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Abstract

Prompt learning is an effective means of fine-tuning multi-modal foundation models such
as CLIP. Despite existing success, the inner mechanism of multi-modal prompt learning
has not been well understood. In this work, we identify an inductive bias of multi-modal
prompt learning, which we refer to as view bias, that the learned prompts may extract only
a partial subset of useful features (views) and ignore others. This bias can undermine the
model’s generalization ability, particularly under distribution shifts. We further observe that
independently trained prompts have distinct view biases, contrary to the existing belief that
they may converge to similar local optima due to having the same cross-modal representation
matching objective. Based on our observations, we propose Multi-modal Matching Multi-
Prompt Learning (M3PL), which incorporates multiple paired prompts and a cross-modal
contrastive regularizer that facilitates the prompt pairs to encapsulate a broader spectrum of
views. Extensive experiments show that M3PL effectively boosts the model’s generalization
capability, achieving state-of-the-art performance under various distribution shifts.

1 Introduction

Recent advancements in Vision-Language Pre-trained (VLP) models such as CLIP (Radford et al.| [2021]) and
ALIGN (Jia et al.l |2021) have demonstrated impressive open-vocabulary generalization capabilities across
various downstream tasks (Li et al) 2022b; Ramesh et al., [2022; [Tevet et al., |2022). However, the large
scale of VLP models and the scarcity of high-quality training data often make fine-tuning the entire model
costly. In response, prompt learning, which appends additional, learnable continuous vectors (prompts) to
VLPs while keeping pre-trained weights intact, has emerged as an efficient alternative for fine-tuning VLP
models (Zhou et al |2022b; Khattak et al., |2023b; [Lu et al., 2022; [Khattak et al.l |2023a; |Zhou et al., 2022a)).

Although previous prompt learning methods (Zhou et al., 2022bzal) have significantly enhanced the in-
distribution (ID) performance of the fine-tuned models, their improvements in out-of-distribution (OOD)
settings are still limited. In particular, on datasets where both image and text exhibit substantial distri-
bution shifts, existing prompt-based methods may even underperform zero-shot CLIP. As an example, in
the EuroSAT (Helber et al., 2019) satellite dataset, existing methods reduce the OOD accuracy of CLIP by
0.07% to 7.40% after few-shot fine-tuning on ImageNet (Deng et all 2009), as shown in Figure (1] (left).

Why do existing prompt learning methods reduce OOD robustness? To answer this question, it is necessary
to analyze what is actually learned by prompts and how it relates to generalization. In existing work, it
is believed that what is learned by prompts is roughly uniquely determined by the training data and the
prompt learning objective (Chen et al., [2023). However, through an empirical study of the mistakes made
by independently trained prompts in OOD settings, we challenge this belief. In particular, we observe
that prompts with nearly identical ID accuracies can make very different OOD mistakes. For example, as
illustrated in Figure [1| (middle), a set of learned prompts with almost the same ID performance exhibits
distinct incorrect image predictions. This phenomenon implies that prompts optimized under the same
conditions may converge to different local optima, where the model use different features for prediction. As
will be detailed in Section {4] similar phenomena also manifest in many datasets with distribution shifts.
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Figure 1: (Left) Zero-shot performance of CLIP ViT-B/16 on EuroSAT after few-shot fine-tuning on Ima-
geNet. Existing prompt learning methods compromise the original generalization capability of CLIP. (Mid-
dle) The distribution of predicted labels for misclassified images on EuroSAT of three independently trained
prompts with nearly identical ID test accuracies. Different prompts exhibit distinct predictive distributions.
(Right) An illustration of view bias of different prompts. Each prompt only learns a partial set of OOD-
useful features and thus can only solve certain OOD tasks but not all of them.

To investigate the inner mechanism of the above phenomenon, we need to first characterize the learned
features of multi-modal prompts. However, the existing analysis is also limited in this direction: to our
knowledge, the most relevant work is by |Oymak et al.| (2023), which studies uni-modal instead of multi-modal
prompt learning. Moreover, they focus on analyzing the roles of the attention mechanism in prompt learning
without characterizing the learned features of the prompts. To overcome this limitation, we theoretically
analyze multi-modal prompt learning under a structured feature model. Compared to the work by
, our analysis draws inspiration from recent studies on the feature learning process of neural
networks (Allen-Zhu & Li, 2023; [Shah et al., |2020)) and analyzes the interaction between prompts and inputs
in different modalities. Through our analysis, we show that (1) prompt learning can be viewed as a feature
selection process that selects pre-trained features to match visual and textual representations on downstream
tasks, and (2) due to the multi-solution nature of the feature selection schemes, prompts may only select
a subset of useful features (views), which we term as view bias. For ID data, since the features useful for
prediction are often redundant (Guyon & Elisseefll 2003)), view bias does not impact test performance much
and may even mitigate overfitting. However, in OOD scenarios where not all features useful in ID data are
still predictive, view bias can lead to the lack of predictive features, thus limiting the generalization ability.
This is consistent with our empirical observation that prompts with different OOD mistakes can still achieve
similar ID accuracies. Please see Figure [1] (right) for an illustration.

Based on the analysis, we propose a principled Multi-modal Matching Multi-Prompt Learning (M3PL)
method to mitigate the adverse effect of view bias in OOD generalization. The main idea of M?PL is to
aggregate different views from multiple independently optimized multi-modal prompt pairs. Leveraging
the fact that independently trained prompt pairs tend to have different view biases, M?PL can obtain
a diverse and rich collection of useful views through aggregation, hence improving generalization under
distribution shifts. However, ensembling multiple prompt pairs may also lead to view redundancy that can
harm generalization. To mitigate this problem, we further introduce a cross-modal contrastive regularizer to
facilitate distinct views for different prompts, which also enhances the model’s OOD robustness. Empirically,
on the cross-dataset setting with distribution shifts in both visual and textual domains, M3PL achieves a 3.5x
increase over previous methods in OOD accuracy gains over zero-shot CLIP, and significantly outperforms
prior methods in terms of a complementary OOD performance measure named effective robustness ratio.

In summary, our main contributions are three-fold:

o We identify a failure mode in existing prompt learning methods under large distribution shifts caused
by view bias, which provides new insights into analyzing the generalization of prompt learning.
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o We theoretically analyze multi-modal attention-based prompt learning, which explains the view bias
phenomenon and lays a foundation for future analysis.

« We propose a theoretically grounded and minimally constrained prompt learning framework, M3PL,
which achieves state-of-the-art performance in average test accuracy and effective robustness ratio
across three common OOD generalization settings.

2 Related Work

Vision-Language Pre-trained Models and Downstream Task Adaptation. Vision-Language Pre-
trained (VLP) models have achieved remarkable performance in few-shot and zero-shot recognition tasks by
leveraging large-scale image-text paired training data to align vision and text representations (Li et al., 2021}
Jia et al., 2021 [Radford et al.,[2021; |Kim et al., [2021). Supported by the expressive power of language, VLP
models gain an understanding of open-world visual concepts, enabling them to adapt to various applications,
including object detection and segmentation (Li et al., [2022a; Xu et al., 2022 |Gu et al.| 2022} |Li et al., [2022b)),
image generation (Ramesh et al.,|2022; Patashnik et al. [2021]), action recognition (Tevet et all 2022; Wang
et al., 2021)), etc. While VLP models provide generalizable representations, how to efficiently adapt them
to downstream tasks remains an important challenge. Prior work has proposed parameter-efficient tuning
methods based on CLIP, including adapter-based (Gao et al., [2023; [Zhang et al., [2022) and prompt-based
methods (Zhou et al.l [2022bja)). Our work introduces a multi-modal multi-prompt learning framework that,
while maintaining parameter-efficiency during adaptation, enhances the robustness of the adapted models.

Prompt Learning. Prompt learning originated in the NLP domain. Early methods used expert knowledge
to manually construct prompts, also known as prompt engineering (Brown et al., 2020; |[Petroni et al., 2019).
Later, [Jiang et al.| (2020)); [Shin et al.| (2020) proposed to automatically search for templates, and |Li &
Liang| (2021)); | Tsimpoukelli et al| (2021); [Liu et al.| (2023)); [Lester et al.| (2021) extended the search to the
continuous representation space. Recently, prompt learning has been introduced to vision tasks. |Jia et al.
(2022)) incorporated learnable prompts in vision models. CoOp (Zhou et al.}|2022b) and CoCoOp (Zhou et al.|
2022a)) add a learnable single prompt in the language branch of CLIP. MaPLe (Khattak et al., [2023a)) extends
this approach to both vision and language branches. PromptSRC (Khattak et al., [2023b) incorporates self-
regularization into the prompt learning process. ProDA (Lu et al., 2022) and PLOT (Chen et al.l [2023)
learn multiple prompts only in the language branch; ProDA assumes a Gaussian distribution for prompts,
while PLOT employs a two-stage optimization strategy based on local features and optimal transport theory.
Unlike these methods, M?PL does not require modifying the objective or assuming a parameter distribution,
enabling the learning of diverse prompts in a simpler and minimally constrained manner. On the theoretical
side, there is little work analyzing prompt learning, even outside the multi-modal setting. The recent work
by |[Oymak et al.| (2023) analyzes the role of attention in prompt learning. However, their analysis focuses on
the single-modal setting and considers a simplified attention model where learnable tokens are only appended
to queries but not keys and values, which deviates from the multi-modal prompt learning practice.

3 Preliminaries

CLIP Architecture. CLIP comprises both an image encoder and a text encoder and performs zero-shot
classification by matching the visual representation with different textual representations corresponding to
different labels. Our implementation is based on CLIP with Vision Transformer (ViT) (Dosovitskiy et al.,
2021) as its image encoder. Concretely, denote CLIP’s image encoder as f and text encoder as g, with
parameters denoted by €y and 8, respectively. Both encoders consist of L multi-head self-attention layers.
In the vision branch, the input image X is initially divided into N fixed-size patches {x1, ...,z x}. Next, this
patch sequence is embedded as tokens {21, ..., 2y } and concatenated with a learnable classification token 2%
to form the input sequence Zy = {zgls, 29, ..., 2%} of the first multi-head self-attention layer. Similarly, we
denote Z; = {2}, 2%,...,2%} as the input sequence for the (i + 1)-th layer. Finally, the classification token
zL . from the output of the L-th transformer layer is mapped to a d-dimensional vector in CLIP’s aligned
representation space, serving as the visual representation v = f(Zp;0;) € R%. In the language branch, the

label is concatenated with a fixed template, such as “a photo of {label}”, to serve as input. This input is
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Figure 2: Visualization of attention heatmaps of different prompts on test images in ImageNet and three
different target datasets. Different prompts focus on varying regions of the images, with significant differences
in the attention distribution. All prompts are learned using identical training data.

then tokenized and embedded to form the input text token sequence Wy = {wdng, w?, ..., wh, wy, wiog}
(assuming the template has K tokens), where 'wg represents the token corresponding to the class label.
Similar to the vision side, the wiyg from the output of the L-th transformer layer is mapped to a d-

dimensional vector, serving as the textual representation t = g(Wy;0,) € R,

CLIP for Image Classification. For classification, assuming a set of C candidate class labels {y1,...,yc},
the probability of a CLIP-based model predicting the label as yj is then given by:

exp(cos(v, tg)/T)
S5, expleos(v, ) /7)

where cos(-, -) denotes the cosine similarity, 7 is a temperature parameter, v is the output of the input image,
and ¢ represents the textual representation corresponding to label yy.

p(=yx| X)= (1)

Prompt Learning Based on CLIP. We employ a simple baseline of Independent Vision-Language Prompt-
ing (Rasheed et all [2023) to elucidate the fundamental principles of prompt learning. At the input layer,
N, and N, learnable tokens serve as visual and textual prompts, denoted by p2 and p?, respectively. In the
vision branch, p? is concatenated directly with Zy, while in the language branch, pY replaces the correspond-

ing tokens in Wy, resulting in new input sequences Z, = {p°, Zy} and W, = {wlog. Py, 'wo ,whos}. Given
a prompt depth J, prompts will be added to the first J layers of the transformer. At the i- th layer, the input
sequences are Z; 1 = {p,,", Z;_1} and Wi = = {wios, pi ", wi! ,wios}- Note that the output tokens at
the positions of the previous layer’s prompts are replaced with new learnable tokens added in the subsequent
layer. Ultimately, we obtain the visual and textual representations denoted by © = f (Zo7 0y, {pv ) and
t= g(ﬁvfo; 0,, {pi};]:_ol), respectively. During training, the pre-trained parameters 8¢ and 8, are frozen and
only the learnable prompts are optimized.

4 More Empirical Evidence of View Bias

The Ubiquity of View Bias. To show that view bias also exists in datasets other than EuroSAT, for
every dataset, we compute its Jenson-Shannon (JS) divergence (relative to EuroSAT) between independently-
trained prompts’ predicted label distributions for misclassified images. As shown in Table [T} the average
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Table 1: Relative average Jenson-Shannon (JS) divergence of the predicted label distributions of different
prompts. Larger value indicates greater disparity.

el — I~ H —
T T & & S uvE 8 5 2| ®
= Sw =2 2 g > B Z, A < I S
TZ KT s o9 2 (GRR=] =) = = O S
O= O0aA »O = = o < n A = =} <
Average JS Divergence 1.043 0.520 0.590 0.850 0.254 1.470 0.358 0.516 1.000 0.579 ‘ 0.718

JS divergence on most datasets is comparable to EuroSAT, implying the generality of the observation in
Figure As another piece of empirical evidence of view bias, we present attention heatmaps of different,
independently-trained prompts on the source dataset ImageNet and three distinct target datasets including
EuroSAT, Flowers102 (Nilsback & Zisserman) 2008), and StanfordCars (Krause et al., [2013). As shown in
Figure [2] the heatmaps of different prompts indeed capture a diverse range of views. Concretely, different
prompts exhibit significantly varied attention distributions in both ID and OOD scenarios. For example,
on the ImageNet dataset, various prompts focus on different aspects: some on the whole object, some on
specific parts of the object, and others on the background areas which may serve as potential cues for
classification. Similarly, in the StanfordCars dataset, different prompts highlight different parts of the cars,
such as headlights, wheels, and windshields, while some prompts capture more background information.

5 Analysis and Methodology

In this section, we theoretically analyze multi-modal prompt learning with the representation matching
objective and characterize the features learned by multi-modal prompts. First, by investigating the role of
the softmax-attention mechanism in prompt learning, we show that the representation matching objective
can be decomposed into complementary terms that isolate the feature selection effect of visual and textual
prompts (Section . Then, we analyze the innate multi-solution nature of prompt learning under a linear
feature model and further relate this to view bias and OOD generalization failure (Section [5.2)). Motivated
by our analysis, we then introduce the M?PL framework, showing that the view bias of single prompt pair
can be mitigated by aggregating the output of multiple prompt pairs (Section , and further propose a
cross-modal contrastive regularizer to facilitate the learning of more diverse views in different prompt pairs

(Section [5.4)).

5.1 Prompt Learning as Feature Selection

Self-Attention Model. We begin our analysis by introducing a model of single-head self-attention, which
serves as a primary building block of transformers. Concretely, let Zi, = (20,...,2zx)' € RWV+DXdo he the
input sequence of the self-attention layer with zy being the representation token (z.s on the vision branch
and wgos on the language branch). The output of the layer is then defined as

Zows = ¢ (ZanQW[—(erI) ZinW, (2)

where Wy € RéoXm Wiy € R¥oX™ and W € R%*? are model weights, and ¢ is a softmax nonlinearity that
acts row-wise when taking into a matrix as input. We consider the case where the weights Wg € Rdoxm
Wy € Rox™ and W € R%*4 have been pre-trained and keep frozen during prompt learning. The final
representation v € R? is then mapped from the representation token in Z,;, given by its first row:

v =6 (zg WoWi Z,})) ZinW. (3)

Multi-Modal Prompt Learning. For simplicity, we consider appending a single learnable prompt token
_ T
p € R% to the raw input Zi,: let Z;, = {Z € RIN+2)xdo he the new input. The new representation for
i
classification is then given by

(4)

]
57 = o ([2] WoWip = WoWiZl)) [p W} .

ZiW
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Our main observation here is that @ is a weighted mizture of the raw input Z;, and the prompt p. In other
words, © takes the form of
o =nv+(1-nW'p, (5)

where the weighting coefficient n is obtained by expanding and reweighting the original softmax-attention
map in Eq. (3), with its concrete form detailed in Appendix In multi-modal prompt learning, both
vision branch and language branch have their learnable prompts. To avoid confusion, in what follows we

shall use v(0) and #(¢) to denote visual and textual representations, respectively. For other parameters, we
will use subscripts “v” and “t” to denote if they belong to vision branch or language branch.

Feature Selection Effect of Prompts. We then introduce the common representation matching objective
in multi-modal prompt learning. For a C-way classification problem with training distribution D, multi-
modal prompt learning aims to minimize

exp(sim(d, &) /7
Lon = gy e | - log 2O )T, 0
>_i—1 exp(sim(®,t;)/7)
where for every label y € {1,...,C}, fy denotes the textual representations of y, and sim(-,-) : R¢xRY - R

is a similarity measure. In practice, sim(-,-) is often the cosine similarity as in Eq. . In our theoretical
analysis, we assume sim(-, -) to be the inner product (-,-) for simplicity, and consider a binary classification
setting with y € {—1,1} and 7 = 1. This allows us to derive a cleaner form of the loss function that reveals
the role of multi-modal prompts, which is formally shown by Proposition [T}

Proposition 1 (Objective decomposition). Under the conditions stated above, we have

Lcy = E(z,.y)~p 10g (1 +exp {10 (y = Ne,—y) (W, D1, ) + (1= 00) (e, —yt—yy — N yty, W, Do)
(1) (2)
+ (L= n0)(ey — 77t,—y)<WtTPta Wvav> + 10 (1, —yt—y — Nty ty, V) })>
(3) (4)

(7)

where 0, denotes the weighting coefficient in the vision branch, and 1, denotes the weighting coefficient in
the language branch for class y € {—1,1}.

Proof. The complete proofs of Proposition [If and the following propositions are deferred to Appendix O

Remark. Proposition [l| shows that the multi-modal prompt learning objective can be decomposed into
terms that reflect the similarity between (1) the textual prompt and the visual representation, (2) the
visual prompt and the textual representation, (3) visual and textual prompts, and (4) visual and textual
representations. In particular, the first two terms can be viewed as a feature selection mechanism that allows
the model to emphasize the task-related features in both visual and textual representations by adjusting p;
and p,. This also justifies the advantage of multi-modal prompts as it makes the model expressible enough to
accommodate distribution shifts in both vision and text domains, which we empirically verify in Secion

5.2 View Bias and OOD Generalization

Multi-Solution of Prompt Learning. Given Proposition our key insight on multi-modal prompt
learning is that minimizing Lcg can lead to multiple representation matching schemes that give similar
training risks, resulting in the observed view bias of different prompts. As an example, given input Zj,
from a class y € {—1,1}, we assume that each input token z; for i € {0,..., N} is a linear combination
of a set of orthogonal, unit-norm features f;,j € {1,...,l} with each feature f; € R% For simplicity, we
assume that there are no “useless” features, i.e., every feature is correlated with the label on D. Then, due
to Eq. 1} we can write v as also a combination of those features: v = 2321 B; f; for some random variable
B; € R depending on distribution D and pre-trained weights. Hence, by Eq. we have that matching p;
and v by pushing W," p; along the direction of any feature f; that correlates with the label y can reduce the
training risk Lcg. Given this multi-solution nature, how the finally learned prompt p; correlates with each
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feature f; cannot be uniquely determined by the training distribution D and the loss function Lcg, but is
also determined by the concrete process of optimization, where the inductive biases of the neural network
and gradient descent play a critical role. We will detail this next.

View Bias in Feature Learning. Recently, several works (Allen-Zhu & Li| 2023; [Zhang & Bottoul, [2023)
show that independent neural networks with the same architecture trained by gradient descent can converge
to different optima that each extracts only a subset of useful features. This phenomenon also relates to the
simplicity bias of neural networks (Shah et all |2020)), i.e., neural networks may prefer “simple” solutions,
such as using only a subset of useful features for classification, over “complex” solutions, such as using all
useful features. In our prompt learning setting, such a bias corresponds to (f;, W,"p;) # 0 holds for only
j € S with S being a subset of {1,...,{}, which we formalize as view bias. While this inductive bias may
benefit in-distribution generalization by serving as an implicit regularization, Proposition [2] formally shows
that it can adversely harm generalization under certain distribution shifts.

Proposition 2 (View bias can harm generalization). Under the conditions stated above, consider a test
distribution D' satisfying Epiy—18; = Epjy——10; for every j € S and Ep/y—15; # Eprjy—_15; for every
je S with S’ C{1,...,1}\ S. Assume that the weighting coefficients satisfy n.1 = n,—1. We then have

Pr(Zm,y)ND’ [<’U7£Z/> > <'Uv£—y>] = Pr(Zm,y)~D'[<v7ty> > <'th—y>]~ (8)

Remark. Proposition [2| reflects a distribution shift scenario where only a feature subset S’ remains useful
in the test distribution D’. In an extreme case, if this useful subset S’ does not overlap with the feature
subset S extracted by prompt learning, then prompt learning would essentially lead to no improvement in
test accuracy since no additional useful feature is properly conditioned during prompting. To make matters
worse, when the learned features S have spurious correlations with labels (Simon, (1954} |Scholkopf et al.| [2021))
or contain large noise, over-reliance on those features by prompt learning may even decrease distributional
robustness. This is consistent with our empirical observations that in some cases, prompt learning does not
improve the performance of CLIP under large distribution shifts and sometimes even decreases it.

5.3 M?3PL: Multiple Prompt Pairs and View Aggregation

Motivated by the above analysis, this section proposes M3PL that aims to mitigate the intrinsic flaw of view
bias in prompt learning by introducing multiple, paired multimodal prompts and aggregating their views.

Incorporating Multiple Prompt Pairs. Specifically, building upon the vanilla prompt learning approach
in Section [3] for each layer in the first J layers of CLIP’s vision branch, we introduce M sets of learnable
prompts, denoted as p, 1 = {pjvﬁl 3-];01, coyPoM = {pf) M ;’;01. Symmetrically, in the language branch, we
also add M sets of learnable prompts in the first J layers denoted by p,; for i € {1,...,M}. For each i, we
treat the visual prompt set p,; and the textual prompt set p;; as a prompt pair. The input sequences for

the ¢-th prompt pair and the j-th layer in the vision and language branches are then given by
zZ] = {pi;,ﬂzj}? W) = {wéo&pg,iawéaw%}os} 9)

Paired Representation Matching with Multiple Prompts. In the forward process, we obtain visual
and textual representations for all prompt pairs, given by ©; = f(Z?;0,p,,) and t;, = g(W?;0,,p; ;) for
the i-th prompt pair. During training, we sum the representation matching loss for every prompt pair:

M exp(cos(¥;,t,4)/T)
Lmatch = ZE(X,y)ND - IOg C = ~y11~ ) (10)
=1 Zy’:l exp(cos(vi7 ty/vl)/T)
where for each y € {1,...,C}, t,.; denotes the textual representation corresponding to the label y for the

i-th prompt pair. During inference, we average the prediction logits obtained from all prompt pairs.

Exploiting View Bias by Aggregating Different Views. The key intuition of our approach is that as
we empirically observe in Figures (1| and [2, independently trained prompts tend to have distinct view biases.
Hence, aggregating them naturally results in a richer collection of useful features. Formally, Proposition
demonstrates that if independently optimized prompts extract independent feature subsets, then aggregating
them by simply averaging their representation matching scores can benefit OOD generalization.
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Figure 3: The M?PL framework. We introduce multiple paired visual and textual prompts and jointly
optimize each prompt pair using representation matching (Section . Meanwhile, we randomly sample
from the multiple prompt representations corresponding to each example for contrastive regularization to
further enhance the learning of more diverse prompts (Section . Note that we use superscripts to denote
the indices of prompt pairs in the figure for visual clarity.

Proposition 3 (Effectiveness of aggregating multiple views). Under the same conditions as in Proposition@
consider M prompts that each independently extracts a feature subset S;,i € {1,..., M} with |S;| = s and

the elements in each S; uniformly drawn from {1,...,1}. We then have
M M
Prz, pon | D _(0:8y0) > Y (0,85 | > Priz, o [(v,ty) > (v,8,)] (11)
i=1 i=1

s\ SM
with probability at least 1 — ®< (%) )

Remark. Proposition[3Jassumes a scenario where different prompts learn independent views, while only some
of them remain useful in OOD data. Since we cannot determine which views are useful solely based on ID
data, simply aggregating all of them seems to be a fair approach as adopted by M?PL. Yet, such aggregation
may also induce redundant views, which is indeed observed in our experiments (see Appendix . Thus,
it would be more efficient to actively incentivize different prompts to learn more diverse views. In the next
section, we propose cross-modal contrastive regularization to achieve this goal.

5.4 Cross-Modal Contrastive Regularization

To further enhance the diversity of the learned views of different prompts, we introduce a cross-modal
contrastive regularization penalty. The main idea is to mazimize the representation difference between
different prompt pairs while matching the representations in the same prompt pair. Concretely, given
a batch of B examples {(X1,y'),..., (X5, y?)}, for every example, we randomly sample a prompt pair
{Pv,r(i), Pt,r(i) }, where 7(i) € {1,..., M} denotes the prompt pair index for the i-th example in the batch.
We then calculate the cross-model contrastive regularization penalty by

exp(cos(V; (i), Lyi (i) /T) " log exp(cos(0; (i), tyi r(i)/T) (12)
B ~ z B . z
2 k=1 €XP(COS(j (i), Byt (1) /T) > k=1 €XP(COS(Vk (i), byi () /T)

b

B
»Ccontrast = E - log
i=1
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Our overall training objective is then given by:
L= [-:match + /\Lcontrasta (13)

where A > 0 is the balancing coefficient.

Explanation on Contrastive Regularization. Contrastive loss aims to pull positive examples together
and push negative examples apart. Here, we treat the visual and textual representations of the same input
with the same prompt pair as positive examples and all other cases as negative examples. In other words,
representations with different prompts would become negative examples and are thus pushed apart, even
for the same input. This relates to the effect of “class collision” that have been observed in the contrastive
learning literature (Goyal et all 2023). However, instead of mitigating this effect, we actively leverage it to
encourage different prompt pairs to learn more diverse views. We empirically verify this in Secion [6.6]

6 Experiments

6.1 Protocols for Evaluating Generalization Performance

In prompt learning, the average accuracy on OOD test sets is commonly used to evaluate a model’s gen-
eralization performance (Zhou et al.l |2022a; Khattak et all [2023a3b). However, |Taori et al. (2020) points
out that OOD accuracy is insufficient to reflect the accuracy drop under distribution shifts after fine-tuning.
And Miller et al| (2021) finds through large-scale experiments that there is a strong correlation between
a model’s OOD and ID performance, suggesting that improvements in OOD accuracy cannot be entirely
attributed to the fine-tuning methods. Instead, it may simply be due to better fit on the ID distribution.
Therefore, to comprehensively evaluate the generalization performance of prompt learning methods, we pro-
pose the effective robustness ratio, inspired by Taori et al.| (2020), as a complementary metric to average
OOD accuracy. Its expression is as follows:

Wood(f) - Wcod(fO)
accq(f) — accal fo)

p(f) = (14)

where fj is the zero-shot CLIP, f is the fine-tuned model, and @cc,oq(:) denotes the average OOD accuracy.

Discussion on p(f): This metric measures the relative accuracy drop under distribution shifts for the
fine-tuned model compared to the pre-trained CLIP. Generally, p(f) < 0% indicates that the model has
overfitted to the ID distribution. For p(f) € (0%,100%), the larger p(f), the smaller the compromise of
fine-tuning methods on the generalization ability of CLIP and the greater the generalization ability. In
particular, when the ID and OOD distributions are nearly identical, p(f) approaches 100%.

6.2 Experimental Settings

Base-to-New Generalization: This setting validates the model’s capacity to generalize unseen classes
during fine-tuning. We equally divided the classes of each dataset into new and base sections. After training
on base classes, the model is directly zero-shot tested on new classes.

Cross-dataset Generalization: To verify the generalization performance of our method when both the
vision and language modalities distributions shift during testing, we fine-tune the model on ImageNet and
then conduct zero-shot testing directly on other downstream datasets.

Domain Generalization: Unlike the previous settings, which exhibit significant distribution shifts in both
vision and language modalities, DG shows distribution shifts only in the vision modality and is not the main
focus of our method. Nonetheless, our proposed M?PL still achieves comparable performance in the DG
setting, slightly surpassing previous prompt-based algorithms. Details are provided in Appendix [C.2:3]

Implementation Details: Following MaPLe (Khattak et al.,|2023a), we employ the ViT-B/16 based CLIP
as the backbone. We use a few-shot setting that samples 16 shots per class and report the results averaged
over three runs. For M3PL, we set the number of prompt pairs M to 8 and fix A to 1.0 if not mentioned
otherwise. Due to the use of Leontrast, We use a larger batch size while reducing the training iterations to
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compensate for the computation overhead. Since ProDA lacks an official implementation, we report the
results in Derakhshani et al| (2023) for the Base-to-New setting. For other baselines, we reproduce the
results based on the provided hyperparameters. Please refer to Appendix [C.]] for additional training details.

Datasets: For cross-dataset generalization and from base-to-new generalization settings, we follow the
protocols of |Zhou et al| (2022a3b); [Khattak et al. (2023al) and consider 11 recognition datasets, including
ImageNet (Deng et al.,2009) and Caltech101 (Fei-Fei et al., 2004) for generic recognition, OxfordPets (Parkhi
et al} [2012), StanfordCars (Krause et al.,[2013), Flowers102 (Nilsback & Zisserman), [2008), Food101 (Bossard
et al., and FGVCAircraft (Maji et al., 2013) for fine-grained classification, SUN397 (Xiao et al.,|2010)
for scene classification, DTD 2014) for texture recognition, EuroSAT (Helber et al., 2019) for
satellite image recognition, and UCF101 (Soomro et al., 2012) for action recognition .

Baselines: We use zero-shot CLIP (Radford et al.,[2021)), CoOp (Zhou et all; [2022b)), CoCoOp (Zhou et al.
2022a)), ProDA (Lu et al.,2022), MaPLe (Khattak et al., 2023a)), and PromptSRC (Khattak et al., 2023b).

6.3 Base-to-New Generalization

Table 2: Comparison with previous methods in base-to-new generalization. All baselines are reproduced
with reported parameters. HM and p(f) refer to harmonic mean and effective robustness ratio, respectively.

Dataset | Zero-shot CLIP | CoOp CoCoOp ProDA MaPLe PromptSRC | M?PL(Ours)
Base 69.48 82.29 80.49 81.56 82.00 84.18 84.90
Average on New 74.28 68.78 72.04 72.30 74.88 75.76 76.81
11 datasets HM 71.80 74.93 76.03 76.65 78.28 79.75 80.65
o(f) - 43%  -20%  -16% 5% 10% 16%
Base 72.37 76.47 75.93 75.40 76.87 77.80 77.72
ImageNet New 68.10 67.50 70.13 70.23 70.73 70.60 71.73
HM 70.17 71.71 72.91 72.72 73.67 74.03 74.60
Base 97.22 98.10 97.80 98.27 97.93 98.10 98.45
Caltech101 New 94.21 93.20 93.00 93.23 95.23 94.03 94.25
HM 95.69 95.59 95.34 95.68 96.56 96.02 96.30
Base 91.23 94.53 95.03 95.43 95.60 95.33 95.85
OxfordPets New 97.20 95.80 97.73 97.83 98.00 97.27 98.15
HM 94.12 95.16 96.36 96.62 96.79 96.29 96.99
Base 63.69 75.60 70.73 74.70 72.40 78.13 79.07
StanfordCars  New 74.92 70.03 72.50 71.20 73.67 75.37 74.03
HM 68.85 72.71 71.60 72.91 73.03 76.73 76.47
Base 71.70 97.53 94.43 97.70 96.10 98.17 98.17
Flowers102 New 77.52 71.30 70.63 68.68 72.87 77.37 75.72
HM 74.50 82.38 80.81 80.66 82.89 86.54 85.50
Base 90.07 89.50 90.57 90.30 90.83 90.63 90.85
Food101 New 91.17 88.90 91.27 88.57 92.03 91.47 92.08
HM 90.62 89.20 90.92 89.43 91.43 91.05 91.46
Base 27.55 38.67 35.33 36.90 36.17 42.27 42.88
FGVCAircraft New 35.93 29.80 31.07 34.13 34.87 37.43 39.11
HM 31.19 33.66 33.06 35.46 35.51 39.70 40.91
Base 69.38 81.20 79.37 78.67 80.97 82.77 82.84
SUN397 New 75.58 70.43 76.23 76.93 78.30 78.50 78.85
HM 72.35 75.43 777 77.79 79.61 80.58 80.80
Base 53.13 79.67 76.93 80.67 80.47 82.97 83.91
DTD New 60.27 49.37 54.67 56.48 58.40 59.57 61.75
HM 56.48 60.96 63.92 66.44 67.68 69.35 71.14
Base 56.98 88.97 87.10 83.90 91.07 92.70 96.72
EuroSAT New 63.74 56.00 61.87 66.00 72.83 73.17 77.94
HM 60.17 68.74 72.35 73.88 80.94 81.79 86.32
Base 70.99 85.00 82.13 85.23 83.57 87.10 87.40
UCF101 New 78.47 64.20 73.30 71.97 76.73 78.57 81.29
HM 74.54 73.15 77.46 78.04 80.00 82.62 84.23

10



Under review as submission to TMLR

In the generalization from base to new classes, shifts in both modalities occur due to partial observations
during fine-tuning. In Table [2| M?PL demonstrates superior performance across all average metrics on 11
datasets, comprising base and new class test accuracy, harmonic mean accuracy, and effective robustness
ratio. In tests on new classes, M3PL consistently outperforms the state-of-the-art PromptSRC in 9/11
datasets, improving the average accuracy by 1.05% without compromising base class accuracy. It is worth
mentioning that on the larger-scale dataset ImageNet, M3PL surpasses PromptSRC by 1.13% in zero-shot
new class test accuracy. Full results are detailed in Appendix

6.4 Cross-Dataset Generalization

Table [3] illustrates that M3?PL substantially improves both the average zero-shot test accuracy and the
effective robustness ratio in the cross-dataset generalization setting with shifts in both vision and language
modalities. Compared to zero-shot CLIP, existing methods only achieve a modest increase of 0.61% in
average accuracy, whereas M3PL realizes a substantial improvement of 2.16%. Even excluding the superior
performance on the EuroSAT dataset, where accuracy increased by 9.12% compared to zero-shot CLIP, M3PL
still demonstrates an average accuracy gain of 1.39%. Against the state-of-the-art PromptSRC, M3PL excels
in 8/10 target datasets, boosting the effective robustness ratio by 2.8 times without markedly affecting ID
performance. These results highlight the exceptional robustness of our framework in handling distribution
shifts. Full results are detailed in Appendix

Table 3: Comparison with previous methods in the cross-dataset generalization. All baselines are reproduced
with reported parameters. M3*PL shows a significant improvement in the effective robustness ratio.

Source Target
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CoOp 71.63 93.73 88.27 . 85.63 19.27 64.60 41.63 48.33 67.37 64.12 -22%
CoCoOp 71.20 94.43 90.60 71.03 86.13 23.23 67.20 45.87 41.00 68.50 65.28 2%
MaPLe 70.40 93.53 90.03 64.90 71.93 85.97 23.77 66.67 45.03 44.87 67.47 6542 6%
PromptSRC 71.37 93.37 90.30 65.70 70.43 86.47 23.57 67.43 45.83 45.43 69.50 65.80 13%

M3*PL(Ours) 71.11  93.94 90.88 66.35 72.26 86.56 24.23 67.65 45.61 57.52 68.45 67.35 49%

6.5 Performance Analysis

While the empirical evidence in Section[d]implies the prevalence of view bias in prompt learning, our proposed
M?3PL algorithm, which leverages view bias, yields varying degrees of improvement across different datasets
in the cross-dataset generalization setting. This section provides an in-depth analysis of this phenomenon.

Theoretical Interpretation: As shown by Proposition[I} minimizing the representation matching objective
can be viewed as implementing a feature selection mechanism for both visual and textual pre-trained features.
Hence, the degrees of improvement of M3PL on a specific dataset depend on not only prompt learning but
also the overall quality and adaptability of CLIP’s pre-trained features and features that are learnable in
downstream ID data. For example, if pre-trained features lack information for prediction in a downstream
task or the downstream ID data lacks useful, predictive features under distribution shifts, then prompt
learning may not improve the OOD performance much.

Empirically, to examine the quality and adaptability of pre-trained and ID features, we design two com-
plementary metrics. (1) Informativeness: the generalization potential of CLIP’s pre-trained features on
a specific target dataset, measured by the average performance of zero-shot CLIP and the linear probe on
CLIP’s features on this dataset. (2) Transferability: the distributional similarity between target datasets
and ImageNet, measured by the average of the cosine similarity between visual and textual representations

11
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Table 4: Ablation on each component of M®PL framework in the cross-dataset generalization setting.

Method ID Acc. Average OOD Acc. | p(f)
Zero-shot CLIP 66.68 65.19 -

Independent V-L Prompting (IVLP) 71.16 65.22 1%
+ textual multi-prompts 71.00 66.15 22%
+ visual multi-prompts (w/o matching) 70.99 66.64 34%
+ visual multi-prompts 70.95 66.87 39%
+ Loontrast (W/0 collision) 70.96 66.82 38%
+ ['contrast 71.11 67-35 49%

of examples from the two datasets. We then examine the linear relationship between those metrics and
MB3PL’s performance gains compared to zero-shot CLIP. More details are provided in Appendix @

Results: On the EuroSAT dataset, where CLIP’s pre-trained features’ capability and the visual-textual joint
distribution similarity are both high, only M?PL fully realizes the above theoretical potential. Conversely,
on the FGVCAircraft dataset, both metrics are lower, resulting in poor prompt learning performance. Nev-
ertheless, M3PL still performs best among existing prompt-based methods. Performance on other datasets
can also be explained by these two metrics. For a detailed analysis, refer to Appendix [D.3}

6.6 Ablation Study

Effectiveness of M?PL: As shown in Table [4] the baseline IVLP, impaired by view bias, shows negligible
improvement in term of OOD accuracy over zero-shot CLIP. In contrast, integrating multiple prompts
significantly enhances OOD accuracy (rows 2-4), supporting our theoretical analysis in Section The
incorporation of visual prompts further improves model performance (rows 3-4), corroborating our analysis
of the multi-modal prompt learning objective in Section [5.1] The introduction of the matching design in
Lonuiti (row 4) proves more effective than scenarios where interplay exists among different prompt pairs (row
3). In addition, without Leontrast, the OOD accuracy of M3PL is already 1.68% higher than CLIP, indicating
that it effectively exploits view bias and enhances generalization under distribution shifts. Please refer to
Appendix [C:3:T] for an ablation study on the number of prompts.

Cross-modal Contrastive Regularization: In Table 4] we further delineate the contributions of our
proposed cross-modal contrastive regularization. Compared to scenarios with class collisions (row 6), avoiding
collisions (row 5) does not enhance generalization performance with the addition of the Leontrast- This
observation aligns with our discussion in Section [5.4] indicating that our proposed regularization objective
effectively steers different prompts to learn diverse views, thereby improving OOD performance. We also
conducted additional ablation studies on the impact of the A\ and batch size in Appendix

Comparison to Temporal Prompt Aggregation in PromptSRC: Refer to Appendix [C.3.3]

Computational Cost: For M = 8, the training time of M3PL is roughly 5% shorter than PromptSRC due
to fewer training iterations. Detailed analysis of training and inference speed is provided in Appendix. [C.3.4]

Prompt Length and Depth: Please refer to Appendix for details.

7 Discussion

Limitations. M>PL adopts a straightforward aggregation strategy of averaging different prompts’ logit
scores. While being simple and empirically effective, this design choice may lead to suboptimal generalization
on specific OOD tasks due to feature redundancy.

Future work. The currently rapidly evolving test-time prompt tuning methods (Shu et all [2022)) could
potentially serve as an effective means to filter the optimal prompts learned by M3PL, thus further en-
hancing the generalization performance of the prompt learning. We also hope that M3PL, a theoretically
grounded, highly scalable, and minimally constrained framework, will establish itself as a universal baseline
of regularized prompt learning methods and facilitate future research in this domain.
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A Appendix

In the appendix, we provide additional supplementary information, including proofs of the theoretical deriva-
tions presented in the main text, further implementation details, comprehensive experimental results, addi-
tional ablation studies, and visualization outcomes. The specific organization of the appendix sections is as
follows:

o Proofs of Theoretical Results (Appendix

— Proof of Eq. (Appendix

— Proof of proposition [1| (Appendix
— Proof of proposition 2| (Appendix
— Proof of proposition [3| (Appendix

o Additional Experiment Details (Appendix

— Implementation details (Appendix |C.1)

— Full results (Appendix [C.2))
— Additional ablation study (Appendix [C.3))

o Supplementary Experiments (Appendix @

— Linear Probe Experiment (Appendix [D.1))
— Datasets Representation Similarity Experiment (Appendix [D.2))
— Multivariate Linear Regression (Appendix [D.3])

B Proofs of Theoretical Results

B.1 Proof of Eq. (§)

exp(z‘;r WoW,l Zi,)
> exp(zd WoW i z))
DN exp(zd WoWiiz))
exp(z] WoW Ip)+) . exp(z{ WoW /[ z))

exp(z(;r Wq W;p)
Z;'V:O exp(z(-]r Wqo W;(r zj-)

. Applying the definition of «; to Eq. gives

Proof. Define a; = Vie {0,...,N}, ap = , and the weighting

coefficient n =

v=WT iv: ;2. (15)
i=0
Plugging the above equations into Eq. then gives
N
o=W"T ; noz; + WTnozpp (16)
=+ (1-nW'p
as desired. O
B.2 Proof of Proposition [1]
Proof. Applying Eq. to both vision and language branches gives
o =nv+ (1—n)W, p, (17)
and
ty = meyty + (1 =00y )W, pp, Yy € {—1,1}. (18)
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Recall that the cross-entropy loss with sim(-,-) being the inner product, C' =2 and 7 = 1 can be written as

)
Lce=Ez ,p|—1 = y
CE (Ziny)~D | 108 exp({(0,t,)) + exp((D,t_,)) (19)
t

= E(Zimy)ND [_ log (1 + exp(<1~)7 7y> - <'67 fy ))]a
where
(0,t_) — (0,1,)
= (v + (1 = )W, po. e, —yt—y — eyty) + (nov + (1= )W, Do, (0 — ne,—y) W, pe)

' (20)
=1 (Nt,—yt—y — Meyly, V) + 0o (Mey — Nt,—y) (0, Wy )
+ (L= n0) (e, —yt—y — Meyty, Wvav> + (1 =)ty — 77t,—y)<Wvava WtTpt>~
Finally, plugging Eq. into Eq. completes the proof. O
B.3 Proof of Proposition [2]
Proof. Applying Eq. (5) to the language branch gives
ty = myty + (1 =00y )W, py, Yy € {—1,1}. (21)
Combining the above equation and
1
’U:Zﬂjfju Vye{_]wl} (22)
j=1
yields that for every v,
l
<'Uaty> = Z/B]<f]7ty>
! (23)
= 2B (e (Fyty) + (L= mey) (£, W, 1) -
j=1
Since (f;, W, p;) = 0 for every j ¢ S, we have for every y that
l
(,dy) = 1y ) Bi{Frty) + (L =my) D Bi(F5 Wi pe). (24)

j=1 jES

Since for every j € S, the random variable 3; satisfies Ep/|y—18; = Epr|y,=_10;, we have for every y that

l
E(zyyay~n (0, 8y) = My Bz ynr Y Bi(Fisty) + Ch

j=1
= Nt,yE(Z, )~ (0, ty) + C1,

(25)

where C is a constant that does not depend on y. Using the assumption that 71 = n;2) we then have

Pr(Zin»y)ND' |:<'U, £y> > <'U7 'E_y>j|
=Pr(z, gy~ [y(v,ty) +C1 > n _y(v,t_y) + C1] (26)
= Pr(zinvy)ND/[<U7t'g> > <’U7t7y>].

This completes the proof. O
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Remark 1. In Proposition we make the assumption that the coefficients 7; 1 and 7 2 are equal in order to
simplify our analysis. However, in practice, this assumption may not hold since those coefficients also depend
on the pre-trained attention weights as well as the learned prompts. We posit that this discrepancy may
lead to the scenarios where single-prompt learning can also harm OOD generalization due to the overfitting
of 7,y to the training distribution, as we empirically observed in the experiments.

Remark 2. In our analysis, the learnable prompts in the vision and language branches have a symmetric
structure. Therefore, the analysis in Proposition [2| can be directly extended to the setting where both the
vision and language branches have learnable prompts.

B.4 Proof of Proposition [3]

Proof. Akin to the proof of Proposition [2| we have for every y that

l
) =ney > BiFity) + (L —my) D> B (F5 W, pr). (27)

j=1 jes
Proposition |2| indicates that for every i, if the i-th prompt extracts a feature subset S;,i € {1,..., M} with
S;NS" =@, then ) )
Pr(z,, g~0 [(V,8y:) > (v,8-y0)]
=Prz,, )0 [(v: 1)) > (v,t_y)]
for this prompt. Conversely, if S; NS’ # &, then the second term in the RHS of Eq. also depends on the

label y, which leads to better accuracy since it brings more expressibility by incorporating more predictive
features (note that j5; also depends on the prompts). We thus have

(28)

Priz. pp [(v,ty:) > (vt )]

(29)
> Pr(z,, )~ [V tyi) > (v, 1)
for this prompt. Therefore, as long as at least one prompt satisfies S; NS’ # &, we must have
M M
Pr(z, pen | (0, 8y0) > (0,8 )
i=1 i=1 (30)

> Pr(Zin7y)ND/[<v7ty> > <Uat—y>]-

We then formally characterize the above probability (Denoting the event that the inequality [30| holds by E).
Since here we work with the simple case that different prompts extract independent feature subsets that are
uniformly drawn from {1,...,l}, the probability that at least one prompt extracts features in S’ is given by

Cr st
the union bound over M Bernoulli distributions, each with failure probability p = %

Pr(E)=1-pM

Clis\™ (31)
Cy '

Consider the case where [ is sufficiently large, we have Cf = ©(1*) and C}_ g = O((l — [5'])*). Plugging
them into Eq. gives the desired result. O

C Additional Experiment Details

C.1 Implementation Details

Base-to-New Generalization: Following the settings of MaPLe, we set the prompt depth J to 9, and
the length of both visual and textual prompts to 2. Due to the significant impact of class collision on the
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effectiveness of our proposed cross-modal contrastive regularization objective, and its frequency being related
to the ratio of batch size to the number of classes in a dataset, we employ varying batch sizes across different
datasets to maintain this ratio around 0.6 (e.g., 32 for DTD (Cimpoi et al., [2014), 64 for UCF101 (Soomro
et al.} [2012)). We utilize an SGD optimizer with a learning rate of 2.5e-3, weight decay of 5e-4, and training
for 30 epochs (for a few datasets prone to overfitting, the training was limited to 20 epochs). The number
of prompts, M, is set to 8, with a balance coefficient, A, of 1.0 (and 1.2 for EuroSAT). For computing the
effective robustness ratio, we use the average zero-shot test accuracy of new classes across 11 datasets as
UCCood(+), and the average test accuracy of base classes as accq(+).

Cross-dataset Generalization: Following the settings of MaPLe (Khattak et all [2023a)), we set the
prompt depth J to 3, with both visual and textual prompts having a length of 2. Due to the incorporation
of a cross-modal contrastive regularization objective, we utilize a larger batch size of 512. To compensate for
the additional time expenditure, all the models are trained for only 50 epochs (1550 iterations, compared to
MaPLe’s 20,000 iterations). The model is optimized using SGD with a learning rate of 2.5e-3 and a weight
decay of be-4. We set the number of prompts M to 8 and the balancing coefficient A to 1.0. For calculating
the effective robustness ratio (p(f)), we use the average zero-shot test accuracy on the target dataset as
ACCood(+), and the test accuracy on ImageNet as @ccq(-).

Domain Generalization: Same as the cross-dataset generalization, we set the prompt depth, J, to be 3,
with both visual and textual prompts having a length of 2. We employ the SGD optimizer with a learning
rate of 2.5 x 1073, weight decay of 5 x 10~%, and a batch size of 512, training the model for 50 epochs.
The number of prompts, M, is set to 8, and the balancing parameter, A, is 0.1. For the effective robustness
ratio, we use the average zero-shot test accuracy on the target dataset as accooq(-) and the test accuracy on
ImageNet as acc;q(-).

Reproducibility: We provide publicly the source code of M?PL, which contains the configuration files we
used, to ensure the reliability and reproducibility of our experimental results. All experiments are conducted
on NVIDIA A100 GPUs.

C.2 Full Results

In this section, we report the average accuracy and standard deviation from three runs with three different
random seeds in three generalization benchmarks. It is important to note that all baselines are reproduced
using the official configuration file parameters on the same random seeds and hardware as our experiments,
ensuring fairness in comparison.

C.2.1 Base-to-New Generalization

The full experimental results in the base-to-new generalization setting are shown in Table Please note
that, due to the absence of an official implementation for ProDA (Lu et al,|2022)), we report only the results
provided by [Derakhshani et al.| (2023) in Table [2| of the main text, and do not include the full results in the
appendix.

C.2.2 Cross-Dataset Generalization

The full experimental results in the cross-dataset generalization setting are shown in Table [6}

C.2.3 Domain Generalization

Datasets: For DG, we use four ImageNet-derived datasets with different domain shifts: ImageNetV2 (Recht
et al., 2019), ImageNet-Sketch (Wang et al., [2019), ImageNet-A (Hendrycks et al., 2021b)), and ImageNet-
R (Hendrycks et al., [2021al).

The full experimental results in the domain generalization setting are shown in Table[7] Unlike the previous
two settings, in the DG setting, only the visual modality experiences shifts. Although existing methods have
achieved commendable results in this scenario, our M3PL still attains enhancements in both the average
target dataset accuracy and the effective robustness ratio.
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Dataset Zero-shot CLIP | CoOp CoCoOp MaPLe  PromptSRC M3PL(Ours) | A
Base 69.48 82.29 80.49 82.00 84.18 84.90 +0.72

Average on New 74.28 68.78 72.04 74.88 75.76 76.81 +1.05

11 datasets HM 71.80 74.93 76.03 78.28 79.75 80.65 +0.90
p(f) - -0.43 -0.20 0.05 0.10 0.16 +0.06

Base 72.37+0.00 76.47+£0.17 75.93+0.24 76.87+£0.05 77.80+0.00  77.7240.08 -0.08
ImageNet New 68.10+£0.00 67.50+0.22 70.13+£0.33  70.73+0.33  70.60+£0.08  71.73+0.04 | +1.13
HM 70.17 71.71 72.91 73.67 74.03 74.60 +0.57

Base 97.2240.00 98.104£0.00 97.80+0.08 97.93+0.12 98.10+0.16  98.45+0.05 | +0.35
Caltech101 New 94.2140.00 93.20+0.41 93.00+£0.29 95.234+0.21 94.03+0.19 94.25+0.22 | +0.22
HM 95.69 95.59 95.34 96.56 96.02 96.30 +0.28

Base 91.2340.00 94.53+0.38  95.03+£0.40 95.60+0.22  95.33+£0.09  95.85+0.35 | +0.52
OxfordPets New 97.20+0.00 95.804+0.99 97.73+£0.09 98.00+0.36  97.274+0.48  98.15+0.16 | +0.83
HM 94.12 95.16 96.36 96.79 96.29 96.99 +0.70

Base 63.69+0.00 75.60+£1.13 70.73+0.71  72.40+0.29 78.13+0.25  79.07+0.62 | 40.94
StanfordCars New 74.9240.00 70.03+£0.62 72.50+0.86 73.67+£0.60 75.37+0.33  74.03+0.52 -1.34
HM 68.85 72.71 71.60 73.03 76.73 76.47 -0.26

Base 71.70+0.00 97.53+0.09 94.43+0.66 96.10+0.22 98.17+0.05 98.17+0.20 | +0.00
Flowers102 New 77.52+0.00 71.30+£1.87 70.63+0.98  72.87+£0.98  77.37+0.17 75.72+0.93 -1.65
HM 74.50 82.38 80.81 82.89 86.54 85.50 -1.04

Base 90.07+0.00 89.50+0.45 90.57+0.09 90.834+0.05 90.63+£0.12  90.85+0.10 | +0.22
Food101 New 91.17+0.00 88.90+0.45 91.27+0.47 92.03+0.12  91.47+0.12  92.08+0.28 | +0.61
HM 90.62 89.20 90.92 91.43 91.05 91.46 +0.41

Base 27.55+0.00 38.67+£0.12 35.33+£0.97  36.174+0.09  42.27+0.54  42.88+0.84 | +0.61
FGVCAircraft New 35.93+0.00 29.80+0.43 31.07+0.21 34.87+1.68 37.43+0.73  39.11+0.32 | 42.56
HM 31.19 33.66 33.06 35.51 39.70 40.91 +1.21

Base 69.38+0.00 81.20+£0.08 79.37+0.48  80.97+0.25 82.77+£0.09 82.84+0.22 | +0.07
SUN397 New 75.58+0.00 70.43+£1.65 76.23+0.58 78.30+0.41  78.50+0.57 78.85+0.24 | 40.35

HM 72.35 75.43 7707 79.61 80.58 80.80 +0.22
Base 53.13+0.00 79.67+£0.54 76.93+0.86 80.47+1.38  82.97+0.90 83.91+0.29 | 40.94
DTD New 60.2740.00 49.37+3.55 54.67+4.49 58.40+0.64 59.57+3.27  61.75£1.70 | +2.18
HM 56.48 60.96 63.92 67.68 69.35 71.14 +1.79

Base 56.98+0.00 88.97+1.07 87.10+£0.70 91.07+3.76  92.70+£0.99  96.72+0.39 | +4.02
EuroSAT New 63.7440.00 56.00+£3.35 61.87+11.47 72.83+3.20 73.17£3.20 77.94+1.57 | +4.77
HM 60.17 68.74 72.35 80.94 81.79 86.32 +4.53

Base 70.99+0.00 85.00+0.28 82.13+0.17 83.57+0.68 87.10+£0.22  87.40+0.30 | +0.30
UCF101 New 78.47+0.00 64.20+3.71  73.30+£0.85  76.73+1.53  78.57+1.55  81.2940.79 | +2.72
HM 74.54 73.15 77.46 80.00 82.62 84.23 +1.61

Table 5: Full results in the base-to-new generalization setting. All baseline results are reproduced
using the reported parameters. The harmonic mean of the base and new class test accuracy is denoted as
HM. Improvements over PromptSRC are in blue.

Source Target
&
I\
3 g > 9 S z b
—

% 3 3 E : g g 5 £ 2 .

[ o1 = < o — O ) 192} — 2

@ £ 8 g H T > Z a 2 & 52
g < % g 2 S o 5 £ g ° 3
= O o 0 ) = r:-< 0 a m =] < <

Zero-shot CLIP 66.68+0.00 93.31+0.00 89.1040.00 65.51+0.00 70.7340.00 85.88+0.00 24.66+0.0062.604+0.00 44.09+£0.00 48.404+0.00 67.59+0.00 65.19 -

CoOp 71.6831+0.1793.73+0.19 88.274+0.52 63.63+1.36 68.701+0.92 85.63+0.12 19.27+1.19 64.60+0.29 41.63+£0.62 48.331+0.40 67.37£0.77 64.12-0.22
CoCoOp 71.20£0.0094.43+0.0590.60£0.08 64.834+0.68 71.03+0.87 86.13+0.05 23.234+0.12 67.20+£0.08 45.87+£0.6241.00£3.22 68.50+0.57 65.28 0.02
MaPLe 70.40£0.14 93.534+0.54 90.03£0.31 64.904+0.51 71.934+1.27 85.97+0.21 23.774+0.52 66.67+£0.21 45.03+1.32 44.87£2.70 67.47+0.37 65.42 0.06

PromptSRC 71.37+£0.09 93.374+0.19 90.3040.08 65.70+0.36 70.43+0.24 86.474+0.05 23.57+0.78 67.43+0.25 45.83+0.12 45.43+1.4769.50+0.64 65.80 0.13

M3PL(Ours) 71.11£0.02 93.9440.14 90.884+0.0966.35+0.4472.26+0.1886.56+0.06 24.23+-0.49 67.65+-0.06 45.61+0.1757.52+1.8268.45+0.33 67.350.49

Table 6: Full results in the cross-dataset generalization setting. All baseline results are reproduced
using the reported parameters. Since CLIP is directly zero-shot tested without training, its standard devia-
tion is reported as zero.
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Source Target

ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A  ImageNet-R  Average  p(f)
Zero-shot CLIP  66.6840.00 60.9140.00 46.0940.00 47.76+0.00 73.97+0.00 57.18 -
CoOp 71.63+0.17 64.274+0.17 47.934+0.29 50.37+0.25 75.33+0.21 59.48 0.46
CoCoOp 71.20+0.00 64.274+0.25 48.67+0.25 50.73+0.19 76.10+0.16 59.94 0.61
MaPLe 70.40+0.14 63.734+0.12 48.60+0.16 50.2040.37 76.57+0.12 59.78 0.70
PromptSRC 71.37+0.09 64.43+0.05 49.5340.05 50.77+0.26 77.77+0.05 60.63 0.73
M3PL(Ours) 70.95+0.07 64.49+0.07 49.60+0.10 51.47+0.09 77.40£0.07 60.74 0.83

Table 7: Full results in the domain generalization setting (A = 0.1). All baseline results are repro-
duced using the reported parameters. Since CLIP is directly zero-shot tested without training, its standard
deviation is reported as zero.

C.3 Additional Ablation Study

C.3.1 Effectiveness of M3PL
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Figure 4: The ablation experiments on the number of prompts in the cross-dataset generaliza-
tion setting. The left vertical axis represents the ID test accuracy on ImageNet, and the right vertical axis
indicates the average zero-shot OOD test accuracy across target datasets. The trends of ID accuracy and
average OOD accuracy with the number of prompts M (A = 0) are depicted by curves with circular and
square markers, respectively.

Figure 4] presents the variation curves of both in-distribution (ID) and out-of-distribution (OOD) accuracy
with the changing number of prompts (M) in the cross-dataset setting. The ID accuracy initially increases
slightly with an increase in M and then decreases, aligning with our analysis in Section This trend
is attributed to the view bias bias of prompts. When M is relatively small, the aggregation of useful
features from different views enhances ID test accuracy. However, as M further increases, redundant features
exacerbate overfitting. In contrast, the OOD accuracy significantly rises before gradually decreasing. This is
because when M is too small, the insufficient variety of views leads to inadequate coverage of OOD predictive
features, leading to a rapid improvement in OOD performance as M increases. But with a larger M, the
dominance of redundant and irrelevant features from the introduced views deteriorates the performance.
Considering the trends in both ID and OOD changes, we opt for M = 8 to trade off performance with
computational cost.
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Figure 5: The ablation experiments on the balancing coefficient )\ in the cross-dataset general-
ization setting. The left vertical axis represents the ID test accuracy on ImageNet, and the right vertical
axis indicates the average zero-shot OOD test accuracy across target datasets. The trends of ID accuracy
and average OOD accuracy with the balancing coefficient A (M = 8) are depicted by curves with circular
and square markers, respectively.

C.3.2 Cross-modal Contrastive Regularization

Figure [f] presents the variation curves of ID and OOD accuracy in the cross-dataset generalization setting as
a function of the balancing coefficient A. Both ID and OOD accuracies initially increase and then decrease
with the rising values of \. We set A =1.0 to optimally balance Lyuiti and Leontrast -

Batch size A ID Acc. Average OOD Acc. p(f)

512 0.0 70.95 66.87 0.39
128 1.0  71.02 67.15 0.45
256 1.0 71.11 67.25 0.47
512 1.0 7111 67.35 0.49

Table 8: The ablation experiments on the impact of batch size on the cross-modal contrastive
regularization objective in the cross-dataset generalization settings (M =8). Note that under different
batch size settings, we control the same iteration for training.

Table [§| presents the ablation study results on the impact of batch size on the cross-modal contrastive
regularization objective in the cross-dataset generalization setting. We observe that with A = 1.0, the average
OOD test accuracy on the target datasets increases as the batch size increases. This trend is attributed to a
lower class collision rate when the batch size is smaller, which in turn reduces the performance of the cross-
modal contrastive regularization. However, it is still evident that even with a batch size of 128 (feasible on a
single Nvidia A100 GPU), there is a significant improvement over the baseline that does not utilize Lcontrast,
further demonstrating the effectiveness of our proposed regularization objective.

C.3.3 Comparison to Temporal Prompt Aggregation in PromptSRC

Rather than use multiple prompt pairs and aggregate their results, PromptSRC (Khattak et all 2023b)
employs Gaussian weighted prompt aggregation (GPA), which temporally aggregates the results of a single
prompt pair across its training trajectory. Here we compare the effectiveness of the two techniques in
Table[d] As shown in the table, GPA yields little improvement due to the same view obtained from a single
optimization trajectory, which is consistent with our analysis that a single optimization trajectory may fail
to capture a broad range of views.

23



Under review as submission to TMLR

Method ID Acc. Average OOD Acc. p(f)
Independent V-L Prompting (IVLP) 71.16 65.22 0.01
IVLP + GPA of PromptSRC 72.10 65.51 (+0.29) 0.06
IVLP + M®PL (W/0 Leontrast) 7095  66.87 (+1.65)  0.39

Table 9: Ablation on aggregation strategy in the cross-dataset setting.

C.3.4 Computational Cost Analysis

Settings CoOp CoCoOp MaPLe PromptSRC MPPL (Ours, M = 8)
Training time (min) 8.52 56.23 6.17 22.85 21.77
Inference time (images/s)  323.1 19.0 328.2 329.7 183.4

Table 10: The training and inference time comparison with previous methods (M = 8).

Table [L0| presents a comprehensive comparison between our M?PL and previous prompt learning methods in
terms of training time and inference speed. The training time for all methods is measured under a base-to-
new generalization setting, using a single Nvidia A100 GPU on the SUN397 dataset for complete training.
Compared to the state-of-the-art PromptSRC, our M3PL model reduces training time by approximately 5%
when M =8, but at the expense of a 44% decrease in inference speed. Notably, as shown in Figure |4 with
M =4, M3PL already achieves significant improvements over existing methods. In this case, the training
time is approximately halved, while simultaneously offering increased inference speed.

C.3.5 Prompt Length and Depth
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Figure 6: The ablation experiments on the prompt length in the cross-dataset generalization
setting (M =8, A =0, J = 3). The left vertical axis represents the ID test accuracy on ImageNet, and the
right vertical axis indicates the average zero-shot OOD test accuracy across target datasets. The trends of
ID accuracy and average OOD accuracy with the prompt length are depicted by curves with circular and
square markers, respectively.

Figure [0] displays the results of ablation experiments on prompt length in a cross-dataset generalization
setting. The results indicate that both ID and OOD test accuracies generally exhibit an initial increase
followed by a decrease. Consequently, we select a prompt length of 2 to trade off the performance between
ID and OOD scenarios.

Figure [7] presents the ablation study results regarding the depth of prompts J in the cross-dataset general-
ization. It is observed that both ID and OOD test accuracies generally follow an initial increase followed by
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Figure 7: The ablation experiments on the prompt depth in the cross-dataset generalization
setting (M = 8, A = 0, and prompt length 2). The left vertical axis represents the ID test accuracy
on ImageNet, and the right vertical axis indicates the average zero-shot OOD test accuracy across target
datasets. The trends of ID accuracy and average OOD accuracy with the prompt depth J are depicted by
curves with circular and square markers, respectively.

a decrease, with OOD test accuracy being more significantly influenced by J. We opted for J = 3 to trade
off the performance between ID and OOD settings.

D Supplementary Experiments

To further elucidate the performance gain of M3PL in zero-shot cross-dataset generalization across datasets
with varying distributions, we conduct two supplementary experiments: (1) A Few-shot Linear Probe exper-
iment based on the same protocol in Radford et al.| (2021); |Zhou et al.[(2022b) to evaluate the generalization
potential of CLIP’s pre-trained features on each target dataset, as detailed in Appendix (2) An as-
sessment of the cosine similarity between average visual and textual representations across target dataset
categories and those from ImageNet categories to measure the information gain through few-shot prompt
learning on ImageNet, presented in Appendix[D.2] For simplicity, we limit our experiments to datasets with
zero-shot CLIP’s accuracy below 85%. We assume that if zero-shot CLIP performs above this threshold, its
pre-trained features are already generally sufficient for generalizing to the target dataset, so the influence of
view bias is relatively minor.

Based on the metrics from the above experiments, we use a simple multivariate linear regression model to
interpret M3PL’s relative improvements over zero-shot CLIP across different datasets, with specific results

detailed in Appendix

D.1 Linear Probe Experiment

Method StanfordCars  Flowers102 FGVCAircraft SUN397 DTD EuroSAT UCF101
Zero-shot CLIP 65.51 70.73 24.66 62.60 44.09 48.40 67.59
Linear Probe CLIP 80.60 97.28 83.30 73.15 70.15 86.33 82.66
Average Performance 73.06 84.01 35.49 67.88 57.12 67.37 75.13

Table 11: Few-shot linear probe performance (%) on the target datasets.
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Experimental Settings: We adhere to the few-shot linear probe setup in |Zhou et al| (2022b), sampling
16 instances per class and reporting the average results across three random seeds. Consistent with the
cross-dataset generalization setting discussed in Section @ we employ ViT-B/16 as the backbone for CLIP.

Results in Table [T1] reveal that on the FGVCAircraft dataset, both zero-shot CLIP and linear probe CLIP
demonstrate notably low performance, indicating the inadequacy of CLIP’s pre-trained features for this
dataset. Conversely, the significant improvement with linear probe CLIP on the EuroSAT dataset highlights
the generalization potential of CLIP’s pre-trained features on this distribution.

In practical prompt learning scenarios, samples from the target dataset distribution are unavailable. There-
fore, we evaluate the generalization potential of CLIP’s pre-trained features on each dataset by averaging
the performance of zero-shot CLIP and few-shot linear probe CLIP.

D.2 Datasets Representation Similarity Experiment

StanfordCars  Flowers102 FGVCAircraft SUN397 DTD  EuroSAT UCF101

Visual Similarity 0.3289 0.3433 0.2781 0.4359  0.4097 0.5103 0.2924
Textual Similarity 0.1253 0.1910 0.2017 0.2407  0.2196 0.3014 0.1993
Average Similarity 0.2271 0.2672 0.2399 0.3383  0.3147 0.4059 0.2459

Table 12: Estimation of the similarity between the target dataset and the ImageNet distribution.
The similarity refers to the minimum pairwise cosine similarity between category representations of the target
datasets and ImageNet.

Experimental Settings: Since prompt learning adapts to downstream tasks through few-shot learning
using frozen CLIP pre-trained features, we measure the similarity between target datasets and ImageNet
using representations from the vision and text encoders of zero-shot CLIP. Specifically, for visual similarity, we
calculate the pair-wise cosine similarity between the average representation of test images from each category
in the target dataset and the average representation of few-shot images from each category in ImageNet,
selecting the minimum value as the measure of visual similarity. For textual similarity, we use the fixed
template “a photo of label” as input, compute the pair-wise cosine similarity between text representations
of each category in the target dataset and ImageNet, and again select the minimum value as the measure
of textual similarity. Ultimately, the average of visual and textual similarities is taken as the estimated
similarity between the distributions of the target dataset and ImageNet.

The results in Table [12] demonstrate that the FGVCAircraft dataset exhibits low similarity with ImageNet,
aligning with observations from the experiment where prompt-based fine-tuning algorithms generally under-
perform zero-shot CLIP on FGVCAircraft in cross-dataset generalization settings. Conversely, the EuroSAT
dataset shows higher similarity to the ImageNet distribution, which partially explains the differing perfor-
mance of M?PL on these datasets.

D.3 Multivariate Linear Regression

StanfordCars Flowers102 FGVCAircraft SUN397 DTD EuroSAT UCF101

Average Performance 0.7306 0.8401 0.3549 0.6788 0.5712  0.6737 0.7513
Average Similarity 0.2271 0.2672 0.2399 0.3383 0.3147  0.4059 0.2459
Performance Gain (%) 0.84 1.53 -0.43 5.05 1.52 9.12 0.86

Table 13: Two metrics and performance gains of M3PL compared to zero-shot CLIP.

In this section, we use multivariate linear regression to explain the performance improvements of our proposed
M3PL model (relative to zero-shot CLIP), based on two metrics derived from the previous sections. The first
metric measures the generalization potential of CLIP’s original pre-trained features on the target dataset,
indicated by the average performance of zero-shot CLIP and few-shot linear probe CLIP. The second metric,
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the average cosine similarity of textual and visual representations, estimates the distribution similarity
between the target dataset and ImageNet. We utilize these two metrics as independent variables in a simple
multivariate linear model, with the performance gain of M3PL as the dependent variable.

Y:OZO'X0+()41'X1+,3 (32)

where «; is the regression coefficient and 3 is the intercept, X represents the average performance (infor-
mativeness), X the average similarity (transferability), and Y the performance gain of M3PL.

The fitting results in a Multiple R of 0.952 and an R? of 0.906, indicating a strong fit and demonstrating
the interpretability of our method regarding the performance on the target dataset. Furthermore, both
coefficients ag = 3.647 and a; = 47.429 are positive, suggesting that the performance improvement of M3PL
on a given target dataset positively correlates with both the generalization potential of CLIP’s pre-trained
features on that dataset and the dataset’s similarity to ImageNet.

As shown in Table 32] the EuroSAT and SUN397 datasets exhibit high average performance and average
similarity metrics, which correlate with their significant performance enhancements. Conversely, the FGV-
CAircraft dataset shows lower values in these metrics, resulting in the poorest performance of M?PL. The
StanfordCars and UCF101 datasets, while having high average performance, are constrained by low average
similarity, limiting their gains to less than 1%. In contrast, the DTD and Flowers datasets benefit from
higher average similarity and average performance, respectively, achieving improvements exceeding 1.5%.
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