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Abstract
Differentially Private methods for training Deep
Neural Networks (DNNs) have progressed re-
cently, in particular with the use of massive
batches and aggregated data augmentations for a
large number of training steps. These techniques
require much more computing resources than their
non-private counterparts, shifting the traditional
privacy-accuracy trade-off to a privacy-accuracy-
compute trade-off and making hyper-parameter
search virtually impossible for realistic scenar-
ios. In this work, we decouple privacy analysis
and experimental behavior of noisy training to
explore the trade-off with minimal computational
requirements. We first use the tools of Rényi
Differential Privacy (RDP) to highlight that the
privacy budget, when not overcharged, only de-
pends on the total amount of noise (TAN) injected
throughout training. We then derive scaling laws
for training models with DP-SGD to optimize
hyper-parameters with more than a 100× reduc-
tion in computational budget. We apply the pro-
posed method on CIFAR-10 and ImageNet and, in
particular, strongly improve the state-of-the-art on
ImageNet with a +9 points gain in top-1 accuracy
for a privacy budget ε = 8.

1. Introduction
Deep neural networks (DNNs) have become a fundamental
tool of modern artificial intelligence, producing cutting-edge
performance in many domains such as computer vision (He
et al., 2016), natural language processing (Devlin et al.,
2018) or speech recognition (Amodei et al., 2016). The
performance of these models generally increases with their
training data size (Brown et al., 2020; Rae et al., 2021;
Ramesh et al., 2022), which encourages the inclusion of
more data in the model’s training set. This phenomenon
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Figure 1. Training from scratch with DP-SGD on ImageNet. All
points are obtained at constant number of steps S = 72k and
constant ratio σ/B, with σref = 2.5 and Bref = 16384. The
dashed lines are computed using a linear regression on the crosses,
and the dots and stars illustrate the predictive power of TAN. We
perform low compute hyper-parameter (HP) search at batch size
128 and extrapolate our best setup for a single run at large batch
size: stars show our reproduction of the previous SOTA from (De
et al., 2022) and improved performance obtained under the privacy
budget ε = 8 with a +6 points gain in top-1 accuracy. The shaded
blue areas denote 2 standard deviations over three runs.

also introduces a potential privacy risk for data that gets in-
corporated. Indeed, AI models not only learn about general
statistics or trends of their training data distribution (such
as grammar for language models), but also remember ver-
batim information about individual points (e.g., credit card
numbers), which compromises their privacy (Carlini et al.,
2019; 2021). Access to a trained model thus potentially
leaks information about its training data.

The gold standard of disclosure control for individual in-
formation is Differential Privacy (DP) (Dwork et al., 2006).
Informally, DP ensures that the training does not produce
very different models if a sample is added or removed from
the dataset. Motivated by applications in deep learning,
DP-SGD (Abadi et al., 2016) is an adaptation of Stochastic
Gradient Descent (SGD) that clips individual gradients and
adds Gaussian noise to their sum. Its DP guarantees depend
on the privacy parameters: the sampling rate q = B/N
(where B is the batch size and N is the number of training
samples), the number of gradient steps S, and the noise σ2.

1



TAN Without a Burn: Scaling Laws of DP-SGD

Training neural networks with DP-SGD has seen progress
recently, due to several factors. The first is the use of
pre-trained models, with DP finetuning on downstream
tasks (Li et al., 2021; De et al., 2022). This circumvents
the traditional limitations of DP, because the model learns
meaningful features from public data and can adapt
to downstream data with minimal information. In the
remainder of this paper, we only consider models trained
from scratch, as we focus on obtaining information through
the DP channel. Another emerging trend among DP
practitioners is to use massive batch sizes at a large number
of steps to achieve a better tradeoff between privacy and
utility: Anil et al. (2021) have successfully pre-trained
BERT with DP-SGD using batch sizes of 2 million. This
paradigm makes training models computationally intensive
and hyper-parameter (HP) search effectively impractical
for realistic datasets and architectures.

In this context, we look at DP-SGD through the lens of
the Total Amount of Noise (TAN) injected during training,
and use it to decouple two aspects: privacy accounting and
influence of noisy updates on the training dynamics. We
first observe a heuristic rule: when typically σ > 2 , the
privacy budget ε only depends on the total amount of noise.

Using the tools of RDP accounting, we approximate ε by a
simple closed-form expression. We then analyze the scaling
laws of DNNs at constant TAN and show that performance
at very large batch sizes (computationally intensive) is pre-
dictable from performance at small batch sizes as illustrated
in Figure 1. Our contributions are the following:

• We take a heuristic view of privacy accounting by in-
troducing the Total Amount of Noise (TAN) and show
that in a regime when the budget ε is not overcharged,
it only depends on TAN;

• We use this result in practice and derive scaling laws
that showcase the predictive power of TAN to reduce
the computational cost of hyper-parameter tuning with
DP-SGD, saving a factor of 128 in compute on Ima-
geNet experiments (Figure 1). We then use TAN to find
optimal privacy parameters, leading to a gain of +9
points under ε = 8 compared to the previous SOTA;

• We leverage TAN to quantify the impact of the dataset
size on the privacy/utility trade-off and show that with
well chosen privacy parameters, doubling dataset size
halves ε while providing better performance.

2. Background and Related Work
In this section, we review traditional definitions of DP, in-
cluding Rényi Differential Privacy. We consider a random-
ized mechanism M that takes as input a dataset D of size
N and outputs a machine learning model θ ∼ M(D).

Definition 2.1 (Approximate Differential Privacy). A ran-
domized mechanism M satisfies (ε, δ)-DP (Dwork et al.,
2006) if, for any pair of datasets D and D′ that differ by
one sample and for all subset R ⊂ Im(M),

P(M(D) ∈ R) ≤ P(M(D′) ∈ R) exp(ε) + δ. (1)

DP-SGD (Abadi et al., 2016) is the most popular DP algo-
rithm to train DNNs. It selects samples uniformly at random
with probability q = B/N (with B the batch size and N
the number of training samples), clips per-sample gradients
to a norm C (clipC), aggregates them and adds (gaussian)
noise. With θ the parameters of the DNN and ℓi(θ) the loss
evaluated at sample (xi, yi), it uses noisy gradient

g :=
1

B

∑
i∈B

clipC (∇θℓi(θ)) +N
(
0,

C2σ2

B2

)
(2)

to train the model. The traditional privacy analysis of DP-
SGD is obtained through Rényi Differential Privacy.

Definition 2.2 (Rényi Divergence). For two probability
distributions P and Q defined over R, the Rényi divergence
of order α > 1 of P given Q is:

Dα(P ∥ Q) :=
1

α− 1
logEx∼Q

(
P (x)

Q(x)

)α

.

Definition 2.3 (Rényi DP). A randomized mechanism
M : D → R satisfies (α, dα)-Rényi differential privacy
(RDP) if, for any D,D ∈ D′ that differ by one sample:

Dα(M(D) ∥ M(D′)) ≤ dα.

RDP is a convenient notion to track privacy because compo-
sition is additive: a sequence of two algorithms satisfying
(α, dα) and (α, d′α) RDP satisfies (α, dα + d′α) RDP. In
particular, S steps of a (α, dα) RDP mechanism satisfiy
(α, Sdα) RDP. Mironov et al. (2019) show that each step of
DP-SGD satisfies (α, gα(σ, q))-RDP with

gα(σ, q) := Dα((1−q)N (0, σ2)+qN (1, σ2) ∥ N (0, σ2)).

Finally, a mechanism satisfying (α, dα)-RDP also satisfies
(ε, δ)-DP (Mironov, 2017) for ε = dα + log(1/δ)

α−1 . Perform-
ing S steps of DP-SGD satisfies (εRDP , δ)-DP with

εRDP := min
α

Sgα(σ, q) +
log(1/δ)

α− 1
. (3)

RDP is the traditional tool used to analyse DP-SGD, but
other accounting tools have been proposed to obtain tighter
bounds (Gopi et al., 2021). In this work, we use the accoun-
tant due to (Balle et al., 2020), whose output is referred to
as ε, which is slightly smaller than εRDP.
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Figure 2. Privacy budget ε as a function of the noise level σ with η constant. On both figures, each curve corresponds to a different
number of steps S, and each point on the curve is computed at a sampling rate q such that η is constant. On the left, we use η = 0.13
(resulting in εTAN = 1 in Equation 4). On the right, we use η = 0.95 (εTAN = 8). We observe a “privacy wall” imposing σ ≥ 0.5 for
meaningful level of privacy budget ε, and σ ≥ 2 for constant ε ≈ εTAN.

DP variants Concentrated Differential Privacy (CDP)
(Dwork & Rothblum, 2016; Bun & Steinke, 2016) was
originally proposed as a relaxation of (ε, δ)- DP with bet-
ter compositional properties. Truncated CDP (tCDP) (Bun
et al., 2018) is an extension of CDP, with improved prop-
erties of privacy amplification via sub-sampling, which is
crucial for DP-SGD-style algorithms. The canonical noise
for tCDP follows a “sinh-normal”’ distribution, with tails ex-
ponentially tighter than a Gaussian. In Sections 3.2 and 3.3,
we highlight the practical implications of the Privacy ampli-
fication by sub-sampling behavior of DP-SGD. We observe
that in the large noise regime, εRDP can be approximated
by a very simple closed form expression of the parameters
(q, S, σ) through TAN, and relate it to CDP and tCDP.

Training from Scratch with DP. Training ML models
with DP-SGD typically incurs a loss of model utility, but
using very large batch sizes improves the privacy/utility
trade-off (Anil et al., 2021; Li et al., 2021). De et al. (2022)
recently introduced Augmentation Multiplicity (AugMult),
which averages the gradients from different augmented ver-
sions of every sample before clipping and leads to improved
performance on CIFAR-10. Computing per-sample gradi-
ents with mega batch sizes for a large number of steps and
AugMult makes DP-SGD much more computationally in-
tensive than non-private training, typically dozens of times.
For instance, reproducing the previous SOTA on ImageNet
of De et al. (2022) under ε = 8 necessitates a 4-day run
using 32 A100 GPUs, while the non-private SOTA can be
reproduced in a few hours with the same hardware (Goyal
et al., 2017). Yu et al. (2021b) propose to use low-rank
reparametrization of the weight matrices to diminish the
computational cost of accessing per-sample gradients.

Finetuning with DP-SGD. Tramer & Boneh (2020) show
that handcrafted features are very competitive when train-
ing from scratch, but fine-tuning deep models outperforms

them. Li et al. (2021); Yu et al. (2021a) fine-tune language
models to competitive accuracy on several NLP tasks. De
et al. (2022) consider models pre-trained on JFT-300M and
transferred to downstream tasks.

3. The TAN approach
We introduce the notion of Total Amount of Noise (TAN)
and discuss its connections to DP accounting. We then
demonstrate how training with reference privacy parameters
(qref , σref , S) can be simulated with much lower computa-
tional resources using the same TAN with smaller batches.

Definition 3.1. Let the individual signal-to-noise ratio η
(and its inverse Σ, the Total Amount of Noise or TAN) be:

η2 =
1

Σ2
:=

q2S

2σ2
.

3.1. Motivation

We begin with a simple case to motivate our definition of
TAN. We assume a one-dimensional model, where the gra-
dients of all points are clipped to C. Looking at Equation 2,
in one batch of size B, the expected signal from each sample
is C/B with probability q = B/N and 0 otherwise. There-
fore, the expected individual signal of each sample after S
steps is SC/N , and its squared norm is S2C2/N2. The
noise at each step being drawn independently, the variance
across S steps adds to SC2σ2/B2. The ratio between the
signal and noise is thus equal to (up to a factor 1/2)

S2C2

N2

2SC2σ2

B2

=
q2S

2σ2
= η2.

Denoting ηstep := q/
√
2σ, we have η2 = Sη2step. The ratio

σ/q is noted by Li et al. (2021) as the effective noise. The
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Figure 3. Approximation of gα(σ, q). All curves correspond to distinct couples (q, σ) such that ηstep = 3.9× 10−3 (used for ImageNet).
The right plot corresponds to an enlargement of the left plot: the ratio is very close to 1 for σ ≥ 2.

authors found that for a fixed budget ε and fixed S, the ef-
fective noise decreases with B. Our analysis goes further by
analyzing how RDP accounting explains this dependency.

3.2. Connection with Privacy Accounting

Intuitively, we expect that the privacy budget ε only depends
on the signal-to-noise ratio η (an approximation of the ex-
tracted information). In Figure 2, we plot ε as a function of
σ and S, at fixed η, and observe that ε is indeed constant, but
only when σ > 2. When σ gets smaller, ε surges, creating a
“Privacy Wall”. We shed light on this phenomenon by look-
ing at the underlying RDP values. We observe in Figure 3
that when σ > 2, gα(σ, q) is close to αq2/(2σ2) = αη2step.
Conversely, when σ < 2, gα becomes much larger than
αη2step, which explains the blow-up in ε from Figure 2.

The existence of a phase transition with a sub-sampled
Gaussian mechanism is also noticed in Abadi et al. (2016);
Mironov et al. (2019). Wang et al. (2019) identify that it typi-
cally happens when qα exp (α/2σ2) > 1 for RDP, implying
that gα(σ, q) = O(αq2/σ2) for large σ. We deliberately
dispose of the big O notation and inject our refined (empir-
ical) approximation gα(σ, q) ≈ αη2step in the definition of
εRDP (equation 3). We get:

εRDP ≈ η2 +min
α

(
(α− 1)η2 +

log (1/δ)

α− 1

)
= η2 + 2η

√
log (1/δ) =: εTAN(η).

(4)

We verify this relationship empirically, and in particular
choose η to get a desired εTAN in Figure 2. Having this
simple approximation for ε is useful because it allows for
easy mental gymnastics: for instance, doubling the sampling
rate q while dividing the number of steps S by 4 should leave
the privacy budget constant, which we observe empirically.

We suggest to leverage εTAN as an approximation of the
privacy budget that enables quick mental operations. To
report the actual ε accurately, we resort to the traditional
RDP accounting method from Balle et al. (2020).

3.3. Connection to other notions of DP

Bu et al. (2020) show that under the assumptions of the Cen-
tral Limit Theorem, the Gaussian Differential Privacy (GDP)
parameter of DP-SGD is q

√
S(exp (1/σ2)− 1). For σ

large, exp (1/σ2)− 1 ≈ 1/σ2, which means that the GDP
parameter also becomes a function of TAN only. We also
note that if DP-SGD were η2-CDP, the translation to (ε, δ)-
DP of Bun & Steinke (2016) (Proposition 1.3) would be the
same as ε TAN . The tCDP definition was chosen to better
account for privacy amplification by sub-sampling (see Sec-
tion 2), typically to avoid the kind of exploding behaviour
described in Section 3.2. Our observation suggests that in
the large noise regime that we are considering (σ > 2),
S steps of DP-SGD are approximately (η2, ω)-tCDP for
ω such that log (1/δ) ≤ (ω − 1)2η2 (see Lemma 6 in Bun
et al. (2018)). Our approach differs because we observe
this relationship as an empirical phenomenon and propose
a simple heuristic criterion (σ > 2) for the validity of our
approximation. The (approximate) reduction of privacy ac-
counting to η2 = q2S/2σ2 implies various ways to change
(q, σ, S) at a constant privacy budget.

3.4. Scaling at Constant TAN

Starting from (q, σ, S), while σ < 2, we can double q and σ.
This will drastically improve privacy accounting (Figure 2)
and we expect that keeping constant S and the per step
signal-to-noise ratio ηstep should lead to similar performance
(Section 5.3). However, since S is fixed, doubling q doubles
the number of epochs (and thus the computational cost).
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Figure 4. Test accuracies at constant ηstep = Bref/(
√
2Nσref ) and S are (log) linearly decreasing with B. Dashed lines are computed

using a linear regression on the crosses. Shaded areas correspond to 3 std confidence intervals. (Left) CIFAR-10 with 16-4-WideResNet
for Sref = 2500 steps and Bref = 4096. Each curve corresponds to a different value of ηstep. (Right) ImageNet with NF-ResNet-50 with
various numbers of steps, all with σref = 2.5 and Bref = 16384. The scaling law holds for various training configurations.

Batch Scaling Laws. We now analyse how this strategy
affects the performance of the network. In Figure 4, we
perform this analysis on CIFAR-10 and ImageNet. We
find that for triplets (q, σ, S) for which q/σ = qref/σref

(keeping ηstep constant), the performance of the network is
almost constant for various levels of noise on CIFAR-10,
and (log) linearly decreases with the batch size on ImageNet.
We discuss these observations further in Section 5.3.

Choice of σ. If σ < 2, simultaneously doubling q and
σ has a small or negligible negative impact on accuracy
(Figure 4) but it can greatly reduce the privacy budget (Fig-
ure 2). Reciprocally, halving σ and q is slightly beneficial or
neutral to the performance (Figure 4), and if σ > 4, it keeps
the privacy guarantees almost unchanged (Figure 2). It also
divides the computational cost by 2. This explains why state-
of-the-art approaches heuristically find that mega-batches
work well: a blind grid search on the batch size and the
noise level at constant privacy budget is likely to discover
batches large enough to have σ > 2. Our analysis gives a
principled explanation for the sweet spot of σ ∈ [2, 4] used
by most SOTA approaches (De et al., 2022; Li et al., 2021).

Efficient TAN Training. We further study the training
process in the small batch size setting. We choose the op-
timal hyper-parameters (including architecture, optimizer,
type of data augmentation) in this simulated setting, and
finally launch one single run at the reference (large) batch
size, with desired privacy guarantees. On ImageNet, sim-
ulating Bref = 16,384 with B = 128 reduces the number
of epochs by a factor of 128 because S is held constant;
thus, the computational cost is reduced by the same amount.
Each hyper-parameter search for ImageNet at B = 16,384
takes 4 days using 32 A100 GPUs; we reduce it to less than
one day on a single A100 GPU.

4. Experiments
We leverage our efficient TAN training strategy and obtain
new state-of-the-art results on ImageNet for ε = 8 (Ta-
ble 1). We then study the impact of the dataset size on the
pricacy/utility trade-off. We also demonstrate how our low
compute simulation framework can be used to detect per-
formance bottlenecks when training with noisy updates: in
our case, the importance of the order between activation and
normalization in a WideResNet on CIFAR-10.

4.1. Experimental Setup

We use the CIFAR-10 dataset (Krizhevsky et al., 2009)
which contains 50K 32× 32 images grouped in 10 classes.
The ImageNet dataset (Deng et al., 2009; Russakovsky et al.,
2014) contains 1.2 million images partitioned into 1000 cat-
egories. For data augmentation, we always use Augmen-
tation Multiplicity as detailed in Appendix C. For both
datasets, we train models from random initialization. On
CIFAR-10, we train 16-4-WideResNets (Zagoruyko & Ko-
modakis, 2016). On Imagenet, we compare Vision Trans-
formers (ViTs) (Dosovitskiy et al., 2020), Residual Neural
Networks (ResNets) (He et al., 2016) and Normalizer-Free
ResNets (NF-ResNets) (Brock et al., 2021b). We always fix
δ = 1/N where N is the number of samples and report the
corresponding value of ε. We use C = 1 for the clipping fac-
tor in Equation 2 as we did not see any improvement using
other values. We use the Opacus (Yousefpour et al., 2021)
and timm (Wightman, 2019) libraries in Pytorch (Paszke
et al., 2019). We open-source the training code at https:
//github.com/facebookresearch/tan.

We decouple privacy hyper-parameters (HPs) from non-
privacy HPs in our experiments. In Section 4.2, we use
our simulated training with constant TAN to find better
non-privacy HPs at low compute keeping the privacy HPs
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Table 1. ImageNet top-1 test accuracy when training from scratch
using DP-SGD. We use a NF-ResNet-50 with σ = 2.5, hyper-
parameters of Table 2 and (B,S) = (32768, 18k) (Table 4). orig-
inal corresponds to the results stated in the paper, and reprod to
our reproduction of their results.

METHOD (ε, δ) ACCURACY

(KURAKIN ET AL., 2022) (13.2, 10−6) 6.2%
(DE ET AL., 2022) (original) (8, 8.10−7) 32.4%
(DE ET AL., 2022) (reprod) (8, 8.10−7) 30.2%
OURS (8, 8.10−7) 39.2%

(Bref, S, σref) fixed. In Section 4.3, we directly use TAN
to optimally choose better privacy HPs (which further im-
proves performance by 3 points) and that constitutes our
best state-of-the-art run (Table 1). We chose that baseline
because the computational cost of each training run is high,
thus corresponding to an ideal instantiation for our method.

4.2. Hyper-parameter Tuning at Fixed TAN

We run a large hyper-parameter search and report the
best hyper-parameters in Table 2 as well as the corre-
sponding improvement for various batch sizes (at con-
stant ηstep and S). Each gain is compared to the optimal
hyper-parameters find at the previous column. We search
over learning rates lr ∈ [1, 2, 4, 8, 12, 16], momentum pa-
rameters µ ∈ [0, 0.1, 0.5, 0.9, 1] and dampening factors
d ∈ [0, 0.1, 0.5, 0.9, 1]. We use exponential moving av-
erage (EMA) on the weights (Tan & Le, 2019) with a decay
parameter in [0.9, 0.99, 0.999, 0.9999, 0.99999].

We try different types of data augmentation, that we re-
ferred to as “RRC”, “Ours” and “SimCLR”, and try for
each various multiplicity of augmentations (1, 2, 4, 8, 16)
(see Appendix C for details).

• RRC: a standard random resized crop (crop chosen
at random with an area between 8% and 100% of the
original image and random aspect ratio in [3/4, 4/3]),

• Ours: random crop around the center with 20 pixels
padding with reflect, random horizontal flip and jitter;

• SimCLR: the augmentation from Chen et al. (2020),
including color jitter, grayscale, gaussian blur and ran-
dom resized crop, horizontal flip.

We find (Table 2) that optimal parameters are the same in
each scenario of simulation, as predicted in Section 3.4.
We perform one run with these optimal parameters at B =
16384 which satisfies a privacy budget of ε = 8. Note that
we use multiple batch sizes only to support our hypothesis
and batch scaling law, but it is sufficient to simulate only
at B = 128. Our experiments indicate that AugMult is the
most beneficial when the image augmentations are rather
mild (“OURS”), arguably lighter than SimCLR.

Testing with Augmentations. We also test the model
using a majority vote on the augmentations of each test
image (AugTest column in Table 2). We use the same
type and number of augmentations as in training. It
improves the final top-1 test accuracy. This is in line
with a recent line of work aiming at reconciling train and
test modalities (Touvron et al., 2019). To provide a fair
comparison with the state of the art, we decide not to
include this gain in the final report in Table 1 and Table 4.

Choice of architecture and optimizer. We have experi-
mented with different architectures (ViTs, ResNets, NFRes-
nets) and optimizers (DP-Adam, DP-AdamW, DP-SGD)
(see Appendix B for details). Our best results are obtained
using a NFResnet-50 and DP-SGD with constant learning
rate and no momentum, which differs from standard practice
in non-private training.

4.3. Privacy Parameter Search at Fixed TAN

While we kept S constant in previous experiments, we now
explore constant TAN triplets (q, σ, S) by varying S. We
keep σ fixed to 2.5 and vary (B,S) starting from the refer-
ence (16384, 72K) at constant η = q2S/(2σ2). Given that

Table 2. Comparing optimal hyper-parameters. Keeping ηstep and S constant, we compare various changes in the training pipeline. We
compare with the baseline of De et al. (2022) (blue line in Figure 1: NFResNet-50, learning rate at 4, EMA decay at 0.99999, 4 random
augmentations averaged over 3 runs). Each gain is compared to the previous column.

IMAGENET: σref = 2.5, Bref = 16,384, S = 72K

B (lr, µ, d) DECAY AUGMULT AUGTEST TOTAL

128 (8, 0, 0) +1.0 0.999 +1.2 (OURS, 8) +3.0 +0.4 +5.6%
256 (8, 0, 0) +0.8 0.999 +1.2 (OURS, 8) +3.0 +0.7 +5.7%
512 (8, 0, 0) +1.2 0.999 +1.1 (OURS, 8) +2.8 +1.1 +6.2%

1024 (8, 0, 0) +1.6 0.999 +1.2 (OURS, 8) +2.3 +0.8 +5.9 %

16384 - - - - - - +0.8 +6.7%
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Table 3. Low compute simulation of privacy parameter search. We
start from B = 256 = 16384/64 and S = 72K. We use σ =
2.5/64 for all runs and no data augmentation.

Bref = 256, Sref = 72K

S B lr GAIN

9K 756 64 -6.22%
18K 512 32 +1.32%
72K 256 8 /
288K 128 2 -1.88%

Table 4. Privacy parameter search. We use the optimal parameters
described in Section 4.2 with σ = 2.5 for one expensive run and
compare it with our optimal result

Bref = 16384, Sref = 72K

S B ε lr Test acc

18K 32,768 8.00 32 39.2%
72K 16,384 7.97 8 36.1%

σ > 2, we stay in the almost constant privacy regime (Fig-
ure 2): we indeed observe ε ≈ εTAN in Table 4. We scale
the learning rate inversely to S to compensate for the de-
crease of the noisy updates’ magnitude (Equation 2). Since
performing this privacy parameter search is computationally
intensive, we first simulate training using our scaling strat-
egy at B = 256 (i.e. with the same ηstep) and display our
results in Table 3. Our best results are obtained for 18k steps.
Finally, we perform one computationally expensive run at
S = 18k and B = 32768, with other hyper-parameters
from Section 4.2, and show the results in Table 4.

We note an improvement over our previous best perfor-
mance at (B, σ, S) = (16384, 2.5, 72K) referred in Table 2.
Overall, we improved performance by 9% when training
from scratch on ImageNet with DP-SGD under ε = 8. We
compare to our reproduction of the previous SOTA of (De
et al., 2022) at 30.2% (compared to the results reported in
the original paper (32.4%), we still gain 7% of accuracy).
Thus, we have shown how we can use TAN to perform opti-
mal privacy parameter search while simulating each choice
of optimal parameters at a much smaller cost.

4.4. Ablation

We now illustrate the benefit of TAN for ablation analysis.
We study the importance of the order between activation and
the normalization layers when training with DP-SGD. We
also discuss how gathering more training data improves per-
formance while decreasing ε. On both experiments, we train
a 16-4-WideResnet on CIFAR-10, constant learning rate at
4, and we are studying (Bref , σref , S) = (4096, 3, 2.5k).
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Figure 5. Impact of data augmentation on the test accuracy us-
ing pre-activation normalization vs post-activation in a 16-4-
WideResnet on CIFAR-10. We compare simulation at (B, σ) =
(512, 3

8
) and reference (Bref , σref) = (4096, 3), both trained for

S = 2,500 steps. Confidence intervals are plotted with two stan-
dard deviations over 5 runs. Augmentation Multiplicity Order
corresponds to the number of augmentations per image, or K in
Appendix C.

Pre-activation vs Post-activation Normalization Nor-
malization techniques such as BatchNorm (Ioffe & Szegedy,
2015), GroupNorm (GN) (Wu & He, 2018) or LayerNorm
(Ba et al., 2016) help training DNNs. Note that Batch-
Norm is not compatible with DP-SGD because it is not
amenable to per-sample gradient computations, we thus re-
sort to GroupNorm. These normalization layers are usually
placed between convolutional layers and activations (e.g.,
CONV-GN-ReLU). Brock et al. (2021a) suggest that sig-
nal propagation improves when the order is reversed (to
CONV-ReLU-GN).

We experiment with DP-SGD training using both orders of
layers, and display our results in Figure 5. We make two
observations. First, the reverse order leads to significantly
greater performance, and is more robust. Second, the stan-
dard order does not benefit from data augmentation. We
observe that the two simulated experiments with B = 512
represented by lighter colors in Figure 5 (2 standard devia-
tions around the means) have the same properties. However,
each simulation is 8 times less computationally expensive.
Therefore, using TAN through our scaling law can facilitate
studying variants of the network architecture while reducing
the computational costs.

Quantity of Data We now look at how collecting more
data affects the tradeoff between privacy and utility. We
show that doubling the data (from the same distribution)
allows better performance with half the privacy budget. To
this end, we train on portions of the CIFAR-10 training set
(N = 50k) and always report accuracies on the same test
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Table 5. Impact of the training set size N on the privacy/utility
trade-off. We start training on 10% of the data (N0 = 5K). We use
B = 4,096, σ = 3 and S = 2,500, with post-activation normal-
ization, and no augmentation. Standard deviations are computed
over 3 independent runs.

CIFAR-10: σ = 3, B = 4,096, S = 2,500

N ε Test acc (%)

5K 150.3 59.9 (±1)
25K 13.7 71.1 (±0.4)
40K 7.3 72.9(±0.1)
50K 7.1 74.0 (±0.5)

set. If we multiply by β the quantity of data N0 and keep
the same (B, σ, S), q (and thus η), is divided by β as well.
We divide δ by β for the accounting. We show in Table 5
the effects on ε and model accuracy.

On the one hand, when using εTAN, we can predict the im-
pact on the privacy budget. On the other hand, since the
global signal-to-noise ratio Nη is held constant in all experi-
ments, we expect to extract the same amount of information
in each setup; adding more data makes this information
richer, which explains the gain in accuracy. We show simi-
lar results for ImageNet in Appendix A.

5. Conclusion, Limitations and Future Work
5.1. Conclusion

We argue that the total amount of noise (TAN) is a simple but
useful guiding principle to experiment with private training.
In particular, we demonstrate that the privacy budget is
either a direct function of TAN or can be reduced. We
further show that scaling batch size with noise level using
TAN allows for ultra-efficient hyper-parameter search and
demonstrate the power of this paradigm by establishing a
new state of the art for DP training on ImageNet.

5.2. Limitations

Non-private Hyper-parameter Search. We follow the
standard practice of not counting hyper-parameter search
towards the privacy budget (Li et al., 2021; Anil et al., 2021).
Theoretically, each training run should be charged on the
overall budget, but in practice it is commonly assumed that
the “bandwidth” of hyper-parameters is too small to incur
any observable loss of privacy (see also Liu & Talwar (2019)
for a theoretically sound way of handling this problem). If
available, one can use a similar public dataset (such as
ImageNet) to choose hyper-parameters, and then perform
only limited runs on the private dataset. Finally, we note
that training non-private models might not be possible on
sensitive data. In this case, our hyper-parameter transfer
process can not be used.

5.3. Discussion and Future Work

Stochasticity in the non Convex Setting Varying the
batch size at a constant number of steps and a constant ηstep,
(and thus constant TAN), we expected a constant test per-
formance. Indeed, the Gaussian noise in Equation 2 stays
the same, the only difference is that the (clipped) gradients
are averaged across a different number of samples. We hy-
pothesize that the better performance at small batch size
observed on ImageNet is due to the benefits of stochasticity
(i.e., the natural noise of the per-sample gradients). This is
coherent with empirical and theoretical work on the advan-
tages of stochasticity for empirical risk minimization in the
non-convex setting (Keskar et al., 2016; Masters & Luschi,
2018; Pesme et al., 2021).

In particular, it is consistent with the (non-private) empirical
work of Smith et al. (2020), which observe that for a fixed
number of steps, small batches perform better than large
batches when training DNNs.

Theoretical Analysis of TAN in the Convex Setting Con-
vergence theory has been thoroughly studied for DP-SGD
in convex, strongly convex, and nonconvex (stationary point
convergence) settings (Bassily et al., 2014; Wang et al.,
2017; Feldman et al., 2018). For example, under the con-
vex assumption, the excess bound given in Theorem 2.4 of
Bassily et al. (2014) with decreasing learning rate can be ex-
tended to mini batch training, and does not change when we
hold S and ηstep constant for different batch sizes. The same
observation holds for a constant learning rate, which means
that the optimal learning rate (with respect to this bound) is
the same for all batch sizes with our scaling strategy, which
is what we observe in practice (Table 2).

However, if we model the natural noise of the gradients for
SGD, the upper bound will have an additional dependency
on the batch size (Gower et al., 2019), which could be
informative for our scaling laws. We defer investigation of
this assumption to future work.

Better Accounting. We believe that the important in-
crease in the privacy budget ε as the noise level σ decreases
is a real phenomenon and not an artifact of the analysis.
Indeed, DP assumes that the adversary has access to all
model updates, as is the case for example in FL. In such
cases, a noise level that is too low is insufficient to hide the
presence of individual data points and makes it impossible
to obtain reasonable privacy guarantees. In the centralized
case however, the adversary does not see intermediate mod-
els but only the final result of training. Some works have
successfully taken into account this “privacy amplification
by iteration” idea (Feldman et al., 2018; Ye & Shokri, 2022)
but results are so far limited to convex models.
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D. The secret sharer: Evaluating and testing unintended
memorization in neural networks. In 28th USENIX Secu-
rity Symposium, pp. 267–284, 2019.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650, 2021.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. E.
A simple framework for contrastive learning of visual
representations. CoRR, abs/2002.05709, 2020. URL
https://arxiv.org/abs/2002.05709.

De, S., Berrada, L., Hayes, J., Smith, S. L., and Balle,
B. Unlocking high-accuracy differentially private im-
age classification through scale, 2022. URL https:
//arxiv.org/abs/2204.13650.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 248–255, 2009. doi:
10.1109/CVPR.2009.5206848.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers
for image recognition at scale, 2020. URL https:
//arxiv.org/abs/2010.11929.

Dwork, C. and Rothblum, G. N. Concentrated differential
privacy. arXiv preprint arXiv:1603.01887, 2016.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
ibrating noise to sensitivity in private data analysis. In
Proceedings of the Third Conference on Theory of Cryp-
tography, pp. 265–284, 2006.

9

https://arxiv.org/abs/2108.01624
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2101.08692
https://arxiv.org/abs/2101.08692
https://arxiv.org/abs/2102.06171
https://arxiv.org/abs/2102.06171
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2204.13650
https://arxiv.org/abs/2204.13650
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929


TAN Without a Burn: Scaling Laws of DP-SGD

Feldman, V., Mironov, I., Talwar, K., and Thakurta, A. Pri-
vacy amplification by iteration. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS),
pp. 521–532. IEEE, 2018.

Gopi, S., Lee, Y. T., and Wutschitz, L. Numerical composi-
tion of differential privacy. Advances in Neural Informa-
tion Processing Systems, 34:11631–11642, 2021.

Gower, R. M., Loizou, N., Qian, X., Sailanbayev, A.,
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A. More data: ImageNet
We show in Table 6 that similarly to the experiments in CIFAR-10, doubling the training data on ImageNet improves the
accuracy while diving ε by 2. We also demonstrate that our scaling strategy can accurately detect the gain of accuracy. We
compare training on half of the ImageNet training set (N = 600k) and the entire training set (N = 1.2M ).

B. Choice of architecture and optimizer
In this section, we give more details about our choice of architecture and optimizer on ImageNet. In particular, we noticed
that DP-SGD without momentum is always optimal, even with ViTs, and that NF-ResNets-50 performed the best.

Architecture. When training with DP-SGD, the goal is to find the best possible local minimum within a constrained
number of steps S, and with noisy gradients. However, architectures and optimizers have been developed to ultimately
achieve the best possible final accuracy with normal updates. To illustrate this extremely, we train a Vision Transformer
(ViT) (Dosovitskiy et al., 2020) from scratch on ImageNet using DP-SGD. Touvron et al. (2020) have succeeded in achieving
SOTA performance in the non-private setting, but with a number of training steps higher than convolution-based architectures.
A common explanation is that ViTs have less inductive bias than CNNs: they have to learn them first, and that can be
even harder with noisy gradients. And if they are successful, they have lost the budget for gradient steps to learn general
properties of images.

We used our scaling strategy (keeping ηstep and S constant) to simulate the DP training with different architectures at low
compute, studying noisy training without the burden of DP accounting. The best simulated results were obtained with a
NFResNet-50 (Brock et al., 2021b) designed to be fast learners in terms of number of FLOPS. The worst results were
obtained with ViTs, and intermediate results with classical ResNets. In Figure 6, we compare different training trajectories
of a ViT and a NF-ResNet.

Optimizer Using our simulation scheme, we found that DP-SGD with no momentum and a constant learning rate is the
best choice for all architectures. We also tried DP-Adam, DP-AdamW with a wide range of parameters. It is surprising to
find that this is the case for ViTs, as without noisy, the Adam type optimizers perform better (Touvron et al., 2020). This
highlights the fact that training with DP-SGD is a different paradigm that requires its own tools.

Using TAN allowed us to explore and compare different architectures and optimizers, which would have been computationally
impossible in the normal DP training setting at B = 16384.

C. Augmentation Multiplicity
Augmentation Multiplicity (AugMult) was introduced by (De et al., 2022) in the context of DP-SGD. The authors
average the gradients of different augmentations of the same image before clipping the per-sample gradients, using the
following formula (where ζ is a standard Gaussian variable):

wt+1 = wt+1 − ηt

 1

B

∑
i∈Bt

1

C
clipC

 1

K

∑
j∈Kt

∇j(w
(t))

+N

(
0,

σ2

B2

) (5)

Compute scales linearly with the AugMult order K. Our intuition on the benefits of AugMult is that difficult examples

Table 6. Impact of adding more data on ImageNet. The “Simulated Gain” column corresponds to the accuracy gain we observe when
simulating at lower compute using our scaling strategy for B = 256. The “Gain” column corresponds to the real gain at B = 16384.

Imagenet: σref = 2.5, Bref = 16384, S = 72k

N δ ε εTAN Gain Simulated Gain

0.6M 16.10−7 17.98 18.06 / /
1.2M 8.10−7 8.00 8.26 +1.3% +1.5%
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Figure 6. Training a ViT from scratch on ImageNet with DP-SGD. We simulate training with our scaling strategy and B = 256. We
observe that the accuracies are not as good as for NF-ResNets, and that Augmentation Multiplicity plays a more important role.

(or examples that fall out of the distribution) become easier when using this augmentation technique. On the other hand,
without AugMult, simple examples are learned to be classified early in training, resulting in a gradient close to 0 when used
without augmentation. Because we are training for a fixed number of steps, it is a waste of gradient steps (i.e. privacy
budget). With AugMult, the network may still be able to learn from these examples. Figure 7 shows the histograms of the
norms of the average over all augmentations for each image of the per-sample gradients, before clipping and adding noise
in equation 5 at different times of training.

Figure 7. Histograms of the norms of the average across all augmentations for each image of the per-sample gradients, before clipping
and adding noise. On the left, we see that without augmentation, an increasing number of examples have their gradients going to zero
during training. On the right, we see that when using a strong augmentation technique (SimCLR, (Chen et al., 2020)), the gradients are
more concentrated during all the training.
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