
Type-driven Neural Programming by Example

Kiara Grouwstra
Department of Computer Science

University of Amsterdam
Amsterdam, the Netherlands

kiara.grouwstra@gmail.com

Emile van Krieken
Department of Computer Science

Free University of Amsterdam
Amsterdam, the Netherlands
e.van.krieken@vu.nl

Abstract

We propose a method to incorporate programming types into a neural program syn-
thesis approach for programming by example (PBE). We introduce Typed Neuro-
Symbolic Program Synthesis (TNSPS), and test it in a functional programming
context to empirically verify whether type information helps to improve general-
ization in neural synthesizers on limited-size datasets. Our TNSPS model builds
upon the existing Neuro-Symbolic Program Synthesis (NSPS) model [Parisotto
et al., 2016], by incorporating information on types of input-output examples, of
grammar production rules, as well as of the next node to expand in the program.
Additionally, we introduce a generation method for programs written in a limited
subset of the Haskell language. Our experiments show that incorporating type
information using TNSPS improves the accuracy of the synthesized programs.
This suggests that hybrid approaches that use both neural synthesis and strong
type-checking is a fruitful research line.

Program synthesis is the task of automatically constructing a program that satisfies a given high-level
specification [Gulwani et al., 2017]. Program synthesis is characterized by large search spaces, and
has traditionally seen a split between formal versus neural approaches. Neural approaches (see Kant
[2018] for an overview) typically use sequence-based deep learning models such as LSTMs [Hochre-
iter and Schmidhuber, 1997]. Formal approaches typically involve deductive techniques such as SAT
solvers [Solar-Lezama and Bodik, 2008, Murali et al., 2017, Akiba et al., 2013, Alur et al., 2013,
2016, Torlak and Bodik, 2013, Zukoski and Wolpert, 2017] and types [Polikarpova et al., 2016, Osera,
2019, Brady, 2013]. If the synthesis specification consists of input-output examples, we get the field
of programming by example (PBE). Type-theoretic program synthesis is based on types (as used in
programming languages), typically with non-neural methods. [Polikarpova et al., 2016, Osera, 2019,
Brady, 2013] Type-theoretic PBE uses types alongside examples [Osera and Zdancewic, 2015].

Input-output examples and types are complementary as specifications of program behavior: examples
are expressive but can only evaluate complete programs while using only type as a specification
is usually not descriptive enough, but provide a less noisy summary of program behavior. These
differences imply the two may have synergy when combined. In this paper, we research whether
neural program synthesis methods can benefit from using type information.

The main contributions of this paper are: (a) we bring the type-based information traditionally
used in functional program synthesis to neural methods; (b) show that the neural synthesis of
statically typed programs can benefit from techniques specific to these programming languages; (d)
introduce a datatset generation method for programs in functional languages, including an open-source
implementation.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



task function let just = Just; compose = (.) in compose just unzip
parameter types [(Int, Char)]
output type Maybe ([Int], [Char])
input expression ([((17), ’0’), ((20), ’2’)])
output expression Right (Just ([17, 20], "02"))

Figure 1: A task function instance from our dataset with a corresponding sample input/output pair.

1 Neuro-symbolic program synthesis

First, we will introduce the neuro-symbolic program synthesis (NSPS) model introduced in Parisotto
et al. [2016]. Our method extends NSPS because it is based on abstract syntax trees (ASTs) rather
than unstructured sequences. This simplifies the process of incorporating type information. Assume
that we have a domain specific language (DSL) formulated as a context free grammar with symbols
S (both terminal and nonterminal) and expansion rules R. NSPS uses a tree-based architecture called
the recursive-reverse-recursive neural network (R3NN), which predicts rule expansions for partial
program trees (PPTs). PPTs are ASTs that contain nonterminal leaf nodes. These nodes are called
holes in the functional programming literature.

Every symbol s ∈ S in the DSL has an M -dimensional representation, denoted φ(s) ∈ RM , to each
of which we concatenate the encoded input-output examples processed with a (bidirectional) LSTM.
The R3NN then computes a representation for each node in the PPT in two steps. The first step
is a recursive pass that uses a neural network fr : RQ×M → RM for each rule r, where Q is the
number of symbols on the RHS of r. We start with the representation φ(l) of the leaves of the PPT.
Note that all leaves of a PPT are symbols (either terminal or nonterminal) and thus have a predefined
embedding. Other nodes n in the tree represent an expanded rule R(n). We recursively compute
φ(n) by applying fR(n) on its Q children, up to φ(root) representing the full program. The second
step is the reverse-recursive pass that again uses a neural network fg : RM → RQ×M for each rule r.
Like the recursive pass, it recursively computes node representations φ′(n). However, it does this
from the root towards the leaves, so in reverse order. They then process these embeddings with a
bidirectional LSTM.

Like for symbols, NSPS also has an M -dimensional representation ω(r) ∈ R for each rule r. A
possible expansion e ∈ E of a hole e.l is a grammar production rule e.r. The score of an expansion e
is defined as the dot product of their respective embeddings: ze = φ′(e.l) · ω(e.r). This model uses a
cross-entropy loss and strong supervision, i.e. it supervises our training on the actual task function.

2 Methodology

Here we will briefly discuss our synthesis DSL, then explain our PBE model, which applies type
information to improve synthesis quality and how it is incorporated in the NSPS model Parisotto et al.
[2016]. To test our hypothesis we generate a PBE dataset in the functional programming domain,
implemented by using a subset of Haskell [Jones, 2003] as our synthesis DSL. Viewing a program
as a composition of function applications guarantees us that any complete program filtered to the
right type from the root that also passes a compiler type-check will yield us output of the desired
type. This helps us reduce our synthesis search space to a sensible subset, devoid of e.g. programs
containing variable definitions that end up never being used. This guarantees that our search will
focus on finding acceptable solutions. An example showing what different components of our dataset
items might look like may be found in Figure 1. We unroll any function applications in our grammar,
such that given a binary function and and a symbol false taking no arguments it might look as
follows:

expr = "(and ", expr, " ", expr, ")";
expr = "(and ", expr, ")";
expr = "and";
expr = "false";

2



2.1 Typed Neuro-Symbolic Program Synthesis

Here we describe how we adapt the NSPS model to our domain, as well as how we further augment
the model by type info as neural features.

We will now explain how we augment the NSPS model to incorporate type info. Consistent with how
we embed expressions, we similarly stringify types, then one-hot encode their characters as we do
for input/output expressions. To get the most out of our types, we will want to provide them for: (a)
inputs and outputs, which we simply incorporate as additional features in Parisotto et al. [2016]’s
example encoder as mentioned in Section 1, concatenating their one-hot embeddings to those of
the input/output pairs before passing them through the input/output LSTMs, making for a total of
8HT features per sample; (b) expressions from expansion rules r; for these we may calculate types
statically upfront, then embed these to obtain M · T features per expansion rule r ∈ R, and during
R3NN prediction concatenate these features to the existing representation ω(r) ∈ RM , yielding
ω′(r) ∈ RM ·(T+1). (c) (hole) AST nodes c in any PPT. During prediction in the R3NN, we embed
these types by an LSTM into M · T features per hole type. As with rule embeddings, we then
concatenate these with the original M hole node features, yielding φ′′(l) ∈ RM ·(T+1).

Having obtained our respective rule and hole embeddings expanded to M · (T + 1) from the
original M features, we would then calculate the scores from these enhanced embeddings using
the same calculations as before, swapping out the embeddings to their enhanced versions, i.e. from
ze = φ′(e.l) · ω(e.r) to ze = φ′′(e.l) · ω′(e.r).

3 Experimental setup

Our experiment aims to test if our type-augmented model adds value over the baseline model, as
per our hypothesis. We evaluate our models on a dataset we generate, using 4 runs for each model.
Our models include a uniform random synthesizer, our vanilla implementation of Parisotto et al.
[2016]’s NSPS model, TNSPS (keeping H=32 but allotting that same amount for types), as well as
an enlarged version of the vanilla model doubling the features per i/o sample to match TNSPS for fair
comparison. We first find a learning rate appropriate for our experiment on our vanilla implementation
of NSPS, otherwise taking the hyperparameter values described in Section A.

To generate a dataset we pick our own set of types and operators as described in Section B.3. For this
we have picked a limited set of operators widely applicable over the types used. Types used include
Char, Int, Maybe, List, (,), and Either. We have limited our DSL to the following operators for
our chosen types: 0, Just, maybe, (:), length, (,), zip, unzip, toEnum, fromEnum, foldMap,
elem, sequenceA, sequence, fmap, mempty, (<>), and (.). Our dataset is limited to programs of
up to 3 nodes, each containing the symbol of one such operator.

Translating Parisotto et al. [2016]’s synthesizer from its original FlashFill [Gulwani, 2011] domain to
our domain of functional programs, we made the following adjustments: (a) Input-output samples
used by Parisotto et al. [2016] were all strings. Samples in our functional domain can be arbitrary
expressions. We simply stringify these, then one-hot encode the strings’ characters as Parisotto et al.
[2016] did using their string samples. (b) We aggregate losses over an epoch by taking their mean.

4 Result

Any results here are trained on our dataset of programs of up to 3 nodes, during training evaluated
as in Parisotto et al. [2016] by sampling 100 programs from the synthesizer for any task function
instance. Accuracy results during and after training may be found in Figures 2a and 3.

We see that vanilla NSPS learns to a more limited extent before converging. Our task seems relatively
challenging, with accuracy for the baseline model increasing only somewhat beyond its initial random
accuracy. Furthermore, most of the gains in accuracy for the baseline model are attained in the initial
10 epochs of training. These issues may be largely due to the limited size of our dataset.

Our enlarged model fared little better than the baseline, again likely due to generalization issues
related to the size of our dataset. Our ‘typed’ NSPS model however starts from sub-random accuracies,
yet ends up able to learn more, after 20 epochs out-performing both our baseline and enlarged models.
This indicates it is in fact worthwhile to distribute features between input/output pairs and types.

3



(a)

(b)
p-values vanilla large types uniform
vanilla 1.000 0.859 0.010 0.013
large 0.859 1.000 0.024 0.065
types 0.010 0.024 1.000 0.001
uniform 0.013 0.065 0.001 1.000

Figure 2: (a) Validation accuracy over 100 samples across training epochs for our models (b)
P-values of acuracy on 100 samples between our models

evaluated @ 20 samples evaluated @ 100 samples
accuracy acc mean @ x nodes accuracy acc mean @ x nodes

model mean var 1 2 3 mean var 1 2 3
NSPS 0.13 0.000 0.27 0.13 0.11 0.37 0.000 0.77 0.36 0.30
large 0.12 0.001 0.30 0.12 0.09 0.38 0.002 0.73 0.38 0.30
typed 0.22 0.002 0.55 0.24 0.12 0.48 0.003 0.77 0.55 0.34
random 0.14 0.000 0.43 0.11 0.11 0.33 0.000 0.84 0.25 0.31

Figure 3: Summary of test set accuracy on our test set over different models after training (4 seeds
each), for each selecting the best-performing epoch by early stopping.

As the 3-node programs turned out fairly hard, we cannot yet distinguish a clear correlation between
task function node size and advantage from type information. We compare the accuracy across
our models by an independent two-sample t-test, see Figure 2b. This shows only a p=1.0% chance
our typed model stemmed from the same distribution as the baseline, showing the improvement is
statistically significant.

5 Discussion

5.1 Design limitations

We disregard any programs exceeding a limit of 3 nodes, both on dataset generation as well as on
synthesis. Finally, our implementation unfortunately still uses local types from our unrolled grammar
over full type inference, so it cannot use type information from elsewhere in the program tree.

5.2 Topics for future research

As neural synthesis methods aimed at PBE in the functional programming domain is a broad topic
encompassing a variety of design decisions, we have had to leave some questions unanswered. First,
we might pre-compile partial programs after each synthesis step to provide a synthesizer using
weak supervision (reinforcement learning) with an immediate reward signal on whether a program
type-checks. While our present experiment used types based on input/output examples, another
question is if it could help to use the true type signature of the task function.

5.3 Conclusion

We presented a method to incorporate programming types into a neural program synthesis approach
for programming by example. We generated a dataset in the functional programming context, and
demonstrated type information to improve synthesis accuracy even given a comparable number of
parameters. Finally, we suggest a number of topics of interest for future research in type-driven
neural programming by example.

4



References

Takuya Akiba, Kentaro Imajo, Hiroaki Iwami, Yoichi Iwata, Toshiki Kataoka, Naohiro Takahashi,
Michał Moskal, and Nikhil Swamy. Calibrating research in program synthesis using 72,000
hours of programmer time. MSR, Redmond, WA, USA, Tech. Rep, 2013. URL https://pdfs.
semanticscholar.org/1cde/a6fa2f0a400f509aed98f9a857ab1788257e.pdf.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. IEEE, 2013. doi: 10.1109/FMCAD.2013.6679385. URL https://ieeexplore.
ieee.org/abstract/document/6679385.

Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. Sygus-comp 2016: results
and analysis. arXiv preprint arXiv:1611.07627, 2016. URL https://arxiv.org/abs/1611.
07627.

Edwin Brady. Idris, a general-purpose dependently typed programming language: Design and
implementation. Journal of functional programming, 23(5):552–593, 2013. doi: 10.1017/
S095679681300018X. URL https://eb.host.cs.st-andrews.ac.uk/drafts/impldtp.
pdf.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. ACM
Sigplan Notices, 46(1):317–330, 2011. doi: 10.1145/1925844.1926423. URL https://dl.acm.
org/doi/abs/10.1145/1925844.1926423.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends in Programming Languages, 4(1-2):1–119, 2017. doi: 10.1561/2500000010. URL https:
//www.nowpublishers.com/article/Details/PGL-010.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge University
Press, 2003. URL https://books.google.com/books?id=mMGQgcnCxjAC.

Neel Kant. Recent advances in neural program synthesis. CoRR, abs/1802.02353, 2018. URL
http://arxiv.org/abs/1802.02353.

Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. Neural sketch learning
for conditional program generation. arXiv preprint arXiv:1703.05698, 2017. URL https:
//arxiv.org/abs/1703.05698.

Peter-Michael Osera. Constraint-based type-directed program synthesis. In Proceedings of the 4th
ACM SIGPLAN International Workshop on Type-Driven Development, pages 64–76. ACM, 2019.
URL https://arxiv.org/abs/1907.03105.

Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis. ACM
SIGPLAN Notices, 50(6):619–630, 2015. doi: 10.1145/2813885.2738007. URL https://dl.
acm.org/citation.cfm?id=2738007.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. CoRR, abs/1611.01855, 2016. URL http://arxiv.
org/abs/1611.01855.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from polymorphic
refinement types. In ACM SIGPLAN Notices, volume 51, pages 522–538. ACM, 2016. doi:
10.1145/2980983.2908093. URL https://dl.acm.org/citation.cfm?id=2908093.

Armando Solar-Lezama and Rastislav Bodik. Program synthesis by sketching. Citeseer, 2008. doi:
10.5555/1714168. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.207.9048&rep=rep1&type=pdf.

5

https://pdfs.semanticscholar.org/1cde/a6fa2f0a400f509aed98f9a857ab1788257e.pdf
https://pdfs.semanticscholar.org/1cde/a6fa2f0a400f509aed98f9a857ab1788257e.pdf
https://ieeexplore.ieee.org/abstract/document/6679385
https://ieeexplore.ieee.org/abstract/document/6679385
https://arxiv.org/abs/1611.07627
https://arxiv.org/abs/1611.07627
https://eb.host.cs.st-andrews.ac.uk/drafts/impldtp.pdf
https://eb.host.cs.st-andrews.ac.uk/drafts/impldtp.pdf
https://dl.acm.org/doi/abs/10.1145/1925844.1926423
https://dl.acm.org/doi/abs/10.1145/1925844.1926423
https://www.nowpublishers.com/article/Details/PGL-010
https://www.nowpublishers.com/article/Details/PGL-010
https://books.google.com/books?id=mMGQgcnCxjAC
http://arxiv.org/abs/1802.02353
https://arxiv.org/abs/1703.05698
https://arxiv.org/abs/1703.05698
https://arxiv.org/abs/1907.03105
https://dl.acm.org/citation.cfm?id=2738007
https://dl.acm.org/citation.cfm?id=2738007
http://arxiv.org/abs/1611.01855
http://arxiv.org/abs/1611.01855
https://dl.acm.org/citation.cfm?id=2908093
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.9048&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.9048&rep=rep1&type=pdf


Emina Torlak and Rastislav Bodik. Growing solver-aided languages with rosette. In Proceedings
of the 2013 ACM international symposium on New ideas, new paradigms, and reflections on
programming & software, pages 135–152. ACM, 2013. doi: 10.1145/2509578.2509586. URL
https://homes.cs.washington.edu/~emina/pubs/rosette.onward13.pdf.

Andrew Zukoski and Drew Wolpert. Program synthesis for declarative building design, Sep 2017.
URL https://youtu.be/yJW--wNMv1M.

Appendix

A Hyperparameters

A.1 Hyperparameters used for dataset generation

In this section we will describe the hyperparameter values we have used in our dataset generation.

We generate types to substitute into type variables using a maximum of only one level of nesting, i.e.
allowing type list of booleans though not type list of lists of booleans.

For any parameter type containing type variables used in task functions, we generate a maximum
of 5 type instances, before deduplication. Whereas Parisotto et al. [2016] generated 10 inputs for
each task function, we instead generate up to 10 for each type instance of a task function, before
deduplicating.

While they limited functions to a maximum of 13 operations, we instead limit ours to a maximum of
3, given that our current operator set is considerably bigger than those of their FlashFill domain.

Numbers that we generate, all of them integers, we limit to the range from −20 to 20. For characters
we stick to the range of digits, i.e. from ‘0’ to ‘9’, a decision made with the intent to let their characters
overlap with those of digits for the purpose of helping reduce characters used in the encoder, in turn
reducing the size of its one-hot embedding. This arbitrary constraint serves no other purpose than to
constrain required compute.

Data structures such as string, list, set, and hashmap, we each generate using lengths in the range
from 0 to 5. Of these, sets might further deduplicate down, as this structure only holds unique items.

Our dataset we split into training, validation and test sets using a ratio of 35%, 35%, and 30%,
respectively. As [Parisotto et al., 2016] we sample 1, 000 training programs from the total function
space.

A.2 Hyperparameters in our synthesizer

In this section we will describe the hyperparameter values we have during the training and evaluation
of our synthesizers.

We use 3 layers in our LSTMs, which are present in our sample encoder (for both input and output),
our type encoders (for rule expansions and holes), as well as for sample conditioning and scoring in
our R3NN. We do allow bias terms although the original paper did not show these in their formulas.
We train for a maximum of 1, 000 epochs.

Our encoders process items (either input-output samples or types) using a batch size of 8. Our
R3NN must use a fixed number of embedded input-output pairs on the basis of its LSTM used for
conditioning, and as such we have fixed this to use samples of 8 embedded input-output pairs.

As Parisotto et al. [2016], for synthesizer evaluation we sample 100 functions from the model for
each task function, determining success based on the best from this sample, i.e. considering the
synthesis a success if any of these pass our PBE task, exhibiting the desired behavior.

We evaluate performance on our validation set once after every 5 epochs of training. During evaluation
we similarly check for convergence based on the loss, averaging over windows of 2 evaluations, i.e.
stop training if the validation loss over the past two evaluations has increased from the two before.

We arbitrarily limit synthesized functions to the same complexity limit of 6 operators as used during
generation of task functions. We allow 32 features in our symbol and expansion rule embeddings, i.e.

6

https://homes.cs.washington.edu/~emina/pubs/rosette.onward13.pdf
https://youtu.be/yJW--wNMv1M


M in Parisotto et al. [2016]’s R3NN. We allow 32 features per input or output per LSTM direction,
i.e. H in Parisotto et al. [2016]’s sample encoder. We clip gradients to stay within a range from −1
to 1. The learning rate for our Adam optimizer we search over by a grid search using our vanilla
NSPS model, considering values of 1e−2, 1e−3, 1e−4, and 1e−5. Of these, we settle on a learning
rate of 1e−2.

B Miscellaneous experiments

Aside from our main experiment, we also tried a few other configurations for which we had not
managed to obtain conclusive results.

B.1 Type filter

The first of these was the idea to combine a synthesizer with a compiler check to filter out any
non-compiling programs. While the downside to this would be that the synthesizer would be made
dependent on this extra compiler check, incurring a run-time penalty during synthesis, linear in the
number of expansion rules provided, the advantage to such a setup would be that the synthesizer
would no longer need to learn to disregard non-compiling programs itself, reducing synthesis to a
ranking problem of the compiling (partial) candidate programs. We achieve this by simply masking
the predicted scores of uncompiling programs in our NSPS implementation (before calculating actual
probabilities by softmax) to have no probability, i.e. p(e) = 0.0.

While we failed to obtain any significant improvement over the baseline model using this setup, this
result may well have related to our implementation. We presently used the hint Haskell library as
our interpreter for type-checks, which unfortunately yielded false positive compiler errors for types
containing ambiguous type variables, such as show undefined, which the Haskell compiler would
resolve to type string, whereas the hint library would complain that the undefined argument would
prevent resolving show’s type variable.

As this counter-factual signal would prevent this synthesizer from correctly synthesizing the affected
programs, the fact that it nevertheless performed on par with our baseline algorithm suggests this
approach does in fact have potential. While we might have addressed this flaw in our implementation
by switching from this interpreter library to using Haskell’s compiler API directly, due to time
constraints this unfortunately fell out of scope for this thesis.

B.2 Picking holes

Although the topic of which hole to fill was not directly touched upon in Parisotto et al. [2016], our
baseline implementation had the synthesizer deterministically fill the first hole (under any given order
— we used left-to-right). Nevertheless, we did also wonder what the effect might be if we would allow
filling any hole.

During training, we would then opt to randomly pick a hole to try and fill. On evaluation, we would
then look at the confidence scores for any hole expansions across holes, sampling from this full
matrix rather than just the vector slice corresponding to the first hole. This allows the synthesizer to
take into account the relative confidence of expansions for different holes, enabling it to forego holes
involving more uncertainty in favor of those it feels more confident about, which may in turn provide
additional information that may then reduce ambiguity for the remaining holes. 1

Unfortunately, we obtained inconsistent results on this model versus our baselines across different
experiment attempts, originally getting the expected improvement, although in our final implemen-
tation we had not managed to reproduce this improvement. We had to leave further analysis of
these inconsistent results out of scope due to time constraints, and as such feel hard-pressed to make
definitive statements on the effectiveness of this approach. Nevertheless, we consider this to be a
topic of interest in AST-based neural program synthesis.

1An additional advantage of this would be it could more uniformly explore various partial program trees
across synthesis steps. That said, uniform exploration there isn’t necessarily the ideal situation — one might for
example imagine using weights to prioritize situations our synthesizer is less confident about.

7



B.3 Dataset generation

As we were unable to find existing datasets in the functional program synthesis domain of a size
appropriate for training a neural model, we have opted to instead generate a dataset of our own. As
the potential space of viable programs is potentially unbounded, we instead opt to artifically limit the
space to generate from.

Our main goal in creating a dataset consists of generating the programs to be synthesized, alongside
the input-output data we would like to use to synthesize them from (as per our PBE setting). Now, the
inputs here are generated, whereas the outputs are obtained simply by running these inputs through
our programs.

However, as our programs may take parameters of parametric types, e.g. list of any given type
[a], we take the intermediate step of instantiating such types to monomorphic types, i.e. types not
containing type variables themselves, which we may then generate inputs for.

Note that to make our task easier, we further maintain such a separation by type instances for our
generated programs, meaning that a potential identity function in our dataset might be included in our
training set under type instance Int→ Int, then perhaps in our test set under another type instance
like Char → Char. We may sometimes still refer to just task functions however, as the distinction
is not otherwise relevant.

An example showing what different components of our dataset items might look like may be found in
Figure 1.

Our full generated dataset consists of the following elements:

• the right-hand symbols or operators we allow in our DSL, to be detailed in Section 3;

• the types of any task function in our dataset;

• sample input-output pairs for different type instances of our task functions;

• a split over training/validation/test sets of any of our tasks, i.e. type instances for a given
task function;

• pairs of symbols in our DSL with their corresponding expansion rules (including type
annotations for holes);

• types of any expansion rules in our DSL;

• NSPS’s maximum string length T , based on our stringified input-output examples (also
taking into account types for the augmented model);

• mappings of characters to contiguous integers so we can construct one-hot encodings
covering the minimum required range of characters (tracked separately for input-output,
types, and either);

• the configuration used for data generation to make data reproducible, discussed further in
Appendix section A.1;

• the types we generate to instantiate type variables, again for reproducibility purposes,
separated by arity based on the number of type parameters they take.

A brief overview of how to generate such a dataset to train our synthesizer on is shown in Algorithm
1.

We first generate our expansion rules by unrolling each operator in the dataset as illustrated in Section
??, using a different number of holes corresponding to any applicable arity.

To create our dataset of task functions, we start from an expression consisting of only a hole, then
step by step generate any type-checking permutation by filling a hole in such an expression using our
expansion rules. We only fill holes in a generated expression up to a user-defined limit, disregarding
any programs still containing holes after this point.

Like Parisotto et al. [2016] we uniformly sample programs from our DSL, based on a user-defined
maximum, while still respecting the above complexity limits. We similarly use sampling for the
generation of sample input-output pairs and, for instantiating our type variables, monomorphic types,
i.e. types not containing type variables.

8



Algorithm 1 dataset generation
given: expression space E, operators or symbols s ∈ S ⊂ E, expansion rules rs ∈ R ⊂ E,
programs p ∈ E, types t ∈ T , monomorphic types t(m) ∈ T (m) ⊂ T , input expressions i ∈ E,
output expressions o ∈ E, parameters a;
calculate expansion rules r(1,...,n)s from s ∈ S by unrolling our grammar symbols;
generate any possible program p given expansion rules ∀s : r(1,...,n)s ∈ Rn and a max number of
holes;
sample monomorphic types t(m) ∈ T (m) up to a max number and within a given nesting limit;
generate instances t(m)

a
(1,...,n)
p

for each generic non-function parameter types ∀p : t
a
(1,...,n)
p

given

sampled types t(m);
sample type instances t(m)

p for each function type ∀p ∈ E : tp up to a given number;
generate sample expressions i(1,...,n)

t
(m)

a
(1,...,n)
p

for each non-function parameter type instance t(m)

a
(1,...,n)
p

,

up to a maximum each and within given value bounds;
calculate a filtered map of generated programs p(1,...,n) ∈ E for each instantiated function
parameter type combination ∀ap : t

(m)

a
(1,...,n)
p

by matching its type to obtain samples i(1,...,n)
t
(m)

a
(1,...,n)
p

for

our function types;
calculate outputs o(1,...,n)

t
(m)
p

for each task function instance t(m)
p given a sample of generated inputs

i
(1,...,n)

t(m) ;

filter out program type instances t(m)
p without i/o samples (i, o)(1,...,n)

t
(m)
p

;

filter out any functions instances t(m)
p with i/o behavior identical to others to prevent data leakage;

sample task function type instances t(m)
p from any remaining programs p;

calculate longest strings and character maps;
split our task function type instances t(m)

p over train, validation and test datasets.

While we quickly mentioned type-checking programs to filter out bad ones, we had yet to expand
on this practice: we presently use a Haskell interpreter to type-check our generated programs at
run-time, filter out non-function programs (e.g. false), and check if program types look sane: to
weed out some programs we deem less commonly useful, we filter out types containing functions
(e.g. list of functions), as well as types with constraints that span more than a single type variable
(e.g. (Eq(a→ Bool))⇒ a). 2

As we cannot directly generate samples for types containing type variables, we first instantiate any
such type variables using a fixed number of monomorphic types we generate. We define a maximum
level of type nesting for such sampled types, to prevent generating types like ‘list of lists of booleans’.
We further specify a maximum number of types generated.

We then use these monomorphic types to instantiate any polymorphic (non-function) input types
occurring in our task functions. To simplify things, we restrict ourselves to substituting only non-
parametric types (e.g. boolean yet not list of boolean) for type variables contained in a larger type
expression. In the event the type variables in our types involve type constraints, we ensure to
only instantiate such type variables using our monomorphic types that satisfy the applicable type
constraints.

This yields us a set of monomorphic input types, for which we then generate up to a given maximum
number of sample inputs, although this may get less after filtering out duplicate samples. We use
hyperparameters to indicate range restrictions for different types here.

2Programs not passing these checks are not necessarily invalid, but by our engineering judgement, are much
more circumstantial in their usage, making for only a smaller portion of valid programs, aggravating our search
space problem. For this reason, we would currently prefer for our synthesizer to focus on the region of our
search space that we generally deem to be of higher interest.

9



For any given given task function type signature, we then check for the types of each of their input
parameters, and take any corresponding combination of type instances in case of polymorphic types.

Now, for any non-function parameter types, we may just take the previously generated sample
input-output pairs for those types. Parameters with function types, however, we instead instantiate to
function values by just taking any of our generated task functions corresponding to that type.

Based on these sample inputs, we would then like to generate corresponding outputs for our generated
task functions. For our task functions that are polymorphic, i.e. contain type variables, we must do
this separately for different type instances.

We run our programs using our run-time Haskell interpreter. We catch run-time errors on specific
inputs such that we can regard these errors as just another resulting output that our synthesizer should
consider when comparing behavior between programs. In other words, a partial function, i.e. a
function that only works on a subset all inputs of the desired input types, may still constitute a valid
program that we may wish to learn to synthesize.

Having generated input/output examples for our task functions, we finally filter out any task function
type instances for which we have somehow failed to generate such samples. We moreover limit our
dataset to a given maximum.

At this point we:

• use a random split to divide our task function type instances over training, validation and
test sets;

• calculate the longest input-output examples in our dataset (as string), when considering
types (as per our experiment) also taking into account the length of the string representations
of such types of inputs and outputs;

• track any characters used in string representations of the expressions in our dataset (for our
type experiment also those used in string representations of the types), and assign them to
indices for our one-hot encodings of input-output examples (and their associated types).

To prevent data leakage, we ensure no task function instances across different datasets share the same
input-output pairs. When deciding which task function instance of a similar pair to keep, we first
look for the more general function (i.e. operating across more type intances as used in our dataset),
otherwise look for the task function with the shortest implementation (in terms of number of nodes),
or finally, as a tiebreaker, arbitrarily keep either of the two.

10


	Neuro-symbolic program synthesis
	Methodology
	Typed Neuro-Symbolic Program Synthesis

	Experimental setup
	Result
	Discussion
	Design limitations
	Topics for future research
	Conclusion

	Hyperparameters
	Hyperparameters used for dataset generation
	Hyperparameters in our synthesizer

	Miscellaneous experiments
	Type filter
	Picking holes
	Dataset generation


