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a) Track every pixel from monocular videos

b) Consistent in 3D space c) SoTA performance and speed

Figure 1: TAPE3D is a dense 3D tracking approach that (a) tracks every pixel from a monocular
video (b) provides consistent trajectories in 3D space, and (c) achieves state-of-the-art accuracy
on 3D tracking benchmarks while being significantly faster than previous approaches in the dense
setting. More animated results are provided in the supplementary webpage.

ABSTRACT

Tracking dense 3D motion from monocular videos remains challenging, partic-
ularly when aiming for pixel-level precision over long sequences. We introduce
TAPE3D, a novel method that efficiently tracks every pixel in 3D space, enabling
accurate motion estimation across entire videos. Our approach leverages a joint
global-local attention mechanism for reduced-resolution tracking, followed by a
transformer-based upsampler to achieve high-resolution predictions. Unlike ex-
isting methods, which are limited by computational inefficiency or sparse track-
ing, TAPE3D delivers dense 3D tracking at scale, running over 8x faster than
previous methods while achieving state-of-the-art accuracy. Furthermore, we ex-
plore the impact of depth representation on tracking performance and identify
log-depth as the optimal choice. Extensive experiments demonstrate the superior-
ity of TAPE3D on multiple benchmarks, achieving new state-of-the-art results in
both 2D and 3D dense tracking tasks. Our method provides a robust solution for
applications requiring fine-grained, long-term motion tracking in 3D space.

1 INTRODUCTION

Accurately estimating motion and determining point correspondences in dynamic 3D environments
is a longstanding challenge in computer vision. In this work, we aim to achieve dense 3D tracking
by establishing correspondences for every pixel from a given monocular video. 3D tracking pro-
vides richer insights into object trajectories, depth, and scene interactions than 2D tracking, while
dense tracking captures subtle, fine-grained motions often missed by sparse methods. The task is
particularly challenging due to the need to simultaneously address ill-posed 3D-to-2D projections,
occlusions, camera motion, and dynamic scene changes.
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Method Dense 3D Long-term Feed-forward

RAFT (Teed & Deng, 2020) ✓ ✓
TAPIR (Doersch et al., 2023) △ ✓ ✓
CoTracker (Karaev et al., 2023) △ ✓ ✓
SpatialTracker (Xiao et al., 2024) △ ✓ ✓ ✓
SceneTracker (Wang et al., 2024a) △ ✓ ✓ ✓
DOT (Le Moing et al., 2024) ✓ ✓ ✓
OmniMotion (Wang et al., 2023a) △ ✓

TAPE3D (Ours) ✓ ✓ ✓ ✓

Table 1: Comparison of different types of motion estimation methods. △ denotes that the method is
technically applicable to dense tracking but will be extremely time-consuming.

The ultimate goal of tracking is to ensure both dense coverage and long-term consistency. Early ef-
forts focused on predicting dense motion for adjacent frames or short-term sequences using optical
flow (Ilg et al., 2017; Sun et al., 2018; Teed & Deng, 2020; Xu et al., 2022; Dong et al., 2023; Huang
et al., 2022) and scene flow (Vogel et al., 2015; Liu et al., 2019; Yang & Ramanan, 2020), but these
approaches usually struggle to capture long-term motion. In contrast, point-tracking methods (Doer-
sch et al., 2022; Harley et al., 2022; Doersch et al., 2023; Li et al., 2024b) built correspondences over
hundreds of frames but are limited to sparse pixels. Recently, hybrid approaches have emerged that
attempt to combine both paradigms, yet they either rely on per-frame optical flow predictions and
lack strong temporal correlation (Le Moing et al., 2024), or adopt suboptimal attention designs and
cannot perform dense tracking efficiently (Karaev et al., 2023). More, advancements in depth esti-
mation (Bhat et al., 2023; Piccinelli et al., 2024) have allowed for lifting 2D tracking to 3D (Wang
et al., 2024a; Xiao et al., 2024), but these pipelines remain computationally prohibitive for dense
tracking due to cross-track attention. We summarize the characteristic of these methods in Table 1.

In this paper, we introduce TAPE3D, to our knowledge, the first method capable of efficiently
tracking every pixel in 3D space over hundreds of frames. We achieve efficient dense tracking using
a coarse-to-fine strategy, starting with coarse tracking via a spatio-temporal attention mechanism at
reduced resolution, followed by an attention-based upsampler for high-resolution predictions. Our
key design choices include:

• An efficient spatial attention architecture that captures both global and local spatial struc-
tures of the dense tracks, with low computational complexity, enabling end-to-end learning
for dense tracking.

• An attention-based upsampler, carefully designed to provide high-resolution, accurate
tracking with sharp motion boundaries.

• A comprehensive empirical analysis of various depth representations, showing that the log-
depth representation yields the best 3D tracking performance

These designs enable TAPE3D to capture hundreds of thousands of 3D trajectories in long video
sequences within a single forward pass, completing the process in under two minutes for 100
frames—over 8x faster than the fastest existing methods, as shown in figure 1. TAPE3D is ex-
tensively evaluated on both 2D and 3D dense tracking tasks, achieving state-of-the-art results on
the CVO (Wu et al., 2023; Le Moing et al., 2024) and Kubric3D (Greff et al., 2022) datasets both
with more than 10% improvement in AJ and APD3D. Additionally, it performs competitively on
conventional 3D point tracking benchmarks, including TAP-Vid3D (Koppula et al., 2024) and LS-
FOdyssey (Wang et al., 2024a; Zheng et al., 2023).

2 RELATED WORK

Optical Flow estimates motion by providing dense pixel-wise correspondences between consecu-
tive frames. Early variational approaches (Mémin & Pérez, 1998; Horn & Schunck, 1980; Brox
et al., 2004) struggled with robustness in complex scenes with rapid motion, occlusions, and large
displacements. The introduction of CNN-based methods (Ilg et al., 2017; Ranjan & Black, 2017; Xu
et al., 2017; Sun et al., 2018) improved motion estimation between adjacent frames. RAFT (Teed
& Deng, 2020) marked a breakthrough by leveraging 4D correlation volumes for all pairs of pixels.
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Follow-up works advanced this by incorporating transformers for tokenizing 4D correlation vol-
umes (Huang et al., 2022), adopting global motion feature aggregation to improve prediction in oc-
cluded regions (Jiang et al., 2021), and framing optical flow as a matching problem with correlation
softmax operations (Xu et al., 2022). While some efforts propose to apply optical flow to long-term
sequences with multi-frame optical flow (Teed & Deng, 2020; Godet et al., 2021; Shi et al., 2023) or
integration of point-tracking techniques (Le Moing et al., 2024; Cho et al., 2024a), they often suffer
from drifting and occlusion challenges, limiting their reliability for long-term tracking.

Scene Flow generalizes optical flow into 3D, estimating dense 3D motion. One line of work uses
RGB-D data (Hadfield & Bowden, 2011; Hornacek et al., 2014; Quiroga et al., 2014; Teed & Deng,
2021b), while others estimates 3D motion from point clouds (Liu et al., 2019; Wang et al., 2020; Gu
et al., 2019; Niemeyer et al., 2019). Recent methods have improved robustness by using rigid motion
priors, either explicitly (Teed & Deng, 2021b) or implicitly (Yang & Ramanan, 2021). Nonetheless,
integrating scene flow methods for long sequences is under-explored.

Point Tracking estimates global motion trajectories in videos. Particle Video (Sand & Teller, 2008)
introduced particle trajectories for long-range video motion. TAP-Vid (Doersch et al., 2022) pro-
vided a comprehensive benchmark to evaluate point tracking and TAPNet, a baseline that predicts
tracking locations using correlation features. PIPs (Harley et al., 2022) revisited the concept of
particle video and proposed a feedforward network that updates motion iteratively over fixed tem-
poral windows, but ignored spatial context with independent point tracking and struggle with occlu-
sion. Subsequent efforts addressed these limitations by relaxing the fixed-length window to variable
lengths (Doersch et al., 2023) and jointly tracking multiple points and strengthening correlations be-
tween tracking points with temporal attention for temporal smoothness and spatial attention (Karaev
et al., 2023). Recent approaches like SceneTracker (Wang et al., 2024a) and SpatialTracker (Xiao
et al., 2024) extend point tracking to 3D by incorporating depth information, but remain inefficient
for dense tracking due to computationally expensive cross-track attention. Our model builds on the
strengths of these methods, but scales to full-resolution tracking.

Tracking by Reconstructing estimates long-range motion by reconstructing a deformation field.
OmniMotion (Wang et al., 2023b) optimizes a NeRF (Mildenhall et al., 2020) representation with a
bijective deformation field (Dinh et al., 2016), then extracts 2D trajectories using this bijective map-
ping, but suffers from instability and requires hours to optimize. Recent work with DINOv2 (Oquab
et al., 2023) uses its superior semantic features to establish long-range correspondences, either with
an improved invertible deformation field (Song et al., 2024) or in a self-supervised manner (Tu-
manyan et al., 2024). While these approaches can produce dense motion trajectories, they require
per-video optimization, which is computationally expensive, and their performance on tracking
benchmarks lags behind data-driven tracking methods.

Among these methods, we are the first feed-forward approach that performs dense 3D tracking
efficiently from a long-term and in-the-wild video. Table 1 provides a brief comparison of existing
motion estimation methods alongside our approach.

3 METHOD

Problem setup. We propose a method to track every pixel of a video in 3D space. Specifically, our
method takes an RGB-D video as input, where the RGB frames are denoted as V ∈ RT×H×W×3,
with T , H , and W representing the temporal and spatial resolution of the video, and the depth maps
D ∈ RT×H×W are obtained from an off-the-shelf monocular depth estimation method. Our method
then estimates dense, occlusion-aware 3D trajectories P ∈ RT×H×W×4, where each 4D slice,
pt,u,v = (ut, vt, dt, ot), represents the tracking result for a pixel located at (u, v) in the first frame
as it moves to its corresponding 3D position in the t-th frame. Specifically, (ut, vt) are the pixel
coordinates in the t-th frame, dt is the depth estimate, and ot ∈ {0, 1} is the visibility prediction.

3.1 PRELIMINARY: POINT TRACKING

Our method is inspired by recent advances in 2D point tracking, most notably CoTracker (Karaev
et al., 2023), which uses a transformer architecture that takes as input a set of trajectories within a
fixed temporal window and iteratively predicts the position offsets and visibilities of points based
on features extracted around their current locations. It is extended by SceneTracker (Wang et al.,
2024a) and SpatialTracker (Xiao et al., 2024) to include 3D-aware features for 3D point tracking.
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Figure 2: Overview of TAPE3D. TAPE3D takes RGB-D videos as input and achieves efficient
dense 3D tracking using a coarse-to-fine strategy, beginning with coarse tracking through a spatio-
temporal attention mechanism at reduced resolution (Sec. 3.1, 3.2), followed by an attention-based
upsampler for high-resolution predictions (Sec. 3.3).

Specifically, the transformer processes a set of initial trajectories, denoted as {Pi}, where i is
the trajectory index, and Pi = [pi

1,p
i
2, · · · ,pi

T ], with pi
t = (ui

t, v
i
t, d

i
t, o

i
t) being the 3D location

and visibility of the point associated with the i-th trajectory at the t-th frame. The initial values
(ui

t, v
i
t, d

i
t, o

i
t) are typically initialized as (ui

1, v
i
1, d

i
1, 1), assuming that each point starts from the

same location in the first frame and is visible at the beginning. We iteratively repeat the following:
Extract token features. Each input trajectory is represented by a list of tokens Gi =
[Gi

1, G
i
2, · · · , Gi

T ], each token Gi
t encodes position, visibility, appearance and correlation of the

trajectory at t-th frame:

Gi
t = [F i

t , C
i
t , D

i
t, o

i
t, γ(x

i
t − xi

1)] + γpos(x
i
t) + γtime(t), (1)

where each term represents:
• Track features F i

t represents the appearance of the point to be tracked. It is initialized by sampling
from the feature map at the starting location of the trajectory in the first frame, and will be updated
by the transformer network.
• Correlation features Ci

t are computed by comparing track features to image features around the
current estimated track location, similar to previous optical flow and point tracking methods (Teed
& Deng, 2020; Harley et al., 2022; Karaev et al., 2023). Additionally, we follow LocoTrack (Cho
et al., 2024b) by including local 4D correlation, which utilizes all-pair correspondences to establish
more precise and bidirectional correspondences, enhancing robustness against ambiguities.
• Depth correlation Dm

t is calculated as the difference between the current estimated depth and the
depth queried from the depth map around the estimated track location.
• Spacetime positions γpos and γtime are the positional embedding of the input position xi

t =
(ui

t, v
i
t, d

i
t) and time t, respectively.

• Relative displacement. It is also beneficial to separately encode the relative displacement of the
points by computing γ(xi

t − xi
1) where γ represents positional embedding.

Iteratively apply transformer. The trajectory tokens will then be iteratively updated by applying a
transformer Φ. Each iteration computes updates for point positions and track features, i.e.

{∆xi
t}, {∆F i

t } = Φ({Gi}). (2)

Visibility oit is predicted only in the last iterative step when the accurate location has been estimated.

Spatial-temporal transformer architecture. The architecture consists of temporal attention (self-
attending within the same track) and spatial attention (cross-track within the same frame).

Limitations in dense tracking settings. By default, CoTracker is trained and tested in sparse
tracking settings, where the number of tracks N is kept low (< 103). In dense settings, where
the total number of tracks is N = H × W (the order of 105-106), the spatial attention becomes a
bottleneck due to limitations w.r.t. its computational cost and spatial granularity explained below.

Computational complexity. As shown in Fig. 3, applying spatial self-attention across all to-
kens in a frame (①) results in a computational cost of TN2 making it impractical for dense tracking.
To reduce complexity, CoTracker introduces virtual track tokens which are conceptually similar
to learnable tokens introduced by DETR (Carion et al., 2020). It performs cross-attention back-
and-forth between trajectory tokens and a small number of virtual tracks, and self-attention is only
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W/o Spatial Attn + Attn with virtual tokens
(back-and-forth)

+ Attn with virtual tokens
(1-way)

+ Attn with virtual tokens
+ Local Attn

Groundtruth

Figure 3: Spatial attention architectures. Top: Illustration of different spatial attention architec-
tures. Compared to prior methods, our proposed architecture ③ incorporates both global and local
spatial attention and can be efficiently learned using a patch-by-patch strategy. Bottom: Long-term
optical flows predicted with different spatial attention designs. We find that both global and local
attention are crucial for improving tracking accuracy, as highlighted by the red circles. Additionally,
our computationally efficient global attention design using anchor tracks (i.e., ③ W/o Local Attn)
achieves similar accuracy to the more computationally-intensive Cotracker version ②.

applied within the virtual tracks (②). This reduces the computational cost to 2TKN+TK2+KT 2,
assuming that the number of virtual tracks K ≪ N . However, this reduction is still not enough for
end-to-end tracking of every pixel in a high-resolution video. Although in practice, pixels could
be divided into disjoint groups and perform attention within each group separately, this strategy is
sub-optimal due to the interaction between tokens from different groups are ignored.

Spatial granularity. The use of virtual tracks assumes a small number of tokens and thus re-
duces spatial attention granularity, limiting the capacity to represent fine spatial details for dense
tracking. Increasing virtual tracks improves accuracy but negates the complexity reduction.

Method overview. To further reduce computation cost without sacrificing accuracy, we adopt a
strategy commonly used in optical flow (Teed & Deng, 2020; Huang et al., 2022): performing com-
plex computations at the reduced spatial resolution, followed by lighter layers for upsampling. As
shown in Fig. 2, we first run dense tracking on 1/r2 of the original resolution, reducing the compu-
tation cost by 1/r2. Then the reduced-resolution tracks are upsampled to full spatial resolution. In
the following section, we use the notation N = (H × W )/r2 to denote the number of dense tracks
at reduced resolution.

In Sec 3.2, we first discuss our design for reduced-resolution tracking with a new spatial attention
architecture, which maintains linear complexity w.r.t. number of tracks while providing finer spatial
granularity compared to CoTracker. More importantly, the new architecture can be learned end-to-
end for pixel-wise dense tracking without test-train resolution discrepancies. Next in Sec 3.3 we
introduce a new transformer-based upsampler that effectively predicts high-res tracking. Finally in
Sec 3.4, we delve into details of depth representation that is crucial for accurate tracking in 3D.

3.2 JOINT GLOBAL AND LOCAL SPATIAL ATTENTION FOR EFFICIENT DENSE TRACKING

We design our global-local spatial attention mechanism based on three key criteria: (1) effi-
ciency for both training and testing in dense settings, (2) ability to capture global motion across the
image, and (3) ability to capture fine-grained motion details in the neighboring region for each track.

Global attention with sparse anchor tracks. The spatial attention architecture from previ-
ous works, i.e. CoTracker (Karaev et al., 2023), which has linear complexity w.r.t. the number of
tracks, can perform inference at reduced resolution. However, training remains computationally
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Figure 4: Attention-based upsample module. Left: We apply multiple blocks of local cross-
attention to learn the upsampling weights for each pixel in the fine resolution. Right: The red circles
highlight regions in the long-term flow maps where our attention-based upsampler produces more
accurate predictions compared to RAFT’s convolution-based upsampler.

expensive, exceeding the 80GB GPU memory capacity even when tracking videos with a 96× 128
reduced resolution. To improve training efficiency, we employ the following two strategies.

First, a patchwise training strategy is employed to reduce computation in training. At each iteration,
we randomly crop small patches of size h′ × w′ = N ′ from the reduced resolution image, then
perform dense tracking and obtain supervision within these patches. One issue of patchwise training
is that it only computes spatial attention within a local patch without considering the rest region of
the first frame. To mitigate this limitation, we augment the patch by introducing a sparse set of M
anchor tracks (M ≈ 102 ≪ N ), with starting positions uniformly sampled across the first frame.

The second strategy involves computing virtual tracks by cross-attending only to the anchor tracks,
instead of attending to all tracks as in CoTracker. As illustrated in ③ of Fig. 3, this approach reduces
the cross-attention cost for computing virtual tracks from TKN ′ to TKM . Consequently, the total
cost for the new global attention becomes TK(N ′ + 2M) + TK2 +KT 2, approximately halving
the original cost of 2TKN ′ + TK2 + KT 2, assuming T,K,M ≪ N ′. As shown in Table 6b,
this reduction in computation has minimal impact on tracking accuracy. An additional advantage of
learning virtual tracks from anchor tracks is that the same set of anchor tracks is used during both
patchwise training and testing on the full image, eliminating any train-test resolution mismatch.

Dense local attention. To capture fine-grained representations of local relations among dense
tracks, we apply self-attention within very small spatial patches containing L pixels, prior to
cross-attending to the virtual tracks. Since self-attention is applied only within these small patches,
this approach adds a marginal complexity of O(TNL) during inference, where L ≪ N is the
number of tracks per patch. Experiments (Table 6b) show that incorporating dense local attention
significantly improves dense tracking accuracy.

In summary, our joint Global-Local spatial attention has roughly the same computational
cost as CoTracker’s global-only attention but (i) captures both global motion and fined-grained
spatial relations, (ii) enables end-to-end training, and (iii) achieves significantly better performance
in dense tracking (see Table 2, Table 3 and the qualitative results in our supplementary).

3.3 HIGH-RESOLUTION TRACK UPSAMPLER

Given the dense tracks extracted at a reduced spatial resolution of H
r × W

r , the next step is to
upsample them to the full resolution H ×W . In the context of optical flow, a common upsampling
approach expresses the flow for each fine-resolution pixel as a convex combination of its nearest
neighbor flows estimated in a coarse resolution (Teed & Deng, 2020). The weights for the combi-
nation are learned via a convnet. In contrast, we propose an attention-based upsampling mechanism
that more effectively captures the correlation between each fine-resolution pixel and its neighbors
at the coarse resolution. We demonstrate the efficacy in our experiments (see Figure 4 and Table 6c).

Starting from the first input frame of the window (for clarity, we omit the frame subscript t
in this section), the frame is initially processed through a lightweight convolutional backbone
to extract a coarse resolution feature map, Fcoarse ∈ RH

r ×W
r ×D, where D is the channel

dimension. This coarse feature map is then upsampled using a convolutional decoder to produce a
fine-resolution feature map, Ffine ∈ RH×W×D. Each fine-resolution pixel (u, v), with the feature
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vector F (u,v)
fine ∈ R1×D, cross-attends to a κ× κ neighborhood centered on its corresponding coarse

location (u′, v′) in the coarse resolution, where u′ = u/r and v′ = v/r, using subpixel accuracy

for u′ and v′. The neighboring coarse features is defined as the set {F (u′
j ,v

′
j)

coarse }κ×κ
j=1 ∈ R(κ×κ)×D.

Specifically, the fine-resolution feature map is extracted through a cross-attention operation:

F (u,v)
fine = a(u, v) · v({F (u′

j ,v
′
j)

coarse }κ×κ
j=1 ) (3)

where the cross-attention scores a(u, v) are computed as:

a(u, v) = softmax
(
q(F (u,v)

fine ) · k({F
(u′

j ,v
′
j)

coarse }κ×κ
j=1 ) +m · ||(u′, v′)− {u′

j , v
′
j}κ×κ

j=1 ||1
)

(4)

and q(·), k(·),v(·) are linear transformations for the queries, keys, and values respectively. The
term added to the above dot product represents a static, non-learned spatial bias inspired by Alibi
(Press et al., 2022). In our case, we bias the query-key attention scores between pixels with a penalty
proportional to their distance between their positions (L1 distance in our implementation). We refine
the fine-resolution feature map by applying a series of τ multi-head, Alibi-modified cross-attention
blocks, as described in Eq. 3. Finally, we use a MLP to predict the weight map W = MLP (Ffine),
where W ∈ RH×W×(κ×κ). This allows us to compute the high-resolution tracking by taking a
weighted average of the coarse-resolution tracks using the predicted weight map. We found that
more temporally consistent results are produced when the weights are estimated once for the first
frame of the time window, and then the same weights are reused for the rest of the frames.

3.4 DELVING DEEPER INTO DEPTH REPRESENTATION

Prior works in 3D tracking have primarily focused on exploring different designs of 3D features,
such as depth correlation features (Wang et al., 2024a) and triplane features (Xiao et al., 2024).
Our experiments reveal that the choice of depth representation, which is a previously overlooked
factor, has a much more significant impact. In previous works, 3D features were typically computed
in Euclidean space, with depth normalized to a fixed range, and the network predicted the difference
in normalized depth. We find that alternative depth representations, such as inverse depth 1/d and
log depth log(d), improve 3D accuracy, with log depth offering the greatest boost (Table 6a).

This improvement can be intuitively explained: Euclidean depth evenly distributes granularity along
the depth axis, which is suboptimal since objects of interest are typically closer. Inverse or log
depth enhances precision for nearby regions, where visual-based depth estimation methods tend to
be more reliable, while tolerating higher uncertainty for distant areas. This reasoning also underlies
why monocular depth estimation methods are often trained to output either inverse depth or log
depth (Eigen et al., 2014; Wang et al., 2019; Ranftl et al., 2022).

More critically, switching the network output from ∆dt = dt − d1 to ∆ log(dt) = log(dt) −
log(d1) = log(dt/d1), and similarly adjusting the depth correlation feature to a log depth corre-
lation feature, improves robustness to imperfections in input depth maps. The depth change ratio
dt/d1, being scale-invariant, effectively decouples the network from the arbitrary scale of the input
depth maps. This ratio also aligns with the concept of optical expansion (Swanston & Gogel, 1986;
Schrater et al., 2001), where objects appear larger as they approach the camera. Thus, estimating
depth change ratios directly from visual features makes the network less dependent on depth map
accuracy, a strategy similarly used in scene flow estimation (Yang & Ramanan, 2020).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Training data. We leverage the Kubric simulator (Greff et al., 2022) to generate 5,632 training
RGB-D videos and 143 testing videos, featuring falling rigid objects against diverse backgrounds.
Dense trajectories are annotated for every pixel in the first, middle, and last frames of each video.
To augment the training set, we apply random geometric and color augmentations to the images and
introduce noise to the depth maps.
Training loss. We supervise the model using both the low-res and the upsampled predictions.
The total loss is defined as λ2dL2D + λdepthLdepth + λvisibLvisib, where L2D and Ldepth are
the L1 losses comparing the predicted 2D coordinates and inverse depth with the ground truth,
and Lvisib is the binary cross entropy loss for visibility prediction. We empirically set weightings
λ2d, λdepth, λvisib to be 100.0, 1.0, 0.1.
Training details. Training details are included in the appendix.
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Methods CVO-Clean(7 frames) CVO-Final(7 frames) CVO-Extended(48 frames)
EPE↓ (all/vis/occ) IoU↑ EPE ↓ (all/vis/occ) IoU↑ EPE↓ (all/vis/occ) IoU↑

RAFT (Teed & Deng, 2020) 2.48 / 1.40 / 7.42 57.6 2.63 / 1.57 / 7.50 56.7 21.80 / 15.4 / 33.4 65.0
MFT (Neoral et al., 2024) 2.91 / 1.39 / 9.93 19.4 3.16 / 1.56 / 10.3 19.5 21.40 / 9.20 / 41.8 37.6

TAPIR (Doersch et al., 2023) 3.80 / 1.49 / 14.7 73.5 4.19 / 1.86 / 15.3 72.4 19.8 / 4.74 / 42.5 68.4
CoTracker (Karaev et al., 2023) 1.51 / 0.88 / 4.57 75.5 1.52 / 0.93 / 4.38 75.3 5.20 / 3.84 / 7.70 70.4

DOT (Le Moing et al., 2024) 1.29 / 0.72 / 4.03 80.4 1.34 / 0.80 / 3.99 80.4 4.98 / 3.59 / 7.17 71.1
SceneTracker (Wang et al., 2024a) 4.40 / 3.44 / 9.47 - 4.61 / 3.70 / 9.62 - 11.5 / 8.49 / 17.0 -
SpatialTracker (Xiao et al., 2024) 1.84 / 1.32 / 4.72 68.5 1.88 / 1.37 / 4.68 68.1 5.53 / 4.18 / 8.68 66.6

DOT-3D 1.33 / 0.75 / 4.16 79.0 1.38 / 0.83 / 4.10 78.8 5.20 / 3.58 / 7.95 70.9

Ours (2D) 0.89 / 0.46 / 2.96 78.3 0.97 / 0.55 / 2.96 77.7 3.63 / 2.67 / 5.24 71.6
Ours (3D) 0.94 / 0.51 / 2.97 78.7 1.03 / 0.61 / 3.03 78.3 3.67 / 2.64 / 5.30 70.1

Table 2: Long-range optical flow results on CVO (Wu et al., 2023; Le Moing et al., 2024).

Methods Kubric-3D (24 frames) TimeAJ↑ APD3D ↑ OA↑
SpatialTracker 42.7 51.6 96.5 9mins
SceneTracker - 65.5 - 5mins

DOT-3D 72.3 77.5 88.7 0.15mins
Ours 81.4 88.6 96.6 0.5mins

Table 3: Dense 3D tracking results on the
Kubric3D dataset.

Methods LSFOdyssey
AJ↑ APD3D ↑ OA↑

SpatialTracker 5.7 9.9 84.0
SceneTracker‡ - 57.7 -

Ours 29.4 39.6 84.4
Ours‡ 50.1 69.7 83.9

Table 4: 3D tracking results on the LSFOdyssey
benchmark. ‡ denotes models trained with LS-
FOdyssey training set.

4.2 COMPARISON TO PRIOR WORKS

Baselines. We evaluate our method against prior optical flow and point tracking methods. Particu-
larly, we perform a close comparison against DOT (Le Moing et al., 2024), a recent SoTA method
designed for dense 2D tracking. We implemented a 3D extension of DOT, named DOT-3D, where
we incorporate depth map input into its optical flow module and add a head to output log(dt/d1).

Benchmark datasets. We evaluate the performance of our approach across multiple tracking sce-
narios, including long-range 2D optical flow, dense 3D tracking, and 3D point tracking benchmarks.
• Long-range 2D optical flow: We use the CVO (Wu et al., 2023) test set, which originally in-
cludes two subsets: CVO-Clean and CVO-Final, the latter incorporating motion blur. Each split
contains approximately 500 videos with 7 frames captured at 60 FPS. Following the comparison in
DOT(Le Moing et al., 2024), we introduce an additional split, CVO-Extended, which includes 500
videos of 48 frames rendered at 24 FPS. All videos in the CVO dataset are annotated with dense,
long-range 2D optical flow and occlusion masks.
• Dense 3D tracking: We use our generated Kubric test split with 143 videos, each with 24 frames.
• 3D point tracking: We use two benchmarks: (1) TAP-Vid3D includes videos from 3 datasets with
different scenarios: DriveTrack (Balasingam et al., 2024), PStudio (Joo et al., 2017), and Aria (Pan
et al., 2023) with total 4569 videos for evaluation, where the number of frames varies from 25 to
300 per video. (2) LSFOdyssey contains 90 40-frame videos derived from the PointOdyssey dataset
(Zheng et al., 2023). Both datasets provide sparse trajectories and occlusion annotations.

Metrics. For long-range optical flow benchmark, we follow Le Moing et al. (2024) and report the
end-point-error (EPE) between the predicted flows and groundtruth flows for both visible, occluded
points and the intersection over union (IoU) between predicted and ground-truth occluded regions in
visibility masks. For dense 3D tracking and 3D point tracking benchmarks, we follow Koppula et al.
(2024) and report APD3D (< δavg) which measures the average percent of points within δx error
threshold, occlusion accuracy OA measures the accuracy of visibility prediction and the average
Jaccard (AJ) which evaluates both occlusion and position accuracy.

Long-range optical flow results. We first compare our method against baseline approaches on the
dense 2D tracking task (see Tab. 2). This experiment isolates the evaluation from additional 3D
features and supervision, making it a straightforward assessment of our proposed network architec-
ture for handling dense per-pixel tracking. We find that our method significantly outperforms all
previous approaches, including the recent SOTA method, DOT, in terms of positional accuracy. The
improvement is particularly noticeable when visualizing the results (see Appendix), where the tra-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Methods Aria DriveTrack PStudio Average
AJ↑ APD3D ↑ OA↑ AJ↑ APD3D ↑ OA↑ AJ↑ APD3D ↑ OA↑ AJ↑ APD3D ↑ OA↑

TAPIR† + COLMAP 7.1 11.9 72.6 8.9 14.7 80.4 6.1 10.7 75.2 7.4 12.4 76.1
CoTracker† + COLMAP 8.0 12.3 78.6 11.7 19.1 81.7 8.1 13.5 77.2 9.3 15.0 79.1

BootsTAPIR† + COLMAP 9.1 14.5 78.6 11.8 18.6 83.8 6.9 11.6 81.8 9.3 14.9 81.4

CoTracker† + UniDepth 13.0 20.9 84.9 12.5 19.9 80.1 6.2 13.5 67.8 10.6 18.1 77.6
TAPTR† + UniDepth 15.7 24.2 87.8 12.4 19.1 84.8 7.3 13.5 84.3 11.8 18.9 85.6

LocoTrack† + UniDepth 15.1 24.0 83.5 13.0 19.8 82.8 7.2 13.1 80.1 11.8 19.0 82.3
SpatialTracker + UniDepth 13.6 20.9 90.5 8.3 14.5 82.8 8.0 15.0 75.8 10.0 16.8 83.0
SceneTracker + UniDepth - 23.1 - - 6.8 - - 12.7 - - 14.2 -

DOT-3D + UniDepth 13.8 22.1 85.5 11.8 17.9 82.3 3.2 5.3 52.5 9.6 15.1 73.4
Ours + UniDepth 16.6 24.4 86.8 14.6 22.5 85.8 8.2 15.0 76.4 13.1 20.6 83.0

TAPIR† + ZoeDepth 9.0 14.3 79.7 5.2 8.8 81.6 10.7 18.2 78.7 8.3 13.8 80.0
CoTracker† + ZoeDepth 10.0 15.9 87.8 5.0 9.1 82.6 11.2 19.4 80.0 8.7 14.8 83.4

BootsTAPIR† + ZoeDepth 9.9 16.3 86.5 5.4 9.2 85.3 11.3 19.0 82.7 8.8 14.8 84.8
TAPTR† + ZoeDepth 9.1 15.3 87.8 7.4 12.4 84.8 10.0 17.8 84.3 8.8 15.2 85.6

LocoTrack† + ZoeDepth 8.9 15.1 83.5 7.5 12.3 82.8 9.7 17.1 80.1 8.7 14.8 82.1
SpatialTracker + ZoeDepth 9.2 15.1 89.9 5.8 10.2 82.0 9.8 17.7 78.0 8.3 14.3 83.3
SceneTracker + ZoeDepth - 15.1 - - 5.6 - - 16.3 - - 12.3 -

Ours + ZoeDepth 10.1 16.2 84.7 7.8 12.8 87.2 10.2 17.8 74.5 9.4 15.6 82.1

Table 5: 3D tracking results on the TAP-Vid3D Benchmark. We report the 3D average jaccard
(AJ), average 3D position accuracy (APD3D), and occlusion accuracy (OA) across datasets Aria,
DriveTrack, and PStudio using UniDepth and ZoeDepth for depth estimation.† denotes using depth
to lift 2D tracks to 3D tracks. We re-evaluated SpatialTracker and SceneTracker using their publicly
available code and checkpoints, following the same inference procedure as our method. We note
that the results differ slightly from the numbers reported in the TAP-Vid3D paper.

Depth Network TAP-Vid3D (Avg.)
Repr. Output AJ↑ APD3D ↑
d dt − d1 9.0 15.0

1/d 1/dt − 1/d1 9.4 15.6
log(d) log(dt/d1) 13.1 20.6

(a) Depth representation

Global Local CVO (Extended)
Attn. Attn. EPE↓ OA↑
✗ ✗ 10.0 / 4.84 / 18.1 65.7
✗ ✓ 8.01/ 3.89 / 13.91 69.0
② CoTracker ✗ 3.72 / 2.78 / 5.44 70.1
③ Ours ✗ 3.73/ 2.78 / 5.47 70.0
③ Ours ✓ 3.67 / 2.64 / 5.30 70.1

(b) Spatial attention design

Upsample CVO (Extended)
Method EPE ↓ OA ↑
Bilinear 5.31 / 4.14 / 7.94 68.9
NN 5.34 / 4.17 / 7.98 66.9
3D KNN 4.59 / 3.41 / 7.07 68.9

ConvUp 4.27 / 3.09 / 6.73 70.2
AttentionUp 3.73 / 2.73 / 5.35 70.3
AttentionUp + Alibi 3.67 / 2.64 / 5.30 70.1

(c) Upsampler design

Table 6: Ablation studies (a) different depth representations on TAP-Vid3D (b) different spatial
attention designs on the CVO (Extended) (c) different upsampler designs on CVO (Extended).

jectories predicted by DOT tend to become unstable once the tracked pixel is occluded or moves out
of view. This highlights the importance of maintaining temporal attention in the tracking network, a
feature absent in DOT.

Additionally, we compare both DOT and our method with and without 3D supervision. We find that
the variants are nearly equivalent, although the quantitative performance slightly decreases for the
3D-supervised versions. We also observe that our visibility mask accuracy is on par with CoTracker,
from which our method is derived, though it is marginally lower than DOT. These discrepancies
could potentially be addressed by adjusting the weightings of different terms in the training loss.

Dense 3D Tracking results. We report the results of dense 3D tracking on the Kubric synthetic test
set, where our approach significantly outperforms other methods in both accuracy and runtime. We
visualize of 3D dense tracking results in figure 5. Compared to SceneTracker and SpatialTracker,
our method excels at accurately predicting the locations of moving objects and preserving object
shapes throughout the video. Please find more qualitative results in the supplementary.

3D point tracking benchmarks results. To further evaluate the generalizability of our approach on
in-the-wild videos, we assess its performance on the TAPVid-3D dataset using depth maps estimated
by either UniDepth (Piccinelli et al., 2024) or ZoeDepth (Bhat et al., 2023). The results, summa-
rized in Table 5, show that our method consistently outperforms previous approaches, including
SpatialTracker, SceneTracker, and 3D-lifted versions of state-of-the-art 2D tracking methods. Our
approach demonstrates improvements across most sub-datasets, as well as in the overall average.
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Figure 5: Qualitative results of dense 3D tracking on in-the-wild videos between CoTracker +
UniDepth, SceneTracker, SpatialTracker and our method. We densely track every pixel from the first
frame of the video in 3D space, the moving objects are highlighted as rainbow color. Our method
accurately tracks the motion of foreground objects while maintaining stable backgrounds. More
animated results are provided in the supplementary webpage.

We also evaluate our approach on the LSFOdyssey dataset (Wang et al., 2024a), as shown in Tab. 4.
In this benchmark, SceneTracker, trained specifically on the same domain, outperforms both Spa-
tialTracker and our model, which were trained on the Kubric dataset. To ensure a fair comparison,
we fine-tuned our model for just one epoch on the LSFOdyssey training set and observed substantial
performance improvements, surpassing SceneTracker.

4.3 ABLATION STUDY

Study on the 3D representation is presented in Tab. 6a. We find that representing depth using log
depth significantly improves 3D tracking accuracy compared to using depth and inverse depth.

Study on the design of spatial attention is shown in Tab. 6b. We evaluated different spatial atten-
tion variants, as illustrated in Fig.3, comparing approaches with and without global or local attention.
We also compared two versions of global attention: the one used in CoTracker, which cross-attends
virtual tracks back and forth (illustrated in ② of Fig.3), and our proposed method of cross-attending
virtual tracks with anchor tracks (illustrated in ③ of Fig. 3). Our results show that both global
and local attention are crucial, and our design of global attention achieves comparable accuracy to
CoTracker while being more computationally efficient.

Study on the design of upsampler is reported in Tab. 6c. We compared our approach against
upsampling methods using non-learnable operators (bilinear, nearest neighbor, and 3D K-nearest
neighbor) and the CNN-based upsampler from RAFT (Teed & Deng, 2020). Our method noticeably
outperforms all of these approaches.

5 CONCLUSION

We presented a method that efficiently tracks every pixel of a frame throughout a video, demonstrat-
ing state-of-the-art accuracy in dense 2D/3D tracking while running significantly faster than existing
3D tracking methods. Despite these successes, our method shares some common limitations with
previous point-tracking approaches due to its relatively short temporal processing windows. It may
fail to track points that remain occluded for extended periods, and it currently performs best with
videos of fewer than a few hundred frames. Additionally, our 3D tracking performance is closely
tied to the accuracy and temporal consistency of the off-the-shelf monocular depth estimation. We
anticipate that our method will benefit from recent rapid advancements in monocular depth estima-
tion research (Hu et al., 2024).
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Methods Kinetics DAVIS RGB-Stacking
AJ↑ APD2D ↑ OA↑ AJ↑ APD2D ↑ OA↑ AJ↑ APD2D ↑ OA↑

TAP-Net (Doersch et al., 2022) 38.5 54.4 80.6 33.0 48.6 78.8 54.6 68.3 87.7
MFT (Neoral et al., 2024) 39.6 60.4 72.7 47.3 66.8 77.8 - - -
PIPs (Harley et al., 2022) 31.7 53.7 72.9 42.2 64.8 77.7 15.7 28.4 77.1

OmniMotion (Wang et al., 2023a) - - - 46.4 62.7 85.3 69.5 82.5 90.3
TAPIR (Doersch et al., 2023) 49.6 64.2 85.0 56.2 70.0 86.5 54.2 69.8 84.4

CoTracker (Karaev et al., 2023) 48.7 64.3 86.5 60.6 75.4 89.3 63.1 77.0 87.8
DOT (Le Moing et al., 2024) 48.4 63.8 85.2 60.1 74.5 89.0 77.1 87.7 93.3

BootsTAPIR (Doersch et al., 2024) 54.6 68.4 86.5 61.4 73.6 88.7 70.8 83.0 89.9
TAPTR (Li et al., 2024b) 49.0 64.4 85.2 63.0 76.1 91.1 - - -

TAPTRv2 (Li et al., 2024a) 49.7 64.2 85.7 63.5 75.9 91.4 - - -
LocoTrack (Cho et al., 2024b) 52.9 66.8 85.3 63.0 75.3 87.2 69.0 83.2 89.5

SpatialTracker (Xiao et al., 2024) 50.1 65.9 86.9 61.1 76.3 89.5 63.5 77.6 88.2
SceneTracker (Wang et al., 2024a) - 66.5 - - 71.8 - - 73.3 -

DOT-3D 48.1 63.7 85.9 61.2 75.3 88.1 76.3 86.6 92.1

Ours (2D) 50.3 63.5 83.2 64.2 77.3 87.8 73.4 82.4 89.6
Ours 49.5 63.3 82.2 62.7 76.7 88.2 74.2 83.5 90.0

Table 7: 2D Tracking Results on the TAP-Vid Benchmark (Doersch et al., 2022) (query-first mode).
We report the average jaccard (AJ), average 2D position accuracy (APD2D), and occlusion accuracy
(OA) on the Kinetics (Carreira & Zisserman, 2017), DAVIS (Pont-Tuset et al., 2017) and RGB-
Stacking (Lee et al., 2021) datasets.

A APPENDIX

Implementation details. We use the same backbone as Karaev et al. (2023); Harley et al. (2022),
which consists of 6 residual blocks, outputting feature maps with a dimension of 256. Unlike Co-
Tracker, which extracts a single-scale feature map and applies pooling later in the correlation mod-
ule, we directly generate a pyramid of feature maps at scales 2, 4, and 8. We perform dense pixel
tracking at a resolution of H/4 × W/4 (with r = 4). The transformer network Φ is composed of
6 spatial and temporal attention blocks, utilizing 8 attention heads and 384 hidden channels. The
number iteration step is set to 6. The number of anchor tracks is set to 9× 12 during training. In the
patch-wise dense local attention, we use a patch size of 6, resulting in L = 36 tracks per patch. In
the high-resolution track upsampler, we use 9 neighbors (with κ = 3) and 2 cross-attention blocks.

Training details. We first pretrain the model with 2D loss and visibility loss for 100k iterations,
then train with the full loss for another 100k iterations. All stages are conducted on a machine with 8
A100 GPUs. We use the AdamW optimizer and the batch size is set to 1 for each GPU. The learning
rate is initialized to 10−4 and scheduled by a linear one cycle (Smith & Topin, 2019). During
training, to save the GPU memory consumption, we randomly sample a patch of size N ′ = 30× 40
from the dense 3D trajectory map as supervision. The input video is resized to 384 × 512 in both
training and testing. For in-the-wild video, we leverage ZoeDepth (Bhat et al., 2023) and UniDepth
(Piccinelli et al., 2024) to obtain video depth.

Sparse Tracking Setting. In the sparse tracking scenario, where there are fewer than 10K points and
they are sparsely distributed across the image, our model can seamlessly switch to a sparse mode by
disabling the local attention in the Transformer and the Upsampler. This adjustment is made without
requiring any changes to the overall architecture. This mode enables efficient evaluation on sparse
tracking benchmarks such as TAP-Vid (Doersch et al., 2022) and TAP-Vid3D (Koppula et al., 2024).

2D point tracking benchmark results. We also evaluate the performance of our method on 2D
point tracking on the TAP-Vid dataset, containing videos from 3 datasets: DAVIS (Pont-Tuset et al.,
2017) with 30 in-the-wild videos, RGB-Stacking (Carreira & Zisserman, 2017) with 50 synthetic
sequences, and Kinetics (Lee et al., 2021) with 1144 real videos. The results are reported in Ta-
ble 7. Our approach outperforms 3D tracking methods, including SpatialTracker (Xiao et al., 2024),
SceneTracker (Wang et al., 2024a), and DOT-3D, in most of the sub-datasets while having competi-
tive performance with other SoTA approaches designed for sparse 2D tracking only.
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Figure 6: Comparison of long-range optical flow predictions: We predict optical flows from the
first frame to subsequent frames of the video. DOT (Le Moing et al., 2024), which lacks strong
temporal correlation, suffers from a noticeable ”flickering” effect (green circle), particularly at the
boundaries between foreground and background objects. In contrast, our method ensures a smooth
and consistent transition over time, effectively reducing artifacts at object boundaries.

Qualitative results of long-range 2D flows are visualized in 6. Thanks to the strong temporal con-
sistency of our method, it produces smooth predictions over time, effectively avoiding the ’flicker’
artifacts that are commonly observed in per-frame optical flow predictions, such as those produced
by DOT(Le Moing et al., 2024).

More discussions on the 3D tracking performance. As shown in Table 5 of the main paper,
baseline methods (2D tracking + depth estimation) significantly underperform compared to our
end-to-end 3D tracking approach. Interestingly, better 2D tracking models do not always lead
to better 3D tracking performance (e.g., BootsTAPIR versus CoTracker). This is because the
performance of these baselines heavily relies on the quality and scale-consistency of the input video
depth. However, frame-wise depth estimators like ZoeDepth and UniDepth lack scale-consistency
(see supplementary videos), where even small depth errors can cause significant 3D location
discrepancies.

Furthermore, 2D tracking + depth estimation can only predict motion for visible points within the
viewpoint, restricting applications such as 3D/4D reconstruction, which require complete motion
predictions, including occluded and out-of-frame regions.

These challenges underline the need for end-to-end 3D tracking models to achieve reliable
3D performance. Our approach addresses these limitations and is also complementary to recent
advances in 2D point tracking, enabling us to integrate their findings to further enhance both 2D
and 3D tracking performance.

Ablation on the anchor tracks is shown in Table 8. Removing the anchor tracks during training
increases the EPE by nearly 1.0, meaning that the anchor tracks are important to avoid train-test
mismatch.

Qualitative comparison of the design of upsampler on the Sintel dataset (Butler et al., 2012)
is visualized in figure 7. Our attention-based upsampler (last row) significantly outperforms the
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Figure 7: Comparison of long-range optical flow predictions on Sintel dataset between our
approach (with CNN-based/attention-based upsampler) and SEA-RAFT. We predict optical flows
from the first frame to subsequent frames of the video. While SEA-RAFT excels at short-range
flow prediction (first column), it fails to predict flow between far-away frames. In contrast, our
approach, with an attention-based upsampler, achieves smooth and consistent predictions across
frames, outperforming the baseline using convolutional upsampler.

CVO (Extended)
EPE ↓ OA ↑

W/o anchor tracks 4.50 / 3.10 / 6.95 69.7
With anchor tracks 3.63 / 2.67 / 5.24 71.6

Table 8: Ablation on the role of anchor tracks.

CNN-based upsampler from RAFT (Teed & Deng, 2020) (second row), with better detail and less
artifacts. For reference, we include predictions from the state-of-the-art optical flow model SEA-
RAFT (Wang et al., 2025) (first row), which, despite being trained on Sintel, excels at short-range
predictions (first column) but fails with long-range flows.

We also compare our long-range flow predictions between SEA-RAFT, DOT, and our method on
in-the-wild videos. The results are visualized in figure 8 showing that our approach achieves better
temporal smoothness and less artifact for long-range motion prediction.

Dynamic video pose estimation. DUSt3R (Wang et al., 2024b) introduced a paradigm for
estimating static 3D scene geometry and camera poses from image sets. By training a model
on large-scale data, it predicts aligned 3D point maps for image pairs, followed by lightweight
optimization to obtain scale-consistent depth maps and camera poses. However, this approach fails
on videos with dynamic objects. MonST3R (Zhang et al., 2024) extended DUSt3R to dynamic
videos by fine-tuning the model on dynamic datasets. Our method aligns with this approach.

We first perform dense pixel tracking from the initial frame, producing dense 3D trajectories
P(0,) ∈ RT×H×W×4. For any destination frame ν, the 3D points P(0,ν) = P(0,)[ν] ∈ RH×W×4

represent the 3D positions of all pixels from the initial frame in the camera coordinate system at
frame ν. This naturally combines the camera motion from frame 0 to ν with any non-rigid scene
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Figure 8: Comparison of long-range optical flow predictions on in-the-wild videos between
DOT, SEA-RAFT, and our approach.

motion over the interval. This setup aligns with the methodology of MonST3R (Zhang et al., 2024).
We then apply the global alignment approach from Wang et al. (2024b); Zhang et al. (2024) to
estimate camera poses across dynamic video sequences.

In detail, we uniformly sample keyframes with a stride of 2 from the input video and densely track
all pixels of these frames. For each keyframe k, tracking is performed both forward and backward
within a window [k − w, k + w], where w = 8. Following Zhang et al. (2024), we model the
pose estimation as an optimization task, where the learnable parameters include per-keyframe depth
maps, as well as per-keyframe intrinsic and extrinsic camera parameters, and optimize with gradient
descent. The objective function combines alignment loss, temporal smoothness loss, and 2D flow
loss. For the 2D flow loss, we calculate pseudo optical flow ground truth using our dense tracking
approach rather than relying on an off-the-shelf model (Wang et al., 2025; Teed & Deng, 2020). For
non-keyframe frames, camera poses are interpolated from the two nearest neighboring keyframes.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Methods Sintel TUM-dynamics
ATE↓ RPE trans↓ RPE rot↓ ATE↓ RPE trans↓ RPE rot↓

DROID-SLAM (Teed & Deng, 2021a) 0.175 0.084 1.912 - - -
DPVO (Teed et al., 2024) 0.115 0.072 1.975 - - -

ParticleSfM (Zhao et al., 2022) 0.129 0.031 0.535 - - -
LEAP-VO (Chen et al., 2024) 0.089 0.066 1.250 0.068 0.008 1.686

Robust-CVD (Kopf et al., 2021) 0.360 0.154 3.443 0.153 0.026 3.528
CasualSLAM (Zhang et al., 2022) 0.141 0.035 0.615 0.071 0.010 1.712

DUSt3R (Wang et al., 2024b) 0.417 0.250 5.796 0.083 0.017 3.567
MonST3R (Zhang et al., 2024) 0.108 0.042 0.732 0.063 0.009 1.217

Ours 0.172 0.060 0.553 0.052 0.007 1.343

Table 9: Pose estimation results on Sintel and TUM datasets. The upper group (first four rows)
includes methods that estimate camera poses only, without reconstructing scene geometry while the
lower group and our approach provide both camera poses and per-frame depth maps. Our method
achieves competitive results compared to other approaches specifically designed for visual odometry
or SLAM tasks.

We evaluate the pose estimation performance on Sintel (Butler et al., 2012) and TUM-dynamics
(Sturm et al., 2012) datasets. On Sintel, we follow the evaluation protocol in Zhang et al. (2024);
Chen et al. (2024), which excludes static and easy scene, remaining 14 test sequences. For
TUM-dynamics, we sample the first 90 frames with the temporal stride of 3. We report the Absolute
Translation Error (ATE), Relative Translation Error (RPE trans), and Relative Rotation Error (RPE
rot), after applying a Sim(3) Umeyama alignment on prediction to the ground truth. The results
are reported in Table 9. Our method demonstrates comparable performance to state-of-the-art
approaches specifically tailored for visual odometry and SLAM tasks. We visualize the camera
pose and dynamic 3D scene reconstruction on casual videos in figure 9.
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Figure 9: Qualitative results of jointly depth and pose estimation on in-the-wild videos (first two
rows) and AI-generated video (last row) of our approach.
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