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Abstract

Hedges have an important role in the manage-001
ment of rapport. In peer-tutoring, they are no-002
tably used by tutors in dyads experiencing low003
rapport to tone down the impact of instructions004
and negative feedback. Pursuing the objective005
of building a tutoring agent that manages rap-006
port with teenagers in order to improve learn-007
ing, we used a multimodal peer-tutoring dataset008
to construct a computational framework for009
identifying hedges. We compared approaches010
relying on pre-trained resources with others011
that integrate insights from the social science012
literature. Our best performance involved a013
hybrid approach that outperforms the existing014
baseline while being easier to interpret. We015
employ a model explainability tool to explore016
the features that characterize hedges in peer-017
tutoring conversations, and we identify some018
novel features, and the benefits of a such a hy-019
brid model approach.020

1 Introduction021

Rapport, most simply defined as the “. . . relative022

harmony and smoothness of relations between peo-023

ple . . . ” (Spencer-Oatey, 2005), has been shown to024

play a role in the success of activities as varied as025

psychotherapy (Leach, 2005) and survey interview-026

ing (Lune and Berg, 2017). In peer-tutoring, rap-027

port, as measured by the annotation of thin slices of028

video, has been shown to be beneficial for learning029

outcomes (Zhao et al., 2014; Sinha and Cassell,030

2015). The level of rapport rises and falls with031

conversational strategies deployed by tutors and032

tutees at appropriate times, and as a function of the033

content of prior turns. These strategies include self-034

disclosure, referring to shared experience, and, on035

the part of tutors, giving instructions in an indirect036

manner. Some work has attempted to automatically037

detect these strategies in the service of intelligent038

tutors (Zhao et al., 2016a), but only a few strate-039

gies have been attempted. Other work has con-040

centrated on a "social reasoning module" (Romero041

et al., 2017) to decide which strategies should be 042

generated in a given context, but indirectness was 043

not among the strategies targeted. In this paper, we 044

focus on the automatic classification of one spe- 045

cific strategy that is particularly important for the 046

tutoring domain, and therefore important for intel- 047

ligent tutors: hedging, a sub-part of indirectness 048

that "softens" what we say. This work is part of 049

a larger research program with the long-term goal 050

of generating indirectness behaviors for a tutoring 051

agent. 052

According to Brown and Levinson (1987), 053

hedges are linked to the expression of politeness, 054

by limiting the face threat to the interlocutor (basi- 055

cally by limiting the extent to which the interlocutor 056

might experience embarrassment because of some 057

kind of poor performance). An example is "that’s 058

kind of a wrong answer". Hedges are also found 059

when speakers wish to avoid losing face them- 060

selves, for example when saying ("I think I might 061

have to add 6."). Madaio et al. (2017) found that 062

in a peer-tutoring task, when rapport between inter- 063

locutors is low, tutees attempted more problems and 064

correctly solved more problems when their tutors 065

hedged instructions, which likewise points towards 066

a "mitigation of face threat" function. Hedges can 067

also be associated with a nonverbal component, for 068

example averted eye gaze during criticism (Bur- 069

goon and Koper, 1984). Hedges are not, however, 070

always appropriate, as in "I kind of think it’s raining 071

today." when the interlocutors can both see rain (al- 072

though it might be taken as humorous). We would 073

therefore like to control the presence or absence of 074

hedges in our generated tutoring instructions, and 075

to do that, we first have to characterize them using 076

interpretable linguistic features. Because hedges 077

can indicate important uncertainty on the part of a 078

tutee, we also want to automatically detect them. 079

In the work described here, based on linguistic de- 080

scriptions of hedges (Brown and Levinson, 1987; 081

Fraser, 2010), we built a rule-based classifier inde- 082
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pendent of the domain of use. We show that using083

the prediction of this classifier in combination with084

additional multimodal interpretable features sig-085

nificantly improves the performance of a machine086

learning classifier for hedges, compared to a less087

interpretable deep learning baseline from Goel et al.088

(2019) using word embeddings. We also relied on089

a machine learning model explanation tool (Lund-090

berg and Lee, 2017) to investigate the linguistic091

features related to hedges, primarily to see if we092

could discover surprising features that the classifi-093

cation model would associate to hedges. Our future094

goal is to assess these multimodal characterizations095

in a generation task.096

2 Related work097

Hedges: According to Fraser (2010), hedging is098

a rhetorical strategy that attenuates the strength099

of a statement. One way to produce an hedge is100

by altering the full semantic value of a particular101

expression through Propositional hedges (also102

called Approximators in Prince et al. (1982)), as103

in "You are kind of wrong," that reduce prototypi-104

cality (i.e accuracy of the correspondence between105

the proposition and the reality that the speaker106

seeks to describe). Propositional hedges are related107

to fuzzy language (Lakoff, 1975), and therefore to108

the production of vagueness (Williamson, 2002)109

and uncertainty (Vincze, 2014).110

A second kind are Relational Hedges (also called111

Shields in Prince et al. (1982)), such as “I think112

that you are wrong.” or “The doctor wants you113

to stop smoking.”, conveying that the proposition114

is considered by the speaker as subjective. In a115

further sub-division, Attribution Shields, as in116

"The doctor wants you ...", the involvement of the117

speaker in the truth value of the proposition is not118

made explicit, which allows speakers not to take a119

stance.120

As described above, Madaio et al. (2017) found121

that tutors who showed lower rapport with their122

tutees used more hedged instructions (they also123

employed more positive feedback), however this124

was only the case for tutors with a greater belief125

in their ability to tutor. Tutees in this context did126

solve more problems when their tutors hedged127

instructions. No effect of hedging was found for128

dyads with greater social closeness. However, the129

authors did not look at the specific linguistic forms130

these teenagers used.131

Rowland (2007) also describes the role that132

hedging plays in this age group, showing that 133

students use both relational ("I think that John 134

is smart.") and propositional ("John is kind of 135

smart.") hedges for much the same shielding 136

function of demonstrating uncertainty to save 137

them from the risk of embarrassment if they are 138

wrong. The author observed that teens used few 139

Adaptors (kind of, somewhat) and preferred 140

to use Rounders (around, close to). However, 141

this study was performed with an adult and two 142

children, possibly biasing the results due to the 143

participation of the adult investigator. Hedges 144

have been included in virtual tutoring agents 145

before now, as a way of integrating Brown and 146

Levinson’s politeness framework (Wang et al., 147

2008; Schneider et al., 2015). Results were not 148

broken out by strategy, but politeness in general 149

was shown to positively influence motivation and 150

learning, in certain conditions. 151

152

Computational methods for hedge detection: 153

A number of studies have targeted the detection 154

of hedges and uncertainty in text (Medlock and 155

Briscoe, 2007; Ganter and Strube, 2009; Tang et al., 156

2010; Velldal, 2011; Szarvas et al., 2012), partic- 157

ularly following the CoNLL 2010 dataset release 158

(Farkas et al., 2010). However, this work is not 159

as related to hedges in conversation, as it focuses 160

on a formal and academic language register (Hy- 161

land, 1998; Varttala, 1999). As noted by Prokofieva 162

and Hirschberg (2014), the functions of hedges are 163

domain- and genre-dependent, therefore this bias 164

towards formality implies that the existing work 165

may not adapt well to the detection of hedges in 166

conversation between teenagers. A consequence is 167

that the existing work does not consider terms like 168

"I think," since opinions rarely appear in an aca- 169

demic writing dataset. Instructions are also almost 170

absent ("I think you have to add ten to both sides."), 171

a strong limitation for the study of conversational 172

hedges since it is in requests (including tutoring in- 173

structions) that indirect formulations mostly occur, 174

according to Blum-Kulka (1987). Prokofieva and 175

Hirschberg (2014) also note that it is difficult to 176

detect hedges because the word patterns associated 177

with them have other semantic and pragmatic func- 178

tions: considering "I think that you have to add x 179

to both sides." vs "I think that you are an idiot.", 180

it is not clear that the second use of "I think that" 181

is an hedge marker. They advocate using machine 182

learning approaches to deal with the ambiguity of 183
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these markers. Working on a conversational dataset,184

Ulinski et al. (2018) built a computational system185

to assess speaker commitment (i.e. at which point186

the speaker seems convinced by the truth value of a187

statement), in particular by relying on a rule-based188

detection system for hedges. They used a dictio-189

nary containing a set of terms related to hedges,190

and a set of rules to disambiguate the terms used.191

Compared to that work, our rule-based classifica-192

tion model is directly detecting hedge classes, and193

we employ the predictions of the rule-based model194

as a feature for stronger machine learning models,195

designed to lessen the impact of the imbalance be-196

tween classes. We also consider apologies when197

they serve a mitigation function (we then call them198

Apologizers), as was done by the authors of our199

corpus, and we also use the term subjectivizers as200

defined below, so as to be able to compare directly201

with the previous work carried out on this corpus.202

As far as we know, only Goel et al. (2019) have203

worked with a peer-tutoring dataset (the one that204

we also use), and they achieved their best classifica-205

tion result by employing an Attention-CNN model,206

inspired by Adel and Schütze (2016).207

3 Problem statement208

We consider a set D of conversations209

D = (c1, c2, ..., c|D|), where each conversa-210

tion is composed of a sequence of independent211

syntactic clauses ci = (u1, u2, ..., uM ), where212

M is the number of clauses in the conversation.213

Note that two consecutive clauses can be produced214

by the same speaker. Each clause is associated215

with a unique label corresponding to the different216

hedge classes described in Table 2: yi ∈ C =217

{Propositional Hedges, Apologizers, Subjec-218

tivizers, Not hedged}. Finally, an utterance219

ui can be represented as a vector of features220

X = (x1, x2, ..., xN ), where N represents the221

number of features we used to describe a clause.222

Our first goal is to design a model that predicts223

correctly the label yi associated to ui. It can be224

understood as the following research question:225

226

RQ1: "Which models and features can be227

used to automatically characterize hedges in a228

peer-tutoring interaction?"229

230

Our second goal is to identify, for each hedge231

class, the set of features Fclass = {fk}, k ∈ [1, N ]232

sorted by feature importance in the classification233

of class. It corresponds to the following research 234

question: 235

236

RQ2: "What are the most important linguistic 237

features that characterize our hedge classes?" 238

239

4 Methodology 240

4.1 Corpus 241

Hedges Apologizers Subjectivizers Not hedged Total

1454 153 366 21860 23833

Table 1: Distribution of the classes

Data collection: The dialogue corpus used here 242

was collected as part of a larger study on the effects 243

of rapport-building on reciprocal peer tutoring. 24 244

American teenagers (mean age = 13.5, min = 12, 245

max = 15), half male and half female, came to a 246

lab where half of the participants were paired with 247

a same-age, same-gender friend, and the other half 248

with a stranger. The participants were assigned 249

to a total of 12 dyads that alternated tutoring one 250

another in linear algebra equation solving for 5 251

weekly hour-long sessions, for a total corpus of 252

nearly 60 hours of face-to-face interactions. Each 253

session was structured such that the students en- 254

gaged in brief social chitchat in the beginning, then 255

one of the students was randomly assigned to tutor 256

the other for 20 minutes. They then engaged in 257

another social period, and concluded with a second 258

tutoring period where the other student was as- 259

signed the role of tutor. Audio and video data were 260

recorded, transcribed, and segmented for clause- 261

level dialogue annotation, providing nearly 24 000 262

clauses. Non-speech segments (notably fillers and 263

laughter) were maintained. Because of temporal 264

misalignment for parts of the corpus, paraverbal 265

phenomena, such as prosody, were unfortunately 266

not available to us. Since the dataset was collected 267

under a Non-Disclosure Agreement, it could be 268

released publicly. 269

Data annotation: This dataset was annotated by 270

Madaio et al. (2017), using hedge classes derived 271

from Rowland (2007) (see Table 2). Comparing 272

the annotations with the classes mentioned in the 273

related work section, Subjectivizers would corre- 274

spond to Relational hedges (Fraser, 2010), Propo- 275

sitional hedges and Extenders correspond to Ap- 276

proximators (Prince et al., 1982) with the addition 277
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Class Definition Example

Subjectivizers Words that reduce intensity or certainty “I guess you divide by 3 here.”
Apologizers Apologies used to soften direct speech acts “Sorry, it’s negative 2.”

Propositional hedges Qualifying words to reduce intensity or certainty of utterances “You just add 5 to both sides.”
Extenders Words used to indicate uncertainty by referring to vague categories “You have to multiply or something.”

Table 2: Definition of the classes

of some discourse markers such as just. Apolo-278

gizers are mentioned as linguistic tools related to279

negative politeness in Brown and Levinson (1987).280

Krippendorff’s alpha for all four codes was over281

0.7 (denoting an acceptable inter-coder reliability282

according to Krippendorff (2004)). Only the task283

periods of the interactions were annotated. The284

dataset is widely imbalanced, with more than 90%285

of the utterances belonging to the Not hedged class.286

Utterances labeled with Extenders class were con-287

sidered here as Propositional hedges, because the288

annotation of Extenders class was not precise and289

reliable enough and both classes carry a similar290

semantic function.291

4.2 Features292

Label from rule-based classifier (Label RB): We293

use the class label predicted by the rule-based clas-294

sifier described in Section 4.3 as a feature. Our295

hypothesis is that the machine learning model can296

use this information to counterbalance the class297

imbalance. To take into account the fact that some298

rules are more efficient than others, we weighted299

the class label resulting from the rule-based model300

by the precision of the rule that generated it.301

Unigram and bigram: We count the number of302

occurrences of unigrams and bigrams of the corpus303

in each clause. We used the lemma of the words for304

unigrams and bigrams using the nltk lemmatizer305

(Loper, 2002) and selected unigrams and bigrams306

that occurred in the training dataset at least fifty307

times. The goal was to investigate, with a bottom-308

up approach, to what extent the use of certain words309

characterizes hedge classes in tutoring. In Section310

5 we examine the overlap between these words and311

those a priori identified by the rules.312

Part-of-speech (POS): Hedge classes seem to be313

associated with different syntactic patterns: for ex-314

ample, subjectivizers most often contain a personal315

pronoun followed by a verb, as in "I guess", "I316

believe", "I think". We therefore considered the317

number of occurrences of POS-Tag n-grams (n=1,318

2, 3) as features. We used the spaCy POS-tagger319

and considered POS unigrams, bigrams and tri-320

grams that occur at least 10 times in the training321

dataset. 322

LIWC: Linguistic Inquiry and Word Count 323

(LIWC) (Pennebaker et al., 2015) is a standard soft- 324

ware for extracting the count of words belonging to 325

specific psycho-social categories (e.g., Emotions, 326

Religion). It has been successfully used in the 327

detection of conversational strategies (Zhao et al., 328

2016a). We therefore count the number of occur- 329

rences of all the 73 categories from LIWC. 330

Tutoring moves (TM): Intelligent tutoring sys- 331

tems rely on specific tutoring moves to success- 332

fully convey content (as do human tutors). We 333

therefore looked at the link between the tutoring 334

moves, as annotated in Madaio et al. (2017), and 335

hedges. For tutors, these moves are (1) instruc- 336

tional directives and suggestions, (2) feedback, and 337

(3) affirmations, mostly explicit reflections on their 338

partners’comprehension, while for tutees, they are 339

(1) questions, (2) feedbacks, and (3) affirmations, 340

mostly tentative answers. 341

Non-verbal and paraverbal behaviors: As in 342

Goel et al. (2019), we included the non-verbal and 343

paraverbal behaviors that are related to hedges. 344

Specifically, we consider laughter and smiles, 345

which have been shown to be effective methods 346

of mitigation (Warner-Garcia, 2014), cut-offs in- 347

dicating self-repairs, fillers like "Um", gaze shifts 348

(annotated as Gaze at Partner, Gaze at the work- 349

sheet, and Gaze elsewhere), and head nods. Each 350

feature was present twice in the feature vector, one 351

time for each interlocutor. Inter-rater reliability 352

for visual behavior was 0.89 for eye gaze, 0.75 for 353

smile count, 0.64 for smile duration and 0.99 for 354

head nod. Laughter is also reported in the transcript 355

at the word level. We separate behaviors from the 356

tutor from that of the tutee. The collection process 357

for these behaviors is detailed further in Zhao et al. 358

(2016b). 359

The clause-level feature vector was normalized by 360

the length of the clause (except for the rule-based 361

label). This length was also added as a feature. 362

Table 3 presents an overview of the final feature 363

vector. 364
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Features name Automatic extraction Vector size

Rule-based label Yes 4
Unigram Yes ~250
Bigram Yes ~250

POS Yes ~1200
LIWC Yes 73

Non-verbal No 24
Tutoring moves No 6

Total ~1800

Table 3: List of automatically extracted and manually
annotated features with their size.

4.3 Classification models365

The classification models used are presented here366

according to their level of integration of external367

linguistic knowledge.368

Rule-based model: On the basis of the annotation369

manual used to construct the dataset from Madaio370

et al. (2017), and with descriptions of hedges from371

Rowland (2007), Fraser (2010) and Brown and372

Levinson (1987), we constructed a rule-based clas-373

sifier that matches regular expressions indicative374

of hedges. The rules are detailed in Table 7 in the375

Appendix.376

XGBoost: Since hedges are characterized by a lim-377

ited number of lexical markers, we postulated that378

a machine learning model with a bag-of-features379

representation for sentences could compete with a380

BERT model in performance, while being much381

more interpretable. We relied on XGBoost, an382

ensemble of decision trees trained with gradient383

boosting (Chen and Guestrin, 2016). This model384

was selected because of its performance with small385

training datasets, but also because it can ignore386

uninformative features.387

Multi-layer perceptron (MLP): As a simple base-388

line, we built a multi-layer perceptron using three389

sets of features: a pre-trained contextual repre-390

sentation of the clause (SentBERT; Reimers and391

Gurevych (2019)) ; the concatenation of this con-392

textual representation of the clause and a rule-based393

label (not relying on the previous clauses) ; and394

finally the concatenation of all the features men-395

tioned in section 4.2, without the contextualized396

representation.397

LSTM over a sequence of clauses: Since398

we are working with conversational data, we399

also wanted to test whether taking into ac-400

count the previous clauses helps to detect401

the type of hedge class in the next clause.402

Formally, we want to infer yi using yi =403

maxy∈Classes P (y|X(ui), X(ui−1), ..., X(ui−K)),404

where K is the number of previous clauses405

that the model will take into account. The406

MLP model presented above infers yi using 407

yi = maxy∈Classes P (y|X(ui)), therefore a 408

difference of performance between the two models 409

would be a sign that using information from the 410

previous clauses could help to detect the hedged 411

formulation in the current clause. We tested a 412

LSTM model with the same representations for 413

clauses as for the MLP model. 414

CNN with attention: Goel et al. (2019) estab- 415

lished their best performance on hedge detec- 416

tion using a CNN model with additive attention 417

over word (and not clause) embeddings. Con- 418

trary to the MLP and LSTM models mentioned 419

above, this model tries to infer yi using yi = 420

maxy∈Classes P (y|g(w0), g(w1), ..., g(wL)), with 421

L representing the maximum clause length we al- 422

low, and g representing a function that turns the 423

word wj , j ∈ [0, L] into a vector representation 424

(for more details, please see Adel and Schütze 425

(2016)). We re-implemented the model with Glove 426

(Pennington et al., 2014) 300-D words embeddings 427

as the vector representation. 428

BERT: To benefit from deep semantic and con- 429

textual representations of the utterances, we also 430

fine-tuned BERT (Devlin et al., 2018) on our clas- 431

sification task. BERT is a pre-trained Transformers 432

encoder (Vaswani et al., 2017) that significantly 433

improved the state of the art on a number of NLP 434

tasks, including sentiment analysis. It produces a 435

contextual representation of each word in a sen- 436

tence, making it capable of disambiguating the 437

meaning of words like "think" or "just" that are 438

representative of certain classes of hedges. BERT, 439

however, is notably hard to interpret. 440

4.4 Analysis tools 441

Looking at which features improve the perfor- 442

mance of our classification models tells us whether 443

these features are informative or not, but does not 444

explain how these features are used by the models 445

to make a given prediction. We therefore produced 446

a complementary analysis using an interpretability 447

tool. XGBoost internal feature importance scores 448

using information gain are inconsistent with both 449

the model behavior and human intuition (Lundberg 450

and Lee, 2017), so we used a model-agnostic tool. 451

SHAP (Lundberg and Lee, 2017) assigns to each 452

feature an importance value (called Shapley val- 453

ues) for a particular prediction depending on the 454

extent of its contribution (a detailed introduction 455

to Shapley values and SHAP can be found in Mol- 456
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nar (2020)). SHAP is a model-agnostic framework,457

therefore the values associated with a set of fea-458

tures can be compared across models. It should be459

noted that SHAP produces explanations on a case-460

by-case basis, therefore it can both provide local461

and global explanations. For the Gradient Boost-462

ing models, we use an adapted version of SHAP463

(Lundberg et al., 2018), called TreeSHAP.464

5 Experiments and results465

5.1 Experimental setting466

To detect the best set of features, we used XGBoost467

and proceeded incrementally, by adding the group468

of features we thought to be most likely associated469

with hedges. We did not consider the risk of rely-470

ing on a sub-optimal set of features through this471

procedure because of the strong ability of XGBoost472

to ignore uninformative features. We use this in-473

cremental approach as a way to test our intuition474

about the performativity of groups of features (i.e.475

does adding a feature improve the performance of476

the model) with regard to the task of classification.477

To compare our models, we look at the weighted478

average of the F1-score for the three hedge classes.479

For each set of features, XGBoost hyperparame-480

ters were selected using grid-search on the maximal481

depth of the trees, on the learning rate and on the482

training sub-sample proportion. The results are483

cross-validated using 5 folds (we chose 5 instead484

of 10 to avoid having folds with too few samples485

per class). We corrected for class imbalance by486

applying a "square root of the square root of the487

inverse class frequency" weight to the loss function488

while training our model for the multi-class predic-489

tion task, and without any class balancing for the490

binary classification task. This procedure forces491

the model to adapt more to the less frequent classes.492

Neural models were trained using AdamW as an493

optimizer (Loshchilov and Hutter, 2017). For these494

models, the class balancing weights followed the495

square root of the inverse class frequency.496

5.2 Model comparison and feature analysis497

Overall results: Table 4 presents the results ob-498

tained by the 6 models presented in Section 4.3499

for the multi-class problem. Best performance (F1-500

score of 73.3) is obtained with XGBoost leveraging501

all the features, including the Label RB ones.502

First, and perhaps surprisingly, we notice that the503

use of hand-crafted features based on rules built504

from linguistic knowledge of hedges in the XG-505

Models Basic model With embeddings + Label RB With features

Rule-based (3-classes) 66.1 ∅ ∅
MLP (3-classes) 8.1 62.1 68.7

Attention-CNN (3-classes) 63.1 ∅ ∅
LSTM (3-classes) 37.2 63.4 70.8
BERT (3-classes) 69.0 71.8 ∅

XGBoost (3-classes) ∅ 66.7 73.3

Table 4: Averaged weighted F1-scores for the three
classes of hedges, for all models. For the neural models,
"Basic model" corresponds to the version using only the
pre-trained embeddings.

Boost model outperforms the use of pre-trained 506

embeddings within a fine-tuned BERT model (73.3 507

vs. 69.0). The potential of Label RB features is 508

confirmed by the increase in performance obtained 509

on the BERT model when it uses these features 510

(71.8 vs. 69.0). A second finding is that the use of 511

machine learning models on top of rule-based clas- 512

sifiers allows a better modeling of hedge classes. 513

Indeed the results reported in Column 3 of Table 4 514

are all higher than the result of the rule-based clas- 515

sifier (66.1). It is interesting to note that, when 516

designing the rule-based classifier, we saw it reach- 517

ing a limit in F1-score when we started to include 518

ambiguous words (like "I would . . . ") in our reg- 519

ular expression patterns. The low scores obtained 520

by the LSTM and MLP models with pre-trained 521

sentence embeddings might signal that the word 522

patterns characterizing hedges are not salient in 523

these representations (i.e. the distance between "I 524

think you should add 5." and "You should add 5." 525

is short.). Bag-of-features representations seem to 526

provide a better separability of the classes. 527

Feature analysis using XGBoost: Using the best 528

performing model, Table 5 shows the role of each 529

feature set in the prediction task. Compared to 530

the rule-based model, the introduction of n-gram, 531

POS features and LIWC significantly improved 532

the performance of our classifier, suggesting that 533

some lexical and syntactic information describing 534

the hedge classes was not present in the rule-based 535

model. Adding tutoring moves improved the per- 536

formance of the model, indicating that there might 537

be a correlation between hedge classes and specific 538

tutoring moves. The non-verbal features did not 539

add useful information to the model. 540

5.3 In-depth analysis of the informative 541

features 542

We trained the SHAP explanation models on XG- 543

Boost with all features. The most informative fea- 544

tures (in absolute value) for each class are shown 545
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Models Label RB + 1-gram and 2-gram + POS + LIWC + TM + Non-verbal All w/o label

Binary 94.7 +- 0.2 95.8 +- 0.4 95.7 +- 0.3 95.8 +- 0.5 95.8 +- 0.4 95.8 +- 0.4 95,8 +- 0.2
3-classes 66.7 +- 1.6 69.6 +- 2.9 69.4 +- 0.3 70.6 +- 1.5 73.3 +- 0.7 73.3 +- 1.6 70.5 +- 0.8

Table 5: Averaged weighted F1-scores for the binary classes and the three classes of hedges, with a XGBoost model.
The standard deviation is computed across five folds.

in Table 6.546

As suggested by the previous feature analysis, the547

most important features seem to be the rule-based548

labels, which appear in at least the third position549

for all classes (see Table 6), and in the first posi-550

tion for Propositional Hedges and Not hedged551

classes. Unigrams (I, sorry, just, plus, and my) are552

also present in the 5 top-ranked features. This con-553

firms the findings mentioned in related work for554

the characterization of the different hedge classes555

(just with Propositional Hedges, sorry with Apol-556

ogizer, I with Subjectivizers). The presence of557

interjections also has high importance for the char-558

acterization of Apologizer, as illustrated in exam-559

ples such as "Oh sorry, that’s nine.". We note that560

the occurrences of "Oh sorry" as a clause were561

excluded by our rule-based model because they562

do not correspond to an apologizer (they cannot563

mitigate the content of a proposition if there is no564

proposition associated). This example illustrates565

the interest of a machine learning model approach566

to disambiguate the function of conventional non-567

propositional phrases like "Oh sorry".568

In addition, SHAP highlights the importance of569

novel features that were not already identified by570

the literature: (i) what LIWC classifies as infor-571

mal words but that are mostly interjections like572

ah and oh are strongly associated with Apologizer573

(see Table 6), (ii) the presence of plus and minus,574

associated with problem statements from the tutor575

("ten minus six equals?"), or with attempts by the576

tutee ("so three f minus three is-"), is an indica-577

tor of directness (see Figure 2 in the Appendix),578

while the presence of a verb is positively associ-579

ated with propositional hedges (see Figure 4 in580

the Appendix), as in ("actually no you’re gonna581

subtract seven from both sides"). Taken together582

this may mean that tutors tend to use direct forms583

when they use soft instructions like "ten plus x584

equals?", and hedges when they produce directive585

instructions like "Subtract x to both sides." (iii)586

the use of POS tags seems to be very relevant for587

characterizing the different classes (POS tag fea-588

tures1 occur in the 5 top-ranked features of all the589

1Note that there is strong redundancy between some fea-

classes). It means that there are some recurring 590

syntactic patterns in each class, that could be used 591

to improve the generation process of hedges, by re- 592

generating clauses that don’t contain one of these 593

syntactic patterns; (iv) Regarding the utterance 594

size, a clause shorter than the mean is associated 595

with Subjectivizers, while a longer clause sug- 596

gests that it contains a Propositional hedge; (v) 597

Looking at tutoring moves, it seems that only the 598

feedback from tutors is really used by the clas- 599

sifier to identify one of the classes: this tutoring 600

move is ranked as the 10th most important feature 601

for Subjectivizers ("I think you have to divide by 602

three"). The other tutoring moves are not strong 603

predictors of any classes; (vi) "No" is positively 604

associated to Propositional hedges (n=6). When 605

used in these hedges by the tutor, it seems to serve a 606

self-correction function "no, it’s kinda weird.", "no 607

wait actually it would be ten"; (vii) Non-verbal be- 608

haviors do not appear as important features for the 609

classification. This is coherent with results from 610

(Goel et al., 2019). Note that prosody might play 611

a role in detecting instructions that trail off, as in 612

the examples above, where the trailing off seems 613

to serve a mitigating function but, as described, 614

paraverbal features were not available. 615

One surprising finding is that tutoring moves seem 616

to improve the performance of the XGBoost clas- 617

sifier, but do not appear to contribute to the SHAP 618

analysis. To understand that, we explored the Shap- 619

ley values for each utterance in the dataset, and 620

observed that tutoring moves are extremely infor- 621

mative for a small number of clauses, and more or 622

less not informative for the rest. This is not sur- 623

prising in the sense that, since the tutor is teaching, 624

virtually all of what the tutor is saying falls into 625

one of the tutoring moves classes. So only certain 626

kinds of tutoring moves (such as feedback which 627

could be negative, and therefore face-threatening, 628

and certain kinds of instructions, which could like- 629

wise be face-threatening if they follow a wrong 630

move on the part of the tutee) rise to prominence. 631

tures of LIWC and the spaCy POS tagger that both produce
a "Pronoun" category, using a lexicon in the first case, and a
neural inference in the second.
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Rank Apologizer Subjectivizers Prop. Hedges Not hedged (multiclass) Not hedged (binary)

1 Interjection (POS) I Class label Class label Class label
2 sorry Class label Absence of interjection (POS) PRON (POS) just (negative)
3 Class label pronoun (LIWC) just NOUN (POS) PRON (POS) (negative)
4 informal (LIWC) Auxiliary (POS) Utterance size (lower) plus NOUN (POS) (positive)
5 my Utterance size (higher) Absence of NOUN (POS) just informal (LIWC) (negative)

Table 6: Most important clause-level features for XGBoost according to the SHAP analysis.

We see, then, that inferring the global importance632

of a feature as a mean across the shapley values in633

the dataset may not be the only way to explore the634

behavior of gradient boosting methods. To study635

how a given feature characterizes an hedge class,636

it might be more useful to cluster clauses based637

on the importance that SHAP gives to that feature638

in its classification. This could help discover sub-639

classes of hedges that are differentiated from the640

rest by their interaction with a specific feature (in641

the way that apologizers are characterized by an642

interjection). We note that the explanation model643

is sensitive to spurious correlations in the dataset:644

for example, "nine" is a positive predictor (n=10)645

of Apologizers. We think this correlation appeared646

because of the small number of Apologizers in the647

dataset, but it indicates that a layer of interpretation648

of the SHAP analysis is still required.649

6 Conclusion and future work650

Through our classification performance experi-651

ments, we showed that it is possible to use ma-652

chine learning methods to diminish the ambigu-653

ity of hedges, and that the hybrid approach of us-654

ing rule-based label features derived from social655

science (including linguistics) literature within a656

machine learning model significantly helped to in-657

crease the model’s performance. Non-verbal be-658

haviors did not provide information at the sentence659

level; both the performance of the model and the660

feature contribution analysis suggested that their661

impact on the model output was not strong. This662

is consistent with results from Goel et al. (2019).663

However, in future work we would like to inves-664

tigate the potential of multimodal patterns when665

we are able to better model sequentiality (e.g., neg-666

ative feedback followed by a smile). Even if we667

enhanced the baseline from Goel et al. (2019) and668

outperformed a fine-tuned BERT model using a669

Gradient Boosting method with interpretable fea-670

tures, hedges continue to be difficult to classify671

(F1 = 73.3 with a fine-grained 4-class recognition672

system). Since the inter-rater reliability for these673

hedge classes was only a little above 0.7, it is pos-674

sible that the classes are still too broad in their 675

definition and therefore somewhat inconsistent. A 676

supplementary subdivision might be needed to ob- 677

tain coherent linguistic objects to work on. 678

Regarding the SHAP analysis, most of the fea- 679

tures that are considered as important are coherent 680

with the definition of the classes (I for subjectiviz- 681

ers, sorry for apologizers, just for propositional 682

hedges). However, we discovered that features 683

like utterance size can serve as indicator of certain 684

classes of hedges. A limitation of SHAP as an ex- 685

planation method is that the interactions between 686

features in the model is not represented in the ex- 687

planations. SHAP makes a feature independence 688

assumption, which prompts the explanatory model 689

to underestimate the importance of redundant fea- 690

tures (like pronouns in our work). In the future we 691

will explore explanatory models capable of taking 692

into account the correlation between features in the 693

dataset like SAGE (Covert et al., 2020), but suited 694

for very imbalanced datasets. Remaining in the 695

domain of peer-tutoring, we would like to be able 696

to further test the link between hedges and rapport, 697

and the link between hedges and learning gains 698

in the subject being tutored. As mentioned above, 699

this kind of study requires a fine-grained control of 700

the language produced by one of the interlocutors, 701

which is difficult to control in a human-human ex- 702

perience. Now that we have begun to characterize 703

hedge classes, we can turn toward improving their 704

generation for tutor agents. 705
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Class Rule (regexp)

Subj. (?!what).*(i|we) ?(don’t|didn’t|did)? ?(not)?
(guess|guessed|thought|think|believe|believed|suppose|supposed)

?(whether|if|is|that|it|this)?.*
Subj. .*(i|i’m|we) ?(was|am|wasn’t)? ?(not)? (sure|certain).*
Subj. .*(i feel like you).*
Subj. .*(you (might|may) (believe|think)).*
Subj. .*(according to|presumably).*
Subj. .*(i|you|we) have to (check|look|verify).*
Subj. .*(if i’m not wrong|if i’m right|if that’s true).*
Subj. .*(unless i).*
Apol. .*(i’m|i|we’re) (am|are)? ?(apologize|sorry).*
Apol. (?!.*(be|been|was) like excuse me)((excuse me|sorry)[w ,’]+|[w ,’]+(excuse me|sorry))
Prop. .*(just|a little|maybe|actually|sort of|kind of|pretty

much|somewhat|exactly|almost|little bit|quite|
regular|regularly|actually|almost|as it were|basically|

probably|can be view as|crypto-|especially|essentially|
exceptionally|for the most part|in a manner of speaking|

in a real sense|in a sense|in a way|largely|literally|
loosely speaking|kinda|more or less|mostly|often|

on the tall side|par excellence|particularly|
pretty much|principally|pseudo-|quintessentially|

relatively|roughly|so to say|strictly speaking|
technically|typically|virtually|approximately|

something between|essentially|only).*
Prop. .*(i|i’m|you|it’s) (am|are) (apparently|surely)[ ,]?.*
Prop. .*(it) (looks|seems|appears)[ ,]?.*", ".* (or|and) (that|something|stuff|so forth)

Table 7: Regexp rules used for the classifier. For apologizers, we also introduced a few standard utterances that
should not be considered as apologizers : ["i’m sorry", "oh sorry", "right sorry"]

Figure 1: Absolute averaged feature contribution, as indicated by SHAP. The longer the bar is for one color, the
more the feature is associated with the class represented by that color.
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Figure 2: Averaged contribution of features to the detection of the "Not indirect" class, as indicated by SHAP. Each
dot corresponds to a classified clause. A red dot indicates that the feature is present in the clause, while a blue
dot indicates that the feature is absent. The farther on the right the dot is, the more the feature contributed to its
classification as a hedge.

Figure 3: Averaged contribution of features to the detection of "Apologizers", as indicated by SHAP.
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Figure 4: Averaged contribution of features to the detection of "Propositional hedges", as indicated by SHAP.

Figure 5: Averaged contribution of features to the detection of "Subjectivizers", as indicated by SHAP.
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