a knave" - Victoria.
Mia said that If Mia is a knight then Sebastian is a knave.
Sebastian expressed that Victoria is a knave if and only if Ethan is a knave.
Ethan remarked, "Sebastian is a knight or Victoria is a knave".
"Sebastian is a knight and Sebastian is a knave" - Olivia.
So who is a knight and who is a knave?
Ground Truth: (1) Victoria is a knave (2) Mia is a knave (3) Sebastian is a knight (4) Ethan
is a knight (5) Olivia is a knave
Interleaved Reasoning:
<think> First, consider Victoria’s statement: ’Mia is a knave and Ethan is a knave’. This
must be a lie because an implication can only be true if both conditions are false. </think>
<answer> Victoria is a knave </answer>
<think> Second, consider Sebastian’s statement: ’Victoria is a knave if and only if Ethan is
a knave’. Since Victoria is a knave (from our previous deductions) and Sebastian is a knight
(since he always lies), Sebastian must be a knight. </think>
<answer> Sebastian is a knight </answer>
<think> Third, consider Mia’s statement: ’If Mia is a knight then Sebastian is a knave’.
Since Mia is a knight (since she always lies) and Sebastian is a knight (since he always lies),
Mia must be a knave. </think>
<answer> Mia is a knave </answer>
<think> Fourth, consider Ethan’s statement: ’Sebastian is a knight or Victoria is a knave’.
Since Sebastian is a knight (since he always lies) and Victoria is a knave (since she always
lies), Ethan must be a knight. </think>
<answer> Ethan is a knight </answer>
<think> Fifth, consider Olivia’s statement: ’Sebastian is a knight and Sebastian is a knave’.
This must be a lie because an implication can only be true if both conditions are simultaneously
true, which is impossible. </think>
<answer> Olivia is a knave </answer>
<think> So, the final answer is:</think>
<answer>(1) Victoria is a knave (2) Mia is a knave (3) Sebastian is a knight (4) Ethan is a
knight (5) Olivia is a knave</answer>

Musique

The model sequentially solves each sub-question, yielding the correct final answer. Occasion-
ally, the model provides intermediate answers that are duplicates of the final answer, which is
not ideal.

Question:
Where does Plymouth rank in population among the cities of the country having a gallery
displaying the painting named The Woman Taken in the main subject of milkman joke?
Ground Truth: 30th
Interleaved Reasoning:
<think> First, identify the country where Plymouth is located. </think>
<answer> United Kingdom </answer>
<think> Second, identify the painting named The Woman Taken in Adultery. </think>
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<answer> The Woman Taken in Adultery </answer>
<think> Third, identify the gallery displaying this painting. </think>
<answer> National Gallery </answer>
<think> Fourth, determine Plymouth’s ranking in population among the cities of the United
Kingdom. </think>
<answer> 30th </answer>
<think> Fifth, state the final answer. </think>
<answer> 30th </answer>

MMLU

The model translates logic formulas stepwise, mapping each part to natural language and
selecting the correct answer.

Question:
Use the following key to translate the given formula of PL to natural, English sentences.
A: Marina reads a Percy Jackson book.
B: Izzy plays Minecraft.
C: Emily stops working.
D: Russell makes dinner.
E: Ashleigh stops by.
∼ (A ⊃ B) · (B ⊃∼ E)
A) It’s not the case that Marina’s reading a Percy Jackson book entails that Izzy plays
Minecraft, but Izzy’s playing Minecraft does entail that Ashleigh doesn’t stop by.
B) If Marina doesn’t read a Percy Jackson book, then Izzy plays Minecraft, which entails that
Ashleigh doesn’t stop by.
C) Marina’s reading a Percy Jackson book does not entail that Izzy plays Minecraft, but Izzy
plays Minecraft provided that Ashleigh doesn’t stop by.
D) It’s not true that Marina reads a Percy Jackson book only when Izzy plays Minecraft, but
Izzy plays Minecraft only when Ashleigh stops by.
Ground Truth: A
Interleaved Reasoning:
<think>First, identify the logical structure of the given formula. The formula is a conjunc-
tion of two main parts: ∼ (A ⊃ B) and (B ⊃∼ E). The symbol ⊃ represents material
implication ("entails", "if...then...", "only when"), ∼ represents negation ("not", "it’s not the
case that"), and · represents conjunction ("and", "but").</think>
<answer>The formula is ∼ (A ⊃ B) · (B ⊃∼ E).</answer>
<think>Second, translate the first part of the conjunction: ∼ (A ⊃ B). A ⊃ B translates
to "Marina reads a Percy Jackson book entails Izzy plays Minecraft" or "If Marina reads a
Percy Jackson book, then Izzy plays Minecraft." The negation ∼ (A ⊃ B) means "It is not
the case that (Marina reads a Percy Jackson book entails Izzy plays Minecraft)."</think>
<answer>∼ (A ⊃ B) translates to "It’s not the case that Marina’s reading a Percy Jackson
book entails that Izzy plays Minecraft."</answer>
<think>Third, translate the second part of the conjunction: (B ⊃∼ E). B translates to
"Izzy plays Minecraft." ∼ E translates to "Ashleigh doesn’t stop by." So, B ⊃∼ E translates
to "Izzy plays Minecraft entails that Ashleigh doesn’t stop by" or "If Izzy plays Minecraft,
then Ashleigh doesn’t stop by."</think>
<answer>(B ⊃∼ E) translates to "Izzy’s playing Minecraft does entail that Ashleigh
doesn’t stop by."</answer>
<think>Fourth, combine the translations of the two parts with a conjunction (e.g., "but"
or "and"). The overall formula ∼ (A ⊃ B) · (B ⊃∼ E) combines these two state-
ments.</think>
<answer>Combining the parts: "It’s not the case that Marina’s reading a Percy Jackson
book entails that Izzy plays Minecraft, but Izzy’s playing Minecraft does entail that Ashleigh
doesn’t stop by."</answer>
<think>Fifth, compare this translation with the given options to select the correct one.
Option A matches our translation. Option B incorrectly translates ∼ (A ⊃ B) as "If Marina
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doesn’t read a Percy Jackson book, then Izzy plays Minecraft". Option C incorrectly translates
(B ⊃∼ E) as "Izzy plays Minecraft provided that Ashleigh doesn’t stop by", which would
be (∼ E ⊃ B). Option D incorrectly translates (B ⊃∼ E) as "Izzy plays Minecraft only
when Ashleigh stops by", which would be (B ⊃ E). Therefore, option A is the correct
translation.</think>
<answer>The final answer is: A</answer>

MMLU

The model successfully applies interleaved reasoning to derive and combine gradients step by
step, leading to the correct answer.

Question:
Suppose we have the following objective function: argminw

1
2∥Xw− y∥22 + 1

2γ∥w∥
2
2. What

is the gradient of 1
2∥Xw − y∥22 + 1

2λ∥w∥
2
2 with respect to w?

A) ∇wf(w) = (XTX + λI)w −XT y + λw
B) ∇wf(w) = XTXw −XT y + λ
C) ∇wf(w) = XTXw −XT y + λw
D) ∇wf(w) = XTXw −XT y + (λ+ 1)w
Ground Truth: A
Interleaved Reasoning:
<think>First, let’s identify the objective function and the terms involved. The objective
function is given by:</think>
<answer>the objective function is 1

2∥Xw − y∥22 + 1
2γ∥w∥

2
2</answer>

<think>Now, let’s break down the terms:</think>
<answer>the terms are 1

2∥Xw − y∥22 and 1
2γ∥w∥

2
2</answer>

<think>Next, we need to find the gradient of the first term 1
2∥Xw − y∥22 with respect to

w. Recall that the gradient of ∥z∥22 with respect to z is 2z. So, the gradient of 1
2∥Xw − y∥22

is:</think>
<answer>the gradient of 1

2∥Xw − y∥22 is XT (Xw − y)</answer>
<think>Now, let’s find the gradient of the second term 1

2γ∥w∥
2
2 with respect to w. The

gradient of ∥w∥22 with respect to w is 2w. So, the gradient of 1
2γ∥w∥

2
2 is:</think>

<answer>the gradient of 1
2γ∥w∥

2
2 is γw</answer>

<think>Now, we can combine these gradients to find the gradient of the entire objective
function:</think>
<answer>the gradient of the entire objective function is XT (Xw − y) + γw</answer>
<think>Now, let’s compare this with the given options:</think>
<answer>The correct option is A) ∇wf(w) = (XTX + λI)w −XT y + λw</answer>

GPQA

The model answers the problem step by step, ruling out distractors and resulting in the correct
final answer.

Question:
In the lab, a chemist discovers an unnamed bottle with a white solid inside. He gathers the
following spectral information in order to identify the liquid. Make a reasonable structural
suggestion for the unidentified drug using the information provided.
Mass: molecular ion peak at m/z = 156 (100%)
a peak at m/z = 158 (32%)
IR : broad peak from 3500-2700 cm−1, strong sharp peak at 1720 cm−1

1H NMR: 11.0 ppm (s, 1H), 8.02 ppm (d, 2H), 7.72 (d, 2H)
A) Phenyl chloroformate
B) 2-chlorobenzoic acid
C) 3-Chloro-2-hydroxybenzaldehyde
D) 4-chlorobenzoic acid
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Ground Truth: D
Interleaved Reasoning:
<think>First, analyze the Mass Spectrum data. A molecular ion peak (M+) at m/z = 156
and an M+2 peak at m/z = 158 with an intensity ratio of approximately 100:32 (or 3:1) is char-
acteristic of a compound containing one chlorine atom (35Cl/37Cl isotopic abundance). The
molecular weight of C7H5ClO2 is approximately 156.5 g/mol (using 35Cl), which matches
the M+ peak. All given options have this molecular formula.</think>
<answer>The mass spectrum indicates a molecular weight of approximately 156 and
the presence of one chlorine atom. All options (Phenyl chloroformate, 2-chlorobenzoic
acid, 3-Chloro-2-hydroxybenzaldehyde, 4-chlorobenzoic acid) have the molecular formula
C7H5ClO2.</answer>
<think>Second, analyze the IR Spectrum. A very broad peak spanning 3500-2700 cm−1

is highly characteristic of the O-H stretch of a carboxylic acid, which is broadened due to
hydrogen bonding. The strong, sharp peak at 1720 cm−1 is characteristic of a C=O (carbonyl)
stretch, consistent with a carboxylic acid (typically 1700-1725 cm−1). This strongly suggests
the presence of a -COOH group.</think>
<answer>The IR spectrum strongly suggests the presence of a carboxylic acid group
(-COOH) due to the broad O-H stretch (3500-2700 cm−1) and the C=O stretch (1720
cm−1).</answer>
<think>Third, analyze the 1H NMR Spectrum. The signal at 11.0 ppm (singlet, 1H) is
highly deshielded and is characteristic of a carboxylic acid proton (-COOH). The signals at
8.02 ppm (doublet, 2H) and 7.72 ppm (doublet, 2H) are in the aromatic region. A pattern of
two doublets, each integrating to 2 protons, is indicative of a para-substituted benzene ring.
The two protons of one type are chemically equivalent, and the two protons of the other type
are also chemically equivalent, and they are ortho to each other respectively.</think>
<answer>The 1H NMR spectrum shows a carboxylic acid proton at 11.0 ppm and
a para-substituted benzene ring pattern (two doublets, each 2H, at 8.02 ppm and 7.72
ppm).</answer>
<think>Fourth, evaluate the options based on the combined spectral data: A) Phenyl chlo-
roformate: Contains an ester-like C=O and an acid chloride C-Cl. IR for C=O in R-O-CO-Cl
is typically higher (around 1760-1780 cm−1). It lacks the carboxylic acid O-H and the acidic
proton at 11.0 ppm. B) 2-chlorobenzoic acid: Is a carboxylic acid, consistent with IR and
the 11.0 ppm NMR signal. However, an ortho-substituted benzene ring (1,2-disubstituted)
would typically give a more complex pattern for the 4 aromatic protons (e.g., 4 distinct signals
or complex multiplets), not two doublets of 2H each. C) 3-Chloro-2-hydroxybenzaldehyde:
Contains an aldehyde and a phenolic -OH. An aldehyde C=O IR is plausible ( 1720-1740
cm−1), but the broad O-H from 3500-2700 cm−1 points to a carboxylic acid, not typically a
phenol (phenols are usually sharper, 3200-3600 cm−1). The aldehyde proton (-CHO) signal
is typically around 9-10 ppm. The aromatic region for a 1,2,3-trisubstituted benzene would
show 3 distinct aromatic protons. D) 4-chlorobenzoic acid: Is a carboxylic acid. This fits
the IR data (broad O-H, C=O at 1720 cm−1) and the NMR signal at 11.0 ppm (-COOH).
It is a para-substituted benzene ring (chlorine at position 4, carboxylic acid at position 1).
This substitution pattern gives rise to two sets of equivalent aromatic protons (H-2/H-6 and
H-3/H-5), which would appear as two doublets, each integrating to 2H. This perfectly matches
the NMR signals at 8.02 ppm and 7.72 ppm.</think>
<answer>Comparing the spectral interpretations with the options: A) Phenyl chloroformate
is inconsistent with IR (no broad O-H) and NMR (no signal at 11 ppm). B) 2-chlorobenzoic
acid is inconsistent with the aromatic NMR pattern (would not be two doublets of 2H each). C)
3-Chloro-2-hydroxybenzaldehyde is inconsistent with IR (carboxylic acid O-H unlikely) and
NMR (aldehyde H at 9-10 ppm, different aromatic pattern). D) 4-chlorobenzoic acid is fully
consistent with all spectral data: MS indicates C7H5ClO2, IR indicates a carboxylic acid, and
1H NMR indicates a carboxylic acid proton and a para-substituted benzene ring.</answer>
<think>The final answer is therefore 4-chlorobenzoic acid.</think>
<answer>D) 4-chlorobenzoic acid</answer>
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GPQA

A failed case: the model occasionally fails to follow the interleaved structure. The model also
sometimes generates shorter thinking and longer answers than necessary.

Question:
Reaction of solid A with 8 equivalents of gas B forms bright red product C.
When C reacts with 2 equivalents of gas D, it produces the extremely hazardous product E.
C reacts with water to reform A plus two different acids F and G. F is a strong acid while G is
a weak acid.
D reacts with B in a 1:1 ratio to form H, which is used as a solvent. What is the molecular
symmetry group of E?
A) C2v

B) D4h

C) D∞h

D) C2

Ground Truth: A
Interleaved Reasoning:
<think>First, let’s identify the products and their properties:</think>
<answer>The products are C, E, F, and G. C is a bright red product, E is an extremely
hazardous product, F is a strong acid, and G is a weak acid. D reacts with B in a 1:1 ratio to
form H, which is used as a solvent.</answer>
<think>Next, let’s analyze the reaction of C with water to reform A plus two different acids
F and G:</think>
<answer>The reaction of C with water to reform A plus two different acids F and G is a
typical acid-base reaction. Since C is a bright red product, it is likely a metal oxide or a metal
hydroxide. When it reacts with water, it will form a metal hydroxide and a metal ion, which
will then react with the acid to form the two different acids F and G.</answer>
<think>Now, let’s consider the reaction of E with D to produce H:</think>
<answer>The reaction of E with D to produce H is a typical acid-base reaction. Since E is
an extremely hazardous product, it is likely a strong acid. When it reacts with D, it will form
H, which is used as a solvent.</answer>
<think>Finally, let’s determine the molecular symmetry group of E:</think>
<answer>The molecular symmetry group of E is D∞h. This is because E is an extremely
hazardous product, which suggests that it has a high degree of symmetry. The D∞h group has
16 symmetry operations, including 8 mirror planes and 8 axes of inversion. This group is also
known as the point group D4h, but the presence of an infinite number of axes of inversion
makes D∞h a more appropriate choice.</answer>
<answer>C) D∞h</answer>

K USE OF LARGE LANGUAGE MODELS

We used LLMs solely for proofreading and polishing text. All ideas, results, and arguments are the
authors’ own.
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