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Abstract

Tool invocation significantly enhances the capa-001
bilities of Large Language Models (LLMs), yet002
challenges persist, particularly in complex task003
scenarios. Current methods, such as instruction-004
enhanced reasoning and supervised fine-tuning,005
often result in unnecessarily long reasoning006
paths and face difficulties in verifying the cor-007
rectness of intermediate steps. In this paper,008
we propose CodeTool, a novel framework for009
stepwise code generation that improves LLM010
tool invocation by leveraging the concise and011
easily verifiable nature of code. CodeTool in-012
corporates two distinct process rewards: the013
On-the-spot Reward, which provides imme-014
diate feedback on the accuracy of each tool015
invocation, and the Latent Reward, which016
assesses the contribution of each step toward017
overall task completion. By maximizing the018
cumulative reward of the On-the-spot and La-019
tend Rewards at each step, LLMs are guided to020
follow efficient and accurate reasoning paths.021
Extensive experiments on StableToolBench and022
RestBench-TMDB demonstrate the superiority023
of CodeTool over existing approaches.024

1 Introduction025

Tool invocation grants Large Language Models026

(LLMs) the ability to access external tools (Schick027

et al., 2023; Shen et al., 2023; Qin et al., 2024),028

thereby significantly expanding their range of ca-029

pabilities. Despite the strong potential and ability030

demonstrated by LLMs in various tasks (Brown031

et al., 2020; OpenAI et al., 2024), they still en-032

counter challenges when performing tool invoca-033

tions in complex scenarios.034

Early studies (Wei et al., 2022; Yao et al., 2023;035

Song et al., 2023) have assisted LLMs in better tool036

invocation by enabling them to think step by step037

or through instruction enhancement. While this ap-038

proach is straightforward, it fails to fully leverage039

the potential of LLMs. More recent studies (Qin040

et al., 2023; Tang et al., 2023; Patil et al., 2023) 041

have sought to enhance the tool invocation capabil- 042

ities of LLMs via Supervised Fine-Tuning (SFT). 043

However, training models on static trajectories of 044

successful executions through text generation con- 045

strains their adaptability to novel tasks and envi- 046

ronments. Besides, these existing studies primarily 047

focus on tool invocation in Text or JSON format, 048

which often leads to prolonged reasoning paths. 049

Programmatic tool invocation offers a more flex- 050

ible and generalizable alternative to Text or JSON- 051

based approaches (Wang et al., 2024d,c). By lever- 052

aging programming constructs such as loops (for 053

or while) and arrays, code can efficiently handle 054

request-intensive instructions, thereby reducing the 055

number of interactions required, as illustrated in 056

Figure 1. However, existing code-based approaches 057

still face two key challenges. First, relying solely 058

on the built-in functions of programming languages 059

and a limited set of predefined libraries (Wang et al., 060

2024c) restricts the quantity and scope of tools that 061

can be invoked. Second, generating complete code 062

in a single pass (Shi et al., 2024), albeit increasing 063

the number of accessible tools, lacks supervision 064

over intermediate steps, making it difficult to detect 065

and correct errors in complex scenarios. 066

Supervising the correctness of intermediate steps 067

(i.e., process supervision) during an LLM’s reason- 068

ing process has been shown to improve the final 069

accuracy of challenging tasks (Uesato et al., 2022; 070

Lightman et al., 2023; Wang et al., 2024b). This 071

approach, however, typically requires large-scale 072

annotations of process data. In addition, the su- 073

pervision signal tends to direct the model toward 074

plausible correct answers rather than ensuring ab- 075

solute correctness (Cui et al., 2025). A recent study 076

by Yu et al. (2024) attempts to address these chal- 077

lenges by incorporating process rewards within a 078

reinforcement learning framework to enhance tool 079

invocation. While this method holds promise, its 080

rewards are simply generated by strong LLMs, rais- 081
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Instruction:

I'm helping my friend with their language studies, and we need assistance with spelling out

numbers in different languages. Can you provide a list of languages supported by SpellOut API?

It would be great if you could spell out the number 123 in multiple languages using the

appropriate rule sets.

Available API Lists:

[1] Languages: List ISO 639 languages 

[2] RuleSets: List of availible rule sets for a given language

…

[n] SpellOut: Spell out number in a given language using provided rule sets

(a) LLMs interact with tools in  JSON form (b) CodeTool: LLMs interact with tools in  Code form in a stepwise manner

Thought

Tool API Name: Languages Arguments: {}

Response

Thought

Tool API Name: RuleSets Arguments: {"lang": "en"}

Response

Thought

Tool API Name: SpellOut Arguments: {"data": 123, "lang": "en", "ruleset": "verbose"}

Response

I should first call the Languages to get information about different languages.

[{"code”: "ab", "name": "Abkhazian"}, {"code": "aa", "name": "Afar“}, 

{"code": "bm", "name": "Bam...

Due to length limitations, overly long responses will be truncated to a fixed length.

Each language is identified by its unique ISO 639 code. Next, I’ll call the 

RuleSets for a selection of languages. Let's start with English.

[{"ruleset": "cardinal", "sample": "one thousand two hundred thirty-four"} ... 

{"ruleset": "verbose", "sample": "one thousand two hundred and thirty-three"}]

For this step, I focus on applying a rule set for English as a foundational 
action toward diversifying the spelled-out examples using SpellOut.

{"spellout": "one hundred and twenty-three"}

When faced with request-intensive instructions, 
it is very likely to exceed the context length during the interaction.

The answer provided a comprehensive list of languages. 
It detailed the available rulesets in different languages.

But it only spelled the number 123 in English, not in multiple languages. 

UnsureEvaluation

Solved

May repeat this step to get different rule sets for other languages, like Chinese, etc.

N

Evaluation

Thought I should first call the Languages to get the list of supported languages.

Python Code

Response [{"code": "ab", "name": "Abkhazian"} ... {"code": “zu", "name": “Zulu"}]

language_response = requests.post(url=Languages’s url, data={})

We can prompt the model to generate next step with partial response, while complete response remains in the cache.

Get rulesets for some languages. Spell out number 123 in multiple languages.

Python Code Python Code

# We can assume a code list 
# the user wants to search for

for lang_code in lang_code_lists:

rulesets_response = requests.post(
url= RuleSets’s url,
data=request_param)

print(rulesets_response.json())

Utilize a for-loop to intensively 
request RuleSets to print rulesets 
for some languages in a single step.

Utilize a for-loop to intensively request 
SpellOut to spell out number 123 in 
multiple languages in a single step.

# From the response, we can assume the 
# ruleset is verbose

for lang_code in lang_code_lists:
spell_response = requests.post(

url= SpellOut’s url,
data=request_param)

print(spell_response.json()) 

The answer provided a comprehensive list of languages, 
detailed the rule sets for some languages, 

and showed the spelling of number 123 in multiple languages. 
Thus, it effectively addresses all parts of the user's query.

High Token Consumption! More Effective, More Precise!

lang_code_lists = ["en", "zh", "ja"]

request_param={"lang": lang_code}

ruleset = "verbose"

request_param={
"data": 123,
"lang": lang_code,
"ruleset ": ruleset

}

Figure 1: Comparison of tool invocation in JSON format and our proposed stepwise code generation framework: (a)
JSON-based invocation is token-heavy and prone to truncation, risking loss of key information. (b) The stepwise
code generation framework uses loops to handle request-intensive tasks efficiently, with stepwise supervision
ensuring correctness of intermediate steps.

ing concerns about its objectivity and reliability.082

In this work, we propose CodeTool, a novel083

stepwise code generation framework designed to084

enhance tool invocation of LLMs. CodeTool in-085

troduces two distinct process rewards during in-086

ference: the On-the-spot Reward and the Latent087

Reward. The On-the-spot Reward leverages the in-088

herently verifiable nature of code to provide imme-089

diate feedback on the correctness of each tool invo-090

cation, ensuring precise execution at every step. In091

contrast, the Latent Reward, assigned by a trained092

Process Reward Model (PRM), evaluates the po-093

tential contribution of each step towards the overall094

task completion. At each step, LLMs are guided095

to follow the reasoning direction that maximizes096

the cumulative reward of the On-the-spot and La-097

tent Rewards, as illustrated in Figure 2. This dual-098

reward mechanism overcomes key challenges in099

current programmatic approaches, particularly the100

lack of supervision over intermediate reasoning101

steps. Moreover, the On-the-spot Reward, which is102

grounded in the executability of the generated code,103

ensures objective and highly reliable feedback, as104

demonstrated by our experiments in Section 5.105

The contributions of this work are as follows:106

• We propose CodeTool, a stepwise code genera-107

tion framework that leverages process supervi-108

sion to enhance the capabilities of LLMs in tool 109

invocation. 110

• We design two types of process rewards–On-the- 111

spot Reward and Latent Reward–to provide high- 112

quality process supervision, considering both 113

immediate feedback and long-term potential. 114

• We conduct extensive experiments on Stable- 115

ToolBench (Guo et al., 2024) and RestBench- 116

TMDB (Song et al., 2023), confirming the supe- 117

riority of CodeTool over existing methods. 118

2 Related Work 119

2.1 Tool Invocation With LLMs 120

Previous studies (Wei et al., 2022; Yao et al., 2023; 121

Song et al., 2023) have investigated enabling LLMs 122

to interact with various tools, such as search en- 123

gines, calculators, translation software, and third- 124

party API services, to facilitate tool utilization. 125

Most of these approaches rely on prompt engineer- 126

ing to enhance the reasoning capabilities of LLMs 127

during inference or to design prompts tailored to 128

specific modules and tools. Subsequent research 129

(Qin et al., 2023; Tang et al., 2023) has focused on 130

fine-tuning open-source LLMs to equip them with 131

the ability to invoke tools. Recognizing that tool in- 132

vocation in complex scenarios often requires multi- 133
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step reasoning, some studies (Chen et al., 2024;134

Wang et al., 2024a) have shifted attention toward135

how LLMs can learn to use tools effectively from136

error-prone calls. Additionally, Yu et al. (2024) has137

explored the integration of reward mechanisms in138

the intermediate decision-making process of LLMs,139

employing reinforcement learning techniques to140

improve tool invocation efficiency and outcomes.141

2.2 Programmatic Tool Invocation142

LLMs typically generate action units in pre-defined143

formats (e.g., JSON or Text) to interact with exter-144

nal tools. In contrast, programmatic tool invocation145

offers an alternative mode of interaction. Recent146

studies have highlighted the potential of incorpo-147

rating programming to enhance the planning and148

reasoning capabilities of LLMs, with the feasibility149

of code-based reasoning particularly demonstrated150

in complex numerical reasoning tasks (Chen et al.,151

2023; Gao et al., 2023). Within the context of tool152

invocation, code blocks can be considered as action153

units for requesting or executing specific tools. For154

instance, Wang et al. (2024c) and Shi et al. (2024)155

have investigated how LLMs can generate com-156

plete code to invoke Python’s built-in functions or157

access third-party API services, thereby address-158

ing intricate user instructions. However, these ap-159

proaches often neglect the significant impact that160

the accuracy of intermediate steps can have on the161

final outcome. Notably, code data has been inte-162

grated into LLM pretraining (Rozière et al., 2024;163

Luo et al., 2023; Hui et al., 2024; DeepSeek-AI164

et al., 2024), resulting in models that demonstrate165

advanced proficiency in structured programming,166

thus facilitating the cost-effective adoption of pro-167

grammatic tool invocation.168

2.3 Process Supervision Methods169

While LLMs exhibit impressive capabilities across170

a wide range of tasks, they continue to encounter171

difficulties in reasoning through complex problems.172

Lightman et al. (2023) has shown that supervising173

the correctness of intermediate steps in reasoning174

tasks can significantly improve the likelihood of175

LLMs producing accurate final answers. Wang176

et al. (2024b) and Luo et al. (2024) have proposed177

automated approaches for constructing intermedi-178

ate process data. However, their reward designs179

remain relatively simplistic, focusing solely on the180

potential of a given step to lead to a correct fi-181

nal answer, while neglecting the correctness of the182

step itself. Yu et al. (2024) has extended the re-183

ward framework to intermediate steps during tool 184

invocation, but the acquisition of process rewards 185

heavily relies on GPT-based annotations. In this 186

work, we seek to fully automate the construction 187

of a performant process reward system to improve 188

programmatic tool invocation of LLMs. 189

3 Methodology 190

In this section, we first propose CodeTool, a step- 191

wise code generation framework to effectively ad- 192

dress the challenges of tool invocation in complex 193

scenarios. Subsequently, we design a process re- 194

ward system to evaluate each decision-making step 195

during tool invocation. Finally, we train a PRM 196

on fully automated process data and rewards. The 197

architecture of CodeTool is illustrated in Figure 2. 198

3.1 Preliminaries 199

Addressing real-world user queries with the help 200

of external tools can be conceptualized as a step- 201

wise planning and reasoning process. Formally, 202

let M represent a LLM with access to a set of 203

real-world tools T = {t1, t2, . . . , t|T |}, where 204

each tool ti is associated with a logging proto- 205

col di ∈ D = {d1, d2, . . . , d|D|}, which provides 206

meta-information such as the tool’s description and 207

the parameters required to make requests. 208

The goal of CodeTool is to iteratively write 209

Python code Ct at each step to select the appro- 210

priate tool and issue requests with the correct pa- 211

rameters to obtain responses, ultimately deriving 212

the final answer. Compared to previous work (Shi 213

et al., 2024) that solves user queries by directly gen- 214

erating complete code based on a well-structured 215

dataset with detailed input-output schemas (which 216

are hard to obtain in practice), the stepwise code 217

generation method in CodeTool reduces reliance 218

on such datasets. It allows the model to generate 219

code to invoke a tool at each step, with the flex- 220

ibility to utilize partial responses from previous 221

invocations in subsequent steps. Such a sequen- 222

tial approach enables the model to comprehend the 223

content and structure of intermediate outputs, thus 224

aiding in parsing the responses and determining 225

the next appropriate tool to invoke. Moreover, dif- 226

ferent from text-based responses, which are often 227

truncated to a fixed length when they are overly 228

long (Qin et al., 2023), the results from code-based 229

tool invocation are complete. The critical data is 230

preserved in the cache, remaining intact and unaf- 231

fected by truncation, thereby ensuring the integrity 232
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Tool 1

Tool 3

On-the-spot Reward

Latent Reward

1 + 0.52

1 + 0.49

Tool 1

Tool 4

1 + 0.53

0 + 0.47

Final
Answer

N

…

…

…
Query

Tool List

Figure 2: The architecture of CodeTool, a stepwise code
generation framework guided by two types of process
rewards during inference. At each inference step, LLMs
follow the reasoning path that maximizes the cumulative
rewards of On-the-spot Reward and Latent Reward.

of the tool responses throughout the entire process.233

3.2 CodeTool: Stepwise Code Generation234

Given a user query q, we first provide the LLM with235

the documented protocol di ∈ D for each tool ti in236

the candidate toolset T . Each protocol di contains237

meta-information, including a description of the238

purpose of the tool, the URL to be requested, and239

the argument requirements for invoking it. Then,240

we instruct the LLM M to generate executable241

programs step by step to utilize multiple tools and242

ultimately solve the query q.243

Formally, this process can be formulated as:244

Ct = M(q, T ,D, Ic, rt−1), r0 = ∅, (1)245

where Ic indicates a concise instruction for step-246

wise code generation (refer to Appendix A for de-247

tails). The intermediate result rt of the t-th step248

is obtained by executing the generated program Ct249

through a code interpreter, which is formulated as:250

rt = EXECUTE(Ct). (2)251

It is worth noting that there is initially no response252

from the tool, meaning that r0 = ∅. The subsequent253

program generation operations will parse specific254

field information based on the responses from the255

current tool and then invoke the next tool, continu-256

ing this process until the final answer is obtained.257

3.3 Process Reward Supervision258

In this part, we detail the integration of process su-259

pervision into the stepwise code generation frame-260

work to enhance its performance. As illustrated261

in Figure 2, at each step, we first sample multiple262

candidate actions for the next step and then select263

the optimal action based on a calculated process264

reward to proceed to the next step. This approach 265

facilitates the exploration of a broader range of op- 266

tions, thereby increasing the likelihood of selecting 267

the appropriate tool and generating accurate code 268

for each step. We consider two types of process 269

rewards: On-the-spot Reward and Latent Reward. 270

On-the-spot Reward On-the-spot Reward eval- 271

uates whether the model has provided correct and 272

executable code at the current step, including veri- 273

fying whether a valid request body has been given 274

within the candidate toolset or not. It can be ob- 275

tained without any external supervision, as it only 276

requires the automatic execution of the generated 277

code Ct using a Python interpreter EXECUTE. 278

On-the-spot Reward is defined as: 279

Rspot,t =

{
1, if EXECUTE(Ct) is successful;
0, otherwise.

(3) 280

This reward serves as a necessary condition to en- 281

sure that the model’s reasoning moves along a po- 282

tentially correct path. It provides immediate feed- 283

back on whether the generated code is executable 284

and correct at each step. However, it only mea- 285

sures the correctness of the current step, ignoring 286

whether the current step contributes to completing 287

the user’s query. Therefore, we also need to intro- 288

duce another Latent Reward to assess the potential 289

value of the current step in completing the query. 290

Latent Reward Latent Reward evaluates the po- 291

tential value of the current step in helping the model 292

successfully complete the task, considering factors 293

such as whether redundant tools are invoked, lead- 294

ing to an unnecessarily long reasoning path, and 295

whether the model selects an incorrect tool. 296

Drawing on previous approaches (Lightman 297

et al., 2023; Wang et al., 2024b; Luo et al., 2024), 298

we employ the Monte Carlo Tree Search (MCTS) 299

algorithm to estimate the Latent Reward. Specif- 300

ically, from each reasoning step, we expand the 301

search tree based on random sampling of the search 302

space, resulting in multiple executed paths or roll- 303

outs. Then, the Latent Reward is defined as: 304

LR(q, s1:t) =
∆correct

∆total
, (4) 305

where ∆correct and ∆total denote the number of 306

paths that are correctly executed and the total num- 307

ber of executed paths, respectively, from the t-th 308

step to its leaf nodes, while s1:t denotes the reason- 309

ing sequence from the first step to step t. 310

4



However, in complex scenarios, tool invocation311

may suffer from issues such as repetitive calls to a312

specific tool, particularly when the tool is no longer313

accessible, and long and redundant tool invocations.314

To mitigate unnecessary resource consumption and315

inefficiency, it is crucial to prioritize shorter, yet316

correct, tool invocation paths. Therefore, a penalty317

mechanism should be implemented to discourage318

such inefficiencies (Luo et al., 2024). In light of319

this, the final Latent Reward is defined as:320

Rlatent,t(q, s1:t) = α1−LR(q,s1:t) · β
τ
L , (5)321

where α, β ∈ (0, 1] and L > 0 are constant hyper-322

parameters, while τ denotes the average number of323

steps of executed paths starting from the t-th step.324

This formula comprehensively takes into account325

both the initial Latent Reward and the penalty for326

reasoning with overly long or redundant steps.327

Based on the above two types of rewards, we328

obtain the cumulative reward of the t-th step:329

Rtotal,t(q, s1:t) = Rspot,t +Rlatent,t(q, s1:t). (6)330

Then, we select the candidate action with the high-331

est cumulative reward to move to the next step.332

3.4 Process Latent Reward Model Training333

During inference, while the On-the-spot Reward334

can be readily obtained through a code interpreter,335

estimating the Latent Reward using the MCTS algo-336

rithm presents significant challenges, including: (1)337

the time-intensive and costly nature of collecting338

multiple rollouts, and (2) the difficulty in evaluating339

whether a rollout successfully addresses the task in340

the absence of ground-truth data, a common sce-341

nario in practice. To address these challenges, we342

propose training a process Latent Reward model343

to estimate the Latent Reward during inference,344

significantly enhancing efficiency.345

For model training, we select user queries from346

the ToolBench (Qin et al., 2023) training set that347

remain solvable, meaning that the tools or APIs re-348

quired to solve these queries are still callable, and349

use them to construct the intermediate process data.350

To balance computational resource usage and infer-351

ence time, we employ a depth-first search algorithm352

to construct an action search space resembling a353

binary tree for each user query. Specifically, during354

the code generation for each tool invocation step,355

we perform sampling twice. Subsequently, at each356

hierarchical level of the action search space, we357

collect process data with varying Latent Reward358

I1-I I1-C I1-T I2-I I2-C I3-I Total

Full 200 200 200 200 200 100 1100
Solvable 163 153 158 106 124 61 765
Filtered 131 122 118 92 100 17 580

Table 1: Statistics regarding the original full and solv-
able tasks provided by ToolBench and StableToolBench,
along with the statistics on the data after our further
screening. C, I, T stands for the ‘Category’, ‘Instruc-
tion’ and ‘Tool’ subgroup of the test set, respectively.

values, which are regarded as a key indication for 359

comparing the levels of potential. Ultimately, we 360

leverage the data to train the PRM. The entire pro- 361

cess is fully automated, ensuring efficiency and 362

requiring no human intervention. 363

4 Experimental Setup 364

4.1 Datasets 365

ToolBench (Qin et al., 2023) is a widely adopted 366

benchmark in the field of tool invocation, designed 367

to evaluate the ability of models to solve user in- 368

structions in complex real-world scenarios. As 369

mentioned above, for the training of the process La- 370

tent Reward model, we select tools and APIs that 371

are still accessible from the ToolBench training 372

set and automatically construct intermediate pro- 373

cess data for tool invocation. To evaluate the per- 374

formance of CodeTool, we utilize the ToolBench 375

test set. However, the original ToolBench test set 376

presents challenges in reproducibility due to the 377

inaccessibility of many tools and APIs. To address 378

this issue, we employ StableToolBench (Guo et al., 379

2024), a stable version of the Rapid-API access sys- 380

tem derived from ToolBench using an API caching 381

mechanism. StableToolBench comprises 765 solv- 382

able tasks distributed across six subsets, with each 383

varying in tool category and instruction complexity, 384

ranging from single-tool to multi-tool instructions. 385

The detailed statistics are presented in Table 1. 386

4.2 Adaptations to StableToolBench 387

API Response Handling In StableToolBench, 388

API responses are provided in Text format, and 389

excessively long responses are truncated to a fixed 390

length. In order to facilitate the processing of these 391

responses, we convert them to JSON format upon 392

receipt, ensuring that the data can be effectively uti- 393

lized by the code. For responses that are truncated, 394

we employ GPT-4 (GPT-4-Turbo-2024-04-09) to 395

reconstruct them into a complete JSON format. 396

Test Set Filtering In our experiments, we find 397

that even when the model provides the same API 398
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and request parameters as those used in the Stable-399

ToolBench experiments, some requests fail due to400

the absence of cache hits. To ensure a fair compar-401

ison of experimental results, we filter out entries402

from the StableToolBench test set that are non-403

reproducible. The specific criteria for exclusion are404

detailed in Appendix C.405

4.3 Baselines and Evaluation Metric406

We conduct experiments using both open-source407

and closed-source LLMs. For open-source LLMs,408

we primarily compare our method with the well-409

established baseline, ToolLLaMA (Qin et al.,410

2023), which is fine-tuned from LLaMA on suc-411

cessful tool execution chains. Additionally, we in-412

clude two reinforcement learning-based baselines,413

TP-LLaMA (Chen et al., 2024) and StepTool (Yu414

et al., 2024), which utilize direct preference opti-415

mization (Rafailov et al., 2024) and proximal policy416

optimization (Schulman et al., 2017), respectively.417

To take full advantage of the code generation ca-418

pability of LLMs and ensure a fair comparison at419

the same time, we employ CodeLlama-7B1 and420

Qwen2.5-Coder-7B2 as the code generation mod-421

els for CodeTool. Both models share the same num-422

ber of parameters (i.e., 7B) as the baselines. For423

closed-source LLMs, we adopt GPT-3.5-Turbo-424

0613 and GPT-4-Turbo-Preview, each represent-425

ing different performance levels and capabilities426

within the GPT series. Following Qin et al. (2023);427

Yu et al. (2024), we employ two inference strate-428

gies for baselines: Chain of Thought (CoT) (Wei429

et al., 2022) and Depth-First Search Decision Tree430

(DFSDT) (Qin et al., 2023).431

Following StableToolBench, we utilize the Solv-432

able Pass Rate (SoPR) as the evaluation metric.433

Specifically, GPT-4 (gpt-4-turbo-2024-04-09)434

is leveraged as the evaluator to categorize the an-435

swers into “Solved”, “Unsolved”, or “Unsure”,436

with corresponding scores of 1, 0.5, and 0, respec-437

tively, contributing to the overall SoPR calculation.438

However, evaluation experiments on StableTool-439

Bench have shown that different models exhibit440

varying preferences regarding the degree to which441

the final answer resolves the query, leading to unsta-442

ble evaluation results. To address this, we test the443

evaluation script provided by StableToolBench and444

introduce clearer criteria for assessing these three445

1https://huggingface.co/codellama/
CodeLlama-7b-hf

2https://huggingface.co/Qwen/Qwen2.
5-Coder-7B-Instruct

categories (detailed in Appendix B), significantly 446

enhancing the stability of model evaluations. 447

4.4 Training Settings 448

We only need to train the process Latent Reward 449

model. In our experiments, we train such a model 450

using Qwen2.5-7B-Instruct3. To avoid disrupting 451

the native structure of the LLM, we adopt a gener- 452

ative PRM training method. Specifically, we des- 453

ignate two special tokens to represent the “more 454

potential” and “less potential” labels based 455

on Latent Reward values, and then fully reuse the 456

training method of SFT. We train the Qwen2.5-7B- 457

Instruct model on the collected process data for 2 458

epochs with a learning rate of 1e-6. 459

5 Experimental Results and Analyses 460

5.1 Main Results 461

Table 2 presents the performance comparison of 462

CodeTool with baselines on both open-source and 463

closed-source LLMs. Below are some key observa- 464

tions drawn from the results: (1) While CodeLlama- 465

7B exhibits lower performance compared to Tool- 466

LLaMA when the DFSDT strategy is adopted, 467

Qwen2.5-Coder-7B, which possesses stronger cod- 468

ing and instruction-following capabilities, achieves 469

an average SoPR of 69.75. This significantly sur- 470

passes the performance of all open-source base- 471

lines across all test subsets, demonstrating the ef- 472

fectiveness of the CodeTool framework. (2) For 473

closed-source LLMs, both GPT-3.5-Turbo-0613 474

and GPT-4-Turbo-Preview demonstrate compara- 475

ble performance on the SoPR metric when employ- 476

ing the DFSDT strategy with JSON-format-based 477

tool invocations. Notably, GPT-4-Turbo-Preview, 478

with its superior code generation capabilities, fur- 479

ther elevates the SoPR metric when paired with 480

CodeTool, enhancing the performance of Qwen2.5- 481

Coder-7B by 1.86%. (3) The results on both open- 482

source and closed-source LLMs suggest that the 483

more advanced the model’s coding capabilities, the 484

better its tool invocation performance in terms of 485

the SoPR metric when paired with our CodeTool. 486

5.2 Generalization Performance on 487

RestBench-TMDB 488

To evaluate the generalization capability of the 489

CodeTool framework, we conduct additional exper- 490

iments on another widely recognized benchmark, 491

3https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

6

https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct


Models Strategy Invocation Form I1 Ins. I1 Cat. I1 Tool. I2 Ins. I2 Cat. I3 Ins. Avg

Open-Source LLMs

ToolLLaMA (7B) CoT JSON 32.06 37.70 36.01 29.35 38.00 29.41 33.39
DFSDT 46.56 55.74 51.27 49.46 60.50 55.89 53.24

TP-LLaMA (7B) DFSDT JSON 27.00 48.00 37.00 35.00 36.00 35.00 36.00
StepTool (7B) DFSDT JSON 44.27 47.54 42.80 42.39 43.00 44.12 44.02

CodeLlama-7B CodeTool Code 45.80 46.72 42.37 45.65 47.50 35.29 43.89
Qwen2.5-Coder-7B 62.59 74.59 63.98 67.93 70.00 79.41 69.75

Closed-Source LLMs

GPT-3.5-Turbo-0613
CoT JSON 47.71 45.77 54.66 38.59 43.00 44.12 45.64

DFSDT 59.54 62.29 66.10 52.72 62.50 70.58 62.34

CodeTool Code 59.92 59.84 53.39 40.21 53.00 55.88 53.71

GPT-4-Turbo-Preview
CoT JSON 51.15 64.34 55.84 55.43 58.50 70.59 59.32

DFSDT 59.16 61.06 47.48 62.50 65.50 76.47 62.03

CodeTool Code 62.97 76.22 69.49 65.76 69.50 82.35 71.05

Table 2: Performance comparison in terms of SoPR between CodeTool and baselines. We reproduce StepTool on
ToolLLaMA using the released code. All results are assessed on the filtered StableToolBench test set using the
improved SoPR evaluation prompt (refer to Section 4.3 for details about the performance evaluation prompt).

Methods RestBench-TMDB

Success Rate (%)

GPT-3.5-Turbo-0613

ReAct (Yao et al., 2023) 61.00
RestGPT (Song et al., 2023) 65.00
CodeAct (Wang et al., 2024c) 63.00
ToolLLaMA (Qin et al., 2023) 72.00
ATC (Shi et al., 2024) 89.00

CodeTool 92.00

Table 3: Performance comparison in terms of success
rate on RestBench-TMDB.

RestBench-TMDB (Song et al., 2023), which con-492

tains 100 tasks involving 54 tools designed for493

movie-related scenarios. Notably, we do not retrain494

the process Latent Reward model for this bench-495

mark; instead, we utilize the model previously496

trained for StableToolBench directly. We adopt497

the Success Rate metric provided by RestBench-498

TMDB for evaluation, which relies on human as-499

sessment to ascertain whether the model’s output500

successfully fulfills the user query. The results,501

as shown in Table 3, indicate that CodeTool also502

achieves the best performance, with a Success Rate503

of 92%, surpassing ATC by 3.37%, which involves504

writing complete Python code to solve user queries.505

5.3 Analyses506

Ablation Study I: Impact of Two Types of Pro-507

cess Rewards on SoPR To evaluate the con-508

tribution of the two types of process rewards in509

CodeTool, we conduct an ablation study by con-510

structing two variants: - w/o On-the-spot Reward,511

where the On-the-spot Reward is set to 0 regardless 512

of the success of code execution at the current step, 513

and - w/o Latent Reward, where the Latent Reward 514

is set to 0, meaning that the new code generation 515

step only aims for a direction of correct code exe- 516

cution. If multiple directions for correct execution 517

exist at the current step, one is randomly selected. 518

As shown in Table 4, the removal of On-the-spot 519

Reward and Latent Reward results in a decrease 520

in the average SoPR to 65.99 and 65.41, respec- 521

tively. These findings suggest that both types of 522

process rewards positively impact programmatic 523

tool invocation within CodeTool. However, remov- 524

ing Latent Reward leads to an increase in SoPR 525

on I1_Ins and I2_Cat. The reason may be that the 526

queries in I1_Ins and I2_Cat are relatively sim- 527

ple compared to other subsets. Consequently, the 528

guidance provided by the On-the-spot Reward is 529

sufficient to address these queries, while the Latent 530

Reward from the PRM may introduce additional 531

biases, resulting in weaker performance. Neverthe- 532

less, the average SoPR for the - w/o Latent Reward 533

setting is 65.41, which is much lower than the 69.75 534

achieved when Latent Reward is included. There- 535

fore, it can be concluded that Latent Reward retains 536

significant importance within CodeTool. 537

Ablation Study II: Impact of Two Types of Pro- 538

cess Rewards on Successful Code Execution Pro- 539

portion To further investigate the role of the pro- 540

cess reward system within the CodeTool frame- 541

work, we conduct another ablation study to evaluate 542

the impact of the two types of process rewards on 543

the Successful Code Execution Proportion (SCEP). 544
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Methods Solvable Pass Rate (SoPR, %)

I1 Ins. I1 Cat. I1 Tool. I2 Ins. I2 Cat. I3 Ins. Avg

Qwen2.5-Coder-7B + CodeTool 62.59 74.59 63.98 67.93 70.00 79.41 69.75
- w/o On-the-spot Reward 61.45 72.95 61.86 60.32 68.50 70.83 65.99
- w/o Latent Reward 67.94 68.03 62.71 62.50 73.00 58.33 65.41

Table 4: Ablation study on the two types of process rewards within CodeTool from the perspective of SoPR.

Methods Successful Code Execution Proportion (SCEP, %)

I1 Ins. I1 Cat. I1 Tool. I2 Ins. I2 Cat. I3 Ins. Avg

Qwen2.5-Coder-7B + CodeTool 85.33 84.62 82.47 87.14 86.61 95.00 86.86
- w/o On-the-spot Reward 66.45 71.03 69.20 71.10 58.63 80.36 69.46
- w/o Latent Reward 84.46 84.17 80.93 84.48 86.34 91.67 85.34

Table 5: Ablation study on the two types of process rewards within CodeTool from the perspective of SCEP.

This metric assesses the overall correctness of step-545

wise code execution and is defined as follows:546

SCEP =

∑6
i=1

∑Pi
j=1

∑Si,j

k=1Ci,j,k∑6
i=1

∑Pi
j=1 Si,j

, (7)547

where Pi represents the number of queries in subset548

i (for i = 1, 2, . . . , 6), Si,j denotes the number549

of coding steps required to solve the query j in550

subset i, and Ci,j,k is an indicator of whether the551

coding step k in addressing query j (from subset i)552

is correctly executed, with Ci,j,k = 1 if the step is553

correctly executed and Ci,j,k = 0 otherwise.554

As shown in Table 5, removing On-the-spot555

Reward significantly lowers the average SCEP to556

69.46%, indicating its crucial role in guiding the557

CodeTool framework to generate accurate code.558

This is expected, as the On-the-spot Reward en-559

sures that the LLM’s code generation is directed to-560

wards correct execution. Additionally, the removal561

of the Latent Reward also results in a decrease in562

SCEP compared to when it is retained. Although563

the On-the-spot Reward provides immediate guid-564

ance, the Latent Reward contributes to long-term565

accuracy in code generation, highlighting its impor-566

tance in the overall process.567

Performance with Varying PRM Training Meth-568

ods and Number of Candidate Actions As out-569

lined in Section 4.4, we train the Generative PRM570

by designating two special tokens to represent the571

“more potential” or “less potential” labels572

based on Latent Reward values through a gener-573

ative approach. For comparison, we also train a574

Pairwise PRM by augmenting the LLM backbone575

with an additional linear head, enabling it to clas-576

2 3 4 5
Number of Candidate Actions Per Step

76

78

80

82
So

PR

Generative PRM

Qwen2.5-7B-Instruct
LLaMA-3-8B-Instruct

2 3 4 5
Number of Candidate Actions Per Step

75.00

75.25

75.50

75.75

76.00

76.25

76.50

So
PR

Pairwise PRM
Qwen2.5-7B-Instruct
LLaMA-3-8B-Instruct

Figure 3: Performance with varying PRM training meth-
ods and number of candidate actions on I1 Category.

sify the intermediate process data as either “more 577

potential” or “less potential”. Apart from 578

Qwen2.5-7B-Instruct, we also train LLaMA-3-8B- 579

Instruct (AI@Meta, 2024) as the PRM. As shown 580

in Figure 3, both models demonstrate a significant 581

increase in SoPR as the number of candidate ac- 582

tions rises from 2 to 3, regardless of the training 583

method. However, further increases in the number 584

of candidate actions tend to lead to a performance 585

decline, suggesting a trade-off between the number 586

of candidate actions and the efficacy of the PRM. 587

6 Conclusion 588

In this paper, we introduce CodeTool, a stepwise 589

code generation framework based on process su- 590

pervision. By leveraging code as a naturally verifi- 591

able format, we obtain an On-the-spot Reward to 592

reflect step correctness and train a PRM on fully 593

automated process data to assign a Latent Reward, 594

which measures the potential of each step toward 595

overall task completion. At each inference step, 596

LLMs follow the reasoning path with maximal cu- 597

mulative reward of On-the-spot Reward and Latent 598

Reward. Extensive experiments conducted on Sta- 599

bleToolBench and RestBench-TMDB validate the 600

effectiveness of the CodeTool framework. 601
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Limitations602

Despite the superiority of the proposed CodeTool603

framework, its performance is, to some extent, in-604

fluenced by the code generation capabilities of the605

underlying LLM. A model with high proficiency in606

generating accurate and efficient code will naturally607

enhance the performance of CodeTool. Conversely,608

models with less advanced coding abilities may not609

fully exploit the potential of this framework. In ad-610

dition, previous work shows that the performance611

of the PRM for Latent Reward is closely tied to the612

quality of the collected process data, particularly613

the accuracy of the Latent Reward values(Zhang614

et al., 2025). Given that we rely on sampling meth-615

ods to estimate these values and subsequently use616

them to train the PRM, there is a potential for sub-617

optimal performance if the estimated values are not618

sufficiently accurate.619

Ethics Statement620

The research conducted in this paper aims at en-621

hancing programmatic tool invocation of LLMs622

via process supervision. Throughout the course of623

this research, we have rigorously adhered to ethical624

standards to uphold the integrity and validity of625

our work. All tools (APIs) utilized in this study626

are sourced from publicly available platforms, en-627

suring full transparency and reproducibility in our628

experimental procedures. Moreover, we have taken629

great care to ensure that our research does not cause630

harm to individuals or groups, and we have commit-631

ted to avoiding any forms of deception or misuse632

of information in the course of our study.633
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A Instruction for Stepwise Code814

Generation815

A reference prompt designed to guide LLMs in per-816

forming code generation step-by-step is illustrated817

in Figure 4. This prompt is structured to facili-818

tate incremental reasoning by the model, providing819

clear instructions.820

B Improved SoPR Evaluation Prompt821

To enhance the stability of model evaluations, we822

introduce clearer criteria for assessing “Solved”,823

“Unsolved”, or “Unsure” cases for the SoPR met-824

ric. The improved evaluation prompt is shown in825

Table 6.826

C StableToolBench Test Set Filtering827

Rules828

Rules for filtering the test set of StableToolBench829

are shown in Table 7.830

D Case Study831

Compared to methods that rely on JSON or Text832

format for tool invocation, CodeTool with process833

supervision, offers multiple advantages beyond its834

superiority in handling request-intensive instruc-835

tions, as illustrated in Figure 1. The following are836

some specific cases:837

D.1 Case 1838

We use Figure 5 as an example to demonstrate the839

reasoning process of CodeTool when sampling two840

candidate actions at each step, highlighting com-841

mon scenarios encountered during the evaluation842

of each intermediate step.843

D.2 Case 2844

Figure 6 demonstrates that when the user expects845

a specific tool to generate an image, although the846

tool invocation request based on the JSON format847

retrieves the image information, it fails to save the848

image. In contrast, the code not only successfully849

requests the tool but also saves the image locally,850

completely resolving the user’s query.851

D.3 Case 3852

Figure 7 demonstrates that when the tool’s response853

is overly long and the key information is truncated,854

the user’s query may not be resolved. However, the855

code stores the complete tool response in the cache,856

ensuring that critical information is not lost, thus857

better addressing the user’s query.858
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SoPR Evaluation Prompt in StableToolBench

Giving the query and answer, you need to give answer_status of the answer by following rules:
1. If the answer is a sorry message or not a positive/straight response for the given query, return "Unsolved".
2. If the answer is a positive/straight response for the given query, you have to further check.
2.1 If the answer is not sufficient to determine whether it solves the query or not, return "Unsure".
2.2 If you are confident that the answer is sufficient to determine whether it solves the query or not, return "Solved" or "Unsolved".

Query: {query}

Answer: {answer}

Now give your reason in "content" and "answer_status" of JSON to "check_answer_status".

Improved SoPR Evaluation Prompt in CodeTool

Giving the query and answer, you need to give answer_status of the answer by following rules:
1. If the answer doesn’t contain any information that is helpful for answering the user’s query, return "Unsolved".
2. If the answer is a positive/straight response for the given query, you have to further check.
2.1 If the answer is not sufficient to determine whether it solves the query or not, return "Unsure".
2.2 If the answer solves part of the query or does not fully answer the query, return "Unsure".
2.3 If the answer is sufficient to solve the query, return "Solved".

Query: {query}

Answer: {answer}

Now give your reason in "content" and "answer_status" of JSON to "check_answer_status".

Table 6: We have refined the criteria for each category in the SoPR assessment prompt, making the SoPR assessment
more stable.

Rules for Filtering the Test Set of StableToolBench.

1. The parameters for requesting the API in StableToolBench are inconsistent with those in the given API documentation,
resulting in the inability to request the API.

2. When the LLM provides the same API and request parameters as those in the StableToolBench experiments, the response in
StableToolBench can solve the problem. However, the content in the cache is just a piece of text and cannot solve the problem.

3. Even if the LLM provides the same API and request parameters as those in the StableToolBench experiments, the request fails
to be fulfilled due to the lack of cache. Moreover, the real ToolBench API either does not exist, or requires a subscription, or
there is no access permission or returns a piece of text that cannot solve the query.

Table 7: Rules for Filtering the Test Set of StableToolBench.
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Instruction Prompt for Stepwise Code Generation

Here are the OpenAPI Specification of given APIs, including their http url, description and arguments.

{docs}

Based on provided APIs, please solve the question step by step and write python code to call API and solve it.

Try to write correct Python Code and avoid grammar error, e.g. `variable is not defined`.

You need to provide Python code that can be executed directly;

Please add the name of the used APIs in Python comments for the attributable consideration.

Note: you should be faithful to the question, please acquire any information you need by calling the APIs (e.g., person id or movie id). Do not

make up value by yourself.

Here is an example to request the API:

```python

import requests

url = "http://0.0.0.0:8080/virtual"

data = "<The param dict>"

response = requests.post(url, data=json.dumps(data))

```

For each step, you need to state the problem you are trying to solve and provide the corresponding code.

You can refer to the form below:

##Step 1: Write your Python code to make the first API call.

Python Code:

```python

[Please write the code. Each time you request a URL to obtain JSON data, you must print out the result of the request.

There should be no other printing operations.]

```

[Step 1 Finished]

##Step 2: Process the data from the first API call if needed, and make any subsequent API calls if you need.

Python Code:

```python

[Write you code here.]

```

[Step 2 Finished]

##Step 3: Process the data from the second API call if needed, and make any subsequent API calls if you need.

```python

[Write you code here.]

```

[Step 3 Finished]

...

##Step X: Perform this step when you feel that you can already get the answer of user's query.

Parse the result from the API response, and print the final answer to the user's query.

Python Code:

```python

[Write you code here.]

```

[All Finished]

[Step X Finished]

**The number of steps to solve a problem is not fixed, and you can stop as soon as you feel that the user's problem can be solved.**

Note that I need to debug and improve the code with feedback from the compiler, so don't include any error handling mechanisms, such as try-

catch statements.

Query: {query}

Your output:

Begin with 'Step 1:'

End with '[All Finished]\n[Step X Finished]', where 'X' is the last step number!

Figure 4: A reference prompt for stepwise code generation.
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A Case of Inference Under the CodeTool Framework
Instruction: My family members are interested in real estate and want to learn more about the industry. Can 

you provide us with flashcards and multiple-choice questions to enhance our knowledge? It would be helpful 

if the study materials include explanations for the answers. 

Root   1

1-1

Step 1

1-2

Solved

API Name:  Flashcards API Name:  Flashcards

Arguments: {} Arguments: {} 

Choose a correct API and the code execute successfully. Choose a correct API but the code cannot execute.

Step 2 1-1-1 1-1-2

Try to parse the result and make a subsequent API request.

API Name:  /QandA API Name:  /QandA

Arguments: {} Arguments: {} 

Both choose a correct API, execute successfully , but the 1-1-1’s  Latent Reward is higher.

Step 3 1-1-1-1 1-1-1-2

Get the Final Answer successfully.A KeyError occurs while parsing the response.

Try to parse the result and get the Final Answer. Try to parse the result and get the Final Answer.

Figure 5: A case of inference under our CodeTool framework.
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A Case of Invoking Tool to Generate Images

Instruction: Create a QR code image for my friend's blog. Please use the URL 'www.blog.com’

to generate the QR code.

JSON Code 

Step 1

API Name:  qr_code_image_copy_for_qr_code_api_v67

Arguments: {"url": "www.blog.com"} 

Response: \\ufffdPNG\\r\\n\\u001a\\n\\u0000\.....

Final Answer: The QR code has been successfully 

generated for the URL 'www.blog.com'. However, 

due to the limitations of this text-based interaction, 

I can't display the actual QR code image here. You 

can generate the QR code using the specified URL 

through any QR code generation tool by inputting 

'www.blog.com'.  

Unsolved Solved

Step 1

Request the API:  requests.post(url, request_data)

Response: \\ufffdPNG\\r\\n\\u001a\\n\\u0000\.....

Step 2

Save the Image:  file.write(...)

Response: QR code image saved as 'qr_code.png'

Final Answer: The QR code has been successfully 

generated for the URL 'www.blog.com’ and saved 

as 'qr_code.png'

Figure 6: A case of invoking tools to generate images.
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A Case of Solving Overly Long Response

Instruction: Help me find the followers of a user with the Twitter ID 44196397. I would like 

to know the user names and follower counts of each follower. Please include a cursor for other 

results if available.

JSON Code 

Step 1

API Name:  user_followers_for_twitter_v4

Arguments: {"is_id": "44196397"}    

Response:  {\"data\": {\"user\": {\"id\": 

\"44196397\", \"followers_count\": 1250, 

\"followers\": [{\"id\"  ……..

Final Answer: I've obtained a list of followers for 

the Twitter user with the ID \"44196397\". For each 

follower, I have their ID, username, and the URL to 

their profile image. However, the follower counts 

for each follower were not included in this result, 

and it seems the task was not fully accomplished 

according to the original request. Additionally, no 

cursor for subsequent results was provided in this 

response.

Unsure Solved

Step 1

Request the API:  requests.post(url, request_data)

Response: {\"data\": {\"user\": {\"id\": 

\"44196397\", \"followers_count\": 1250, 

\"followers\": [{\"id\"  ….   ]}

The complete response is in the cache.

Step 2

Get users name and follower counts :  for loop

Final Answer: The answer fully addresses the user’s 

query.

The overly long response is truncated to a fixed length.

Step 3

Get cursor:   entry.get('content', {}).get('value', '')

Figure 7: A case of solving overly long responses.
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