"You might think about slightly revising the title": identifying hedges in peer-tutoring interactions

Anonymous ACL submission

Abstract

Hedges have an important role in the management of rapport. In peer-tutoring, they are notably used by tutors in dyads experiencing low rapport to tone down the impact of instructions and negative feedback. Pursuing the objective of building a tutoring agent that manages rapport with teenagers in order to improve learning, we used a multimodal peer-tutoring dataset to construct a computational framework for identifying hedges. We compared approaches relying on pre-trained resources with others that integrate insights from the social science literature. Our best performance involved a hybrid approach that outperforms the existing baseline while being easier to interpret. We employ a model explainability tool to explore the features that characterize hedges in peer-tutoring conversations, and we identify some novel features, and the benefits of a such a hybrid model approach.

1 Introduction

Rapport, most simply defined as the “... relative harmony and smoothness of relations between people ...” (Spencer-Oatey, 2005), has been shown to play a role in the success of activities as varied as psychotherapy (Leach, 2005) and survey interviewing (Lune and Berg, 2017). In peer-tutoring, rapport, as measured by the annotation of thin slices of video, has been shown to be beneficial for learning outcomes (Zhao et al., 2014; Sinha and Cassell, 2015). The level of rapport rises and falls with conversational strategies deployed by tutors and tutees at appropriate times, and as a function of the content of prior turns. These strategies include self-disclosure, referring to shared experience, and, on the part of tutors, giving instructions in an indirect manner. Some work has attempted to automatically detect these strategies in the service of intelligent tutors (Zhao et al., 2016a), but only a few strategies have been attempted. Other work has concentrated on a "social reasoning module" (Romero et al., 2017) to decide which strategies should be generated in a given context, but indirectness was not among the strategies targeted. In this paper, we focus on the automatic classification of one specific strategy that is particularly important for the tutoring domain, and therefore important for intelligent tutors: hedging, a sub-part of indirectness that "softens" what we say. This work is part of a larger research program with the long-term goal of generating indirectness behaviors for a tutoring agent.

According to Brown and Levinson (1987), hedges are linked to the expression of politeness, by limiting the face threat to the interlocutor (basically by limiting the extent to which the interlocutor might experience embarrassment because of some kind of poor performance). An example is "that’s kind of a wrong answer". Hedges are also found when speakers wish to avoid losing face themselves, for example when saying ("I think I might have to add 6."). Madaio et al. (2017) found that in a peer-tutoring task, when rapport between interlocutors is low, tutees attempted more problems and correctly solved more problems when their tutors hedged instructions, which likewise points towards a "mitigation of face threat" function. Hedges can also be associated with a nonverbal component, for example averted eye gaze during criticism (Burgeon and Koper, 1984). Hedges are not, however, always appropriate, as in "I kind of think it’s raining today." when the interlocutors can both see rain (although it might be taken as humorous). We would therefore like to control the presence or absence of hedges in our generated tutoring instructions, and to do that, we first have to characterize them using interpretable linguistic features. Because hedges can indicate important uncertainty on the part of a tutee, we also want to automatically detect them. In the work described here, based on linguistic descriptions of hedges (Brown and Levinson, 1987; Fraser, 2010), we built a rule-based classifier inde-
pendent of the domain of use. We show that using the prediction of this classifier in combination with additional multimodal interpretable features significantly improves the performance of a machine learning classifier for hedges, compared to a less interpretable deep learning baseline from Goel et al. (2019) using word embeddings. We also relied on a machine learning model explanation tool (Lundberg and Lee, 2017) to investigate the linguistic features related to hedges, primarily to see if we could discover surprising features that the classification model would associate to hedges. Our future goal is to assess these multimodal characterizations in a generation task.

2 Related work

Hedges: According to Fraser (2010), hedging is a rhetorical strategy that attenuates the strength of a statement. One way to produce an hedge is by altering the full semantic value of a particular expression through **Propositional hedges** (also called **Approximators** in Prince et al. (1982)), as in "You are kind of wrong," that reduce prototypicality (i.e accuracy of the correspondence between the proposition and the reality that the speaker seeks to describe). Propositional hedges are related to fuzzy language (Lakoff, 1975), and therefore to the production of vagueness (Williamson, 2002) and uncertainty (Vincze, 2014).

A second kind are **Relational Hedges** (also called **Shields** in Prince et al. (1982)), such as "I think that you are wrong," or “The doctor wants you to stop smoking.”, conveying that the proposition is considered by the speaker as subjective. In a further sub-division, **Attribution Shields**, as in "The doctor wants you ...", the involvement of the speaker in the truth value of the proposition is not made explicit, which allows speakers not to take a stance.

As described above, Madaio et al. (2017) found that tutors who showed lower rapport with their tutees used more hedged instructions (they also employed more positive feedback), however this was only the case for tutors with a greater belief in their ability to tutor. Tutees in this context did solve more problems when their tutors hedged instructions. No effect of hedging was found for dyads with greater social closeness. However, the authors did not look at the specific linguistic forms these teenagers used.

Rowland (2007) also describes the role that hedging plays in this age group, showing that students use both relational ("I think that John is smart.") and propositional ("John is kind of smart.") hedges for much the same shielding function of demonstrating uncertainty to save them from the risk of embarrassment if they are wrong. The author observed that teens used few **Adaptors** (kind of, somewhat) and preferred to use **Rounders** (around, close to). However, this study was performed with an adult and two children, possibly biasing the results due to the participation of the adult investigator. Hedges have been included in virtual tutoring agents before now, as a way of integrating Brown and Levinson’s politeness framework (Wang et al., 2008; Schneider et al., 2015). Results were not broken out by strategy, but politeness in general was shown to positively influence motivation and learning, in certain conditions.

Computational methods for hedge detection:

A number of studies have targeted the detection of hedges and uncertainty in text (Medlock and Briscoe, 2007; Ganter and Strube, 2009; Tang et al., 2010; Velldal, 2011; Szarvas et al., 2012), particularly following the CoNLL 2010 dataset release (Farkas et al., 2010). However, this work is not as related to hedges in conversation, as it focuses on a formal and academic language register (Hyland, 1998; Varttala, 1999). As noted by Prokofieva and Hirschberg (2014), the functions of hedges are domain- and genre-dependent, therefore this bias towards formality implies that the existing work may not adapt well to the detection of hedges in conversation between teenagers. A consequence is that the existing work does not consider terms like "I think," since opinions rarely appear in an academic writing dataset. Instructions are also almost absent ("I think you have to add ten to both sides."). a strong limitation for the study of conversational hedges since it is in requests (including tutoring instructions) that indirect formulations mostly occur, according to Blum-Kulka (1987). Prokofieva and Hirschberg (2014) also note that it is difficult to detect hedges because the word patterns associated with them have other semantic and pragmatic functions: considering "I think that you have to add x to both sides." vs "I think that you are an idiot.", it is not clear that the second use of "I think that" is an hedge marker. They advocate using machine learning approaches to deal with the ambiguity of
these markers. Working on a conversational dataset, Ulinski et al. (2018) built a computational system to assess speaker commitment (i.e., at which point the speaker seems convinced by the truth value of a statement), in particular by relying on a rule-based detection system for hedges. They used a dictionary containing a set of terms related to hedges, and a set of rules to disambiguate the terms used. Compared to that work, our rule-based classification model is directly detecting hedge classes, and we employ the predictions of the rule-based model as a feature for stronger machine learning models, designed to lessen the impact of the imbalance between classes. We also consider apologies when they serve a mitigation function (we then call them Apologizers), as was done by the authors of our corpus, and we also use the term subjectivizers as defined below, so as to be able to compare directly with the previous work carried out on this corpus. As far as we know, only Goel et al. (2019) have worked with a peer-tutoring dataset (the one that we also use), and they achieved their best classification result by employing an Attention-CNN model, inspired by Adel and Schütze (2016).

3 Problem statement

We consider a set \(D \) of conversations \(D = \{c_1, c_2, ..., c_{|D|}\} \), where each conversation is composed of a sequence of independent syntactic clauses \(c_i = (u_1, u_2, ..., u_M) \), where \(M \) is the number of clauses in the conversation. Note that two consecutive clauses can be produced by the same speaker. Each clause is associated with a unique label corresponding to the different hedge classes described in Table 2: \(y_i \in \mathcal{C} = \{\text{Propositional Hedges, Apologizers, Subjectivizers, Not hedged}\} \). Finally, an utterance \(u_i \) can be represented as a vector of features \(X = (x_1, x_2, ..., x_N) \), where \(N \) represents the number of features we used to describe a clause. Our first goal is to design a model that predicts correctly the label \(y_i \) associated to \(u_i \). It can be understood as the following research question:

**RQ1: **"Which models and features can be used to automatically characterize hedges in a peer-tutoring interaction?"

Our second goal is to identify, for each hedge class, the set of features \(F_{\text{class}} = \{f_k\}, k \in [1,N] \) sorted by feature importance in the classification of \(\text{class} \). It corresponds to the following research question:

**RQ2: **"What are the most important linguistic features that characterize our hedge classes?"

4 Methodology

4.1 Corpus

<table>
<thead>
<tr>
<th></th>
<th>Hedges</th>
<th>Apologizers</th>
<th>Subjectivizers</th>
<th>Not hedged</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1454</td>
<td>153</td>
<td>366</td>
<td>21860</td>
<td>23833</td>
</tr>
</tbody>
</table>

Table 1: Distribution of the classes

Data collection: The dialogue corpus used here was collected as part of a larger study on the effects of rapport-building on reciprocal peer tutoring. 24 American teenagers (mean age = 13.5, min = 12, max = 15), half male and half female, came to a lab where half of the participants were paired with a same-age, same-gender friend, and the other half with a stranger. The participants were assigned to a total of 12 dyads that alternated tutoring one another in linear algebra equation solving for 5 weekly hour-long sessions, for a total corpus of nearly 60 hours of face-to-face interactions. Each session was structured such that the students engaged in brief social chitchat in the beginning, then one of the students was randomly assigned to tutor the other for 20 minutes. They then engaged in another social period, and concluded with a second tutoring period where the other student was assigned the role of tutor. Audio and video data were recorded, transcribed, and segmented for clause-level dialogue annotation, providing nearly 24 000 clauses. Non-speech segments (notably fillers and laughter) were maintained. Because of temporal misalignment for parts of the corpus, paraverbal phenomena, such as prosody, were unfortunately not available to us. Since the dataset was collected under a Non-Disclosure Agreement, it could be released publicly.

Data annotation: This dataset was annotated by Madaio et al. (2017), using hedge classes derived from Rowland (2007) (see Table 2). Comparing the annotations with the classes mentioned in the related work section, Subjectivizers would correspond to Relational hedges (Fraser, 2010), Propositional hedges and Extenders correspond to Approximators (Prince et al., 1982) with the addition
of some discourse markers such as just. **Apologizers** are mentioned as linguistic tools related to negative politeness in Brown and Levinson (1987). Krippendorff’s alpha for all four codes was over 0.7 (denoting an acceptable inter-coder reliability according to Krippendorff (2004)). Only the task periods of the interactions were annotated. The dataset is widely imbalanced, with more than 90% of the utterances belonging to the Not hedged class. Utterances labeled with Extenders class were considered here as Propositional hedges, because the annotation of Extenders class was not precise and reliable enough and both classes carry a similar semantic function.

4.2 Features

Label from rule-based classifier (Label RB): We use the class label predicted by the rule-based classifier described in Section 4.3 as a feature. Our hypothesis is that the machine learning model can use this information to counterbalance the class imbalance. To take into account the fact that some rules are more efficient than others, we weighted the class label resulting from the rule-based model by the precision of the rule that generated it.

Unigram and bigram: We count the number of occurrences of unigrams and bigrams of the corpus in each clause. We used the lemma of the words for unigrams and bigrams using the nltk lemmatizer (Loper, 2002) and selected unigrams and bigrams that occurred in the training dataset at least fifty times. The goal was to investigate, with a bottom-up approach, to what extent the use of certain words characterizes hedge classes in tutoring. In Section 5 we examine the overlap between these words and those a priori identified by the rules.

Part-of-speech (POS): Hedge classes seem to be associated with different syntactic patterns: for example, subjectivizers most often contain a personal pronoun followed by a verb, as in "I guess", "I believe", "I think". We therefore considered the number of occurrences of POS-Tag n-grams (n=1, 2, 3) as features. We used the spaCy POS-tagger and considered POS unigrams, bigrams and trigrams that occur at least 10 times in the training dataset.

LIWC: Linguistic Inquiry and Word Count (LIWC) (Pennebaker et al., 2015) is a standard software for extracting the count of words belonging to specific psycho-social categories (e.g., Emotions, Religion). It has been successfully used in the detection of conversational strategies (Zhao et al., 2016a). We therefore count the number of occurrences of all the 73 categories from LIWC.

Tutoring moves (TM): Intelligent tutoring systems rely on specific tutoring moves to successfully convey content (as do human tutors). We therefore looked at the link between the tutoring moves, as annotated in Madaio et al. (2017), and hedges. For tutors, these moves are (1) instructional directives and suggestions, (2) feedback, and (3) affirmations, mostly explicit reflections on their partners' comprehension, while for tutees, they are (1) questions, (2) feedbacks, and (3) affirmations, mostly tentative answers.

Non-verbal and paraverbal behaviors: As in Goel et al. (2019), we included the non-verbal and paraverbal behaviors that are related to hedges. Specifically, we consider laughter and smiles, which have been shown to be effective methods of mitigation (Warner-Garcia, 2014), cut-offs indicating self-repairs, fillers like "Um", gaze shifts (annotated as Gaze at Partner, Gaze at the worksheet, and Gaze elsewhere), and head nods. Each feature was present twice in the feature vector, one time for each interlocutor. Inter-rater reliability for visual behavior was 0.89 for eye gaze, 0.75 for smile count, 0.64 for smile duration and 0.99 for head nod. Laughter is also reported in the transcript at the word level. We separate behaviors from the tutor from that of the tutee. The collection process for these behaviors is detailed further in Zhao et al. (2016b)

The clause-level feature vector was normalized by the length of the clause (except for the rule-based label). This length was also added as a feature. Table 3 presents an overview of the final feature vector.

Table 2: Definition of the classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjectivizers</td>
<td>Words that reduce intensity or certainty</td>
<td>“I guess you divide by 3 here.”</td>
</tr>
<tr>
<td>Apologizers</td>
<td>Apologies used to soften direct speech acts</td>
<td>“Sorry, it’s negative 2.”</td>
</tr>
<tr>
<td>Propositional hedges</td>
<td>Qualifying words to reduce intensity or certainty of utterances</td>
<td>“You just add 5 to both sides.”</td>
</tr>
<tr>
<td>Extenders</td>
<td>Words used to indicate uncertainty by referring to vague categories</td>
<td>“You have to multiply or something.”</td>
</tr>
</tbody>
</table>

was selected because of its performance with small datasets, but also because it can ignore uninformative features.

Multi-layer perceptron (MLP): As a simple baseline, we built a multi-layer perceptron using three sets of features: a pre-trained contextual representation of the clause (SentBERT; Reimers and Gurevych (2019)); the concatenation of this contextual representation of the clause and a rule-based label (not relying on the previous clauses); and finally the concatenation of all the features mentioned in section 4.2, without the contextualized representation.

LSTM over a sequence of clauses: Since we are working with conversational data, we also wanted to test whether taking into account the previous clauses helps to detect the type of hedge class in the next clause. Formally, we want to infer y_i using $y_i = \max_{y \in \text{Classes}} P(y|X(u_i), X(u_{i-1}), \ldots, X(u_{i-K}))$, where K is the number of previous clauses that the model will take into account. The MLP model presented above infers y_i using $y_i = \max_{y \in \text{Classes}} P(y|X(u_i))$, therefore a difference of performance between the two models would be a sign that using information from the previous clauses could help to detect the hedged formulation in the current clause. We tested an LSTM model with the same representations for clauses as for the MLP model.

CNN with attention: Goel et al. (2019) established their best performance on hedge detection using a CNN model with additive attention over word (and not clause) embeddings. Contrary to the MLP and LSTM models mentioned above, this model tries to infer y_i using $y_i = \max_{y \in \text{Classes}} P(y|g(w_0), g(w_1), \ldots, g(w_L))$, with L representing the maximum clause length we allow, and g representing a function that turns the word w_j, $j \in [0, L]$ into a vector representation (for more details, please see Adel and Schütze (2016)). We re-implemented the model with Glove (Pennington et al., 2014) 300-D words embeddings as the vector representation.

BERT: To benefit from deep semantic and contextual representations of the utterances, we also fine-tuned BERT (Devlin et al., 2018) on our classification task. BERT is a pre-trained Transformers encoder (Vaswani et al., 2017) that significantly improved the state of the art on a number of NLP tasks, including sentiment analysis. It produces a contextual representation of each word in a sentence, making it capable of disambiguating the meaning of words like “think” or “just” that are representative of certain classes of hedges. BERT, however, is notably hard to interpret.

4.4 Analysis tools

Looking at which features improve the performance of our classification models tells us whether these features are informative or not, but does not explain how these features are used by the models to make a given prediction. We therefore produced a complementary analysis using an interpretability tool. XGBoost internal feature importance scores using information gain are inconsistent with both the model behavior and human intuition (Lundberg and Lee, 2017), so we used a model-agnostic tool. SHAP (Lundberg and Lee, 2017) assigns to each feature an importance value (called Shapley values) for a particular prediction depending on the extent of its contribution (a detailed introduction to Shapley values and SHAP can be found in Mol...
nur (2020)). SHAP is a model-agnostic framework, therefore the values associated with a set of features can be compared across models. It should be noted that SHAP produces explanations on a case-by-case basis, therefore it can both provide local and global explanations. For the Gradient Boosting models, we use an adapted version of SHAP (Lundberg et al., 2018), called TreeSHAP.

5 Experiments and results

5.1 Experimental setting

To detect the best set of features, we used XGBoost and proceeded incrementally, by adding the group of features we thought to be most likely associated with hedges. We did not consider the risk of relying on a sub-optimal set of features through this procedure because of the strong ability of XGBoost to ignore uninformative features. We use this incremental approach as a way to test our intuition about the performativity of groups of features (i.e. does adding a feature improve the performance of the model) with regard to the task of classification. To compare our models, we look at the weighted average of the F1-score for the three hedge classes.

For each set of features, XGBoost hyperparameters were selected using grid-search on the maximal depth of the trees, on the learning rate and on the training sub-sample proportion. The results are cross-validated using 5 folds (we chose 5 instead of 10 to avoid having folds with too few samples per class). We corrected for class imbalance by applying a "square root of the square root of the inverse class frequency" weight to the loss function while training our model for the multi-class prediction task, and without any class balancing for the binary classification task. This procedure forces the model to adapt more to the less frequent classes. Neural models were trained using AdamW as an optimizer (Loshchilov and Hutter, 2017). For these models, the class balancing weights followed the square root of the inverse class frequency.

5.2 Model comparison and feature analysis

Overall results: Table 4 presents the results obtained by the 6 models presented in Section 4.3 for the multi-class problem. Best performance (F1-score of 73.3) is obtained with XGBoost leveraging all the features, including the Label RB ones.

First, and perhaps surprisingly, we notice that the use of hand-crafted features based on rules built from linguistic knowledge of hedges in the XG-Boost model outperforms the use of pre-trained embeddings within a fine-tuned BERT model (73.3 vs. 69.0). The potential of Label RB features is confirmed by the increase in performance obtained on the BERT model when it uses these features (71.8 vs. 69.0). A second finding is that the use of machine learning models on top of rule-based classifiers allows a better modeling of hedge classes. Indeed the results reported in Column 3 of Table 4 are all higher than the result of the rule-based classifier (66.1). It is interesting to note that, when designing the rule-based classifier, we saw it reaching a limit in F1-score when we started to include ambiguous words (like "I would ...") in our regular expression patterns. The low scores obtained by the LSTM and MLP models with pre-trained sentence embeddings might signal that the word patterns characterizing hedges are not salient in these representations (i.e. the distance between "I think you should add 5." and "You should add 5." is short.). Bag-of-features representations seem to provide a better separability of the classes.

Feature analysis using XGBoost: Using the best performing model, Table 5 shows the role of each feature set in the prediction task. Compared to the rule-based model, the introduction of n-gram, POS features and LIWC significantly improved the performance of our classifier, suggesting that some lexical and syntactic information describing the hedge classes was not present in the rule-based model. Adding tutoring moves improved the performance of the model, indicating that there might be a correlation between hedge classes and specific tutoring moves. The non-verbal features did not add useful information to the model.

5.3 In-depth analysis of the informative features

We trained the SHAP explanation models on XGBoost with all features. The most informative features (in absolute value) for each class are shown in Table 6.
Table 5: Averaged weighted F1-scores for the binary classes and the three classes of hedges, with a XGBoost model. The standard deviation is computed across five folds.

<table>
<thead>
<tr>
<th>Models</th>
<th>Label RB</th>
<th>+ 1-gram and 2-gram</th>
<th>+ POS</th>
<th>+ LIWC</th>
<th>+ TM</th>
<th>+ Non-verbal</th>
<th>All w/o label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>94.7 ± 0.2</td>
<td>95.8 ± 0.4</td>
<td>95.7 ± 0.3</td>
<td>95.8 ± 0.5</td>
<td>95.8 ± 0.4</td>
<td>95.8 ± 0.4</td>
<td>95.8 ± 0.2</td>
</tr>
<tr>
<td>3-classes</td>
<td>66.7 ± 1.6</td>
<td>69.6 ± 2.9</td>
<td>69.4 ± 0.3</td>
<td>70.6 ± 1.5</td>
<td>73.3 ± 0.7</td>
<td>73.3 ± 1.6</td>
<td>70.5 ± 0.8</td>
</tr>
</tbody>
</table>

in Table 6.

As suggested by the previous feature analysis, the most important features seem to be the rule-based labels, which appear in at least the third position for all classes (see Table 6), and in the first position for Propositional Hedges and Not hedged classes. Unigrams (I, sorry, just, plus, and my) are also present in the 5 top-ranked features. This confirms the findings mentioned in related work for the characterization of the different hedge classes (just with Propositional Hedges, sorry with Apologizer, I with Subjectivizers). The presence of interjections also has high importance for the characterization of Apologizer, as illustrated in examples such as "Oh sorry, that’s nine.". We note that the occurrences of "Oh sorry" as a clause were excluded by our rule-based model because they do not correspond to an apologizer (they cannot mitigate the content of a proposition if there is no proposition associated). This example illustrates the interest of a machine learning model approach to disambiguate the function of conventional non-propositional phrases like "Oh sorry".

In addition, SHAP highlights the importance of novel features that were not already identified by the literature: (i) what LIWC classifies as informal words but that are mostly interjections like ah and oh are strongly associated with Apologizer (see Table 6), (ii) the presence of plus and minus, associated with problem statements from the tutor ("ten minus six equals?"), or with attempts by the tutee ("so three f minus three is-"), is an indicator of directness (see Figure 2 in the Appendix), while the presence of a verb is positively associated with propositional hedges (see Figure 4 in the Appendix), as in ("actually no you’re gonna subtract seven from both sides"). Taken together this may mean that tutors tend to use direct forms when they use soft instructions like "ten plus x equals?", and hedges when they produce directive instructions like "Subtract x to both sides." (iii) the use of POS tags seems to be very relevant for characterizing the different classes (POS tag features\(^1\) occur in the 5 top-ranked features of all the classes). It means that there are some recurring syntactic patterns in each class, that could be used to improve the generation process of hedges, by regenerating clauses that don’t contain one of these syntactic patterns; (iv) Regarding the utterance size, a clause shorter than the mean is associated with Subjectivizers, while a longer clause suggests that it contains a Propositional hedge; (v) Looking at tutoring moves, it seems that only the feedback from tutors is really used by the classifier to identify one of the classes: this tutoring move is ranked as the 10th most important feature for Subjectivizers ("I think you have to divide by three"). The other tutoring moves are not strong predictors of any classes; (vi) "No" is positively associated to Propositional hedges (n=6). When used in these hedges by the tutor, it seems to serve a self-correction function "no, it’s kinda weird.", "no wait actually it would be ten"; (vii) Non-verbal behaviors do not appear as important features for the classification. This is coherent with results from (Goel et al., 2019). Note that prosody might play a role in detecting instructions that trail off, as in the examples above, where the trailing off seems to serve a mitigating function but, as described, paraverbal features were not available.

One surprising finding is that tutoring moves seem to improve the performance of the XGBoost classifier, but do not appear to contribute to the SHAP analysis. To understand that, we explored the Shapley values for each utterance in the dataset, and observed that tutoring moves are extremely informative for a small number of clauses, and more or less not informative for the rest. This is not surprising in the sense that, since the tutor is teaching, virtually all of what the tutor is saying falls into one of the tutoring moves classes. So only certain kinds of tutoring moves (such as feedback which could be negative, and therefore face-threatening, and certain kinds of instructions, which could likewise be face-threatening if they follow a wrong move on the part of the tutee) rise to prominence.

\(^1\)Note that there is strong redundancy between some features of LIWC and the spaCy POS tagger that both produce a "Pronoun" category, using a lexicon in the first case, and a neural inference in the second.
5 Conclusion and future work

Through our classification performance experiments, we showed that it is possible to use machine learning methods to diminish the ambiguity of hedges, and that the hybrid approach of using rule-based label features derived from social science (including linguistics) literature within a machine learning model significantly helped to increase the model’s performance. Non-verbal behaviors did not provide information at the sentence level; both the performance of the model and the feature contribution analysis suggested that their impact on the model output was not strong. This is consistent with results from Goel et al. (2019). However, in future work we would like to investigate the potential of multimodal patterns when we are able to better model sequentiality (e.g., negative feedback followed by a smile). Even if we enhanced the baseline from Goel et al. (2019) and outperformed a fine-tuned BERT model using a Gradient Boosting method with interpretable features, hedges continue to be difficult to classify (F1 = 73.3 with a fine-grained 4-class recognition system). Since the inter-rater reliability for these hedge classes was only a little above 0.7, it is possible that the classes are still too broad in their definition and therefore somewhat inconsistent. A supplementary subdivision might be needed to obtain coherent linguistic objects to work on.

Regarding the SHAP analysis, most of the features that are considered as important are coherent with the definition of the classes (I for subjectivizers, sorry for apologizers, just for propositional hedges). However, we discovered that features like utterance size can serve as indicator of certain classes of hedges. A limitation of SHAP as an explanation method is that the interactions between features in the model is not represented in the explanations. SHAP makes a feature independence assumption, which prompts the explanatory model to underestimate the importance of redundant features (like pronouns in our work). In the future we will explore explanatory models capable of taking into account the correlation between features in the dataset like SAGE (Covert et al., 2020), but suited for very imbalanced datasets. Remaining in the domain of peer-tutoring, we would like to be able to further test the link between hedges and rapport, and the link between hedges and learning gains in the subject being tutored. As mentioned above, this kind of study requires a fine-grained control of the language produced by one of the interlocutors, which is difficult to control in a human-human experience. Now that we have begun to characterize the language produced by one of the interlocutors, 699% of the SHAP analysis is still required.

We see, then, that inferring the global importance of a feature as a mean across the shapley values in the dataset may not be the only way to explore the behavior of gradient boosting methods. To study how a given feature characterizes an hedge class, it might be more useful to cluster clauses based on the importance that SHAP gives to that feature in its classification. This could help discover sub-classes of hedges that are differentiated from the rest by their interaction with a specific feature (in the way that apologizers are characterized by an interjection). We note that the explanation model is sensitive to spurious correlations in the dataset: for example, “nine” is a positive predictor (n=10) of Apologizers. We think this correlation appeared because of the small number of Apologizers in the dataset, but it indicates that a layer of interpretation of the SHAP analysis is still required.

Table 6: Most important clause-level features for XGBoost according to the SHAP analysis.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Apologizer</th>
<th>Subjectivizers</th>
<th>Prop. Hedges</th>
<th>Not hedged (multiclass)</th>
<th>Not hedged (binary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interjection (POS)</td>
<td>Class label</td>
<td>Absence of interjection (POS)</td>
<td>Class label</td>
<td>Class label</td>
</tr>
<tr>
<td>2</td>
<td>sorry</td>
<td>Class label</td>
<td>Absence of Interjection (POS)</td>
<td>PRON (POS)</td>
<td>just (negative)</td>
</tr>
<tr>
<td>3</td>
<td>Class label</td>
<td>Pronoun (LIWC)</td>
<td>Absence of PRON (POS)</td>
<td>NOUN (POS)</td>
<td>PRON (POS) (negative)</td>
</tr>
<tr>
<td>4</td>
<td>informal (LIWC)</td>
<td>Auxiliary (POS)</td>
<td>Utterance size (lower)</td>
<td>just</td>
<td>non-NOUN (POS) (positive)</td>
</tr>
<tr>
<td>5</td>
<td>my</td>
<td>Utterance size (higher)</td>
<td>Absence of NOUN (POS)</td>
<td>just</td>
<td>informal (LIWC) (negative)</td>
</tr>
</tbody>
</table>

References

- Judee K Burgoon and Randall J Koper. 1984. Nonverbal and relational communication associated with reti-

Tanmay Sinha and Justine Cassell. 2015. We click, we align, we learn: Impact of influence and convergence processes on student learning and rapport building. In Proceedings of the 1st Workshop on Modeling INTERPERSONal SyncrONY And InFLuence, INTERPERSONAL ’15, page 13–20, New York, NY, USA. Association for Computing Machinery.

Table 7: Regexp rules used for the classifier. For apologizers, we also introduced a few standard utterances that should not be considered as apologizers: ["i’m sorry", “oh sorry", “right sorry"]
Figure 2: Averaged contribution of features to the detection of the "Not indirect" class, as indicated by SHAP. Each dot corresponds to a classified clause. A red dot indicates that the feature is present in the clause, while a blue dot indicates that the feature is absent. The farther on the right the dot is, the more the feature contributed to its classification as a hedge.

Figure 3: Averaged contribution of features to the detection of "Apologizers", as indicated by SHAP.
Figure 4: Averaged contribution of features to the detection of "Propositional hedges", as indicated by SHAP.

Figure 5: Averaged contribution of features to the detection of "Subjectivizers", as indicated by SHAP.