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Abstract

Hedges have an important role in the manage-
ment of rapport. In peer-tutoring, they are no-
tably used by tutors in dyads experiencing low
rapport to tone down the impact of instructions
and negative feedback. Pursuing the objective
of building a tutoring agent that manages rap-
port with teenagers in order to improve learn-
ing, we used a multimodal peer-tutoring dataset
to construct a computational framework for
identifying hedges. We compared approaches
relying on pre-trained resources with others
that integrate insights from the social science
literature. Our best performance involved a
hybrid approach that outperforms the existing
baseline while being easier to interpret. We
employ a model explainability tool to explore
the features that characterize hedges in peer-
tutoring conversations, and we identify some
novel features, and the benefits of a such a hy-
brid model approach.

1 Introduction

Rapport, most simply defined as the ... relative
harmony and smoothness of relations between peo-
ple ...” (Spencer-Oatey, 2005), has been shown to
play a role in the success of activities as varied as
psychotherapy (Leach, 2005) and survey interview-
ing (Lune and Berg, 2017). In peer-tutoring, rap-
port, as measured by the annotation of thin slices of
video, has been shown to be beneficial for learning
outcomes (Zhao et al., 2014; Sinha and Cassell,
2015). The level of rapport rises and falls with
conversational strategies deployed by tutors and
tutees at appropriate times, and as a function of the
content of prior turns. These strategies include self-
disclosure, referring to shared experience, and, on
the part of tutors, giving instructions in an indirect
manner. Some work has attempted to automatically
detect these strategies in the service of intelligent
tutors (Zhao et al., 2016a), but only a few strate-
gies have been attempted. Other work has con-
centrated on a "social reasoning module" (Romero

et al., 2017) to decide which strategies should be
generated in a given context, but indirectness was
not among the strategies targeted. In this paper, we
focus on the automatic classification of one spe-
cific strategy that is particularly important for the
tutoring domain, and therefore important for intel-
ligent tutors: hedging, a sub-part of indirectness
that "softens" what we say. This work is part of
a larger research program with the long-term goal
of generating indirectness behaviors for a tutoring
agent.

According to Brown and Levinson (1987),
hedges are linked to the expression of politeness,
by limiting the face threat to the interlocutor (basi-
cally by limiting the extent to which the interlocutor
might experience embarrassment because of some
kind of poor performance). An example is "that’s
kind of a wrong answer". Hedges are also found
when speakers wish to avoid losing face them-
selves, for example when saying ("I think 1 might
have to add 6."). Madaio et al. (2017) found that
in a peer-tutoring task, when rapport between inter-
locutors is low, tutees attempted more problems and
correctly solved more problems when their tutors
hedged instructions, which likewise points towards
a "mitigation of face threat" function. Hedges can
also be associated with a nonverbal component, for
example averted eye gaze during criticism (Bur-
goon and Koper, 1984). Hedges are not, however,
always appropriate, as in "I kind of think it’s raining
today." when the interlocutors can both see rain (al-
though it might be taken as humorous). We would
therefore like to control the presence or absence of
hedges in our generated tutoring instructions, and
to do that, we first have to characterize them using
interpretable linguistic features. Because hedges
can indicate important uncertainty on the part of a
tutee, we also want to automatically detect them.
In the work described here, based on linguistic de-
scriptions of hedges (Brown and Levinson, 1987;
Fraser, 2010), we built a rule-based classifier inde-



pendent of the domain of use. We show that using
the prediction of this classifier in combination with
additional multimodal interpretable features sig-
nificantly improves the performance of a machine
learning classifier for hedges, compared to a less
interpretable deep learning baseline from Goel et al.
(2019) using word embeddings. We also relied on
a machine learning model explanation tool (Lund-
berg and Lee, 2017) to investigate the linguistic
features related to hedges, primarily to see if we
could discover surprising features that the classifi-
cation model would associate to hedges. Our future
goal is to assess these multimodal characterizations
in a generation task.

2 Related work

Hedges: According to Fraser (2010), hedging is
a rhetorical strategy that attenuates the strength
of a statement. One way to produce an hedge is
by altering the full semantic value of a particular
expression through Propositional hedges (also
called Approximators in Prince et al. (1982)), as
in "You are kind of wrong," that reduce prototypi-
cality (i.e accuracy of the correspondence between
the proposition and the reality that the speaker
seeks to describe). Propositional hedges are related
to fuzzy language (Lakoff, 1975), and therefore to
the production of vagueness (Williamson, 2002)
and uncertainty (Vincze, 2014).

A second kind are Relational Hedges (also called
Shields in Prince et al. (1982)), such as “I think
that you are wrong.” or “The doctor wants you
to stop smoking.”, conveying that the proposition
is considered by the speaker as subjective. In a
further sub-division, Attribution Shields, as in
"The doctor wants you ...", the involvement of the
speaker in the truth value of the proposition is not
made explicit, which allows speakers not to take a
stance.

As described above, Madaio et al. (2017) found
that tutors who showed lower rapport with their
tutees used more hedged instructions (they also
employed more positive feedback), however this
was only the case for tutors with a greater belief
in their ability to tutor. Tutees in this context did
solve more problems when their tutors hedged
instructions. No effect of hedging was found for
dyads with greater social closeness. However, the
authors did not look at the specific linguistic forms
these teenagers used.

Rowland (2007) also describes the role that

hedging plays in this age group, showing that
students use both relational ("I think that John
is smart.") and propositional ("John is kind of
smart.") hedges for much the same shielding
function of demonstrating uncertainty to save
them from the risk of embarrassment if they are
wrong. The author observed that teens used few
Adaptors (kind of, somewhat) and preferred
to use Rounders (around, close to). However,
this study was performed with an adult and two
children, possibly biasing the results due to the
participation of the adult investigator. Hedges
have been included in virtual tutoring agents
before now, as a way of integrating Brown and
Levinson’s politeness framework (Wang et al.,
2008; Schneider et al., 2015). Results were not
broken out by strategy, but politeness in general
was shown to positively influence motivation and
learning, in certain conditions.

Computational methods for hedge detection:
A number of studies have targeted the detection
of hedges and uncertainty in text (Medlock and
Briscoe, 2007; Ganter and Strube, 2009; Tang et al.,
2010; Velldal, 2011; Szarvas et al., 2012), partic-
ularly following the CoNLL 2010 dataset release
(Farkas et al., 2010). However, this work is not
as related to hedges in conversation, as it focuses
on a formal and academic language register (Hy-
land, 1998; Varttala, 1999). As noted by Prokofieva
and Hirschberg (2014), the functions of hedges are
domain- and genre-dependent, therefore this bias
towards formality implies that the existing work
may not adapt well to the detection of hedges in
conversation between teenagers. A consequence is
that the existing work does not consider terms like
"I think," since opinions rarely appear in an aca-
demic writing dataset. Instructions are also almost
absent ("I think you have to add ten to both sides."),
a strong limitation for the study of conversational
hedges since it is in requests (including tutoring in-
structions) that indirect formulations mostly occur,
according to Blum-Kulka (1987). Prokofieva and
Hirschberg (2014) also note that it is difficult to
detect hedges because the word patterns associated
with them have other semantic and pragmatic func-
tions: considering "I think that you have to add x
to both sides." vs "I think that you are an idiot.",
it is not clear that the second use of "I think that"
is an hedge marker. They advocate using machine
learning approaches to deal with the ambiguity of



these markers. Working on a conversational dataset,
Ulinski et al. (2018) built a computational system
to assess speaker commitment (i.e. at which point
the speaker seems convinced by the truth value of a
statement), in particular by relying on a rule-based
detection system for hedges. They used a dictio-
nary containing a set of terms related to hedges,
and a set of rules to disambiguate the terms used.
Compared to that work, our rule-based classifica-
tion model is directly detecting hedge classes, and
we employ the predictions of the rule-based model
as a feature for stronger machine learning models,
designed to lessen the impact of the imbalance be-
tween classes. We also consider apologies when
they serve a mitigation function (we then call them
Apologizers), as was done by the authors of our
corpus, and we also use the term subjectivizers as
defined below, so as to be able to compare directly
with the previous work carried out on this corpus.
As far as we know, only Goel et al. (2019) have
worked with a peer-tutoring dataset (the one that
we also use), and they achieved their best classifica-
tion result by employing an Attention-CNN model,
inspired by Adel and Schiitze (2016).

3 Problem statement

We consider a set D of conversations

D = (c1,¢2,...,¢p|), where each conversa-
tion is composed of a sequence of independent
syntactic clauses ¢; = (uq,us,...,up), where

M is the number of clauses in the conversation.
Note that two consecutive clauses can be produced
by the same speaker. Each clause is associated
with a unique label corresponding to the different
hedge classes described in Table 2: y; € C =
{Propositional Hedges, Apologizers, Subjec-
tivizers, Not hedged}. Finally, an utterance
u; can be represented as a vector of features
X = (x1,x9,...,xN), where N represents the
number of features we used to describe a clause.
Our first goal is to design a model that predicts
correctly the label y; associated to u;. It can be
understood as the following research question:

RQ1: "Which models and features can be
used to automatically characterize hedges in a
peer-tutoring interaction?"

Our second goal is to identify, for each hedge
class, the set of features Fyjqss = {fx}, k € [1, N]
sorted by feature importance in the classification

of class. It corresponds to the following research
question:

RQ2: "What are the most important linguistic
features that characterize our hedge classes?"

4 Methodology

4.1 Corpus

Hedges Apologizers Subjectivizers Not hedged Total
1454 153 366 21860 23833

Table 1: Distribution of the classes

Data collection: The dialogue corpus used here
was collected as part of a larger study on the effects
of rapport-building on reciprocal peer tutoring. 24
American teenagers (mean age = 13.5, min = 12,
max = 15), half male and half female, came to a
lab where half of the participants were paired with
a same-age, same-gender friend, and the other half
with a stranger. The participants were assigned
to a total of 12 dyads that alternated tutoring one
another in linear algebra equation solving for 5
weekly hour-long sessions, for a total corpus of
nearly 60 hours of face-to-face interactions. Each
session was structured such that the students en-
gaged in brief social chitchat in the beginning, then
one of the students was randomly assigned to tutor
the other for 20 minutes. They then engaged in
another social period, and concluded with a second
tutoring period where the other student was as-
signed the role of tutor. Audio and video data were
recorded, transcribed, and segmented for clause-
level dialogue annotation, providing nearly 24 000
clauses. Non-speech segments (notably fillers and
laughter) were maintained. Because of temporal
misalignment for parts of the corpus, paraverbal
phenomena, such as prosody, were unfortunately
not available to us. Since the dataset was collected
under a Non-Disclosure Agreement, it could be
released publicly.

Data annotation: This dataset was annotated by
Madaio et al. (2017), using hedge classes derived
from Rowland (2007) (see Table 2). Comparing
the annotations with the classes mentioned in the
related work section, Subjectivizers would corre-
spond to Relational hedges (Fraser, 2010), Propo-
sitional hedges and Extenders correspond to Ap-
proximators (Prince et al., 1982) with the addition



Class Definition

Example

Subjectivizers
Apologizers
Propositional hedges
Extenders

‘Words that reduce intensity or certainty
Apologies used to soften direct speech acts
Qualifying words to reduce intensity or certainty of utterances
Words used to indicate uncertainty by referring to vague categories “You have to multiply or something.”

“I guess you divide by 3 here.”
“Sorry, it’s negative 2.”
“You just add 5 to both sides.”

Table 2: Definition of the classes

of some discourse markers such as just. Apolo-
gizers are mentioned as linguistic tools related to
negative politeness in Brown and Levinson (1987).
Krippendorft’s alpha for all four codes was over
0.7 (denoting an acceptable inter-coder reliability
according to Krippendorff (2004)). Only the task
periods of the interactions were annotated. The
dataset is widely imbalanced, with more than 90%
of the utterances belonging to the Not hedged class.
Utterances labeled with Extenders class were con-
sidered here as Propositional hedges, because the
annotation of Extenders class was not precise and
reliable enough and both classes carry a similar
semantic function.

4.2 Features

Label from rule-based classifier (Label RB): We
use the class label predicted by the rule-based clas-
sifier described in Section 4.3 as a feature. Our
hypothesis is that the machine learning model can
use this information to counterbalance the class
imbalance. To take into account the fact that some
rules are more efficient than others, we weighted
the class label resulting from the rule-based model
by the precision of the rule that generated it.
Unigram and bigram: We count the number of
occurrences of unigrams and bigrams of the corpus
in each clause. We used the lemma of the words for
unigrams and bigrams using the nltk lemmatizer
(Loper, 2002) and selected unigrams and bigrams
that occurred in the training dataset at least fifty
times. The goal was to investigate, with a bottom-
up approach, to what extent the use of certain words
characterizes hedge classes in tutoring. In Section
5 we examine the overlap between these words and
those a priori identified by the rules.
Part-of-speech (POS): Hedge classes seem to be
associated with different syntactic patterns: for ex-
ample, subjectivizers most often contain a personal
pronoun followed by a verb, as in "I guess"”, "I
believe", "I think". We therefore considered the
number of occurrences of POS-Tag n-grams (n=1,
2, 3) as features. We used the spaCy POS-tagger
and considered POS unigrams, bigrams and tri-
grams that occur at least 10 times in the training

dataset.

LIWC: Linguistic Inquiry and Word Count
(LIWC) (Pennebaker et al., 2015) is a standard soft-
ware for extracting the count of words belonging to
specific psycho-social categories (e.g., Emotions,
Religion). It has been successfully used in the
detection of conversational strategies (Zhao et al.,
2016a). We therefore count the number of occur-
rences of all the 73 categories from LIWC.

Tutoring moves (TM): Intelligent tutoring sys-
tems rely on specific tutoring moves to success-
fully convey content (as do human tutors). We
therefore looked at the link between the tutoring
moves, as annotated in Madaio et al. (2017), and
hedges. For tutors, these moves are (1) instruc-
tional directives and suggestions, (2) feedback, and
(3) affirmations, mostly explicit reflections on their
partners’comprehension, while for tutees, they are
(1) questions, (2) feedbacks, and (3) affirmations,
mostly tentative answers.

Non-verbal and paraverbal behaviors: As in
Goel et al. (2019), we included the non-verbal and
paraverbal behaviors that are related to hedges.
Specifically, we consider laughter and smiles,
which have been shown to be effective methods
of mitigation (Warner-Garcia, 2014), cut-offs in-
dicating self-repairs, fillers like "Um", gaze shifts
(annotated as Gaze at Partner, Gaze at the work-
sheet, and Gaze elsewhere), and head nods. Each
feature was present twice in the feature vector, one
time for each interlocutor. Inter-rater reliability
for visual behavior was 0.89 for eye gaze, 0.75 for
smile count, 0.64 for smile duration and 0.99 for
head nod. Laughter is also reported in the transcript
at the word level. We separate behaviors from the
tutor from that of the tutee. The collection process
for these behaviors is detailed further in Zhao et al.
(2016b).

The clause-level feature vector was normalized by
the length of the clause (except for the rule-based
label). This length was also added as a feature.
Table 3 presents an overview of the final feature
vector.



Features name Automatic extraction  Vector size

Rule-based label Yes 4
Unigram Yes ~250
Bigram Yes ~250
POS Yes ~1200
LIWC Yes 73
Non-verbal No 24
Tutoring moves No 6
Total ~1800

Table 3: List of automatically extracted and manually
annotated features with their size.

4.3 Classification models

The classification models used are presented here
according to their level of integration of external
linguistic knowledge.

Rule-based model: On the basis of the annotation
manual used to construct the dataset from Madaio
et al. (2017), and with descriptions of hedges from
Rowland (2007), Fraser (2010) and Brown and
Levinson (1987), we constructed a rule-based clas-
sifier that matches regular expressions indicative
of hedges. The rules are detailed in Table 7 in the
Appendix.

XGBoost: Since hedges are characterized by a lim-
ited number of lexical markers, we postulated that
a machine learning model with a bag-of-features
representation for sentences could compete with a
BERT model in performance, while being much
more interpretable. We relied on XGBoost, an
ensemble of decision trees trained with gradient
boosting (Chen and Guestrin, 2016). This model
was selected because of its performance with small
training datasets, but also because it can ignore
uninformative features.

Multi-layer perceptron (MLP): As a simple base-
line, we built a multi-layer perceptron using three
sets of features: a pre-trained contextual repre-
sentation of the clause (SentBERT; Reimers and
Gurevych (2019)) ; the concatenation of this con-
textual representation of the clause and a rule-based
label (not relying on the previous clauses) ; and
finally the concatenation of all the features men-
tioned in section 4.2, without the contextualized
representation.

LSTM over a sequence of clauses: Since
we are working with conversational data, we
also wanted to test whether taking into ac-
count the previous clauses helps to detect
the type of hedge class in the next clause.
Formally, we want to infer y; using y; =
maXyeClasses P(y!X(Uz)7 X(ui—1)7 e X(uifK))a
where K is the number of previous clauses
that the model will take into account. The

MLP model presented above infers y; using
Yi = mMaXyeClasses (Y| X (u;)), therefore a
difference of performance between the two models
would be a sign that using information from the
previous clauses could help to detect the hedged
formulation in the current clause. We tested a
LSTM model with the same representations for
clauses as for the MLP model.

CNN with attention: Goel et al. (2019) estab-
lished their best performance on hedge detec-
tion using a CNN model with additive attention
over word (and not clause) embeddings. Con-
trary to the MLP and LSTM models mentioned
above, this model tries to infer y; using y; =
maXyeClasses P(y’g(wO)u g(wl)a ) g(wL»’ with
L representing the maximum clause length we al-
low, and g representing a function that turns the
word wj, j € [0, L] into a vector representation
(for more details, please see Adel and Schiitze
(2016)). We re-implemented the model with Glove
(Pennington et al., 2014) 300-D words embeddings
as the vector representation.

BERT: To benefit from deep semantic and con-
textual representations of the utterances, we also
fine-tuned BERT (Devlin et al., 2018) on our clas-
sification task. BERT is a pre-trained Transformers
encoder (Vaswani et al., 2017) that significantly
improved the state of the art on a number of NLP
tasks, including sentiment analysis. It produces a
contextual representation of each word in a sen-
tence, making it capable of disambiguating the
meaning of words like "think" or "just" that are
representative of certain classes of hedges. BERT,
however, is notably hard to interpret.

4.4 Analysis tools

Looking at which features improve the perfor-
mance of our classification models tells us whether
these features are informative or not, but does not
explain how these features are used by the models
to make a given prediction. We therefore produced
a complementary analysis using an interpretability
tool. XGBoost internal feature importance scores
using information gain are inconsistent with both
the model behavior and human intuition (Lundberg
and Lee, 2017), so we used a model-agnostic tool.
SHAP (Lundberg and Lee, 2017) assigns to each
feature an importance value (called Shapley val-
ues) for a particular prediction depending on the
extent of its contribution (a detailed introduction
to Shapley values and SHAP can be found in Mol-



nar (2020)). SHAP is a model-agnostic framework,
therefore the values associated with a set of fea-
tures can be compared across models. It should be
noted that SHAP produces explanations on a case-
by-case basis, therefore it can both provide local
and global explanations. For the Gradient Boost-
ing models, we use an adapted version of SHAP
(Lundberg et al., 2018), called TreeSHAP.

S Experiments and results

5.1 Experimental setting

To detect the best set of features, we used XGBoost
and proceeded incrementally, by adding the group
of features we thought to be most likely associated
with hedges. We did not consider the risk of rely-
ing on a sub-optimal set of features through this
procedure because of the strong ability of XGBoost
to ignore uninformative features. We use this in-
cremental approach as a way to test our intuition
about the performativity of groups of features (i.e.
does adding a feature improve the performance of
the model) with regard to the task of classification.
To compare our models, we look at the weighted
average of the F1-score for the three hedge classes.

For each set of features, XGBoost hyperparame-
ters were selected using grid-search on the maximal
depth of the trees, on the learning rate and on the
training sub-sample proportion. The results are
cross-validated using 5 folds (we chose 5 instead
of 10 to avoid having folds with too few samples
per class). We corrected for class imbalance by
applying a "square root of the square root of the
inverse class frequency" weight to the loss function
while training our model for the multi-class predic-
tion task, and without any class balancing for the
binary classification task. This procedure forces
the model to adapt more to the less frequent classes.
Neural models were trained using AdamW as an
optimizer (Loshchilov and Hutter, 2017). For these
models, the class balancing weights followed the
square root of the inverse class frequency.

5.2 Model comparison and feature analysis

Overall results: Table 4 presents the results ob-
tained by the 6 models presented in Section 4.3
for the multi-class problem. Best performance (F1-
score of 73.3) is obtained with XGBoost leveraging
all the features, including the Label RB ones.
First, and perhaps surprisingly, we notice that the
use of hand-crafted features based on rules built
from linguistic knowledge of hedges in the XG-

Models ‘ Basic model ~ With embeddings + Label RB  With features

Rule-based (3-classes) 66.1 0 0

MLP (3-classes) 8.1 62.1 68.7
Attention-CNN (3-classes) 63.1 0 0

LSTM (3-classes) 37.2 63.4 70.8
BERT (3-classes) 69.0 71.8 (0]

XGBoost (3-classes) [1] 66.7 733

Table 4: Averaged weighted Fl-scores for the three
classes of hedges, for all models. For the neural models,
"Basic model" corresponds to the version using only the
pre-trained embeddings.

Boost model outperforms the use of pre-trained
embeddings within a fine-tuned BERT model (73.3
vs. 69.0). The potential of Label RB features is
confirmed by the increase in performance obtained
on the BERT model when it uses these features
(71.8 vs. 69.0). A second finding is that the use of
machine learning models on top of rule-based clas-
sifiers allows a better modeling of hedge classes.
Indeed the results reported in Column 3 of Table 4
are all higher than the result of the rule-based clas-
sifier (66.1). It is interesting to note that, when
designing the rule-based classifier, we saw it reach-
ing a limit in F1-score when we started to include
ambiguous words (like "I would ...") in our reg-
ular expression patterns. The low scores obtained
by the LSTM and MLP models with pre-trained
sentence embeddings might signal that the word
patterns characterizing hedges are not salient in
these representations (i.e. the distance between "I
think you should add 5." and "You should add 5."
is short.). Bag-of-features representations seem to
provide a better separability of the classes.
Feature analysis using XGBoost: Using the best
performing model, Table 5 shows the role of each
feature set in the prediction task. Compared to
the rule-based model, the introduction of n-gram,
POS features and LIWC significantly improved
the performance of our classifier, suggesting that
some lexical and syntactic information describing
the hedge classes was not present in the rule-based
model. Adding tutoring moves improved the per-
formance of the model, indicating that there might
be a correlation between hedge classes and specific
tutoring moves. The non-verbal features did not
add useful information to the model.

5.3 In-depth analysis of the informative
features

We trained the SHAP explanation models on XG-
Boost with all features. The most informative fea-
tures (in absolute value) for each class are shown



Models | LabelRB  + l-gram and 2-gram

+POS

+LIWC +T™M + Non-verbal  All w/o label

947+ 0.2
66.7 +- 1.6

95.8 +- 0.4
69.6 +- 2.9

Binary
3-classes

95.7+-0.3
69.4 + 0.3

958 + 0.5
70.6 +- 1.5

958 +- 0.4
733+ 0.7

958 +- 0.4
733+ 1.6

95,8 + 0.2
705+ 0.8

Table 5: Averaged weighted F1-scores for the binary classes and the three classes of hedges, with a XGBoost model.

The standard deviation is computed across five folds.

in Table 6.

As suggested by the previous feature analysis, the
most important features seem to be the rule-based
labels, which appear in at least the third position
for all classes (see Table 6), and in the first posi-
tion for Propositional Hedges and Not hedged
classes. Unigrams (I, sorry, just, plus, and my) are
also present in the 5 top-ranked features. This con-
firms the findings mentioned in related work for
the characterization of the different hedge classes
(just with Propositional Hedges, sorry with Apol-
ogizer, I with Subjectivizers). The presence of
interjections also has high importance for the char-
acterization of Apologizer, as illustrated in exam-
ples such as "O#h sorry, that’s nine.". We note that
the occurrences of "Oh sorry" as a clause were
excluded by our rule-based model because they
do not correspond to an apologizer (they cannot
mitigate the content of a proposition if there is no
proposition associated). This example illustrates
the interest of a machine learning model approach
to disambiguate the function of conventional non-
propositional phrases like "Oh sorry".

In addition, SHAP highlights the importance of
novel features that were not already identified by
the literature: (i) what LIWC classifies as infor-
mal words but that are mostly interjections like
ah and oh are strongly associated with Apologizer
(see Table 6), (ii) the presence of plus and minus,
associated with problem statements from the tutor
("ten minus six equals?"), or with attempts by the
tutee ("so three f minus three is-"), is an indica-
tor of directness (see Figure 2 in the Appendix),
while the presence of a verb is positively associ-
ated with propositional hedges (see Figure 4 in
the Appendix), as in ("actually no you’re gonna
subtract seven from both sides"). Taken together
this may mean that tutors tend to use direct forms
when they use soft instructions like "ten plus x
equals?”, and hedges when they produce directive
instructions like "Subtract x to both sides." (iii)
the use of POS tags seems to be very relevant for
characterizing the different classes (POS tag fea-
tures! occur in the 5 top-ranked features of all the

"Note that there is strong redundancy between some fea-

classes). It means that there are some recurring
syntactic patterns in each class, that could be used
to improve the generation process of hedges, by re-
generating clauses that don’t contain one of these
syntactic patterns; (iv) Regarding the utterance
size, a clause shorter than the mean is associated
with Subjectivizers, while a longer clause sug-
gests that it contains a Propositional hedge; (v)
Looking at tutoring moves, it seems that only the
feedback from tutors is really used by the clas-
sifier to identify one of the classes: this tutoring
move is ranked as the 10th most important feature
for Subjectivizers ("I think you have to divide by
three"). The other tutoring moves are not strong
predictors of any classes; (vi) ""No"' is positively
associated to Propositional hedges (n=6). When
used in these hedges by the tutor, it seems to serve a
self-correction function "no, it’s kinda weird.", "no
wait actually it would be ten"; (vii) Non-verbal be-
haviors do not appear as important features for the
classification. This is coherent with results from
(Goel et al., 2019). Note that prosody might play
a role in detecting instructions that trail off, as in
the examples above, where the trailing off seems
to serve a mitigating function but, as described,
paraverbal features were not available.

One surprising finding is that tutoring moves seem
to improve the performance of the XGBoost clas-
sifier, but do not appear to contribute to the SHAP
analysis. To understand that, we explored the Shap-
ley values for each utterance in the dataset, and
observed that tutoring moves are extremely infor-
mative for a small number of clauses, and more or
less not informative for the rest. This is not sur-
prising in the sense that, since the tutor is teaching,
virtually all of what the tutor is saying falls into
one of the tutoring moves classes. So only certain
kinds of tutoring moves (such as feedback which
could be negative, and therefore face-threatening,
and certain kinds of instructions, which could like-
wise be face-threatening if they follow a wrong
move on the part of the tutee) rise to prominence.

tures of LIWC and the spaCy POS tagger that both produce
a "Pronoun" category, using a lexicon in the first case, and a
neural inference in the second.



Rank Apologizer Subjectivizers

Prop. Hedges

Not hedged (multiclass) Not hedged (binary)

1 Interjection (POS) 1 Class label Class label Class label

2 sorry Class label Absence of interjection (POS) PRON (POS) just (negative)

3 Class label pronoun (LIWC) just NOUN (POS) PRON (POS) (negative)
4 informal (LIWC) Auxiliary (POS) Utterance size (lower) plus NOUN (POS) (positive)
5 my Utterance size (higher)  Absence of NOUN (POS) just informal (LIWC) (negative)

Table 6: Most important clause-level features for XGBoost according to the SHAP analysis.

We see, then, that inferring the global importance
of a feature as a mean across the shapley values in
the dataset may not be the only way to explore the
behavior of gradient boosting methods. To study
how a given feature characterizes an hedge class,
it might be more useful to cluster clauses based
on the importance that SHAP gives to that feature
in its classification. This could help discover sub-
classes of hedges that are differentiated from the
rest by their interaction with a specific feature (in
the way that apologizers are characterized by an
interjection). We note that the explanation model
is sensitive to spurious correlations in the dataset:
for example, "nine" is a positive predictor (n=10)
of Apologizers. We think this correlation appeared
because of the small number of Apologizers in the
dataset, but it indicates that a layer of interpretation
of the SHAP analysis is still required.

6 Conclusion and future work

Through our classification performance experi-
ments, we showed that it is possible to use ma-
chine learning methods to diminish the ambigu-
ity of hedges, and that the hybrid approach of us-
ing rule-based label features derived from social
science (including linguistics) literature within a
machine learning model significantly helped to in-
crease the model’s performance. Non-verbal be-
haviors did not provide information at the sentence
level; both the performance of the model and the
feature contribution analysis suggested that their
impact on the model output was not strong. This
is consistent with results from Goel et al. (2019).
However, in future work we would like to inves-
tigate the potential of multimodal patterns when
we are able to better model sequentiality (e.g., neg-
ative feedback followed by a smile). Even if we
enhanced the baseline from Goel et al. (2019) and
outperformed a fine-tuned BERT model using a
Gradient Boosting method with interpretable fea-
tures, hedges continue to be difficult to classify
(F1 =73.3 with a fine-grained 4-class recognition
system). Since the inter-rater reliability for these
hedge classes was only a little above 0.7, it is pos-

sible that the classes are still too broad in their
definition and therefore somewhat inconsistent. A
supplementary subdivision might be needed to ob-
tain coherent linguistic objects to work on.
Regarding the SHAP analysis, most of the fea-
tures that are considered as important are coherent
with the definition of the classes (I for subjectiviz-
ers, sorry for apologizers, just for propositional
hedges). However, we discovered that features
like utterance size can serve as indicator of certain
classes of hedges. A limitation of SHAP as an ex-
planation method is that the interactions between
features in the model is not represented in the ex-
planations. SHAP makes a feature independence
assumption, which prompts the explanatory model
to underestimate the importance of redundant fea-
tures (like pronouns in our work). In the future we
will explore explanatory models capable of taking
into account the correlation between features in the
dataset like SAGE (Covert et al., 2020), but suited
for very imbalanced datasets. Remaining in the
domain of peer-tutoring, we would like to be able
to further test the link between hedges and rapport,
and the link between hedges and learning gains
in the subject being tutored. As mentioned above,
this kind of study requires a fine-grained control of
the language produced by one of the interlocutors,
which is difficult to control in a human-human ex-
perience. Now that we have begun to characterize
hedge classes, we can turn toward improving their
generation for tutor agents.
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Class | Rule (regexp)

Subj. (?!what).*(ilwe) ?(don’tldidn’tldid)? ?(not)?
(guesslguessedIthoughtlthinklbelievelbelievedlsupposelsupposed)
2(whetherliflislthatlitlthis)?.*

Sub;. J(ili’mlwe) ?2(waslamlwasn’t)? ?(not)? (surelcertain).*

Subj. JE(i feel like you).*

Subj. ¥(you (mightlmay) (believelthink)).*

Sub;. *(according tolpresumably).*

Subj. J(ilyoulwe) have to (checkllooklverify).*

Sub;. JE(f 1’m not wronglif i’'m rightlif that’s true).*

Subj. ¥(unless 1).*

Apol. (i’mlilwe’re) (amlare)? ?(apologizelsorry).*

Apol. | (?!.*(belbeenlwas) like excuse me)((excuse melsorry)[w ,’]+|[w ,’]+(excuse melsorry))
Prop. *(justla littlelmaybelactuallylsort oflkind oflpretty

muchlsomewhatlexactlylalmostllittle bitlquitel
regularlregularlylactuallylalmostlas it werelbasicallyl
probablylcan be view aslcrypto-lespeciallylessentiallyl
exceptionallylfor the most partlin a manner of speaking|
in a real senselin a senselin a wayllargelylliterallyl
loosely speakinglkindalmore or lessimostlyloftenl
on the tall sidelpar excellencelparticularlyl
pretty muchlprincipallylpseudo-lquintessentiallyl
relativelylroughlylso to saylstrictly speaking|
technicallyltypicallylvirtuallylapproximatelyl
something betweenlessentiallylonly).*
Prop. J¥(ili’mlyoulit’s) (amlare) (apparentlylsurely)[ ,]?.*
Prop. (it) (lookslseemslappears)[ ,]?.*", ".* (orland) (thatlsomething|stufflso forth)

Table 7: Regexp rules used for the classifier. For apologizers, we also introduced a few standard utterances that

nes non non

should not be considered as apologizers : ["i’m sorry", "oh sorry", "right sorry"]

Interjection
Rule Propositional
Rule Nathing
o
“Somy”
Ruls Apologies
Informal
Utterance size
Rule subjectvizer
st
Naun
Pronoun (LIWG)
Ausliary verh
Pronoun
Adicle
"y I | subjectivizer
Adverh B | Apclogies
vert B | Proposiional hedges
“Would
po— | Neting
F T T T T T T
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mean(|SHAP value|) (average impact on model output magnitude)

Figure 1: Absolute averaged feature contribution, as indicated by SHAP. The longer the bar is for one color, the
more the feature is associated with the class represented by that color.
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Figure 2: Averaged contribution of features to the detection of the "Not indirect" class, as indicated by SHAP. Each
dot corresponds to a classified clause. A red dot indicates that the feature is present in the clause, while a blue
dot indicates that the feature is absent. The farther on the right the dot is, the more the feature contributed to its
classification as a hedge.
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Figure 3: Averaged contribution of features to the detection of "Apologizers", as indicated by SHAP.
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Figure 4: Averaged contribution of features to the detection of "Propositional hedges", as indicated by SHAP.
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Figure 5: Averaged contribution of features to the detection of "Subjectivizers", as indicated by SHAP.
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