
A Fresh Start: Implementing an RML Processor from
Scratch to Validate RML Specifications and Test Cases
Christophe Debruyne2,∗,†, Dylan Van Assche1,∗,†

2Montefiore Institute, University of Liège, Belgium
1IDLab, Dept. Electronics & Information Systems, Ghent University – imec, Belgium

Abstract
The Knowledge Graph Construction community has been working on the new RML specifications for
the past few years, consolidating and refining various [R2]RML extensions with the aim of supporting
a wide variety of use cases. This new specification involved scholars and practitioners in one or more
of RML’s modules. These modules were independently specified (vocabulary, SHACL shapes, and test
cases). Moreover, participants in the Knowledge Graph Construction Workshop Challenge usually
adapted their existing implementations, which have been developed (often to support research projects)
to support specific problems (e.g., rewriting mappings and distributed processing). Rather than starting
from existing implementations, which come with an inherent bias, we propose developing an RML
Processor from scratch to avoid this bias. The goal of this engine is to support the new RML specification
while not being influenced by the prior [R2]RML implementations. We report on the implementation
of the Basic and Unassuming RML Processor (BURP) and the current state of RML compliance. While
the impact of BURP has been reported in more detail elsewhere, we hope that BURP will become the
reference implementation for other implementations.

Keywords
RML, RML Conformance Checking, Knowledge Graph Generation, BURP

1. Introduction

Over the past few years, the Knowledge Graph Construction community has dedicated signifi-
cant effort to consolidate and refine various [R2]RML extensions into a new, comprehensive
RML specification [1]. This endeavor involved collaboration between scholars and practitioners
across multiple RML modules (vocabulary, SHACL shapes, and test cases) and aimed to address
a broader range of use cases. Notably, participants often adapted existing implementations
developed for specific research projects to address unique challenges (e.g., rewriting mappings
and distributed processing). Tools often rewrite or extend implementation and aim to ensure
some form of backward compatibility. RMLMapper1, for instance, now supports R2RML [2],

Fifth International Workshop On Knowledge Graph Construction Co-located with the ESWC 2024, May 26-27 2024,
Hersonissos, Greece
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open c.debruyne@uliege.be (C. Debruyne); dylan.vanassche@ugent.be (D. Van Assche)
GLOBE http://christophedebruyne.be/ (C. Debruyne); https://dylanvanassche.be (D. Van Assche)
Orcid 0000-0003-4734-3847 (C. Debruyne); 0000-0002-7195-9935 (D. Van Assche)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1https://github.com/RMLio/rmlmapper-java

mailto:c.debruyne@uliege.be
mailto:dylan.vanassche@ugent.be
http://christophedebruyne.be/
https://dylanvanassche.be
https://orcid.org/0000-0003-4734-3847
https://orcid.org/0000-0002-7195-9935
https://creativecommons.org/licenses/by/4.0
https://github.com/RMLio/rmlmapper-java


the original RML [3] and its various extensions, and the new RML-core specification. On could
argue that this complicates things.

In contrast to this approach, we propose the development of an RML Processor from scratch,
unburdened by the inherent biases of prior [R2]RML implementations. This engine, the Basic
and Unassuming RML Processor (BURP), is designed to support the new RML specification.
While the impact of BURP has been documented elsewhere [4], we anticipate that it will serve
as a baseline for future RML implementations. This paper reports on the implementation of
BURP and assesses its current compliance with the RML specification.

2. Implementation

While development of BURP was initially driven by the lack of an RML-CC implementation,
which consolidated and expanded ideas presented in [5] and [6]. The implementation of RML-CC,
which allows for values to be aggregated into RDFS Containers and Collections within and across
iterations, required drastic changes in existing codebases of RML implementations. Moreover,
we discovered inconsistencies within and across RML modules. Thus, an implementation
started from scratch seemed an adequate approach to develop this RML Processor to avoid these
inconsistencies and evaluate the decisions of the community in the new RML modules.

BURP is basic since it uses simple data structures and an arguably naive approach to generate
RDF, and unassuming as no optimizations are appliedwhen implementing the RML specifications.
No attempts are made to optimize mappings or the process via parallelization or distributing
computing to focus only on the RML specifications.

BURP follows simple steps to generate RDF, similar to the R2RML reference algorithm.
The code and RDF generation algorithm is deliberately kept simple to help RML Processors’
developers implement the new RML specifications. BURP uses simple data structures to store all
data in memory. Moreover, BURP does not try to recover from nor correct errors, BURP merely
exits with a non-zero exit code when an error occurs. BURP will not even try to generate partial
results, a feature arguably desirable in industry settings, as one only needs to rerun the failed
mappings.

3. Compliance

BURP currently fully supports RML-Core, RML-CC, and RML-FNML. It also supports some
functionality of RML-IO2. Complete support for RML-IO and RML-Star is planned for the latter
part of 2024.

BURP passes 100% of the RML-Core and RML-CC features. BURP passes 92% of RML-FNML.
The only test that failed is RMLFNOTC0000-CSV, which relies on the generation of a UUID. As
such, the test case was designed to fail (unless one generates the same UUID over and over
again). Therefore, we deem that we cover the specification w.r.t. the test cases.

We noticed issues when running RML-IO test cases; some tests relied on outdated RML
and others contained a mistake. RMLSTC0006c, for instance, relied on an endpoint that was

2RML Logical Sources are supported, and RML Logical Target is under development



not configured properly. As such, BURP allowed us to determine what went wrong. BURP
passes 78% percent of RML-IO source test cases, with the ones failing pertaining to different
vocabularies to download data and CSVW dialects. Only one of the RML-IO target test cases
pass (2%).

3.1. Discussion: Are We Sufficiently Conservative?

It is important to bear in mind that the development of BURP is mostly driven by test cases.
The development of BURP has led the various RML modules to become more integrated (e.g.,
the SHACL shapes must take into consideration the various RML Term Maps and Expression
Maps).

Several questions can be raised with respect to the coverage of our test cases. Some examples
that can be mentioned are: 1) How can we assure that we have covered most (if not all)
combinations of the various modules? 2) RML-FNO uses rml:inputValueMap to link an input
with a Term Map. Some Term Maps have a Graph Map (e.g., Subject Maps), how does that
impact the Predicate Object Maps with Graph Maps? 3) Quoted triples can be included in RDFS
Containers and Collections, but what is the expected behavior when RML Quoted Triples Maps
are also used as a Gather Map?

We recognize that some of these corner cases seem far-fetched, but they require to be
documented. The behavior can be left to an implementation, but our opinion would be to
propose to document the expected behavior via notes and test cases.

4. Conclusions

We reported on the implementation of a simple RML Processor ’BURP’ that was initially driven
by a need for an RML-CC compliant processor and turned out to be an exercise to test the
validity of various RML-modules throughout the Knowledge Graph Construction Workshop
Challenge.

This RML Processor, which we dubbed BURP, is by no means intended as a production-ready
tool as everything is processed in memory. No effort was spent on to optimizing the RDF
generation process (no mapping rewriting, no parallel processing, ...). We hope that BURP
would become the community’s reference implementation and sandbox for further research.

Acknowledgments

Dylan Van Assche is supported by the Special Research Fund of Ghent University3 under
grant BOF20/DOC/132. The collaboration of Dylan Van Assche and Christophe Debruyne is
stimulated by the KG4DI FWO scientific research network (W001222N).

3https://www.ugent.be/en/research/funding/bof/overview.htm

https://www.ugent.be/en/research/funding/bof/overview.htm


References

[1] A. Iglesias-Molina, D. Van Assche, J. Arenas-Guerrero, B. De Meester, C. Debruyne, S. Joza-
shoori, P. Maria, F. Michel, D. Chaves-Fraga, A. Dimou, The RML ontology: A community-
driven modular redesign after a decade of experience in mapping heterogeneous data to
RDF, in: The Semantic Web - ISWC 2023 - 22nd International Semantic Web Conference,
Athens, Greece, November 6-10, 2023, Proceedings, Part II, volume 14266 of Lecture Notes
in Computer Science, Springer, 2023, pp. 152–175.

[2] S. Das, S. Sundara, R. Cyganiak, R2RML: RDB to RDF Mapping Language, Working Group
Recommendation, World Wide Web Consortium (W3C), 2012. URL: http://www.w3.org/TR/
r2rml/.

[3] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van de Walle, RML:
A generic language for integrated RDF mappings of heterogeneous data, in: Proceedings of
the Workshop on Linked Data on the Web co-located with the 23rd International World
Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014, volume 1184 of CEUR
Workshop Proceedings, CEUR-WS.org, 2014.

[4] D. Van Assche, C. Debruyne, BURPing Through RML Test Cases, in: A. Dimou, D. Chaves-
Fraga, U. Serles, D. Van Assche, A. Iglesias-Molina (Eds.), Proceedings of the 5th Interna-
tional Workshop on Knowledge Graph Construction (KGCW 2024) co-located with 19th
Extended SemanticWeb Conference (ESWC 2024), Hersonissos, Greece, May 27, 2024, CEUR
Workshop Proceedings, CEUR-WS.org, 2024.

[5] C. Debruyne, L. McKenna, D. O’Sullivan, Extending R2RMLwith support for RDF collections
and containers to generate MADS-RDF datasets, in: Research and Advanced Technology for
Digital Libraries - 21st International Conference on Theory and Practice of Digital Libraries,
TPDL 2017, Thessaloniki, Greece, September 18-21, 2017, Proceedings, volume 10450 of
Lecture Notes in Computer Science, Springer, 2017, pp. 531–536.

[6] F. Michel, L. Djimenou, C. Faron-Zucker, J. Montagnat, Translation of Relational and Non-
relational Databases into RDF with xR2RML, in: WEBIST 2015 - Proceedings of the 11th
International Conference on Web Information Systems and Technologies, Lisbon, Portugal,
20-22 May, 2015, SciTePress, 2015, pp. 443–454.

http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/

	1 Introduction
	2 Implementation
	3 Compliance
	3.1 Discussion: Are We Sufficiently Conservative?

	4 Conclusions

