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Abstract

We propose a new general framework for recovering low-rank structure in optimal transport
using Schatten-p norm regularization. Our approach extends existing methods that promote
sparse and interpretable transport maps or plans, while providing a unified and principled
family of convex programs that encourage low-dimensional structure. The convexity of our
formulation enables direct theoretical analysis: we derive optimality conditions and prove
recovery guarantees for low-rank couplings and barycentric maps in simplified settings. To
efficiently solve the proposed program, we develop a mirror-descent algorithm with con-
vergence guarantees for p ≥ 1. Experiments on synthetic and real data demonstrate the
method’s efficiency, scalability, and ability to recover low-rank transport structures.

1 Introduction

Optimal transport (OT) has emerged as a fundamental computational tool across many areas, including
machine learning, computer vision, statistics, and biology (Arjovsky et al., 2017; Peyré and Cuturi, 2019;
Schiebinger et al., 2019; Bonneel and Digne, 2023). It provides a principled framework for comparing prob-
ability distributions, and it has a rich mathematical history (Villani et al., 2008). While the combination of
practical utility and deep mathematical theory has led to the broad adoption of OT ideas in mathematics,
science, and engineering, finding ways to scale OT solutions and make them interpretable remains a fun-
damental research question (Cuturi et al., 2023; Khamis et al., 2024). In particular, OT typically suffers
from the curse of dimensionality (Chewi et al., 2025), and regularized estimators may lack sparsity (Genevay
et al., 2019).

A long line of work has focused on making OT scalable and interpretable through regularization. The most
classical of these is entropic regularization, which yields a strictly convex program that can be solved via
Sinkhorn scaling (Sinkhorn, 1967; Cuturi, 2013). More recent work has sought to increase efficiency and
interpretability through quadratic regularization (Blondel et al., 2018; Lorenz et al., 2021), as well as low-
rank factorizations (Forrow et al., 2019; Scetbon et al., 2021). These methods show promise in biological
applications, particularly in single-cell RNA sequencing analysis (Klein et al., 2025).

Another closely related set of recent works attempts to include sparsity in the OT map using elastic costs
Cuturi et al. (2023); Klein et al. (2024); Chen et al. (2025). In these works, using different cost modifications
can be shown to encourage sparse or low-rank transport displacements. This leads to OT maps with simple,
interpretable structures.

Except for entropic regularization, our work simultaneously generalizes all of the aforementioned methods
in a unified framework. We believe that this unified picture can lead to more principled development of
tailored regularization. Furthermore, the theory of OT has not yet fully leveraged the extensive literature
on regularization for scaling and interpretability present in other fields, such as compressed sensing. In
compressed sensing, the use of ℓ1 or nuclear-norm penalties as proxies for rank minimization has yielded
provably efficient algorithms (Eldar and Kutyniok, 2012; Wright and Ma, 2022). Our general formulation
marries ideas from OT and compressed sensing, providing a bridge that we expect to be fruitful for developing
sparse and low-rank optimal-transport models moving forward.
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1.1 Contributions

In this work, we present Schatten-p regularized OT, which we call Schatten OT. This novel formulation is
both general and amenable to direct theoretical analysis. We summarize the main contributions of our work:

• We demonstrate how the Schatten-OT program simultaneously generalizes a large portion of prior
work on low-rank and sparse methods in OT, while also yielding new regularized formulations.

• We propose a general mirror-descent framework that efficiently solves the Schatten OT scale.

• For p ≥ 1, the resulting optimization problem is convex, allowing convergence guarantees for mirror
descent and analysis of low-rank couplings, low-rank transport displacements, and low-rank covari-
ance structures.

• Experiments on synthetic and real data demonstrate the flexibility and effectiveness of Schatten OT.

1.2 Related Work

Regularized variants of OT have become increasingly important in current applied and theoretical re-
search. The story of regularized OT begins with entropic regularization (Cuturi, 2013), which has roots
in Schrödinger (1932). More recent regularizations include quadratic and sparse regularization (Blondel
et al., 2018; Lorenz et al., 2021; González-Sanz and Nutz, 2024), which seek to encourage sparse structures
in the transport plan.

Other work has studied low-rank factorizations in couplings to scale OT. Forrow et al. (2019) define a notion
of factored couplings. Scetbon et al. (2021) use this notion of low-rank factorization of the coupling to develop
an efficient Sinkhorn algorithm for factored couplings. Later, Lin et al. (2021) use multiple couplings to move
through anchor points. Halmos et al. (2024) propose a new algorithm to optimize over the LC factorization,
and Halmos et al. (2025) use hierarchical low-rank structures.

Another line of recent work has studied the regularization of displacements. Cuturi et al. (2023) introduce
the notion of elastic OT costs and show how to construct maps with sparse or low-rank structure. Later,
Klein et al. (2024) introduce learnable parameters into these costs, enabling greater flexibility in selecting
the regularizer. Chen et al. (2025) use neural networks to learn maps in these settings.

We note that the incorporation of low-dimensional structure in OT displacements dates back to earlier
subspace-robust notions of OT. Paty and Cuturi (2019) compute Wasserstein distances over worst-case
subspaces in the ambient space. These methods have some practical statistical advantages (Niles-Weed and
Rigollet, 2022).

We can broadly think of regularizing OT as encoding bias in the transport plan. However, there are many
other ways the OT problem can be biased. For example, some works seek to encode biases by optimizing the
ground cost used within OT. Alvarez-Melis et al. (2019) learn an OT with invariances using an alternating
minimization procedure, and focus on optimization over Schatten-p balls. Sebbouh et al. (2024) learn a
matrix M that defines an inner product cost between measures on different spaces. Jin et al. (2021) match
distributions in different spaces using separate linear transformations. We note that these works implicitly
regularize transport, as in subspace-robust OT.

In seeking a principled way to regularize and scale OT, we draw connections with compressed sensing. Com-
pressed sensing focuses on recovering sparse structures from data. Original foundational works concentrate
on recovering sparse vectors using ℓ1 regularization (Donoho, 2006; Candes et al., 2006). These ideas were
later extended to low-rank matrices (Fazel et al., 2008), which used nuclear norm regularization. The use
of more general Schatten-p norms followed this (Nie et al., 2012). The extension of these regularizations to
other settings has been fruitful. For example, Scarvelis and Solomon (2024) use it in the context of deep
learning.

The ideas of compressed sensing are seeing a resurgence in the age of modern machine learning and AI.
Sparse autoencoders have become a primary tool for practitioners studying mechanistic interpretability
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(Huben et al., 2024). Sparse coding and rate reduction form a recent framework for training deep models
to develop “white-box" methods (Yu et al., 2020; 2023). Compression as a general technique is effective at
demonstrating intelligence in simple puzzles (Liao and Gu, 2025). These examples show the importance
and practicality of developing theoretically principled compression techniques for machine learning and AI
problems.

1.3 Notation

Bold lowercase letters are vectors and bold uppercase letters are matrices. We denote the set of integers
[n] := {1, . . . , n}. For vectors, ∥·∥ is the standard ℓ2 (Euclidean) norm. For matrices, ∥·∥Sp is the Schatten-p
norm, i.e., the ℓp norm of the vector of singular values, and ∥ · ∥S2 = ∥ · ∥F is the Frobenius norm. The set
of probability measures over Rd with finite pth moment is Pp(Rd), and the subset of absolutely continuous
measures is Pp,ac(Rd). The indicator function is 1.

1.4 Organization

First, in Section 2, we give the necessary background and outline our optimization program. Then, in Section
3, we provide our algorithmic framework for solving the Schatten OT problem. After this, Section 4 gives
theoretical results about the structure of Schatten OT couplings. Finally, Section 5 presents experiments on
synthetic and real data, highlighting the flexibility and advantages of our framework.

2 Background and Method

In this section, we first discuss background ideas in OT and compressed sensing and then the Schatten
OT method. We begin in Section 2.1 by describing discrete OT and its common regularizations. Then,
Section 2.2 discusses background on Schatten-p regularization in compressed sensing. After this, we define
our Schatten-p norm regularized OT, Schatten OT, in Section 2.3.

2.1 OT and Regularization

For simplicity of presentation, we focus on the discrete case; in Appendix A, we show how these ideas extend
to the continuous setting. Consider two discrete measures µ =

∑m
i=1 aiδxi and ν =

∑n
j=1 bjδyj , where

ai, bj ≥ 0 and
∑

i ai =
∑

j bj = 1. We let X ∈ Rd×m and Y ∈ Rd×n be matrices with the support points
as columns. Without loss of generality, assume n ≥ m. The transportation polytope U(a, b) is the set of
m × n nonnegative matrices whose rows sum to a = [a1, . . . , am]⊤ and columns sum to b = [b1, . . . , bn]⊤.
We also refer to these matrices as couplings between µ and ν. In the transport problem, we are thinking of
transporting µ to ν. Therefore, we refer to µ as the source distribution and ν as the target distribution.

We assume an m × n matrix of costs C, where Cij = c(xi, yj), for some function c : Rd × Rd → [0, ∞).
The function c is typically called the ground cost. As a concrete example, we can use the pth power of the
Euclidean distance,

Cij = ∥xi − yj∥p. (1)

OT seeks a minimum-cost coupling between the measures µ and ν. It is formulated as a linear program over
the transportation polytope,

OT(µ, ν) = min
P ∈U(a,b)

⟨P , C⟩. (2)

When the cost corresponds to a power of a metric on some underlying space, the resulting OT cost can be
used to define a metric on Pp(Rd). For the rest of this paper, we will assume that c(xi, yj) = ∥xi − yj∥2.
However, we note that our regularization can be applied to OT with any ground cost.

For a review of computational methods related to this linear program, see Peyré and Cuturi (2019). While
there are many deep and interesting results related to OT, in practice, the direct use of OT in the form
presented can suffer. In particular, OT suffers the curse of dimensionality; worst-case statistical rates of
estimation for the p-Wasserstein distance are O(n−1/d), assuming that xi and yj are i.i.d. samples from some
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population measures. On the computational side, for large n ≍ m, the linear program incurs computational
cost O(n3), and we must store an O(n2) variable in memory. To combat these issues, various regularizers
have been considered, as we mentioned in the introduction. These regularized OT variants solve

min
P ∈U(a,b)

⟨C, P ⟩ + λR(P ),

where R : Rm×n → R is the regularization function and λ is a tunable parameter. An example is the entropy
function R(P ) =

∑
ij Pij(log(Pij) − 1) (Cuturi, 2013).

2.2 Schatten-p Regularization in Compressed Sensing

Schatten-p regularization in compressed sensing served as a way to generalize ℓp regularization for sparse
vector recovery. In particular, using Schatten-p regularization is strictly more general than ℓp regularization
because we can encode vectors as diagonal matrices, in which case ∥x∥p = ∥diag(x)∥Sp .

Perhaps the most popular regularization is Schatten-1 (nuclear norm) regularization. This is typically used
to relax the rank of a matrix, and in a variety of settings, nuclear norm minimization has been shown to
recover low-rank matrices (Recht et al., 2010; Candès and Tao, 2010; Candès et al., 2011).

These methods have been applied in a variety of settings. Some applications of these methods have included
matrix completion and recommender systems (Nie et al., 2012), multitask learning (Zhang et al., 2018),
high-dimensional covariance estimation (Gavish and Donoho, 2017), and image processing (Xie et al., 2016).

Optimization with nuclear norms, or more generally Schatten-p norms, involves a variety of algorithms.
For example, nuclear norm minimization can involve saddle point or proximal algorithms Nesterov and Ne-
mirovski (2013), the latter of which involves singular value thresholding (Cai et al., 2010). Other algorithmic
paradigms include primal-dual methods (Chambolle and Pock, 2011) or ADMM (Yuan and Yang, 2009).
To solve the more general case of Schatten-p regularized problems, for 0 < p ≤ 2, one typically resorts to
Lagrangian-style methods (Nie et al., 2012) or iteratively reweighted nuclear norm-style methods (Lu et al.,
2015). Another popular approach to nuclear norm minimization problems involves factor splitting to avoid
SVD computations (Srebro et al., 2004; Fan et al., 2019).

2.3 Discrete Schatten-p Regularized OT

We now come to the main innovation of our work. We study a new variant of regularized OT problems using
Schatten-p norms. We define the Schatten OT problem as

Sch-OT(µ, ν; {(λi, pi, qi, Ai)}) := min
P ∈U(a,b)

⟨C, P ⟩ +
∑

i

λi∥Ai(P )∥qi

Spi
. (3)

The idea of this program is to regularize toward simpler couplings with respect to the maps Ai. Notice
that the Schatten OT problem relies on three sets of parameters: the regularization strengths λi ≥ 0, the
Schatten powers and exponents pi, qi > 0, and maps Ai : U(a, b) → Rki×li . Provided that pi, qi ≥ 1 and Ai

are affine, it is easily seen that Schatten OT is a convex program. With only one regularization term, this
simplifies to Sch-OT(µ, ν; (λ, p, q, A)) = minP ∈U(a,b)⟨C, P ⟩ + λ∥A(P )∥q

Sp
.

We believe that convexity and generality are primary benefits of Schatten OT. It is general enough to cover
many existing regularizations in the literature, as we will demonstrate shortly. The convexity of the problem
leads to solutions that are easy to characterize, as we will show in our theory section. It also enables efficient
solvers using convex optimization techniques.

While many past regularizations for OT fall into this framework, as we will demonstrate below, some do not.
In particular, we cannot recover entropic regularization from (3). While entropic regularization cannot be
realized by a Schatten norm of an affine function, one could add an entropic penalty to Schatten OT. This
may be convenient from an algorithmic standpoint, but we leave the study of this additional regularization
to future work. In Appendix A, we illustrate how to extend these ideas to the continuous setting.
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Low-rank and Sparse Couplings: As a first example, consider the affine map A(P ) = P . Then,
depending on the choice of p, Schatten OT encourages low-rank or sparse couplings. In particular, choosing
q = p ≤ 1 encourages low-rank solutions. This yields a principled, optimization-based analog to the low-
rank factorization pursued by works such as Forrow et al. (2019); Scetbon et al. (2021). On the other hand,
q = p = 2 corresponds to the case of quadratically regularized OT (Blondel et al., 2018; Lorenz et al., 2021),
since the Schatten-2 norm is just the Frobenius norm. This tends to encourage sparse solutions (González-
Sanz and Nutz, 2024). Group sparsity (Blondel et al., 2018) can be achieved through proper choice of the
affine maps in (3) and setting pi = 2, qi = 1.

Elastic costs: We can also recover some of the elastic cost regularizations of Cuturi et al. (2023); Klein
et al. (2024); Chen et al. (2025). In particular, we can take q = p = 1 and let A(P ) be the affine map

P 7→ diag((Pij(xi − yj))m,n
i=1,j=1.

Then, the Schatten OT penalty corresponds to the ℓ1 elastic cost. Group-sparse elastic costs can be recovered
from sums of Schatten regularizations. We can also recover the subspace elastic costs of Klein et al. (2024)
by taking q = p = 2 and the affine map

P 7→ diag((QLPij(xi − yj))n,m
i=1,j=1,

where QL is the projection onto the orthogonal complement of L. Note that, analogously to Klein et al.
(2024), one could include an additional minimization over L in the Schatten OT formulation. This then
defines a family of learnable Schatten OT problems. We discuss this possibility further in the appendix.

Barycentric projection maps and displacements: The formulation can be used to penalize map
estimators directly. In particular, given a transport plan P , one can estimate a transport map using the
barycentric projection

TP (xi) = 1
ai

m∑
j=1

Pijyj = 1
ai

(Y P ⊤):,i.

Notice that this map is linear in P . Thus, we can penalize the barycentric projection map in our program
by letting A(P ) = TP (X)diag(A)−1/2, where we define A = diag(a). As a further example, we could
encourage displacements to be low-rank rather than the map itself. We call TP (xi) − xi the barycentric
displacement. Then, to encourage these to be simple, we could use A(P ) = Y P ⊤A−1/2 − XA1/2. In both
cases, the additional scaling of A1/2 allows the population limit of the program to be well defined.

Covariance regularization: All of the maps discussed so far include zeroth and first moments of the
support points (xi, yj). However, our formulation is flexible enough to include higher moments of our data
distribution. For example, we can take A to be an affine function of the covariance induced by P ,

ΣP =
∑

ij

Pij

(
xi

yj

) (
xi

yj

)⊤

,

which is linear in P .

We could penalize the Schatten-1 norm of the cross-covariance
∑

ij Pijxiy
⊤
j , which is an affine function

of ΣP . If the vectors xi and yj are whitened (i.e., they each have identity covariance), then the singular
values of this matrix correspond to the canonical correlations. Minimizing the Schatten-1 norm in this case
corresponds to minimizing the sum of canonical correlations, which seeks to increase independence between
X and Y . Note that if we take the A(P ) =

∑
ij Pij(xi − yj)(xi − yj)⊤ and p = 1, then the regularization

is just the quadratic OT cost, ∥
∑

ij Pij(xi − yj)(xi − yj)⊤∥S1 =
∑

ij Pij∥xi − yj∥2.

These illustrate just a few of the potential choices for adding covariance regularization to OT. In the appendix,
we discuss covariance regularization in the context of Schatten OT for Gaussians. An in-depth study of these
is left to future work.
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3 A Mirror Descent Algorithm

The Schatten-OT program in (3) is convex whenever pi, qi ≥ 1 and Ai are affine, but solving it directly
with off-the-shelf convex solvers (e.g., CVXPY (Diamond and Boyd, 2016) or interior point methods) is only
feasible for small problems, as the transportation polytope U(a, b) involves O(nm) variables and constraints.
To address large-scale settings, we turn to first-order optimization methods. A particularly effective choice for
optimization over the transport polytope is mirror descent with Kullback–Leibler (KL) geometry Kemertas
et al. (2025). We use this algorithm for its simplicity and leave the analysis of more general methods, such
as primal-dual algorithms or ADMM, to future work.

Following the approach of Kemertas et al. (2025), we develop mirror descent using the KL geometry on
the transport polytope. This choice is natural, since using the KL geometry replaces a costly Euclidean
projection with efficient Sinkhorn scaling. A few iterations of this method, followed by rounding, are effective
at projecting to the polytope (Altschuler et al., 2017).

Assuming that A(P ) ̸= 0, we can compute a subgradient of the Schatten-p norm term in the Schatten OT
problem as

q∥A(P )∥q−p
Sp

A⋆
(
UΣp−1V ⊤)

∈ ∂∥A(P )∥q
Sp

,

where ∂ denotes the subdifferential. This provides a computable subgradient of F (P ) at each iteration,
provided that we can compute a singular value decomposition. For p, q > 1, this is a bona fide gradient.

The mirror descent iteration involves the following steps.

1. Form the SVD A(P k) = UkΣkV k⊤ and the subgradient

Gk = q∥A(P k)∥q−p
Sp

A⋆
(
Uk(Σk)p−1V k⊤)

2. Use multiplicative-weights form
P̂ij ∝ P k

ij exp(−τGk
ij)

3. Project back to the transport polytope

P k+1 = ΠKL
U(a,b)(P̂ ),

Here, τk > 0 is a step size and ΠKL
U(a,b) is the projection onto the transport polytope with respect to the KL

divergence, which can be implemented via Sinkhorn scaling.

By standard mirror descent theory (Beck and Teboulle, 2003; Nemirovsky and Yudin, 1983; Bubeck et al.,
2015), the method achieves an O(1/

√
T ) convergence rate for convex objectives (p, q ≥ 1). The KL geometry

ensures that nonnegativity is automatically preserved, and averaging can be used to guarantee convergence
of the objective values.

The most expensive parts of the iteration are the SVD computation and the Sinkhorn projection. It is possible
to use an adaptive low-rank approximation of A(P k) throughout the iterations to increase computational
efficiency. It would also be interesting to attempt to use sketching methods to approximate low-rank solutions
to this problem (Yurtsever et al., 2021).

The choice of step size is essential. In general, since the problem is convex but not smooth in general, one
could take τk ∝ 1/

√
k, which yields the O(1/

√
T ) convergence rate in objective value. In our experiments,

we can observe faster convergence in specific settings. For example, when p = q = 1 and A has simple
structure, for instance when A(P ) = P (low-rank couplings) or A(P ) = Y P ⊤A−1 (low-rank barycentric
maps), mirror descent can obtain faster convergence with a geometrically diminishing step size, the same
schedule used in past work with sharp minima (Davis et al., 2018; Maunu et al., 2019).
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4 Theory

In this section, we present our main theoretical results on the Schatten OT program. First, Section 4.1 uses
convex optimization theory to outline the structure of solutions to the Schatten OT problem. After this,
Section 4.2 uses this structure to prove two theorems that demonstrate Schatten OT’s ability to recover
low-rank couplings and barycentric displacements. Finally, in Section 4.3, we finish with a discussion of our
theoretical results.

4.1 General Structural Theorems

Let P ⋆ be an optimal solution of the optimization problem (3) with p, q ≥ 1. Since this is a constrained
convex optimization problem in P , we can appeal to standard theory. The solution is characterized by the
KKT conditions, which state that there exists G⋆ ∈ ∂∥A(P ⋆)∥q

Sp
such that

C + λG⋆ + 1nu⊤ + v1⊤
m = 0,

P ⋆ ≥ 0, P ⋆1 = a, P ⋆⊤1 = b.

Comparing these conditions to the optimality conditions for standard OT, we notice that the only difference
is the inclusion of the λG⋆ in the first-order stationarity condition. Therefore, the optimality conditions for
Schatten OT are precisely those for an OT problem with the tilted cost

S(λ, G⋆) := C + λG⋆ ∈ Rn×m. (4)

where G⋆ is some subgradient of ∥A(·)∥q
Sp

at P ⋆. The obstacle to our directly applying this result is that
we do not know G⋆, since that would require knowing P ⋆.

We can state this characterization as the following proposition.
Proposition 1. The coupling P ⋆ is optimal for (3) if and only if there exists a subgradient G⋆ of ∥A(P ⋆)∥q

Sp

such that
P ⋆ ∈ argminP ∈U(a,b)⟨S(λ, G⋆), P ⟩.

While we cannot apply this to the direct computation of P ⋆, we can use it to characterize solutions to
the Schatten OT problem. In the following section, we develop this idea to prove the recovery of low-rank
structure in the Schatten OT problem.

4.2 Discrete Recovery Theorems

In this section, we prove low-rank recovery theorems for Schatten OT. While these are restrictive toy ex-
amples, they represent the first such exact recovery results in the OT literature. We believe this is a first
step towards applying compressed sensing ideas to regularized OT problems. It is an open question for
future work to extend these ideas to the recovery of simple couplings in more complex settings. We begin in
Section 4.2.1 with a recovery result for low-rank couplings. Then, Section 4.2.2 presents a consequence on
the recovery of a low-rank set of barycentric displacements.

4.2.1 Low-Rank Coupling Recovery

We now assume that both the source and the target consist of R well-separated clusters, each with the same
cardinality. We show that, for a nontrivial interval of regularization strengths λ, the nuclear-norm penalized
OT problem recovers a rank-R, block-diagonal coupling that matches each source cluster uniformly to its
corresponding target cluster. We assume uniform marginals ai = 1/m, bj = 1/n for all i, j.

Our first assumption is on the clustered structure of µ and ν.
Assumption 2. For two measures µ =

∑m
i=1 aiδxi and ν =

∑n
j=1 bjδyj , n = Rg, m = Rg for integers

R, g ≥ 1. The source indices [m] and target indices [n] are partitioned into clusters S1, . . . , SR and T1, . . . , TR,
respectively, where |St| = |Tt| = g for all t.
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Let B(z, ρ) denotes the closed Euclidean ball of radius ρ > 0 around z ∈ Rd. Our goal is to construct
a setting where the cluster St is uniformly matched to Tt. We make the following assumptions about the
locations of the source and target points.
Assumption 3. For two measures µ =

∑m
i=1 aiδxi

and ν =
∑n

j=1 bjδyj
,

1. The source points lie in disjoint balls, xi ∈ B(ct, ρ) for i ∈ St, and the target points lie in disjoint
balls, yj ∈ B(dt, ρ) for j ∈ Tt.

2. Within matched clusters St and Tt, ∥xi−yj∥ = ∥xi−yj′∥ for all i ∈ St and j, j′ ∈ Tt for t = 1, . . . , R.

3. The minimum inter-cluster distance Γ := mins̸=t ∥ct −ds∥ , and the maximum intra-cluster distance
as γ := maxt ∥ct − dt∥ satisfy

Γ > γ + 4ρ > 0. (5)

Notice that, under our separation condition (5), the OT coupling actually respects the cluster structure, in
the sense that it must match points in St to Tt. Furthermore, any plan that matches xi to yj within clusters
(when i ∈ St, j ∈ Tt) is optimal. However, these matched clusterings are not low-rank; they are full-rank.
On the other hand, as we will show in the following theorem, a low-rank matching can be recovered from
Schatten OT.
Theorem 4. Let Assumptions 2 and 3 hold, and let the excess cost for an across-cluster matching be

∆min := min
s̸=t∈[R]

i∈St,j∈Ts,j′∈Tt

{
∥xi − yj∥2

2 − ∥xi − yj′∥2
2

}
.

Then, for any regularization parameter λ satisfying

0 ≤ λ < g · ∆min, (6)

the minimizer of ⟨C, P ⟩+λ∥P ∥S1 is a rank R coupling supported blockwise on
⋃R

t=1(St ×Tt) that is uniform
within clusters.

The essential idea of the proof is to ensure that 1) P ⋆ is the unique coupling that respects the cluster
structure and also minimizes the nuclear norm, and 2) there is no way to make the nuclear norm term even
smaller by using across-cluster matches without incurring more cost.

4.2.2 Low-Rank Displacement Recovery when p = 1

We now give a concrete example of how to recover a coupling with low-rank displacements. For our affine
map, we consider the weighted barycentric displacement matrix A(P ),

A(P ) :=
(
TP (X) − X

)
A1/2 = Y P ⊤A−1/2 − XA1/2.

We also again assume that p = q = 1 in the Schatten OT formulation. For our recovery result, we make the
following assumptions.
Assumption 5 (Symmetric two-target clusters with separation). Fix orthonormal vectors u, v ∈ Rd and
an integer R ≥ 2. Let 0 < µ1 < · · · < µR be distinct scalars and put mt := µtu ∈ Rd for t ∈ [R]. Suppose:

1. The source set [m] is partitioned into nonempty clusters S1, . . . , SR and there exists ρ > 0 such that
xi ∈ mt + [−ρ, ρ]u for all i ∈ St.

2. For some ε > 0, the target support consists of the 2R points

yt,+ = mt + εv, yt,− = mt − εv, t ∈ [R],

with target masses bt,+ = bt,− = 1
2

∑
i∈St

ai.
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3. The minimal separation between clusters is lower bounded

Λ := min
s̸=t

|µt − µs| > 2ρ.

By symmetry, it is easy to see that all couplings that assign the source points in cluster St to yt,+ or yt,−
are optimal. In particular, it does not matter how the points are assigned within clusters. For i ∈ St and
s ̸= t, it is also convenient to define the inter-cluster cost gap

∆i,s := ∥xi − ys,±∥2
2 − ∥xi − yt,±∥2

2 = (µt − µs)2 + 2(µt − µs)ξi, (7)

where xi = mt + ξiu and |ξi| ≤ ρ.

We now state the main recovery theorem for this setting. It says that, under our assumption, we can exactly
recover a coupling with a rank-1 barycentric displacement.
Theorem 6. Under Assumption 5 and the quadratic cost Cij = ∥xi − yj∥2. Define the explicit threshold

λmax := Λ − 2ρ > 0.

Then for every λ ∈ [0, λmax), the unique minimizer of (3) matches xi, for i ∈ St, to {yt,±}. Furthermore,
it yields a rank-1 barycentric map.

4.3 Discussion

While we demonstrate low-rank recovery only in toy examples here, our methodology highlights the advan-
tages of using convex formulations. In particular, it is easier to verify that the recovered solution is low-rank.
In fact, these are the first guarantees of low-rank recovery within an OT problem in the literature. This is
compared to nonconvex methods, which currently lack guarantees (Forrow et al., 2019; Klein et al., 2024).

In the future, it would be interesting to demonstrate exact recovery in more general settings using Schatten-p
regularization when p < 1. It would also be interesting to develop more general recovery conditions to move
beyond the toy examples considered here.

5 Experiments

In this section, we give some simulations on real data that demonstrate the advantages of the Schatten OT
formulation. First, in Section 5.1, we demonstrate Schatten OT’s ability to recover low-rank couplings and
barycentric projection maps. Then, in Section 5.2, we examine the convergence rate of mirror descent to
solve the Schatten OT problem. Finally, Section 5.3 gives an experiment on real data that demonstrates the
ability of Schatten OT to recover simpler couplings with 4i perturbation data.

5.1 Low-rank Recovery

To first examine properties of the Schatten OT problem, we use CVXPY to solve the convex program exactly.

In our first experiment, we examine the Schatten OT’s ability to recover low-rank couplings. To measure
the quality of the recovered P ⋆, we use two metrics: effective rank and transport cost. The latter is defined
as ⟨C, P ⋆⟩. The former is the ratio of the nuclear norm to the operator norm:

Effective Rank(B) = ∥B∥S1

∥B∥S∞

.

In our experiments, the support of µ consists of two clusters centered at (−2, 2) and (−2, −2), and ν consists
of two clusters centered at (2, 2), and (2, −2). The data within each cluster is Gaussian. We sample 10 points
from each cluster, so that n = m = 20. The results are averaged over five randomly generated datasets.

In the first experiment displayed in the top row of Figure 1, we use a variance of 0.04 for each Gaussian
component. In the left image, we show the effective rank versus regularization strength λ for p = 1, 2,

9
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and infty. On the right, we display the transport cost. As we can see, nuclear norm regularization
can significantly reduce the effective rank without substantially increasing the transport cost. Using the
Schatten-2 norm can also reduce the effective rank, albeit more gradually.

Figure 1: Solution quality of Schatten OT versus regularization parameter for mixture of Gaussian data.
Top row: small variance. Bottom row: large variance. On the left, we show the effective rank of the found
solution; on the right, we display its transport cost. As we can see, Schatten-1 regularization can greatly
simplify the transport plan without substantially increasing transport costs.

We compare this experiment with a slight modification in the bottom row of Figure 1. Here, the data model
is the same, except now the within-cluster variance is 2. As we can see, it is more challenging to find a
low-rank transport plan, and when one is found, it increases the transport cost more substantially.

We include one more experiment in which we now wish to recover a low-rank displacement. We assume that
the support of µ is standard Gaussian, and the support of ν is yi = xi +ξiu, where u is a random unit vector
and ξi is standard Gaussian. We now wish to recover a coupling with a low-rank barycentric map, and do
the same experiment with a different affine map of P . Figure 2 displays the results of this experiment. As
we can see, Schatten-1 regularization again recovers a coupling with lower-rank displacements. However, the
transport costs increase more substantially across the board with higher regularization strengths.

Figure 2: Solution quality of Schatten OT versus regularization parameter for Gaussian data with a low-rank
perturbation. In the left display, we show the effective rank of the found barycentric displacements, and in
the right display, we show the transport cost of the found coupling. As we can see, Schatten-1 regularization
again simplifies the transport plan, but the transport cost increases substantially across the board.

10



Under review as submission to TMLR

5.2 Convergence Rates

In this section, we examine the convergence rate of the mirror descent algorithm with Schatten-1 regulariza-
tion in two settings. In the first setting, we show sublinear convergence; in the second, linear convergence.

In the left display of Figure 3, we use a setting where we do not expect a low-rank coupling to be easy to
find. We set λ = .1, and the data µ is a mixture of Gaussians with centers at (−2, ±2) and ν is a mixture of
Gaussians with centers at (2, ±2). The variance is set to be 1, and n = m = 20. We observe slow sublinear
convergence. Note the log scale on the x-axis.
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Figure 3: Plot of log excess cost versus iteration for the mirror descent algorithm on the Schatten OT
problem. Left: In this experiment, the regularization parameter is small, and the variance of the Gaussian
mixture components is large. This shows sublinear convergence of the algorithm, as is expected by the
theory. Right: we reduce the variance and increase the regularization parameter, resulting in a low-rank
optimal coupling. Here, we see that the geometrically diminishing step size converges linearly.

In the right display of Figure 3, we use the same setup as before, except now we set λ = 10 and let the
clusters have variance 0.04. Now, since the recovered coupling is low-rank, mirror descent with a geometrically
diminishing step size converges linearly. This implies that the objective is sufficiently sharp, which can be
exploited by this step-size schedule.

5.3 4i Perturbation Example

In the experiment of Chen et al. (2025), the authors fit a displacement-sparse neural OT to 4i perturbation
data. In the experiment, we see that dimensionality is reduced, but the error is higher, and the method has
high variance because it requires fitting an input convex neural network (ICNN).

In the following, we show how Schatten OT can reduce the effective rank of couplings and barycentric
projection maps. We use two perturbations within the CellOT data of Bunne et al. (2023). In particular,
we follow Chen et al. (2025) and consider learning regularized couplings from the 4i perturbation data. The
processed data is publicly available1. More details on our algorithmic setup for this experiment are given in
Appendix D.

In Figure 4, we plot the effective rank against λ for two different affine maps A(P ) = P and A(P ) =
Y P ⊤A−1/2. The color indicates the increase in transport cost relative to Sinkhorn with a regularization
parameter of 1. We display the result for two different perturbations. For each, we average over five random
subsamples of size 1000 from the control and perturbation distributions.

On the top row, we display the result for low-rank coupling recovery. As we can see, we can drastically
reduce the complexity of transport plans without paying much more in transport costs. Next, in the bottom
row of Figure 4, we repeat the previous experiment, focusing on recovering a low-rank barycentric projection
map. We see again that Schatten-1 regularization can reduce the effective rank, although now the transport
cost increases more substantially.

1https://www.research-collection.ethz.ch/handle/20.500.11850/609681
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Figure 4: Plots of the performance of Schatten OT on the 4i perturbation data of Bunne et al. (2023).
For reference, we compare in all plots with what one gets using a Sinkhorn coupling with a regularization
parameter of 1. Top: We examine the performance of Schatten-1 regularization in recovering a low-rank
coupling for two different perturbations. As we can see, Schatten OT can reduce the effective rank while not
increasing the transport cost too much. Bottom: We now show the performance of Schatten-1 regularization
in recovering a low-rank barycentric projection map for two different perturbations. Again, Schatten OT
can reduce the effective rank of this map, though the transport cost now increases more.

6 Conclusion

We introduced Schatten-p regularized OT (Schatten OT), a unified convex framework for incorporating
low-dimensional structure into OT problems. A key advantage of our formulation lies in its convexity and
generality. Convexity allows us, for the first time, to provide provable recovery results in illustrative yet
straightforward examples. Generality allows us to penalize any affine function of the coupling, thereby
simultaneously encompassing many existing OT regularizations and enabling new ones.

Theoretically, we established the first recovery guarantees for low-rank couplings and low-rank barycentric
displacements, bridging ideas from compressed sensing and OT theory. Algorithmically, we developed an
efficient mirror-descent method to solve these regularized problems in practice. Empirically, this approach
performs well and demonstrates practical utility on 4i cell-perturbation data. Our results show that Schatten
OT recovers low-rank structure with only modest increases in transport cost, yielding simpler and more
interpretable transport maps.

We believe this work paves the way for more interpretable and scalable OT methods. In particular, the
Schatten OT framework may provide a foundation for connecting OT to broader advances in sparse modeling,
compressed sensing, and interpretable machine learning.
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A Extension to the Continuous Setting

Up until now, we have focused our attention on formulations in the discrete case. However, there is a
direct extension of Schatten OT to the continuous setting by taking Schatten-p norms of appropriate linear
operators over general Hilbert spaces. In this section, we let µ, ν ∈ P2(Rd) be general measures. The set of
couplings between these measures is Π(µ, ν).

To define our extension to the continuous case, we let A : P2(Rd × Rd) → B(H) be a map from the space
of couplings to the set of bounded linear operators on some Hilbert space H. Let ∥ · ∥Sp

now denote the
Schatten-p norm over B(H), which is defined as ∥T∥p

Sp
= Tr[(T ∗T )p/2]. Then, we define the continuous

Schatten OT problem

Sch-OTp(µ, ν; (λ, p, q, A)) := min
π∈Π(µ,ν)

E(X,Y )∼π∥X − Y ∥2 + λ∥A(π)∥q
Sp

. (8)

We note that, as in the discrete case, this notion depends on choices of λ, p, q, and A. As before, choosing
p, q ≥ 1 and A an affine map makes the problem (8) convex.

Below, we give some examples of affine maps that extend our discrete examples. Throughout, we let ρ = µ⊗ν
be the reference product measure.

Covariance regularization The most direct connection between the continuous and discrete cases is to
penalize moments of the distribution. In the continuous case, this corresponds to regularizing the covariance
of π. In this case, all of the regularizations discussed in Section 2.3 are the same except we regularize the

linear operator over Rd, Σπ = Eπ

(
X
Y

) (
X
Y

)⊤

.

Continuous sparse and low-rank regularization: We now discuss the analogs of quadratic and low-
rank regularization, the coupling matrix P . Here, we can take A(π) = Sπ : L2(ν) → L2(µ) as the linear
operator

(Sπf)(x) =
∫

f(y)dπ

dρ
dν(y) = Eπ[f(Y )|X = x].

Note that Tπ is affine in π. Then, regularizing the Schatten-p norm of Sπ corresponds to using the Schatten-p
norm of P as discussed earlier. The continuous quadratic case, where the continuous case has already been
studied Lorenz et al. (2021), but not as a Schatten-2 norm of the operator Sπ.
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Elastic costs: We can recover the elastic costs by taking the Schatten norm of a specifically constructed
operator. Choose a measurable partition of Rd×Rd given by (Ek)k∈N with ρ(Ek) > 0. Define an orthonormal
family in L2(ρ) by

ϕk(x, y) = 1((x, y) ∈ Ek)√
ρ(Ek)

Set the diagonal weights to be sk(π) =
∫

Ek
∥y − x∥1dπ, which are linear in π. Then, letting (ek)k∈N be a

basis for ℓ2, we can define the linear operator A(π) : ℓ2 → L2(ρ) by

A(π)ek = sk(ϕ)ϕk.

Notice that this is again linear in π, and furthermore A(π)ek are orthogonal with ∥A(π)ek∥ = sn(π).
Therefore, the singular values of A(π) are sn(π). Thus

∥A(π)∥S1 =
∑

k

sk(π) =
∫

∥y − x∥1dπ.

A similar construction yields the subspace elastic costs discussed in Section 2.3. The general principle here is
that elastic OT problems can be embedded as Schatten OT regularized problems over appropriate operators.

Barycentric projection maps and displacements: We can also consider Schatten-p regularization of
the barycentric projection maps and displacements. In the continuous case, the barycentric projection map
is Tπ(·) = Eπ(Y |·)Y . Let the displacement map be Dπ(·) = Eπ(Y |·)Y −·. Then, we can formulate a Schatten-p
penalization of this barycentric displacement map by viewing Tπ or Dπ as operators Tπ, Dπ : Rd → L2(µ)
given by Tπv = ⟨v, Tπ(·)⟩ and Dπv = ⟨v, Dπ(·)⟩.

B Supplementary Proofs

B.1 Proof of Theorem 4

Proof. Define, for each t, the cluster indicator mass vectors

α(t) ∈ Rn, (α(t))i =
{

1
Rg , i ∈ St,

0, otherwise,

and similarly

β(t) ∈ Rm, (β(t))j =
{

1
Rg , j ∈ Tt,

0, otherwise.

The rank R coupling we wish to recover is

P ⋆ :=
R∑

t=1
α(t)β(t)⊤

. (9)

Notice that P ⋆ ∈ U(a, b) is block-diagonal with blocks (St × Tt) that are uniform (each entry equals
1/(Rg)2), and we can explicitly compute ∥P ⋆∥S1 = 1

R . It will be convenient to define the normalized
indicator vectors u(t) = α(t)/∥α(t)∥2, v(t) = β(t)/∥β(t)∥2, which we stack into matrices U⋆ = [u(1), . . . , u(R)],
V ⋆ = [v(1), . . . , v(R)]. In this way, the canonical subgradient of ∥ · ∥S1 at P ⋆ is G⋆ := U⋆V ⋆⊤.

Step 1: Lower bound on ∆min. For any x ∈ B(ct, ρ), yin ∈ B(dt, ρ), yout ∈ B(ds, ρ) with s ̸= t,

∥x − yout∥ ≥ ∥ct − ds∥ − ∥x − ct∥ − ∥yout − ds∥ ≥ Γ − 2ρ,

and
∥x − yin∥ ≤ ∥ct − dt∥ + ∥x − ct∥ + ∥yin − dt∥ ≤ γ + 2ρ.
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Thus
∥x − yout∥2 − ∥x − yin∥2 ≥ (Γ − 2ρ)2 − (γ + 2ρ)2,

which is positive when (5) holds.

Step 2: Across-block exclusion via tilted cost. By convexity of ∥ · ∥S1 ,

∥P ∥S1 ≥ ∥P ⋆∥S1 + ⟨G⋆, P − P ⋆⟩, G⋆ ∈ ∂∥P ⋆∥S1 , G⋆ = U⋆V ⋆⊤.

Hence for any feasible P ,

⟨C, P ⟩ + λ∥P ∥S1 − (⟨C, P ⋆⟩ + λ∥P ⋆∥S1) ≥
〈
S(λ, G⋆), P − P ⋆

〉
.

For i ∈ St and j ∈ Ts with s ̸= t, one has G⋆
ij = 0, since the left and right singular vectors are block-supported

and orthonormal across clusters. On the other hand, for j′ ∈ Tt,

G⋆
ij′ = ⟨u(t), ei⟩⟨v(t), ej′⟩ = ai

∥α(t)∥2
· bj′

∥β(t)∥2
= 1

g
.

Therefore, for any i ∈ St, s ̸= t, j ∈ Ts, and j′ ∈ Tt,

Sij(λ, G⋆) − Sij′(λ, G⋆) = (∥xi − yj∥2
2 − ∥xi − yj′∥2

2) − λ · 1
g

≥ ∆min − λ

g
.

If λ < g∆min, these gaps are strictly positive, so no S(λ, G⋆)-optimal coupling can place mass across clusters.
Any minimizer of the original problem must then be block-supported on

⋃
t(St × Tt).

Step 3: Within-block tie-breaking via the nuclear norm. By the distance equality condition in
Assumption 3, all within-cluster couplings have equal transport cost. Fix t. We can restrict any feasible
coupling P ∈ U(a, b) to the block (St, Tt), which we denote as PSt,Tt

. We note that this can be written as

PSt,Tt
= 1g1⊤

g /g2 + M (t), where M (t)1 = 0, (M (t))⊤1 = 0.

In other words, we can represent it as rank-1 product coupling plus a perturbation with 0 row/column sums.
Choose an orthonormal basis of Rg on the target side with first vector proportional to 1g. Then M (t) lives
entirely in the orthogonal complement of 1g. The standard inequality ∥ · ∥S1 ≥ ∥ · ∥S2 yields

∥PSt,Tt∥S1 ≥ ∥PSt,Tt∥S2 =
√

∥1g1⊤
g /g2∥2

S2
+ ∥M (t)∥2

S2
> ∥1g1⊤

g /g2∥S2 = ∥1g/g∥2∥1g/g∥2,

whenever M (t) ̸= 0. Summing over t shows that among all block-supported couplings, the nuclear norm is
uniquely minimized at M (t) ≡ 0, i.e., at the uniform block P ⋆.

Combining these three steps proves the proposition.

B.2 Proof of Theorem 6

Proof. We proceed in four steps. We will show that the coupling we recover, P ⋆ ∈ Π(a, b), satisfies the
within-cluster equal split condition given by P ⋆

i,(t,+) = P ⋆
i,(t,−) = 1

2 ai if i ∈ St otherwise P ⋆
i,(s,σ) = 0 if

s ̸= t or i /∈ St.

Step 1: Feasibility and rank-1 structure. By construction, P ⋆ ∈ U(a, b) and, for each i ∈ St,

TP ⋆(xi) = 1
2 (yt,+ + yt,−) = mt.

Hence TP ⋆(xi) − xi = mt − xi = −ξiu when xi = mt + ξiu for |ξi| ≤ ρ, which is true by assumption.
Writing γ ∈ Rn such that γi = −ξi

√
ai, we have

A(P ⋆) = uγ⊤.
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Therefore, rankA(P ⋆) = 1, and ∥A(P ⋆)∥S1 = ∥γ∥.

Step 2: A tilted-cost lower bound and across-cluster margin. Let G⋆ be a canonical subgradient of
the nuclear norm at B⋆ := A(P ⋆):

G⋆ ∈ ∂∥B⋆∥S1 , G⋆ = uw⊤, where w := γ

∥γ∥2
.

For any P ∈ U(a, b), by convexity of the nuclear norm,

∥A(P )∥S1 ≥ ∥B⋆∥S1 + ⟨G⋆, A(P ) − B⋆⟩. (10)

Using A(P ) − B⋆ = Y (P − P ⋆)⊤A−1/2 and cyclicity of the trace,

⟨G⋆, A(P ) − B⋆⟩ = ⟨A−1/2G⋆⊤Y , P − P ⋆⟩. (11)

Combining (10) and (11) with the objective Fλ(P ) := ⟨C, P ⟩ + λ∥A(P )∥S1 and the definition of the tilted
cost S(λ, G) in (4) yields the lower bound

Fλ(P ) − Fλ (P ⋆) ≥ ⟨S(λ, G⋆), P − P ⋆⟩. (12)

We can compute the tilted costs S(λ, G⋆) explicitly: for any i and (t, σ),

(A−1/2G⋆⊤Y )i,(t,σ) = 1
√

ai
wi⟨u, yt,σ⟩ = γiµt

∥γ∥2
√

ai
= − ξiµt

∥γ∥2
.

Therefore, assuming that i ∈ St and for any s ̸= t, σ ∈ {±},

Si,(s,σ)(λ, G⋆) − Si,(t,±)(λ, G⋆) = ∥xi − ys,σ∥2 − ∥xi − yt,±∥2︸ ︷︷ ︸
=∆i,s

+λ

(
− ξi

∥γ∥2

)
(µs − µt) (13)

By assumption,
∆i,s ≥ |µt − µs|(|µt − µs| − 2ρ) ≥ Λ(Λ − 2ρ) > 0. (14)

Also, since |ξi| ≤ ρ, we can bound ∥γ∥2
2 =

∑n
k=1 akξ2

k ≤ ρ2 ∑n
k=1 ak = ρ2. This implies that |ξi|

∥γ∥2
≤ 1.

Thus we can extend the lower bound in (13)

Si,(s,σ)(λ, G⋆) − Si,(t,±)(λ, G⋆) ≥ Λ(Λ − 2ρ) − λ). (15)

Thus, at G⋆, for every λ ∈ [0, Λ−2ρ), across-cluster tilted costs are strictly greater than within cluster tilted
costs. Therefore any tilted cost optimal coupling must match xi to {yt,±} for i ∈ St.

Step 3: Within-cluster degeneracy and the nuclear-norm tie-break. Fix t ∈ [R]. For i ∈ St, any
within-cluster move between the symmetric targets (t, +) and (t, −) has zero cost difference,

∥xi − yt,+∥2 = ∥xi − yt,−∥2.

Moreover, the tilted cost is the same for (t, +) and (t, −), since ⟨u, yt,+⟩ = ⟨u, yt,−⟩ = µt. Therefore, for
any feasible P that sends mass within clusters (i.e., supp(P ) ⊆ {(i, (t, ±)) : i ∈ St}),

⟨S(λ, G⋆), P − P ⋆⟩ = 0. (16)

For such P , we can write the within-cluster mass split by pi ∈ [0, 1] so that

Pi,(t,+) = piai, Pi,(t,−) = (1 − pi)ai
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A direct computation gives

TP (xi) = piyt,+ + (1 − pi)yt,− = mt + (2pi − 1)εv, ε ≥ 0.

Hence, with
β ∈ Rn, βi := (2pi − 1)ε√

ai,

we obtain the rank-≤ 2 decomposition
A(P ) = uγ⊤ + vβ⊤. (17)

We claim that, for any β ̸= 0,
∥uγ⊤ + vβ⊤∥S1 > ∥uγ⊤∥S1 = ∥γ∥. (18)

Indeed, let Q ∈ Rd×d be an orthogonal matrix whose first two columns are u and v. Orthogonal invariance
of singular values implies

∥uγ⊤ + vβ⊤∥S1 = ∥
[
γ β 0 · · · 0

]
∥S1 = σ1 + σ2,

where σ1 ≥ σ2 ≥ 0. If β is not colinear with γ, the matrix has rank 2, so σ2 > 0, and σ1 ≥ ∥γ∥2 (since
∥M∥2 ≥ the Euclidean norm of any row). Hence σ1 + σ2 > ∥γ∥2. If instead β = cγ for some c ̸= 0, then the
matrix has rank 1 with singular value

√
∥γ∥2

2 + ∥β∥2
2 =

√
1 + c2∥γ∥2 > ∥γ∥2. Thus (18) holds in all cases

β ̸= 0.

Combining (12) and (16), for any within-cluster feasible P ,

Fλ(P ) − Fλ (P ⋆) ≥ λ(∥A(P )∥S1 − ∥B⋆∥S1) = λ(∥uγ⊤ + vβ⊤∥S1 − ∥γ∥2), (19)

which is strictly positive by (18) whenever β ̸= 0, i.e., whenever some pi ̸= 1
2 .

Step 4: Optimality and uniqueness for λ ∈ [0, Λ − 2ρ). Let λ ∈ [0, Λ − 2ρ). For any feasible P ,
decompose P − P ⋆ into an across-cluster part and a within-cluster part. By (15),

⟨S(λ, G⋆), P − P ⋆⟩ > 0

if P sends any mass across clusters, and (12) implies Fλ(P ) > Fλ(P ⋆) in that case. Therefore, any minimizer
of Fλ must be supported within clusters. For within-cluster couplings, (19) implies Fλ(P ) > Fλ(P ⋆) unless
pi = 1

2 for all i, i.e., if P = P ⋆. Consequently, P ⋆ is the unique minimizer of the Schatten OT problem for
λ ∈ [0, Λ − 2ρ).

C The Gaussian Case

The previous section treated recovery of low-rank structures in discrete OT. We now discuss an application
of the continuous Schatten regularization (8) for Gaussians.

We treat two Gaussian specializations of the Schatten-p programs discussed earlier: (i) a nuclear-norm
penalty that promotes low-rank cross-covariance, and (ii) a nuclear-norm penalty that promotes low-rank
transport. As emphasized in our general framework, the barycentric projection x 7→ Eπ[Y | X = x] is an
affine map of the coupling π, so the induced Schatten-p penalty is convex in π for p ≥ 1. The same holds
for Schatten penalties applied to any affine image A(π).

For simplicity, we consider the mean zero case. Let µ = N (0, Σ0) and ν = N (0, Σ1) on Rd with Σ0, Σ1 ≻ 0.

A Gaussian coupling is a joint Gaussian π = N
( [

0
0

]
,

[
Σ0 K
K⊤ Σ1

] )
, parameterized by a cross-covariance

K ∈ Rd×d satisfying the feasibility constraint[
Σ0 K
K⊤ Σ1

]
⪰ 0 ⇐⇒ ∥Σ−1/2

0 KΣ−1/2
1 ∥2 ≤ 1. (20)

We denote the set of all such K as K(Σ0, Σ1). Equivalently, we denote the set of all Gaussian couplings
between µ and ν as Πg(µ, ν).
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For the quadratic cost c(x, y) = ∥x − y∥2, the transport cost under π is Eπ∥X − Y ∥2 = tr(Σ0) + tr(Σ1) −
2tr(K). Moreover the barycentric map induced by π is

Tπ(x) = Aπx, Aπ := K⊤Σ−1
0 . (21)

C.1 Gaussian Low-rank Cross-Covariance

Consider the Gaussian Schatten OT problem

min
K∈K(Σ0,Σ1)

tr(Σ0) + tr(Σ1) − 2tr(K) + λ∥K∥S1 . (22)

This is a semidefinite program.

We can solve this problem in closed form. Let S := Σ1/2
1 Σ1/2

0 and write its SVD S = Udiag(σ1, . . . , σd)V ⊤

with σ1 ≥ · · · ≥ σd > 0. Feasible K can be written as K = Σ1/2
0 MΣ1/2

1 with ∥M∥2 ≤ 1. By von Neumann’s
trace inequality, tr(K) = tr(SM) ≤

∑
i σisi where si are the singular values of M , with equality when M

shares singular vectors with S. At optimum we may thus take M = Udiag(s1, . . . , sd)V ⊤ with 0 ≤ si ≤ 1
and ∥K∥S1 = ∥M∥S1 =

∑
i si. The objective in (22) reduces (up to constants) to

min
0≤si≤1

d∑
i=1

(
λ − 2σi

)
si =

d∑
i=1

min
0≤s≤1

(λ − 2σi)s,

which is separable and linear in each si. Hence we arrive at the following proposition.
Proposition 7 (Hard spectral selection). The unique minimizer of (22) is obtained by hard thresholding
the singular spectrum of S:

s⋆
i = 1{σi > λ/2}, Kλ = Σ1/2

0 Udiag(s⋆
i )V ⊤Σ1/2

1 . (23)

In particular, rank(Kλ) = #{i : σi > λ/2}.

We include some examples to illustrate this hard thresholding rule.

(i) Isotropic case: Σ0 = a2I, Σ1 = b2I gives S = abI and hence either Kλ = abI if λ < 2ab, or Kλ = 0
if λ ≥ 2ab.

(ii) Commuting covariances: If Σ0 = Udiag(a)U⊤ and Σ1 = Udiag(b)U⊤, then σi =
√

aibi and
Kλ = Udiag

(√
a ⊙ b1{

√
a ⊙ b > λ/2}

)
U⊤. Here, ⊙ is the Hadamard (elementwise) product.

We note that the inclusion of a Schatten-2 penalty in this program results in soft thresholding.

C.2 Gaussian Barycentric Displacements

We now penalize the (weighted) barycentric displacement. In this case, the resulting convex program is

min
π∈Πg(µ,ν)

tr(Σ0) + tr(Σ1) − 2tr(K) + λ
∥∥(Aπ − I)Σ1/2

0
∥∥

S1
, (24)

with Aπ as in (21).

We can give a closed form when Σ0 and Σ1 commute, which already reveals a clear structure. Suppose there
exists an orthogonal U with Σ0 = Udiag(a)U⊤ and Σ1 = Udiag(b)U⊤. Any feasible K aligned with U
takes the form K = Udiag(

√
a ⊙ b ⊙ m)U⊤ with 0 ≤ mi ≤ 1. Then Aπ = K⊤Σ−1

0 is diagonal in the same
basis with entries

αi :=
√

aimi

√
bi

ai
= mi

√
bi

ai
,
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which implies that the diagonal values of (Aπ − I)Σ1/2
0 are mi

√
bi − √

ai in this basis as well. Hence
∥(Aπ − I)Σ1/2

0 ∥S1 =
∑

i |mi

√
bi − √

ai|, and

tr(K) =
∑

i

√
aimi

√
bi.

Consequently, (24) decouples into d scalar problems over mi ∈ [0, 1]:

min
0≤m≤1

ϕa,b,λ(m) := −2
√

abm + λ|m
√

b −
√

a|. (25)

Theorem 8. Fix (a, b, λ) with a, b > 0. The unique minimizer of (25) is

m⋆ =


1, if b ≤ a,

1, if b > a and λ < 2
√

a,√
a/b, if b > a and λ ≥ 2

√
a.

Equivalently, the coupling that solves (24) has barycentric projection map Tπ(·) = Aλ·, where

Aλ = Udiag(α⋆)U⊤, α⋆
i =


√

bi/ai, if bi ≤ ai,√
bi/ai, if bi > ai and λ < 2√

ai,

1, if bi > ai and λ ≥ 2√
ai.

(26)

The proof follows from analyzing the 1-dimensional optimization problem (25).

In words, the regularizer does not suppress contracting directions (bi ≤ ai), and it prunes expanding direc-
tions bi > ai back to the identity once λ crosses the sharp threshold 2√

ai. Thus, rank(Aλ − I) equals the
number of contracting eigendirections plus the number of expanding eigendirections with λ < 2√

ai.

As an example, consider the isotropic case. If Σ0 = σ2
0I, Σ1 = σ2

1I. If σ1 ≤ σ0, then Aλ = (σ1/σ0)I for all
λ. On the other hand, if σ1 > σ0, then Aλ = (σ1/σ0)I for λ < 2σ0, and Aλ = I for λ ≥ 2σ0.

C.3 Discussion

In the Gaussian case, for p > 1, the programs remain convex. In the commuting case, we can find similar
separable one-dimensional convex problems as we found in the previous sections. For larger p, we would
observe smooth shrinkage of the spectrum mi rather than hard thresholds at p = 1. We leave a detailed
analysis of the noncommuting case to future work.

D Details on 4i Experiment Setup

For reproducibility, we give more details on the 4i experiment here. We subsample source and target points
to form measures with 1000 points each. We then run mirror descent with the desired regularization, where
the initial step size is η0 = 0.1 for low-rank coupling recovery and η0 = 10−4 for low-rank barycentric map
recovery. A diminishing step size of ηk = η0/

√
k is used. We run mirror descent for a maximum of 50

iterations, where the Sinkhorn projection at each iteration is run for 500 iterations unless the marginal error
of 10−12 is reached. This is followed by the rounding procedure of Altschuler et al. (2017) to ensure iterates
remain in the transport polytope. We return the averaged iterate as our proposed solution to the Schatten
OT problem.
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