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ABSTRACT

Abductive reasoning is logical reasoning that makes educated guesses to infer the
most likely reasons to explain the observations. However, the abductive logical
reasoning over knowledge graphs (KGs) is underexplored in KG literature. In this
paper, we initially and formally raise the task of abductive logical reasoning over
KGs, which involves inferring the most probable logic hypothesis from the KGs
to explain an observed entity set. Traditional approaches use symbolic methods,
like searching, to tackle the knowledge graph problem. However, the symbolic
methods are unsuitable for this task, because the KGs are naturally incomplete,
and the logical hypotheses can be complex with multiple variables and relations.
To address these issues, we propose a generative approach to create logical expres-
sions based on observations. First, we sample hypothesis-observation pairs from
the KG and use supervised training to train a generative model that generates hy-
potheses from observations. Since supervised learning only minimizes structural
differences between generated and reference hypotheses, higher structural similar-
ity does not guarantee a better explanation for observations. To tackle this issue,
we introduce the Reinforcement Learning from the Knowledge Graph (RLF-KG)
method, which minimizes the differences between observations and conclusions
drawn from the generated hypotheses according to the KG. Experimental results
demonstrate that transformer-based generative models can generate logical expla-
nations robustly and efficiently. Moreover, with the assistance of RLF-KG, the
generated hypothesis can provide better explanations for the observations, and the
method of supervised learning with RLF-KG achieves state-of-the-art results on
abductive knowledge graph reasoning on three widely used KGs.

1 INTRODUCTION

Abductive reasoning is a form of reasoning that is concerned with the generation of explanatory
hypotheses for observed phenomena (Haig, 2012). It is a powerful tool across various research do-
mains. For instance, in cognitive neuroscience, reverse inference (Calzavarini & Cevolani, 2022),
representing an instance of abductive reasoning, is a crucial inferential strategy used to infer the
most likely cognitive processes involved based on the observed brain activation patterns. Similarly,
in clinical diagnostics, it is also recognized as one of the most important forms of reasoning for
studying cause-and-effect relationships (Martini, 2023). Beyond these applications, abductive rea-
soning assumes a significant role in the process of reasoning to hypotheses across humans, animals,
and computational machines (Magnani, 2023).

A knowledge graph (KG) stores information about entities, like people, places, items, and their
relations in graph structures. Meanwhile, KG reasoning is a type of reasoning that leverages these
knowledge graphs to infer or derive new information (Zhang et al., 2021a; 2022; Ji et al., 2022).
In recent years, various logical reasoning tasks are proposed over knowledge graph, for example,
answering complex queries expressed in logical structure (Hamilton et al., 2018; Ren & Leskovec,
2020), or conducting mining over the KG to obtain logical rules (Galárraga et al., 2015; Ho et al.,
2018; Meilicke et al., 2019).

However, abductive reasoning using structured knowledge from KG is important yet lacks explo-
ration. Consider the example of observation O1 in Figure 1. This observation depicts a user fol-
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Observations (O) Hypotheses (H) Interpretations

𝑂1 = {Grant Heslov, Jason Segel, 

Robert Towne, Ronald Bass, 

Rashida Jones}

𝐻1 = 𝑉? ∶ 𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛(𝑉?, 𝐴𝑐𝑡𝑜𝑟) ∧
𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑉?, 𝑆𝑐𝑟𝑒𝑒𝑒𝑊𝑟𝑖𝑡𝑒𝑟 ∧
𝐵𝑜𝑟𝑛𝐼𝑛 𝑉?, 𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠

The actors and screenwriters 

born in Los Angeles

𝑂2 = {Ipad 1st Gen, Ipod touch 4th

Gen, Apple TV 1st Gen}
𝐻2 = 𝑉? ∶ 𝐵𝑟𝑎𝑛𝑑(𝑉?, 𝐴𝑝𝑝𝑙𝑒) ∧
𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑌𝑒𝑎𝑟(𝑉?, 2010) ∧ ¬𝑇𝑦𝑝𝑒 𝑉?, 𝑃ℎ𝑜𝑛𝑒

The Apple products released in 

2010 that are not phones

𝑂3 = {Covid-19, Seasonal Flu, 

Dysmenorrhea}
𝐻3 = 𝑉? , ∃𝑉1: 𝐻𝑎𝑣𝑒𝑆𝑦𝑚𝑝𝑡𝑜𝑚(𝑉?, 𝑉1)
∧ 𝑅𝑒𝑙𝑖𝑒𝑣𝑒𝑑𝐵𝑦 𝑉1, 𝑃𝑎𝑛𝑎𝑑𝑜𝑙

The disease whose symptoms 

can be relieved by Panadol 

Figure 1: This figure shows some examples of observations and inferred logical hypotheses, ex-
pressed with discrepancies interpretations.

lowing five celebrities, Grant Heslov, Jason Segel, Robert Towne, Ronald Bass, and Rashida Jones
on a social media platform. Given this observation, the social network service provider is interested
in using structured knowledge to explain the user’s observed behavior. Suppose we have a knowl-
edge graph like Freebase (Bollacker et al., 2008), which includes some basic information about
these people. We expect a method to utilize the information to find a complex structured hypothe-
sis to explain the observations. For example, the knowledge graph may suggest that they were all
actors and screenwriters born in Los Angeles. These characteristics interpret the user’s intentions
and behaviors. This complex structured hypothesis can be expressed as a logical expression V? :
Occupation(V?, Actor) ∧ Occupation(V?, ScreenWriter) ∧ BornIn(V?, LosAngeles), where
Occupation and BornIn are relations and Actor, ScreenWriter, and LosAngeles are entities
from the KG, and ∧ represents the logical conjunction operator, meaning AND. Consider another ex-
ample in Figure 1: a user may search for several items in an e-commerce platform and view a series
of products as shown in O2, and the service providers can use a knowledge graph to generate a struc-
tured hypothesis like H2, namely, they are the Apple products released in 2010 that are not phones.
There is also a more complicated example in medical diagnostics. Suppose we want to describe
the observation O3 = {Covid19, SeasonalF lu,Dysmenorrhea}, we can explain it through the
logical hypothesis H3 = V?,∃V1 : HaveSymptom(V?, V1)∧RelevedBy(V1, Panadol), which
means they are diseases V? with symptom V1, and V1 can be relieved by Panadol. From a general
perspective, the proposed problem is a process of abductive logical reasoning on knowledge graphs,
as it aims to find hypotheses that can best explain given observation sets (Josephson & Josephson,
1996; Thagard & Shelley, 1997).

A straightforward solution to this reasoning task is to use a search-based method to look for possible
hypotheses given an observation. However, there are two challenges in the approach. The first chal-
lenge is the incompleteness of KGs, and the searching-based methods on KGs are sensitive to the
missing edges (Ren & Leskovec, 2020). The second challenge is the complexity of logically struc-
tured hypotheses. The search space for the search-based methods contains a combinatorial number
of candidate hypotheses. Consequently, the search-based method cannot deal with the observations
needing a complex hypothesis to explain.

To deal with these challenges, we propose using generative models to generate logical hypotheses
for the given observations in a supervised learning setting. In doing so, we sample hypothesis-
observation pairs from the observed knowledge graphs (Ren et al., 2020; Bai et al., 2023) and then
use the teacher-forcing method to train a transformer-based generative model (Vaswani et al., 2017)
to generate hypotheses conditioned on the given observations. However, supervised training only
minimizes structural differences between the generated and reference hypotheses, and higher struc-
tural similarity does not guarantee a better explanation. In addition, the unsatisfactory performance
of this method can also be observed from the experiment results in Section 4.4. To address this is-
sue, we propose a method called reinforcement learning from the knowledge graph (RLF-KG) which
leverages proximal policy optimization (PPO) (Schulman et al., 2017) to minimize the discrepancy
between observation and the conclusion drawn from the generated hypothesis.

The effectiveness and efficiency of the proposed methods are evaluated on three widely used knowl-
edge graphs, FB15k-237 (Toutanova & Chen, 2015), WN18RR (Toutanova & Chen, 2015), and
DBpedia50 (Shi & Weninger, 2018). Experiment results show that our generation-based methods
are able to consistently outperform the search-based method in two evaluation metrics on three
datasets, indicating its superiority in conducting abductive reasoning on KGs. Our contributions can
be summarized as follows:
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• We propose the task of abductive logical reasoning on knowledge graphs, in which given
an observation set of entities, the goal is to find the logical hypotheses that can best explain
the observation.

• We propose to use a generation-based method to address the difficulties of the incomplete-
ness of KG and the complexity of the logical hypotheses.

• We propose reinforcement learning from knowledge graph (RLF-KG) to further improve
the hypothesis generation model by incorporating the feedback from KG to minimize the
differences between the observations and the conclusions drawn from the generated hy-
potheses.

2 PROBLEM FORMULATION

In this task, a knowledge graph is denoted by a G = (V,R), where V is the set of vertices and R is
the set of relation types. A relation type r :∈ R is a mapping from vertex pairs in the KG to Boolean
values, describing whether there is an edge of the type r connecting one vertex to another. Namely,
r : V × V → {true, false} is defined by ∀u, v ∈ V : r(u, v) = true if the directed edge (u, r, v)
from u to v of type r exists in the KG and false otherwise.

Abductive reasoning is a type of logical reasoning that involves making educated guesses to infer the
most likely reasons to explain the observations (Josephson & Josephson, 1996; Thagard & Shelley,
1997). Here we use simple syllogisms to explain the connections and differences between deductive
and abductive reasoning. In deductive reasoning, suppose we have a major premise P1: All men are
mortal, a minor premise P2: Socrates is a man, then we can draw the conclusion C that Socrates is
mortal. This can be also expressed as P1 ∧ P2 → C. Meanwhile, in abductive reasoning, we also
start with a premise P : All cats like catching mice, and then we have some observation O: Katty
like catching mice. The abduction gives a simple yet most probable hypothesis H: Katty is a cat,
as an explanation. Different from deductive reasoning, the observation O should be entailed by the
premise P and the hypotheses H , which can be expressed by the following expression: P ∧H → O.

We adopt the open-world assumption of KG (Drummond & Shearer, 2006), under which the missing
edges from the KG are regarded as unknown instead of false. Meanwhile, a reasoning model can
only access the observed knowledge graph G. The reasoning model is evaluated based on a hidden
knowledge graph Ḡ, which contains the observed knowledge graph G.

Any set of entities O ⊂ V is called an observation set. For example, O can be a set of name entities
like {GrantHeslov, JasonSegel, RobertTowne, RonaldBass,RashidaJones}. Given this ob-
servation, an abductive reasoner is required to give the most likely logical hypothesis that can explain
the observation O. For the above example, the expected hypothesis H in natural language is that they
are actors and screen writers, and they are also born in Los Angeles. Mathematically, the hypothesis
H can be expressed by a logical expression of the facts of the KG: H(V ) = Occupation(V,Actor)
∧ Occupation(V, ScreenWriter) ∧ BornIn(V,LosAngeles). Although in this example the log-
ical expression only contains logical conjunction AND (∧), we consider the more general first-order
logical form including exisential quantifiers, AND (∧), OR (∨), and NOT (¬). Formally, we define
a logical hypothesis H on a graph G = (V,R) as a predicate of a variable vertex V?, given in
disjunctive normal form,

HG(V?) = ∃V1, V2, . . . , Vk : e1 ∨ e2 ∨ · · · ∨ en, (1)
ei = ri1 ∧ ri2 ∧ · · · ∧ rimi

, (2)

where each rij is of one of these forms: rij = r(v, V ), rij = ¬r(v, V ), rij = r(V, V ′),
aij = ¬r(V, V ′), where the lowercase letter v represents a fixed vertex, the uppercase letters V, V ′

represent variable vertices in {V?, V1, V2, . . . , Vk}, r is a relation type, and all these vertices and re-
lations are in G. Note that the same hypothesis can be defined on different KGs as long as the fixed
nodes and relations involved also exist in those KGs. When the context is clear, or the hypothesis
refers to a general one that is supposed to be examined in multiple KGs, we omit the subscript G for
simplicity.

The conclusion of the hypothesis H on a graph G, denoted by [[H]]G , is defined as the set of all the
entities that make the hypothesis true on graph G, given by

[[H]]G = {V?|HG(V?) = true}. (3)
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[Apple] [2010] [Phone]

[Type][Release][Brand]

[I] [I] [N]

[I] [I]

Hypothesis: 𝐻 = 𝑉? ∶ 𝐵𝑟𝑎𝑛𝑑(𝑉?, 𝐴𝑝𝑝𝑙𝑒)
∧ 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 (𝑉?, 2010) ∧ ¬𝑇𝑦𝑝𝑒 𝑉?, 𝑃ℎ𝑜𝑛𝑒

Tokens : [I][I][Brand][Apple]

[Release][2010][N][Type][Phone]

Figure 2: The illustration of tokenization of the hypothesis. We uniformly treated logical operations,
relations, and entities as tokens, and created a correspondence between the hypotheses and a series
of tokens. The details are described in Appendix A.

Step 1:

Sample observation-hypothesis pairs.

Step 2:

Train hypothesis generation model by using teacher forcing.

Hypothesis Generation Model

ObservationsHypotheses

KG:

Observations

Generated Hypotheses

Figure 3: This figure shows the first two steps of training a hypothesis generation model. In Step
1, we sample some logical hypotheses with various patterns, use graph search on training graphs to
acquire the training observations of these hypotheses, and then tokenize them. In Step 2, we train a
conditional generation model to generate the hypotheses from observations.

Given an observation set O = {v1, v2, ..., vk}, the goal of abductive reasoning is to find the hypoth-
esis H whose corresponding conclusion on the hidden graph Ḡ, [[H]]Ḡ = O, is as similar to O as
possible. Formally, we measure the similarity using the Jaccard index:

Jaccard([[H]]Ḡ , O) =
|[[H]]Ḡ ∩O|
|[[H]]Ḡ ∪O|

. (4)

Then, the goal is to find a hypothesis H that maximizes Jaccard([[H]]Ḡ , O).

3 HYPOTHESIS GENERATION WITH RLF-KG

In this section, we present our method of generating a hypothesis for abductive logical knowledge
graph reasoning. There are basically three steps. In the first step, we randomly sample the observa-
tion and hypothesis pairs from the knowledge graph and then tokenize them into sequences. In the
second step, we use the sampled observation-hypothesis pairs as training data to train a generative
model to generate the hypothesis from observations. The above two steps are illustrated in Figure 3.
In the third step, we use RLF-KG to improve the generation model.

3.1 SUPERVISED TRAINING OF HYPOTHESIS GENERATION MODEL

In step 1, we randomly sample various types of hypotheses from the training knowledge graph and
then conduct a graph search on the training graph to obtain the conclusion as the corresponding
observation set of this hypothesis, as described in Appendix A

Then, we conduct tokenization of observations and hypotheses. Each of the entities in the obser-
vation is treated as a unique token, like [Apple] and [Phone] in Figure 2, and is associated
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with an embedding vector. Without loss of generality, we sort the tokens for each observation in a
pre-defined order so that various permutations of the same observation set are associated with the
identical unique sequence of tokens.

The tokenization of the hypothesis is more complicated and is inspired by action-based parsing. We
begin with utilizing the method proposed in other logical reasoning papers to convert the logical
expression for a hypothesis into a directed acyclic graph (Hamilton et al., 2018; Ren & Leskovec,
2020; Ren et al., 2020), in which the logical operations such as intersection, union, and negation in
the original logical structure are represented as edge attributes. Following previous work (Bai et al.,
2023), we treat the logical operations of intersection, union, and negation as special tokens [I],
[U], and [N] respectively. The relations and entities are treated as unique tokens like [Brand]
and [Apple]. Then, we use a depth-first search algorithm described in Appendix A to acquire a
sequence of actions representing both the content and the structure of the graph. This concludes the
tokenization process for hypotheses. On the other hand, we can use the Algorithm 3 in Appendix
A to recover a graph from an action sequence, which is regarded as the de-tokenization process of
logical hypothesis.

In step 2, we train a generation model based on the sampled observation-hypothesis pairs. Suppose
the token sequences for a pair of observation and hypothesis are O = [o1, o2, ..., om] and H =
[h1, h2, ..., hn], respectively. Then the loss for this example is defined to be the standard sequence
modeling loss:

L = log ρ(H|O) = log Σn
i=1ρ(hi|o1, o2, ..., om, h1, ..., hi−1). (5)

We use a standard transformer model to implement this model ρ for conditional generations. There
are two ways to use the conditional generation model. In the first approach, we use the encoder-
decoder architecture from the original paper (Vaswani et al., 2017), in which we put the observation
tokens as the input to the transformer encoder, and the shifted hypothesis tokens as the input to
the transformer decoder for conditional generation. In the second approach, we concatenate the
observation and hypothesis tokens and use the decoder-only transformer to generate the hypothesis
tokens. We implement the two approaches, and both of them can be incorporated with the following
RLF-KG method.

3.2 REINFORCEMENT LEARNING FROM KNOWLEDGE GRAPH FEEDBACK (RLF-KG)

After training the conditional generation model ρ, we try to improve it using reinforcement learning
(Ziegler et al., 2020) with the feedback signals from the KG. Recall that, in the supervised training
process, the model can only learn how to generate hypotheses structurally similar to the reference
hypotheses. However, hypotheses with higher structural similarity do not necessarily guarantee
logically better explanations. Motivated by this, we propose to use reinforcement learning from
knowledge graph feedback (RLF-KG) to improve the trained conditional generation model ρ.

In step 3, we initialize the model to be optimized π to be model ρ resulting from supervised training
and then fix ρ as the reference model. Given the input observation O and the generated hypothesis
token sequenceH, we recover the corresponding hypothesis H through the de-tokenization process
and derive its conclusion on the training graph G, namely [[H]]G . Since G is the observed training
graph, the model cannot acquire any information from the test edges. Therefore, the Jaccard similar-
ity between O and [[H]]G serves as an approximation, with no information leakage, to the objective
of the abductive reasoning task defined in Equation 4. In view of the above, we choose this similarity
to be the reward function r, hence introducing the feedback information from the training KG:

r(H,O) = Jaccard([[H]]G , O) =
|[[H]]G ∩O|
|[[H]]G ∪O|

. (6)

Again following (Ziegler et al., 2020) , we modify the reward by adding a KL divergence penalty
to prevent the tuned model π from producing excessively divergent hypotheses from the reference
model. Then, we train the model π using proximal policy optimization (PPO) (Schulman et al.,
2017) with the expected modified reward on the training observation sets as the objective:

Objective(π) = EO∼D,H∼π(·|O)

[
r(H,O)− β log

π(H|O)
ρ(H|O)

]
, (7)

where D the is training observation distribution and π(·|O) is the conditional distribution of H on
O modeled by the model π.The process is summarized in Figure 4.
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Model

Reference ModelGenerated Hypothesis

Log-probabilities 

Log-probabilities 

KL-Div

Observation

KG JaccardHypothesis Conclusion

PPO Training

Policy Gradient Optimization

Step 3:

Optimize hypothesis generation model with Reinforcement Learning From Knowledge Graph feedback (RLF-KG). 

Figure 4: In Step 3, We use RLF-KG to encourage the model to generate hypotheses that draw
conclusions more similar to given observations from KG.

2p1p 2i 3i

2in 3in inp pni pin

ip pi 2u

up
n

n

nn n

u

u

Figure 5: Thirteen types of logical hypotheses are considered in our task. Each of the hypothesis
types is associated with one type of query graph that is used for sampling.

4 EXPERIMENT

4.1 DATASETS

We use three knowledge graphs, FB15k-237 (Toutanova & Chen, 2015), DBpedia50 (Shi &
Weninger, 2018), and WN18RR (Toutanova & Chen, 2015). The number of training, evaluation,
and testing edges and the number of nodes are reported in Table 1. We randomly separate the train-
ing, validation, and testing edges from these knowledge graphs with a ratio of 8:1:1. For each of
these graphs, the training graph Gtrain, validation graph Gvalid, and testing graph Gtest are then the
graphs induced by the training edges, training + validation edges, and training + validation + testing
edges respectively.

Then, we sample pairs of observations and hypotheses as stated in Section 3.1. Meanwhile, we also
impose some constraints on the samples. We restrict the observation sets to no more than thirty-two
elements by sub-sampling the derived sets. Moreover, each validation hypothesis must have extra
entities in the conclusion on the validation graph compared to the training graph, and each testing
hypothesis must have extra entities in the conclusion on the testing graph compared to the validation
graph. Following previous work on logical reasoning on KG (Ren & Leskovec, 2020; Ren et al.,
2020), we chose to use thirteen pre-defined logical patterns to sample the hypothesis. Eight of them
do not include negations, and are therefore called existential positive first order (EPFO) hypotheses:
1p/2p/2u/3i/ip/up/2i/pi. The other five involve negation, and we call them negation hypotheses:
2in/3in/inp/pni/pin. Note that the generated hypothesis may or may not in the same type as the
reference hypothesis. The hypothesis structures are demonstrated in Figure 5. The numbers of
samples drawn for each type can be found in Table 2.

4.2 EVALUATION METRIC

We use the objective of abductive reasoning stated in Section 2 as the main metric to measure the
quality of the generated hypothesis. Suppose we have an observation O and a generated hypothesis
H . We first perform a graph search algorithm to find the conclusion of H on the evaluation graph
Gtest, [[H]]Gtest . Note that this graph contains ten percent of edges that are not seen during either the
training or validation stages. Then, the Jaccard metric is given by

Jtest(H,O) = Jaccard([[H]]Gtest , O) =
|[[H]]Gtest ∩O|
|[[H]]Gtest

∪O|
. (8)
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Table 1: The basic information about the three knowledge graphs used for the experiments, and their
standard training, validation, and testing edges separation.

Dataset Relations Entities Training Validation Testing All Edges
FB15k-237 237 14,505 496,126 62,016 62,016 620,158
WN18RR 11 40,559 148,132 18,516 18,516 185,164
DBpedia50 351 24,624 55,074 6,884 6,884 68,842

Table 2: The detailed information for the queries used for training, validation, and testing.

Dataset Training Samples Validation Samples Testing Samples
Each Type Total Each Type Total Each Type Total

FB15k-237 496,126 6,449,638 62,015 806,195 62,015 806,195
WN18RR 148,132 1,925,716 18,516 240,708 18,516 240,708
DBpedia50 55,028 715,364 6,878 89,414 6,878 89,414

To investigate whether the generated hypothesis is similar to the reference hypothesis, we also
propose to use SMATCH (Cai & Knight, 2013) to evaluate the similarity of hypothesis graphs.
SMATCH is a metric originally proposed for evaluating the structural differences between two se-
mantic graphs. As previous work points out, complex logical queries can be regarded as a special
type of semantic graphs (Bai et al., 2023). We propose to use this well-established metrics to evaluate
the structural differences between two hypotheses. The details of computing SMATCH on hypoth-
esis graphs are explained in Appendix D. Here, we denote the SMATCH score as S(H,Href ).

4.3 EXPERIMENT DETAILS

In this experiment, we use two transformer structures as the backbones of the generation model. For
the encoder-decoder transformer structure, we use three encoder layers and three decoder layers.
Each layer has eight attention heads with a hidden size of 512. Note that the positional encoding
for the input observation sequence is disabled, as we believe that the order of the entities in the
observation set does not matter. For the decoder-only structure, we use six layers, and the other
hyperparameters are the same. In the supervised training process, we use AdamW optimizer and grid
search to find hyper-parameters. For the encoder-decoder structure, the learning rate is 0.0001 with
the resulting batch size of 768, 640, and 256 for FB15k-237, WN18RR, and DBpedia respectively.
For the decoder-only structure, the learning rate is 0.00001 with batch-size of 256, 160, and 160
for FB15k-237, WN18RR, and DBpedia respectively, and linear warming up of 100 steps. In the
reinforcement learning process, we use the dynamic adjustment of the penalty coefficient β (Ouyang
et al., 2022). More detailed hyperparameters are shown in Appendix F. All the experiments can be
conducted on a single GPU with 24GB memory.

4.4 EXPERIMENT RESULTS

To prove the effectiveness of our proposed RLF-KG, we compare the Jaccard metric of the model
before and after this process. The performance of all thirteen types of hypothesis types is shown
in Table 3. In this table, we show the Jaccard index between the observations and the conclu-
sions of the generated hypothesis drawn from the test graph. The models are evaluated on FB15k-
237, WN18RR, and DBpedia50 respectively. On each dataset, we report the performance of the
two transformer-based models under fully supervised training in the Encoder-Decoder row and the
Decoder-only row. Meanwhile, we also report the performances when they cooperated with the
reinforcement learning from knowledge graph feedback (RLF-KG).

We notice that the RLF-KG is able to consistently improve the performance of hypothesis generation
on three different datasets. Meanwhile, RLF-KG can improve both encoder-decoder and decoder-
only structured generation models. This improvement can be explained by the effectiveness of
the RLF-KG method in incorporating the knowledge graph information into the generation model,
rather than simplifying generating hypotheses that are similar to the reference hypothesis.

Additionally, after the RLF-KG training, the encoder-decoder model is better than the decoder-only
structured transformer model. This can be explained by the nature of this task, as the task is required
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Table 3: The detailed Jaccard performance of various methods.
Dataset Model 1p 2p 2i 3i ip pi 2u up 2in 3in pni pin inp Ave.

FB15k-237

Brute-force Search 0.980 0.563 0.639 0.563 0.732 0.633 0.744 0.585 0.659 0.479 0.607 0.464 0.603 0.635

Encoder-Decoder 0.626 0.617 0.551 0.513 0.576 0.493 0.818 0.613 0.532 0.451 0.499 0.529 0.533 0.565
+ RLF-KG 0.855 0.711 0.661 0.595 0.715 0.608 0.776 0.698 0.670 0.530 0.617 0.590 0.637 0.666

Decoder-Only 0.666 0.643 0.593 0.554 0.612 0.533 0.807 0.638 0.588 0.503 0.549 0.559 0.564 0.601
+ RLF-KG 0.789 0.681 0.656 0.605 0.683 0.600 0.817 0.672 0.672 0.560 0.627 0.596 0.626 0.660

WN18RR

Brute-force Search 0.997 0.622 0.784 0.776 0.955 0.666 0.753 0.605 0.783 0.757 0.762 0.540 0.630 0.741

Encoder-Decoder 0.793 0.734 0.692 0.692 0.797 0.627 0.763 0.690 0.707 0.694 0.704 0.653 0.664 0.708
+ RLF-KG 0.850 0.778 0.765 0.763 0.854 0.685 0.767 0.719 0.743 0.732 0.738 0.682 0.710 0.753

Decoder-Only 0.760 0.734 0.680 0.684 0.770 0.614 0.725 0.650 0.683 0.672 0.688 0.660 0.677 0.692
+ RLF-KG 0.821 0.760 0.694 0.693 0.827 0.656 0.770 0.680 0.717 0.704 0.720 0.676 0.721 0.726

DBpedia50

Brute-force Search 0.997 0.705 0.517 0.517 0.982 0.461 0.783 0.754 0.722 0.658 0.782 0.544 0.700 0.702

Encoder-Decoder 0.706 0.657 0.551 0.570 0.720 0.583 0.632 0.636 0.602 0.572 0.668 0.625 0.636 0.627
+ RLF-KG 0.842 0.768 0.636 0.639 0.860 0.667 0.714 0.758 0.699 0.661 0.775 0.716 0.769 0.731

Decoder-Only 0.739 0.692 0.426 0.434 0.771 0.527 0.654 0.688 0.602 0.563 0.663 0.640 0.701 0.623
+ RLF-KG 0.777 0.701 0.470 0.475 0.821 0.534 0.646 0.702 0.626 0.575 0.696 0.626 0.713 0.643

Figure 6: The curve of the reward values of RLF-KG training over three different datasets.

to generate a sequence of tokens based on an observation set. Since the order of information in the
observation set is not important, the transformer encoder is more likely to learn the occurrence of
items instead of the dependencies among entities for generating a hypothesis. Figure 6 serves as a
complement to the previous statement by illustrating the increasing reward throughout the PPO pro-
cess. We also refer readers to the Appendix G for qualitative examples demonstrating demonstrate
the improvement in the generated hypotheses for the same observation.

4.5 ADDING STRUCTURAL REWARD TO PPO

In this part, we further analyze whether it is better to also include the structural similarity to the
reward function used in PPO training. In the original setting of RLF-KG, we only include the
Jaccard index between the given observation and the conclusion drawn from the training KG into
the reward. It is also possible to incorporate another reward function that considers the structural
differences between the generated and sampled hypotheses. As introduced before, the structural
similarity can be measured by the SMATCH score. We also conducted further experiments to also
include S(H,Href ) as an additional term of the reward function, and the results are shown in Ta-
ble 4. As SMATCH scores suggest, by incorporating the structural reward, the model can indeed
generate hypotheses that are closer to the reference hypotheses. However, the Jaccard scores show
that with structural information incorporated, the overall performance is comparable to or slightly
worse than the original reward function.

4.6 COMPARISON BETWEEN SEARCH-BASED METHODS

In this section, we conduct a comparison of inference time and performance between the generation-
based method and search-based methods. To do this comparison, we introduce a brute-force search
algorithm. For each given observation, the algorithm, as detailed in Appendix C, explores all poten-
tial 1p hypotheses within the training graph and selects the one with the highest Jaccard similarity
concerning the training graph. Table 5 shows that, notably, generation-based models of both archi-
tectures consistently exhibit significantly faster performance compared to the search-based method.
Table 6 shows that, while our generation model only slightly overperforms the search-based method
in Jaccard performance, it is significantly better in SMATCH performance. In many scenarios,
SMATCH remains a critical metric to consider.
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Table 4: The Jaccard and SMTACH performance of different reward functions.
FB15k-237 WN18RR DBpedia50

Jaccard SMATCH Jaccard SMATCH Jaccard SMATCH

Encoder-Decoder 0.565 0.602 0.708 0.558 0.627 0.486
+ RLF-KG (Jaccard) 0.666 0.530 0.753 0.540 0.731 0.541
+ RLF-KG (Jaccard + SMATCH) 0.660 0.568 0.757 0.545 0.696 0.532

Decoder-Only 0.601 0.614 0.692 0.564 0.623 0.510
+ RLF-KG (Jaccard) 0.660 0.598 0.726 0.518 0.643 0.492
+ RLF-KG (Jaccard + SMATCH) 0.656 0.612 0.713 0.540 0.645 0.504

Table 5: Runtime for inference for various methods on testing data.
Method FB15k-237 WN18RR DBpedia50

Brute-force Search 11 days 8 hrs 25 mins 2 days 20 hrs 4 mins 18 hrs 52 mins
Generation + RLF-KG 4 hrs 24 mins 32 mins 5 mins

Table 6: Performance of various methods on testing data.
Method FB15k-237 WN18RR DBpedia50

Jaccard SMATCH Jaccard SMATCH Jaccard SMATCH

Brute-force Search 0.635 0.305 0.742 0.322 0.702 0.322
Generation + RLF-KG 0.666 0.530 0.753 0.540 0.731 0.541

5 RELATED WORK

The problem of abductive knowledge graph reasoning shares connections with various other knowl-
edge graph reasoning tasks, including knowledge graph completion, complex logical query answer-
ing, and rule mining. Rule mining is line of work focusing on inductive logical reasoning, namely
discovering logical rules over the knowledge graph. Various methods are proposed in this line of
work (Galárraga et al., 2015; Ho et al., 2018; Meilicke et al., 2019; Cheng et al., 2022; 2023). In a
different study, Dai et al. (2019) suggests using abductive learning (ABL) to create symbolic repre-
sentations through learning methods, and then employing Prolog’s abductive logic programming to
solve hand-written puzzles. The resulting symbolic representations may not be logical expressions,
and Prolog’s abductive logic programming can only determine if they are true or false, without
generating complex first-order structured hypotheses.

Complex logical query answering is a task of answering logically structured queries on KG. Query
answering is a deduction process but involves knowledge induction on KG to generalize to unknown
facts. Query embedding is a fast and robust method for complex query answering. Their primary
focus is the enhancement of embedding structures for encoding sets of answers (Hamilton et al.,
2018; Sun et al., 2020; Liu et al., 2021). For instance, Ren & Leskovec (2020) and Zhang et al.
(2021b) introduce the utilization of geometric structures such as rectangles and cones within hyper-
space to represent entities. Neural MLP (Mixer) (Amayuelas et al., 2022) use MLP and MLP-Mixer
as the operators. Bai et al. (2022) suggests employing multiple vectors to encode queries, thereby
addressing the diversity of answer entities. FuzzQE (Chen et al., 2022) uses fuzzy logic to rep-
resent logical operators. Probabilistic distributions can also serve as a means of query encoding
(Choudhary et al., 2021a;b), with examples including Beta Embedding (Ren & Leskovec, 2020) and
Gamma Embedding (Yang et al., 2022).

6 CONCLUSION

In summary, this paper has introduced the task of abductive logical knowledge graph reasoning.
Meanwhile, this paper has proposed a generation-based method to address knowledge graph incom-
pleteness and reasoning efficiency by generating logical hypotheses. Furthermore, this paper demon-
strates the effectiveness of our proposed reinforcement learning from knowledge graphs (RLF-KG)
to enhance our hypothesis generation model by leveraging feedback from knowledge graphs.
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A ALGORITHM FOR SAMPLING OBSERVATION-HYPOTHESIS PAIRS

In this section, we present the Algorithm 1 used to sample complex hypotheses from a given knowl-
edge graph. Given a knowledge graph G and a hypothesis type T , the algorithm starts with a random
node v and recursively constructs a hypothesis that has v in its conclusions and the corresponding
structure T . During the recursion process, the algorithm examines the last operation in the current
hypothesis. If the operation is projection, the algorithm randomly selects one of its predecessors u
that holds the corresponding relation to v as the answer of its sub-hypothesis. The algorithm then
calls the recursion on node u and the sub-hypothesis type of T again. Similarly, for intersection and
union, the algorithm applies recursion on their sub-hypothesis on the same node v. The recursion
stops when the current node contains an entity.

Algorithm 1 Sampling Hypothesis According to Type
Input Knowledge graph G, hypothesis type T
Output Hypothesis sample
procedure SAMPLEHYPOTHESIS(G, T )

function GROUNDTYPE(G, T, tail)
if T.operation = p then

head← SAMPLE({head|(head, tail)is an edge in G})
RelType← type of (head, tail) in G
ProjectionType← p
child← the only child in T.children
SubHypothesis← GROUNDTYPE(G, child, head)
return (ProjectionType,RelType, SubHypothesis)

else if T.operation = i then
IntersectionResult← (i)
for child ∈ T.children do

SubHypothesis← GROUNDTYPE(G, child, tail)
IntersectionResult.PUSHBACK(child, tail)

end for
return IntersectionResult

else if T.operation = u then
UnionResult← (u)
for child ∈ T.children do

if child is the first child then ▷ For the first subquery, we choose the current root node.
tail← SAMPLE(G) ▷ For other subquery, the root node can be any vertex

end if
SubHypothesis← GROUNDTYPE(G, T.child, tail)
UnionResult.PUSHBACK(child, tail)

end for
return UnionResult

else if T.operation = e then
return (e, T.value)

end if
end function
v ← an arbitrary vertex in G
return GROUNDTYPE(G, T, v)

end procedure

B ALGORITHMS FOR CONVERSION BETWEEN QUERIES AND ACTIONS

In this part, we present the details of tokenizing the hypothesis graph (Algorithm 2), and formulating
a graph according to the tokens, namely the process of de-tokenization (Algorithm 3). In this part,
we also called the tokens “actions” because the algorithms are inspired by the action-based semantic
parsing algorithms. Note that we use the notations G,V,E for the hypothesis graph to distinguish it
from the knowledge graph.
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Algorithm 2 HypothesisToActions
Input Hypothesis plan graph G
Output Action sequence A

procedure HYPOTHESISTOACTIONS(G)
function DFS(G, tail, A)

if tail is an anchor node then
action← the entity tail represents

else
action← the operator the first in-edge of tail represents

end if
Append action to A
for all in-edges to tail in G (head, rel, tail) do

DFS(G, head,A)
end for

end function
root← the root of G
A← DFS(G, root, ∅)
return A

end procedure

Algorithm 3 ActionsToHypothesis
Input Action sequence A
Output Hypothesis plan graph G

procedure ACTIONSTOHYPOTHESIS(A)
S ← an empty stack
Create an map deg, deg[i] = deg[u] = 2 and 1 for other operators.
V ← ∅, E ← ∅
for action ∈ A do

Create a new node, denoted by head, V ← V ∪ {head}
if S ̸= ∅ then

(tail, operator, degree)← the top element in S
E ← E ∪ {(head, operator, tail)}

end if
if action represents an anchor node then

Mark head as an anchor node with entity action
while S ̸= ∅ do

Pop the top element (tail, operator, degree) from S
degree← degree− 1
if degree > 0 then

Push (tail, operator, degree) to S
Break

end if
end while

else
Push (head, action, deg[action]) to S

end if
end for
G← (V,E)
return G

end procedure
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C ALGORITHMS FOR ONE-HOP SEARCHING

In this part, we demonstrate the algorithm used for searching the best relation-tail pairs among all
entities in the observation set as the one-hop hypothesis to explain the observations.

Algorithm 4 One-Hop-Search
Input Observation set O
Output Hypothesis bestHypothesis

procedure ONE-HOP-SEARCH(O)
candidates← {(h, r, t) ∈ Rtrain|t ∈ O}
bestJaccard← 0, bestHypothesis← Null
for (h, r, t) ∈ candidates do

H ← the one-hop hypothesis formed by the single edge (h, r, t)
trainJaccard← Jaccard([[H]]Gtrain , A)
if trainJaccard > bestJaccard then

bestJaccard← trainJaccard
bestHypothesis← H

end if
end for
return bestHypothesis

end procedure

D DETAILS OF USING SMATCH TO EVALUATE STRUCTURAL DIFFERNECES
OF QUERIES

Smatch Cai & Knight (2013) is an evaluation metric for Abstract Meaning Representation (AMR)
graphs. An AMR graph is a directed acyclic graph with two types of nodes: variable nodes and
concept nodes, and three types of edges:

• Instance edges, which connect a variable node to a concept node and are labeled literally
“instance”. Every variable node must have exactly one instance edge, and vice versa.

• Attribute edges, which connect a variable node to a concept node and are labeled with
attribute names.

• Relation edges, which connect a variable node to another variable node and are labeled
with relation names.

Given a predicted AMR graph Gpred and the gold AMR graph Ggold, the Smatch score of Gpred

with respect to Ggold is denoted by SMATCH(Gpred, Ggold). SMATCH(Gpred, Ggold) is obtained by
finding an approximately optimal mapping between the variable nodes of the two graphs and then
matching the edges of the graphs.

Our hypothesis graph is similar to the AMR graph, in:

• The nodes are both categorized as fixed nodes and variable nodes

• The edges can be categorized into two types: edges from a variable node to a fixed node and
edges from a variable node to another variable node. And edges are labeled with names.

However, they are different in that the AMR graph requires every variable node to have instance
edges, while the hypothesis graph does not.

The workaround for leveraging the Smatch score to measure the similarity between hypothesis
graphs is creating an instance edge from every entity to some virtual node. Formally, given a hypoth-
esis H with hypothesis graph G(H), we create a new hypothesis graph GA(H) to accommodate the
AMR settings as follows: First, we initialize GA(H) = G(H). Then, create a new relation type
instance and add a virtual node v′ into GA(H). Finally, for every variable node v ∈ G(H), we
add a relation instance(v, v′) into GA(H). Then, given a predicted hypothesis Hpred and a gold
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hypothesis Hgold, the Smatch score is defined as

S(Hpred, Hgold) = SMATCH(GA(Hpred), GA(Hgold)). (9)

Through this conversion, a variable entity vg of Hgold is mapped to a variable entity vp of Hpred if
and only if instance(vg, v′) is matched with instance(vp, v

′). This modification does not affect the
overall algorithm for finding the optimal mapping between variable nodes and hence gives a valid
and consistent similarity score. However, this adds an extra point for matching between instance
edges, no matter how the variable nodes are mapped.

E DETAILED SCORES BY QUERY TYPES

In this part, we show the detailed SMATCH performance of various methods.

Table 7: The detailed SMATCH performance of various methods.
Dataset Model 1p 2p 2i 3i ip pi 2u up 2in 3in pni pin inp Ave.

FB15k-237

Enc.-Dec. 0.342 0.506 0.595 0.602 0.570 0.598 0.850 0.571 0.652 0.641 0.650 0.655 0.599 0.602
RLF-KG (J) 0.721 0.643 0.562 0.480 0.364 0.475 0.769 0.431 0.543 0.499 0.513 0.518 0.370 0.530
RLF-KG (J+S) 0.591 0.583 0.577 0.531 0.447 0.520 0.820 0.505 0.602 0.563 0.571 0.595 0.484 0.568

Dec.-Only 0.287 0.481 0.615 0.623 0.599 0.626 0.847 0.574 0.680 0.656 0.675 0.677 0.636 0.614
RLF-KG (J) 0.344 0.445 0.675 0.585 0.537 0.638 0.853 0.512 0.696 0.575 0.647 0.688 0.574 0.598
RLF-KG (J+S) 0.303 0.380 0.692 0.607 0.565 0.671 0.857 0.506 0.727 0.600 0.676 0.734 0.634 0.612

WN18RR

Enc.-Dec. 0.375 0.452 0.591 0.555 0.437 0.585 0.835 0.685 0.586 0.516 0.561 0.549 0.530 0.558
RLF-KG (J) 0.455 0.468 0.563 0.562 0.361 0.530 0.810 0.646 0.560 0.530 0.536 0.539 0.465 0.540
RLF-KG (J+S) 0.443 0.457 0.565 0.572 0.366 0.545 0.814 0.661 0.541 0.553 0.532 0.546 0.491 0.545

Dec.-Only 0.320 0.443 0.582 0.551 0.486 0.597 0.809 0.696 0.594 0.526 0.575 0.574 0.577 0.564
RLF-KG (J) 0.400 0.438 0.566 0.491 0.403 0.519 0.839 0.667 0.547 0.450 0.497 0.466 0.450 0.518
RLF-KG (J+S) 0.375 0.447 0.584 0.499 0.432 0.545 0.825 0.679 0.584 0.477 0.543 0.522 0.507 0.540

DBpedia50

Enc.-Dec. 0.345 0.396 0.570 0.548 0.344 0.576 0.712 0.544 0.474 0.422 0.477 0.488 0.428 0.486
RLF-KG (J) 0.461 0.424 0.634 0.584 0.361 0.575 0.809 0.579 0.584 0.497 0.544 0.533 0.454 0.541
RLF-KG (J+S) 0.419 0.410 0.638 0.555 0.373 0.586 0.785 0.579 0.560 0.459 0.536 0.542 0.474 0.532

Dec.-Only 0.378 0.408 0.559 0.526 0.397 0.568 0.812 0.626 0.480 0.414 0.489 0.494 0.474 0.510
RLF-KG (J) 0.405 0.411 0.558 0.496 0.376 0.507 0.825 0.621 0.477 0.397 0.468 0.444 0.406 0.492
RLF-KG (J+S) 0.398 0.415 0.567 0.497 0.383 0.533 0.827 0.630 0.510 0.420 0.484 0.457 0.430 0.504

Table 8: The detailed SMATCH performance of the searching method.
Dataset 1p 2p 2i 3i ip pi 2u up 2in 3in pni pin inp Ave.

FB15k-237 0.945 0.340 0.365 0.218 0.184 0.267 0.419 0.185 0.301 0.182 0.245 0.155 0.157 0.305
WN18RR 0.957 0.336 0.420 0.274 0.182 0.275 0.427 0.183 0.323 0.224 0.270 0.155 0.156 0.322
DBpedia 0.991 0.336 0.399 0.259 0.182 0.245 0.441 0.183 0.332 0.226 0.290 0.154 0.155 0.322

F HYPERPARAMETERS OF THE RL PROCESS

The PPO hyperparameters are shown as in Table 9. We warm-uped the learning rate from 0.1 of the
peak to the peak value within the first 10% of total iterations and then decayed it to 0.1 of the peak
with a cosine schedule.

Table 9: PPO Hyperparamters.

Hyperparam. Enc.-Dec. Dec.-Only
FB15k-237 WN18RR DBpedia50 FB15k-237 WN18RR DBpedia50

Learning rate 2.4e-5 3.1e-5 1.8e-5 0.8e-5 0.8e-5 0.6e-5
Batch size 16384 16384 4096 3072 2048 2048
Minibatch size 512 512 64 96 128 128
Horizon 4096 4096 4096 2048 2048 2048
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Table 10: Example FB15k-237 Case study 1.

Sample

Interpretation Companies operating in industries that intersect with Yahoo! but not with IBM.

Hypothesis The observations are the V? such that ∃V1, inIndustry(V1, V?) ∧
¬industryOf(IBM,V1) ∧ industryOf(Y ahoo!, V1)

Observation

EMI, CBS Corporation,
Columbia, GMA Network,
Viacom, Victor Entertainment,
Yahoo!, Sony Music Entertainment (Japan) Inc.,
Bandai, Toho Co., Ltd.,
Rank Organisation, The New York Times Company,
Gannett Company, Star Cinema,
NBCUniversal, TV5,
Pony Canyon, Avex Trax,
The Graham Holdings Company, The Walt Disney Company,
Televisa, Metro-Goldwyn-Mayer,
Google, Time Warner,
Microsoft Corporation, Dell,
Munhwa Broadcasting Corporation, News Corporation

Searching

Interpretation Which companies operate in media industry?

Hypothesis The observations are the V? such that inIndustry(Media, V?)

Conclusion

Absent:
- Google,
- Microsoft Corporation,
- Dell

Jaccard 0.893

Smatch 0.154

Enc.-Dec.

Interpretation Companies operating in industries that intersect with
Yahoo! but not with Microsoft Corporation.

Hypothesis The observations are the V? such that ∃V1, inIndustry(V1, V?) ∧
¬industryOf(Microsoft Corporation, V1) ∧ industryOf(Y ahoo!, V1)

Conclusion Absent: Microsoft Corporation

Jaccard 0.964

Smatch 0.909

+ RLF-KG

Interpretation Companies operating in industries that intersect with
Yahoo! but not with Oracle Corporation.

Hypothesis The observations are the V? such that ∃V1, inIndustry(V1, V?) ∧
¬industryOf(Oracle Corporation, V1) ∧ industryOf(Y ahoo!, V1)

Concl. Same

Jaccard 1.000

Smatch 0.909

G CASE STUDIES

In this session, we show some concrete examples in Table 10, 11 and 12 that are given by different
abductive reasoning methods, namely searching, generation model with supervised training, and
generation model with supervised training with RLF-KG.
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Table 11: FB15k-237 Case study 2.

Sample

Interpretation Locations that adjoin second-level divisions of the United
States of America that adjoin Washtenaw County.

Hypothesis The observations are the V? such that ∃V1, adjoins(V1, V?) ∧
adjoins(Washtenaw County, V1) ∧ secondLevelDivisions(USA, V1)

Observation
Jackson County, Macomb County,
Wayne County, Ingham County
Washtenaw County,

Searching

Interpretation Locations that adjoin Oakland County.

Hypothesis The observations are the V? such that adjoins(Oakland County, V?)

Conclusion
Absent:
- Jackson County
- Ingham County

Jaccard 0.600

Smatch 0.182

Enc.-Dec.

Interpretation Second-level divisions of the United States of America
that adjoin locations that adjoin Oakland County.

Hypothesis The observations are the V? such that
∃V1, secondLevelDivisions(USA, V?) ∧ adjoins(V1, V?) ∧
+adjoins(Oakland County, V1)

Conclusion Extra: Oakland County
Absent: Wayne County

Jaccard 0.667

Smatch 0.778

+ RLF-KG

Interpretation Second-level divisions of the United States of America
that adjoin locations contained within Michigan.

Hypothesis The observations are the V? such that
∃V1, secondLevelDivisions(USA, V?) ∧ adjoins(V1, V?) ∧
containedIn(Michigan, V1)

Conclusion
Extra:
- Oakland County
- Genesee County

Jaccard 0.714

Smatch 0.778
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Table 12: DBpedia50 Case study.

Ground Truth

Interpretation Works, except for “Here ’Tis,” that have subsequent works in the jazz genre.

Hypothesis The observations are the V? such that ∃V1, subsequentWork(V1, V?) ∧
¬previousWork(Here ′T is, V1) ∧ genre(Jazz, V1)

Observation

Deep, Deep Trouble, Lee Morgan Sextet,
Good Dog, Happy Man, Paris Nights\/New York Mornings,
I Don’t Want to Be Your Friend, Take the Box
Interior Music,

Searching

Interpretation Works subsequent to “Closer” (Corinne Bailey Rae song).

Hypothesis The observations are the V? such that
subsequentWork(Closer (Corinne Bailey Rae song), V?)

Conclusion Only Paris Nights\/New York Mornings

Jaccard 0.143

Smatch 0.154

Enc.-Dec.

Interpretation Works, except for “Lee Morgan Sextet,” that have subsequent works
in the jazz genre.

Hypothesis The observations are the V? such that ∃V1, subsequentWork(V1, V?) ∧
¬previousWork(Lee Morgan Sextet, V1) ∧ genre(Jazz, V1)

Conclusion Extra: Here ’Tis
Absent: Lee Morgan Sextet

Jaccard 0.750

Smatch 0.909

+ RLF-KG

Interpretation Works that have subsequent works in the jazz genre.

Hypothesis The observations are the V? such that ∃V1, subsequentWork(V1, V?) ∧
genre(Jazz, V1)

Conclusion Extra: Here ’Tis

Jaccard 0.875

Smatch 0.400
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