
NUQ: Nonparametric Uncertainty Quantification for
Deterministic Neural Networks

Nikita Kotelevskii
Skoltech

nikita.kotelevskii@skoltech.ru

Alexander Fishkov
Skoltech

alexander.fishkov@skoltech.ru

Kirill Fedyanin
Skoltech

k.fedyanin@skoltech.ru

Aleksandr Petiushko
Huawei, AIRI

petyushko@yandex.ru

Maxim Panov
Skoltech

m.panov@skoltech.ru

Abstract

This paper proposes a fast and scalable method for uncertainty quantification
of machine learning models’ predictions. First, we show the principled way to
measure the uncertainty of predictions for a classifier based on Nadaraya-Watson’s
nonparametric estimate of the conditional label distribution. Importantly, the
approach allows to disentangle explicitly aleatoric and epistemic uncertainties. The
resulting method works directly in the feature space. However, one can apply it
to any neural network by considering an embedding of the data induced by the
network. We demonstrate the strong performance of the method in uncertainty
estimation tasks on a variety of real-world image datasets, such as MNIST, SVHN,
CIFAR-100 and several versions of ImageNet.

1 Introduction

It is crucial in many applications of modern machine learning methods to complement the prediction
with some sort of a “confidence” score. In particular, deep neural network models, which usually
achieve state-of-the-art results in various tasks, are notorious for providing overconfident predictions
on data they did not see during training [19]. The community in recent years made tremendous
efforts to develop different uncertainty estimation methods and approaches, including calibration [6],
ensembling [12], Bayesian methods [5], and many others [20, 28]. Recently, a series of methods of
uncertainty estimation based on the single deterministic neural network model was developed [27,
14, 26]. In practice it is usually important to distinguish two types of uncertainty: aleatoric and
epistemic [3, 10]. The aleatoric uncertainty reflects the internal noise in the data due to class overlap,
data markup errors, or other reasons. This type of uncertainty can not be reduced by providing
more data. The epistemic uncertainty reflects the model’s ignorance of data. We can reduce the
uncertainty of this type once we get more data. Epistemic uncertainty, thus, may be used to identify
out-of-distribution OOD data. If the model can quantify this type of uncertainty, it may abstain from
prediction and address it to a human expert.

Summary of the contributions. We develop a new and theoretically grounded method of uncertainty
quantification applicable to any deterministic neural network model. Our contributions:

1. We rigorously define the uncertainty of the model prediction at a particular data point. This
is done by direct consideration of the probability of the wrong prediction.

2. We provide corresponding uncertainty estimate by computing the variance of the kernel
estimate of conditional density with the appropriately chosen bandwidth.
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3. We implement the method in a scalable manner, which allows it to be used in the neural
network’s embedding space on large datasets such as ImageNet. The experimental results in
misclassification detection and OOD detection tasks show the significant potential of the
proposed approach.

2 Nonparametric Uncertainty Quantification

2.1 Estimation under Covariate Shift

Consider a binary classification setup (X,Y ) ∈ Rd × {0, 1} with (X,Y ) ∼ Ptr. We assume that we
observe the datasetD =

{
(Xi, Yi)}ni=1 of i.i.d. points from Ptr. The classical problem is to find a rule

ĝ based on the dataset D which approximates the optimal one: g∗ = argming P(g(X) 6= Y ). Here
g : Rd → {0, 1} is any classifier and the probability of wrong classificationRg = P(g(X) 6= Y ) is
usually called risk. The rule g∗ is given by the Bayes optimal classifier:

g∗(x) =

{
1, η(x) ≥ 1

2 ,

0, η(x) < 1
2 ,

where η(x) = p(Y = 1 | X = x) under the distribution P.

We consider a situation when the distribution of the test samples Ptest is different from the one for
the training dataset Ptr. The rule g∗ obtained for P = Ptr might no longer be optimal if we minimize
the error on the test data Ptest(g(X) 6= Y ).

For a meaningful estimation problem, some additional assumptions are needed. First, we assume that
the distribution Ptest is unknown at the model construction moment, only the dataset D is available.
Also, we assume that the distribution p(y | x) is the same under both Ptr and Ptest, which means that:
1) All the difference between Ptr and Ptest is due to the difference between marginal distributions of
X: ptrain(X) and ptest(X). 2) The Bayes rule is still valid, i.e., optimal even under Ptest. However,
while the rule g∗ is still optimal, its approximation ĝ might be arbitrary bad under the covariate shift.

2.2 Problem Statement

Consider a classification rule ĝ(x) = ĝD(x) on the dataset D. Define pointwise risk of estimation:
R(x) = P(ĝ(X) 6= Y | X = x),

where P(ĝ(X) 6= Y | X = x) ≡ Ptr(ĝ(X) 6= Y | X = x) ≡ Ptest(ĝ(X) 6= Y | X = x) under the
assumptions above. The value R(x) is independent of covariate distribution ptest(X) and allows
to define a meaningful target of estimation which is based solely on the quantities known for the
training distribution.

Let us note that the total risk valueR(x) admits the following decomposition: R(x) = R̃(x)+R∗(x),
where R∗(x) = P(g∗(X) 6= Y | X = x) is Bayes risk and R̃(x) = P(ĝ(X) 6= Y | X =
x)− P(g∗(X) 6= Y | X = x) is an excess risk. HereR∗(x) corresponds to aleatoric uncertainty as
it completely depends on the data distribution. Excess risk R̃(x) directly measures imperfectness of
the model ĝ and thus can be seen as a measure of epistemic uncertainty.

To proceed, we first assume that the classifier ĝ has the form of optimal Bayesian classifier with
respect to the density η̂(x) = p̂(Y = 1 | X = x), which is an estimate of the conditional density
η(x). We can efficiently bound the excess risk via the following classical inequality [4]:

R̃(x) = P(ĝ(X) 6= Y | X = x)− P(g∗(X) 6= Y | X = x) ≤ 2|η̂(x)− η(x)|.
It allows us to obtain an upper bound for the risk: R(x) ≤ L(x) = R∗(x) + 2|η̂(x)− η(x)|, where
R∗(x) = min{η(x), 1− η(x)} is just the Bayes risk.

2.3 Nonparametric Uncertainty Quantification

2.3.1 Kernel Density Estimate and Its Asymptotic Distribution

For the approach above we need to consider some particular type of estimator for ĝ. We consider
kernel-based estimator of the conditional density because of its asymptotic properties. For a class
label c, the conditional probability estimate can be expressed as:
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Figure 1: Left plot shows the data and the result of the classification by the Bayes classifier based
on the nonparametric estimate of conditional density. The next two plots show different types of
uncertainties: “aleatoric” and “epistemic”. The lighter color, the higher uncertainty. We see that the
former does not increase as we go away from training data, while the latter does.

p̂(Y = c | X = x) =

∑N
i=1Kh(xi − x)[yi = c]∑N

j=1Kh(xj − x)
. (1)

We consider 1D kernel function K : R→ R+ and construct the resulting kernel in Rd of the form:

Kh(x − y) =
∏d
j=1K

(
xj−yj
h

)
. It could be shown, that the difference η̂(x) − η(x) converges in

distribution as follows (see, e.g. [22]):

η̂(x)− η(x)→ N
(
0,

1

Nhd
σ2(x)

p(x)

[ ∫
[K(u)]2du

]d)
, (2)

where n is the number of data points in the training set, K(·) is the kernel used for kernel density
estimate (KDE), h is the bandwidth of the kernel; d is the dimensionality of the problem and σ2(x) is
the standard deviation of the data label at point x. Let us denote the variance term in (2) by τ2(x).

In this work, we suggest to consider the following measure of the total uncertainty:

Ut(x) = min
{
η(x), 1− η(x)

}
+ 2

√
2

π
τ(x),

which is obtained by considering an asymptotic approximation of EDL(x).
To obtain the practical estimate, the integral

∫
[K(u)]2du can be computed in the closed form for

various standard kernels, see Supplementary Material, Table 3. Second, we approximate the marginal
density of objects p(x). The density can be again obtained via KDE (but one can choose another
estimation [17]): p̂(x) = 1

Nhd

∑N
i=1Kh(x− xi). The only thing left is the variance which can be

estimated as σ̂2(x) = σ̂2(y|x) = η̂(x)(1− η̂(x)). We refer our readers to Supplementary Material
to for more details on computation of different uncertainties.

3 Experiments

3.1 Toy Example

We start this section with the application of the proposed Nonparametric Uncertainty Quantification
(NUQ) method to a toy example. As a dataset, we use a 2-dimensional mixture of three Gaussians
with centers at points [3, -2], [3, 2], [0, 10], and variance equal to 1. Each Gaussian is treated as a
separate class (see Figure 1, the leftmost panel).

We consider the Bayes classifier based on the nonparametric estimate of the conditional density (1)
and compute aleatoric and epistemic uncertainty values according to equations (3). Bandwidth
was selected according to Improved Sheather–Jones (“ISJ”) rule [1] independently for each data
dimension. Classification results and uncertainties for this toy problem are presented in Figure 1. The
first plot shows the raw data and the result of the classification by the Bayes rule. Two other plots
present aleatoric and epistemic uncertainty estimates obtained. The uncertainty measures show the
desired behavior: aleatoric uncertainty is large in-between the classes, while epistemic uncertainty
increases with the increase of the distance to the training data.
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OOD dataset MaxProb* Entropy* Dropout Ensemble TTA DDU* NUQ*
SVHN 79.7±1.3 81.1±1.6 77.6±2.5 82.9±0.9 81.6±1.2 89.6±1.6 89.7±1.6
LSUN 81.5±2.0 83.0±2.1 76.8±5.1 86.5±0.8 85.0±2.7 92.1±0.6 92.3±0.6

Smooth 76.6±3.5 77.8±5.2 63.3±3.8 83.7±1.2 73.2±10.8 97.1±3.1 96.8±3.8
Table 1: OOD detection for CIFAR-100 in-distribution dataset with ResNet-50 neural network. The
top two results are shown in bold. Evaluation is done for three models trained with different seeds to
estimate the standard deviation. Methods requiring a single pass over the data to compute uncertainty
estimates are marked with *.

OOD dataset MaxProb* Entropy* TTA Ensemble DDU* NUQ*
ImageNet-R 80.4 83.6 85.8 84.4 80.1 99.5
ImageNet-O 28.2 29.1 30.5 51.9 74.1 82.4

Table 2: ROC-AUC score for ImageNet out-of-distribution detection tasks for different methods.
Methods requiring a single pass over the data to compute uncertainty estimates are marked with *.

3.2 Image Classification Datasets

In this section, we consider a series of experiments on image datasets. In contrast to the toy example
above, we should first train a model and then apply NUQ to its predictive features. We emphasise,
that NUQ is the postprocessing method, which is fitted to the embeddings obtained from a given
model. In what follows, we call this model a “base model”. In the experiments of this section, we
use logits as extracted features, if not explicitly stated otherwise. However, other options are also
possible; see Supplementary Material, Section A.5. In experiments below, we compare our method to
several baselines. See Supplementary Material to find a brief description of them.

CIFAR-100. To reinforce our results on simpler datasets, we further conduct experiments on
more challenging CIFAR-100 [11]. We want our model to detect the unconventional samples, and
thus we treat the out-of-distribution detection as a binary classification task (OOD/not-OOD) by
uncertainty score, and we report the ROC-AUC for that task. Following the setup from the recent
works [27, 26, 23], we use SVHN, LSUN [29] and Smooth [7] datasets as OOD datasets.

We trained the ResNet-50 model from scratch on CIFAR-100. For our method and DDU, we use
training with spectral normalization [16] to ensure the bi-Lipshitz constraint for mappings at each
layer. In this experiment, NUQ was applied to the features from the penultimate layer, and the density
estimate is given by GMM. See the results for other choices of hyperparameters in the Supplementary
Material, Section A.5.

The results are presented in Table 1. The ensemble has a strong performance, which is expected. The
TTA performs reasonably well with the quality close to the one of the ensemble. We can clearly
see that NUQ and DDU show close results while outperforming the competitors with a significant
margin.

ImageNet. To evaluate the method’s applicability to the large-scale data, we have applied our
approach to the ImageNet [2] dataset. As OOD data we used the ImageNet-O [9] and ImageNet-R[8]
datasets. ImageNet-O consists of images from classes that are not found in the standard ImageNet-1k
dataset. ImageNet-R contains different artistic renditions of ImageNet classes. It turned out that in
these experiments, NUQ beats all the competitors with a large margin; see Table 2.

4 Conclusions

In this work, we propose NUQ, a new principled uncertainty estimation method that applies to a wide
range of neural network models. It does not require retraining the model and acts as a postprocessing
step working in the embedding space induced by the neural network. NUQ significantly outperforms
the competing approaches with only recently proposed DDU method [17] showing comparable results.
Importantly, in the most practical example of OOD detection for ImageNet data, NUQ shows the best
results with a significant margin.
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A Appendix

A.1 How to Choose Bandwidth Properly?

The choice of the optimal bandwidth parameter is well-developed in the theory of kernel density
estimation. For example, one can base on asymptotically optimal values and select the bandwidth
accordingly as in Silverman’s [25] or Scott’s [24] rules. However, such estimates are usually very
crude in practice.
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A.2 How to Compute Kernel Estimate when N is Large?

Our nonparametric method involves a sum over the whole available data to compute the estimates.
This could be intractable in practice when we are working with large datasets. However, the typical
kernel Kh quickly approaches zero with the increase of the norm of the argument: ‖x− xi‖. Thus,
we can use an approximation of kernel estimates: instead of the sum over all elements in the dataset,
we consider the contribution of only several nearest neighbors. It requires a fast algorithm for finding
the nearest neighbors. For this purpose, we use the approach of [15] based on Hierarchical Navigable
Small World graphs (HNSW). It provides a fast, scalable, and easy-to-use solution to the computation
of nearest neighbors.

A.3 Multiclass Generalization for Uncertainties

In this section we show, how our method can be generalized from binary classification to multiclass
problems. Consider data pairs (X,Y ) ∼ P. Now, X ∈ Rd and Y ∈ 1, . . . , C, where C is the number
of classes. We also denote ηc(x) = P(Y = c | X = x).

Let us start with the Bayes risk:

P(Y 6= g∗(X) | X = x) = 1− P(Y = g∗(X) | X = x)

= 1−max
c
ηc(x) = min

c

{
1− ηc(x)

}
,

where g∗(x) := argmaxc ηc(x) is Bayes optimal classifier.

Let us further move to the excess risk. Denote by η̂c(x) density, we approximate. Analogously,
g(x) := argmaxc η̂c(x)

P(Y 6= g(X) | X = x)− P(Y 6= g∗(X) | X = x) = ηg∗(x)(x)− ηg(x)(x)
= ηg∗(x)(x)− η̂g∗(x)(x) + η̂g∗(x)(x)− η̂g(x)(x) + η̂g(x)(x)− ηg(x)(x)

≤
∣∣ηg∗(x)(x)− η̂g∗(x)(x)∣∣+ ∣∣ηg(x)(x)− η̂g(x)(x)∣∣,

where we used the fact that η̂g∗(x)(x)− η̂g(x)(x) ≤ 0 for any x.

The expectation of the right hand can be upper bounded by 2
√

2
π τ(x), where τ(x) is defined below.

Total uncertainty for multiclass problem is thus

Ut(x) = min
c

{
1− ηc(x)

}
+ 2

√
2

π
τ(x),

where

τ2(x) =
1

Nhd
maxc

{
σ2
c (x)

}
p(x)

∫ [
K(u)

]2
du

and σ2
c (x) = ηc(x)

(
1− ηc(x)

)
.

A.4 Architectures

A.4.1 Base Model

For CIFAR-100 and ImageNet-like datasets, we are using ResNet50 with or without spectral nor-
malization [16]. For the spectral normalization, we use 3 iterations of the power method. We use a
ResNet50 architecture with implementation from PyTorch [21]. This architecture was implemented
for the ImageNet dataset; thus, for the CIFAR-100, we had to adapt it. We changed the first convo-
lutional layer and used kernel size 3x3 with stride 1 and padding 1 (instead of kernel size 7x7 with
stride 2 and padding 3). For CIFAR-100, we train the model for 200 epochs with an SGD optimizer,
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starting with a learning rate of 0.1 and decaying it 5 times on 60, 120, and 160 epoch. For ImageNet,
we train the model for 90 epochs with an SGD optimizer learning rate decaying 10 times every 30
epochs.

For MNIST, we train a small convolutional neural network with three convolution layers with padding
of 1 and kernel size of 3. Each of these layers is followed by a batch normalization layer. Finally, it
has a linear layer with Softmax activation. This network achieves an accuracy of 0.99 on the holdout
set.

We refer readers to our code for more specific details.

A.4.2 Ensemble

For ensemble with use a combination of 5 base models, trained with different random seeds.

A.4.3 Test-Time Augmentation (TTA)

For TTA, we use a base model with applying a transformation on the inference stage. Images of
CIFAR-100 are randomly cropped with padding 4, randomly horizontally flipped, and randomly
rotated up to 15 degrees. ImageNet is randomly cropped from 256 to 224, randomly horizontally
flipped, and the color was jittered (0.02).

A.4.4 Spectrally Normalized Models

For both DDU and NUQ, we need spectral normalized models to extract features. We’re wrapping
each convolutional and linear layer with spectral normalization (PyTorch implementation). We used
3 iterations of the power method in our experiments.

A.5 Ablation Study on CIFAR-100

A.5.1 Choice of Kernel for Uncertainty Quantification

In this section, we study the choice of a kernel for uncertainty quantification.

We consider the following choices:

Kernel name Formula K(u) Integral
∫
K(u)2du

Gaussian (RBF) 1√
2π

exp
{
−u2

}
1

2
√
π

Sigmoid 2
π

1
exp{−u}+exp{u}

2
π2

Logistic 1
exp{−u}+2+exp{u}

1
6

Table 3: Different types of kernels K(u) considered and corresponding values of the integral∫
K(u)2du.

We need a probability density estimation for our method, and there are different options: we consider
kernel method with RBF kernel and logistic kernel and Gaussian mixtures models. There is also a
question about which embeddings to use - the DDU paper proposes to take the features from the
second last layer; we believe the logits from the last layer are a reasonable choice as well. To validate
the options, we conducted some ablation study on out-of-distribution detection for the CIFAR-100
dataset, similar to the main experiment.

First, we compare the DDU and NUQ on embeddings from the pre-last and last layer (Table 4) on
SVHN, LSUN, and Smooth datasets. Secondly, we compare the NUQ method on RBF, logistic
kernel, and GMM for both last and penultimate layer embeddings(Table 5). As we can see from the
tables, the optimal is the option with GMM density on the penultimate layer.

Kernel-based methods rely on the “reasonable” geometry of the embedding space, meaning that
embeddings of similar images should not be too far and different images should not collapse into a
single point. Our motivation to use spectral normalization during training is to make the embedding
space more smooth with respect to input images. We have conducted an extra ablation study,
comparing the result for feature extractors with and without spectral normalization, see Table 6. The

8



DDU, features DDU, logits NUQ, features NUQ, logits
SVHN 89.6±1.6 88.2±0.6 89.7±1.6 88.2±0.6
LSUN 92.1±0.6 90.9±0.4 92.3±0.6 90.9±0.4

Smooth 97.1±3.1 96.3±4.1 96.8±3.8 96.2±4.1
Table 4: Comparison of DDU and NUQ predictions on different type of embeddings - logits (last
layer) and features (second last layer).

RBF, f RBF, l Logistic, f Logistic, l GMM, f GMM, l
SVHN 84.4±3.2 84.7±3.1 84.8±2.9 86.7±2.6 89.7±1.6 88.2±0.6
LSUN 88.2±1.0 88.1±0.8 88.5±4.0 90.3±1.0 92.3±0.6 90.9±0.4

Smooth 85.5±6.8 87.7±9.4 86.2±8.2 90.8±7.8 96.8±3.8 96.2±4.1
Table 5: Probability density methods comparison – radial basis function kernel (RBF), logistic kernel,
gaussian mixture models (GMM). ’f’ (Features) marks models, built on embeddings from a second
last layer and ’l’ (logits) is for the ones built on embeddings from a last layer.

results confirm our hypothesis, as the spectral-normalized version performs better, though the NUQ
beats the baseline even without applying the modification to the ResNet training. We also show here
that entropy performs better than maximum probability as an uncertainty measure.

OOD dataset MaxProb Entropy DDU DDU (spectral) NUQ NUQ (spectral)
SVHN 79.7±1.3 81.1±1.6 88.7±4.3 89.6±1.6 86.8±1.2 89.7±1.6
LSUN 81.5±2.0 83.0±2.1 91.3±0.9 92.1±0.6 91.2±1.1 92.3±0.6

Smooth 76.6±3.5 77.8±5.2 95.7±1.2 97.1±3.1 95.5±1.3 96.8±3.8
Table 6: Comparing the influence of spectral normalization on the model performance for OOD
detection, ROC-AUC.

A.6 Estimates of Total, Aleatoric and Epistemic Uncertainty

Let us denote by τ(x) the standard deviation of a Gaussian from equation (2):

τ2(x) =
1

Nhd
σ2(x)

p(x)

[ ∫
[K(u)]2du

]d
.

In this work, we suggest to consider the following measure of the total uncertainty:

Ut(x) = min
{
η(x), 1− η(x)

}
+ 2

√
2

π
τ(x),

which is obtained by considering an asymptotic approximation of

EDL(x) = min
{
η(x), 1− η(x)

}
+ 2ED

∣∣η̂(x)− η(x)∣∣
in a view of (2) and the fact, that E|ξ| = std(ξ)

√
2
π for the zero-mean normal variable ξ. The

resulting estimate upper bounds the average error of estimation at point x and thus indeed can be
used as the measure of total uncertainty.

We also can write the corresponding measures of aleatoric and epistemic uncertainties:

Ua(x) = min
{
η(x), 1− η(x)

}
, Ue(x) = 2

√
2

π
τ(x). (3)

Finally, the data-driven uncertainty estimates Ût(x) and Ûe(x) can be obtained via plug-in using

estimates η̂(x), σ̂(x), p̂(x) and, consequently, τ̂2(x) = 1
Nhd

σ̂2(x)
p̂(x)

[ ∫ [
K(u)

]2
du

]d
.
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The generalization of the considered uncertainty measures to the case of multiple classes results in
the total uncertainty given by

Ut(x) = min
c

{
1− ηc(x)

}
+ 2

√
2

π
τ(x),

where τ2(x) = 1
Nhd

maxc

{
σ2
c(x)
}

p(x)

[ ∫ [
K(u)

]2
du

]d
and σ2

c (x) = ηc(x)
(
1− ηc(x)

)
. The derivation

of these formulas can be found in Supplementary Material, Section A.3. We note that the resulting
formula for aleatoric uncertainty Ua(x) = minc

{
1 − ηc(x)

}
coincides with classical maximum

probability (MaxProb) uncertainty measure.

The only remaining unspecified ingredient of the procedure is the choice of bandwidth h for KDE
(see Appendix).

In this work, we consider the choice of bandwidth based on the Improved Sheather–Jones algo-
rithm [1]. We assume that the bandwidth optimal for the primary problem (density estimation) is also
helpful for OOD detection. It is not necessarily so in practice. Thus, it might be beneficial to tune
the bandwidth to optimize the quality of OOD detection if some set of OOD points is available at
the training time. However, we find that considered estimates perform fairly well in practice, see the
experimental evaluation in Section 3.

A.7 Baseline description

We compare popular measures of uncertainty which do not require significant modifications to model
architectures and training procedures. More specifically, we consider:

1. Maximum probability (MaxProb): 1−max
c
p(y = c | x);

2. Entropy: −∑C
c=1 p(y = c | x) log p(y = c | x);

3. Monte-Carlo dropout [5];
4. Ensemble of models trained with different random seeds;
5. Test-Time Augmentation (TTA) – augmentation, applied to data at inference time;
6. DDU [17] involves Gaussian Mixture Model (GMM)-like approximation of extracted

features to predict uncertainties.

For Monte-Carlo dropout, Ensembles, and TTA, we first compute average vectors of predictions
and then compute its entropy (as we noticed) among MaxProb, Standard deviation, and BALD
entropy provides the best ROC-AUC results). More details can be found in Supplementary Material,
Section A.4.

A.8 Additional experiments

A.8.1 Rotated MNIST

The second example is misclassification detection on MNIST [13]. We train a small convolutional
neural network with three convolution layers, see Supplementary Material, Section ??. This is
the base model we use to obtain logits for the input objects. We consider a particular instance of
distribution shift for evaluation by using a test set of MNIST images rotated at a random angle in the
range from 45 to 90 degrees. This set contains 10000 images. The range of angles reassures that the
data does not look like the original MNIST data, though many resulting pictures can still remind the
ones from training.

In this experiment, we consider MaxProb and Entropy-based uncertainty estimates of the base model
(using base model predictions, not NUQ) and compare them with NUQ-based estimate of total
uncertainty Ût(x). To evaluate the quality of the uncertainty estimates, we sort the objects from
the test dataset in order of ascending uncertainties. Then we obtain the model’s predictions and
plot how accuracy changes with the number of objects taken into consideration; see Figure 2. The
valid uncertainty estimation method is expected to produce the plot with accuracy decreasing when
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Figure 2: Accuracy for images
sorted by uncertainty on rotated
MNIST.

Figure 3: Share of SVHN im-
ages included into consideration
vs unrotated MNIST.

Figure 4: Share of SVHN im-
ages included into consideration
vs rotated MNIST.

more samples are taken into account. Moreover, the higher is the plot, the better is the quality of the
corresponding uncertainty estimate. We see that the plots for all the considered methods show the
expected trend, while uncertainties obtained by NUQ are more reliable.

A.8.2 MNIST vs. SVHN

To make the problem more challenging, we consider the SVHN dataset [18], convert it to grayscale,
and resize it to the shape of 28 x 28. The size of this additional SVHN-based dataset is again 10000.
We take the base model trained on MNIST from the previous section and consider the problem of
OOD detection with SVHN being the OOD dataset.

As in-distribution, we first consider the test set of 10000 MNIST images. We again compute
uncertainties for each object of this concatenated dataset (10000 of MNIST and 10000 of SVHN) and
sort them by their uncertainties in ascending order. For NUQ we use total uncertainty Ût(x) in this
experiment. In Figure 3 we plot the share of objects included from the SVHN dataset. It is clearly
seen that NUQ assigns higher uncertainties to objects from SVHN. In fact, NUQ almost perfectly
separates MNIST from SVHN (optimal result is also depicted on the plot). Although NUQ is the
leader in this task, competitors show good performance, and we move on to make the problem more
challenging.

We consider the problem of separation between rotated MNIST (see Section A.8.1) and SVHN. We
expect that it is harder to distinguish between them as rotated MNIST images differ from those used
to train the network. However, Figure 4 shows that NUQ still does a very good job and allows for
almost perfect separation. Interestingly, other methods completely fail and perform no better than
random baseline.
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