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Abstract—Humans can perform various combinations of physi-
cal skills without having to relearn skills from scratch every single
time. For example, we can swing a bat when walking without
having to re-learn such a policy from scratch by composing the
individual skills of walking and bat swinging. Enabling robots
to combine or compose skills is essential so they can learn novel
skills and tasks faster with fewer real world samples. To this
end, we propose a novel compositional approach called DSE-
Diffusion Score Equilibrium that enables few-shot learning for
novel skills by utilizing a combination of base policy priors. Our
method is based on probabilistically composing diffusion policies
to better model the few-shot demonstration data-distribution than
any individual policy. Our goal here is to learn robot motions
few-shot and not necessarily goal oriented trajectories. By using
our few-shot learning approach DSE, we show that we are able
to achieve a reduction of over 30% in MMD distance across skills
and number of demonstrations. Moreover, we show the utility of
our approach through real world experiments by teaching novel
trajectories to a robot in 5 demonstrations.

I. INTRODUCTION

For robots to be deployed in unstructured environments and
interact with humans, they should be capable of learning new
skills from very few demonstrations. For example, wiggling
the end-effector while moving forward to clean a table is
a combination of two independent motions. This wiggling
motion can be combined with different primitive motions
to clean floors, to wash dishes, to fit a bed-sheet, to iron
a cloth, etc. These are not goal oriented trajectories, but
continuous motions that are sometimes dynamical trajectories
in configuration space where a robot follows a sequence of
movements. Robots should not be expected to learn these
composed motions one at time but rather combine previously
learned skills along with utilizing any given demonstrations.
However, finding the right skills to combine from a base
set and the extent of their contributions in the resulting
motion is non-trivial. Existing compositionality methods either
directly pick and choose the priors to compose while only
learning the ratios of the priors’ contribution [1], or do not
have a method to utilize residual information in the provided
demonstrations [2, 3].

To tackle these shortcomings, we propose Diffusion Score
Equilibrium(DSE), a compositional method that works over a
set of base policies by inferring the extent of their contribution
given a few demonstrations. Importantly, our method does
not assume the policies to compose for achieving the desired
behavior, and scales the contribution of base policies based
on the information available in the provided demonstrations.
A core element of our approach is inferring the contribution of
each base policy in the resulting behavior, which we refer to
as compositional weights henceforth. We infer these weights
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by minimizing the distance between a proposed trajectory and
the few-shot demonstration data-distribution.

Underlying our approach is the insight that composing
diffusion models can result in novel motion generation that
interpolates between the individual distributions. We leverage
this insight to efficiently learn a novel skill by interpolating
between the noisy distribution learned from the few demon-
strations of a novel skill and the set of base policy distributions
for minimizing the distance to the few-shot demonstration
data-distribution. We show that by inferring the compositional
weights by minimizing the Maximum Mean Discrepancy dis-
tance [4] over the Forward Kinematics (FK) kernel [5] (MMD-
FK), our method DSE scales with the number of provided
demonstrations and achieves superior performance in both low
and high data regimes. DSE results in 30% to 50% lower
MMD-FK error in different data regimes than a demonstration
fine-tuned policy and is also superior to prior compositional
approach using diffusion models. Our contributions in this
work are as follows-
• We present a novel compositional approach for sample-

efficient learning called Diffusion Score Equilibrium
(DSE). Our method does not rely on manually choosing
which base policies to compose, and scales the perfor-
mance with the number of demonstrations provided for
the new skill. To the best of our knowledge, our work is
also the first to learn compositional weights over a set of
diffusion policies from the target demonstrations.

• We propose MMD-FK to fill the gap of a task and action
space agnostic metric. We use the novel combination of
the distributional MMD measure with the Forward Kine-
matics kernel to calculate distances between two trajectory
distributions over the whole body of the robot.

• We showcase that our approach is superior to simple
probabilistic composition of base policies and even training
a model on the demonstration data. We showcase our
results on nine non-orthogonal base policy priors and with
multi-modal priors for several new trajectories that the
robot has not learned before. Moreover, our real world
experiments to teach the robot novel trajectories from a few
demonstrations showcase the robustness and utility of DSE
with noisy real robot data to learn policy compositions.

II. BACKGROUND

A. Policy Composition and Sampling

Our aim is to learn the action distribution aL0 for a fixed
trajectory length L from D demonstrations. Here, we use a
to denote action for all the trajectory time-steps for brevity
and drop the L notation. Gaussian diffusion models [6] learn
the reverse diffusion kernel pθ(at|at−1) for a fixed forward
kernel that adds Gaussian noise at each step q(at|at−1) =



Fig. 1: An outline of our approach. We assume a set of base policies πi, i = 1..N and train another policy πN+1 on the provided
demonstrations. We compose over these policies and infer the compositional weights using an optimization procedure with objective of
Maximum Mean Discrepancy on the Forward Kinematics Kernel (MMD-FK). Only one optimization cycle is shown in the image.

N (at;
√
αtat−1, (1 − αt)I), such that q(aT ) ≈ N (0, I).

Here t <= T represents the diffusion time-step and αt the
noise schedule. To generate trajectories from the learned data
distribution pθ(a0), we sample at time step T from N (0, I)
and apply the reverse diffusion kernel pθ(at|at−1) at each time
step.

To sample from a product of distributions, we need the
score of the composition at each noise scale of the an-
cestral sampling chain. Our product distribution can be ex-
pressed as pcomp(a0) = p1θ(a0) ∗ p2θ(a0), where a0 has
been specifically written to reflect that the distributions
are composed in the data space. Then the score of the
composed distribution ∇at

log qcomp(at) can be written as
∇at

log
(∫ [∏

qi(a0)
]
q(at|a0)da0

)
. A long line of works in-
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, since the former
is not tractable. Du et al. [7] bring this out as the reason for
inferior quality of samples from composed image distributions
and suggest Annealed MCMC samplers instead of ancestral
sampling that does not result in the correct sequence of
marginals expected by the reverse diffusion process. However,
we utilize this sequence of marginals to interpolate between
distributions.

III. METHODOLOGY

A. Novel Motion Generation by Composing Diffusion Models
To spatially blend between distributions for generating

novel motion, we propose to sample from qcomp(a0) =∏N
i=1 qi(a0)

wi , where
∑N

i=1 wi = 1, where we have N base
policies. The sum of scores of the composed distribution at
each time-step can then be written as:
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Where Φ is the standard normal distribution. Here, we have
split the mean and variance effects of the forward diffusion
transition kernel q(at|a0) to suggest that the individual distri-
butions being composed are not invariant across time-steps.

Expressing the ith base policy distribution at diffusion time-
step t as an EBM pi;t(a) = exp(−Ei;t(a))/Zθ, we get its
score as ∇logpi;t(a) = −∇Ei;t(a), where Ei;t represents
the noisy shifted energy function. The gradient of the energy
function ∇Ei;t(a) is proportional to the output of diffusion

models ϵ̂i;θ(at, t), both of which estimate the score of the
data distribution corresponding to the ith base policy [7].
Thus a weighted addition of the diffusion model outputs∑N

i=1 wiϵ̂i;θ(at, t) where
∑N

i=1 wi = 1 is proportional to the
gradient of the weighted energy function ∇

(∑N
i=1 wiEi;t(a)

)
at diffusion time-step t. Hence, this enables sampling from
regions that are not minimums in any of the individual energy
functions or distributions being composed, while also lending
some control over it’s placement.

B. MMD-FK Metric

Several integral probability metrics have been proposed in
the image generation literature such a FID [8] and Maximum
Mean Discrepancy (MMD) [4] to quantitatively evaluate the
generated samples with respect to the data distribution. More-
over, we would like our metric to measure the distance in the
task space where the effect of motion composition is apparent,
and not be limited to the end-effector actions. With these
requirements in consideration, we propose MMD-FK, a metric
that uses the MMD distance on the FK kernel to evaluate
the distance between two robot-link trajectory distributions.
Our metric for m and n samples from the two distributions
respectively can be expressed as:

ˆdist
2
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1
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2
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(2)
It leverages MMD for it’s kernel support that enables

measurement of the distance between two distributions in
terms of the distance between their feature means in a latent
space. To evaluate task-space distances even with action space
as the robot configuration, we use the positive-definite Forward
Kinematics kernel as suggested in Das and Yip [5]. Here KFK

is the positive-definite Forward Kinematics kernel in Equation
3. Equation 3 sums over the m control points defined on the
robot, typically associated with each link in the kinematic
chain. For our purposes, one control point on each kinematic
chain allows us to capture the movements of the links of the
robot in the task-space. In Equation 3, KRQ is a second-order



rational quadratic kernel KRQ(x, x
′) =

(
1 + γ

2 ||x− x′||2
)−2

,
with the width of the kernel being γ > 0.

KFK(x, x′) =
1

M

M∑
m=1

KRQ(FKm(x), FKm(x′)) (3)

C. Diffusion Score Equilibrium

We present our few-shot learning approach DSE shown in
Figure 1 in this section. Assuming M motion demonstrations
Dj where j = 1..M , we want to learn the optimal policy,
which we evaluate using the MMD-FK distance between the
data-distribution and samples from the policy. Given the lim-
ited number of demonstrations, the policy trained on the few-
shot data learns a very noisy estimate of the score function.
Sampling from such a policy often results in incorrect motions
as the energy function gradient estimates are not accurate. Our
main insight is to use gradient priors from the base set of
policies to get a more accurate estimate of actual gradient
towards the minimum.

We use this score estimate as a prior for our policy learned
on the few-shot data wcompϵ̂comp;θ(at, t) + wfsϵ̂fs;θ(at, t)
where wcomp + wfs = 1. This can be reformulated as∑N+1

i=1 wiϵ̂i;θ(at, t) where
∑N+1

i=1 wi = 1, where the (N+1)th

policy is trained on the few-shot demonstrations D. Finally,
we estimate wi by minimizing MMD-FK between the few-shot
demonstration data and our composed policy samples.

Estimating wi is challenging, but attempts have been made
previously to estimate the sampling parameters in differen-
tiable samplers for diffusion models [9] with gradient based
methods. These gradient based methods are computationally
expensive due to multiple backward passes through the model.
Instead, we utilize a non-gradient based quadratic optimizer
[10] to tune our weights with the objective function of MMD-
FK. Our approach is described in Algorithm 1.

Algorithm 1: DSE: Compositional Weight Estimation

Input: Base policies pi, i = 1..N ; Demonstrations D
Output: Compositional weights wi

Initialize : Train a diffusion model pN+1 on the demon-
stration data D
Minimize MMD-FK:

1: for l = 1 to OPT ITER do
2: Initialize : wi,

∑N+1
i=1 wi = 1

3: for k = 1 to NUM SAMPLES do
4: for j = 1 to NUM INFERENCE STEPS do
5: for i = 1 to N + 1 do
6: Obtain ϵ̂i;θ(at, t)
7: end for
8: ϵ̂comp =

∑N+1
i=1 wiϵ̂i;θ(at, t)

9: end for
10: end for
11: Calculate MMD-FK(SAMPLES,D)
12: end for
13: return wi, i = 1..N + 1

IV. EXPERIMENTS

A. Data Generation and Model Architecture

We use prior motions corresponding to a line, a circle and
inverted pendulum along the X, Y and Z axis as base policies
for most of our experiments, unless explicitly specified. We
generate joint-position demonstration data using damped-least
squares based differential inverse kinematics [11] for Franka
Research-3 robot in Mujoco [12]. The priors execute these
trajectories in task space with random initial end-effector
orientations and positions. All our policies are trained on the
smallest variant of DiT [13], conditioned on the initial state of
the robot in configuration space. The model ϵ̂θ(at, o, t) learns
to predict the noise that was added to the input at, conditioned
on the diffusion time-step t and the observation o using AdaLN
[14].

B. Few-shot learning

We present our few-shot learning results in this section. We
utilize two baselines to compare against our approach. The
first is the composition of diffusion policies as proposed by
Du et al. [7, 15]. We find optimal compositional weights for
this method using the optimization procedure similar to ours.
The sample size for the optimization procedure is adjusted
based on the number of demonstrations in the few-shot dataset.
The second is a non-compositional baseline of a diffusion
model trained on the demonstration data. A core element of
our approach is the optimization procedure to evaluate the
compositional weights. For all the experiments, we run the
optimization procedure 4 times, where it is initialized with
the normalized MMD-FK values between the prior motion
datasets and the novel demonstration dataset, and three random
initial values that sum to 1. We found that the optimization
was also able to recover the base policies from corresponding
demonstration data collected on the real robot. We compare
DSE against our baselines for 4 novel trajectories not seen by
the robot, two in a simulated setting, and two collected on
the real robot. We report MMD-FK values with the reference
trajectory distribution wherever available, evaluated over 50
samples. We also report the mean squared error values with
the trajectories collected on the real robot for all the policies.
Table I shows the results for the simulated experiments.
DSE consistently achieves a lower or comparable MMD-FK
score than both the baselines on all the tasks, for 5, 15
and 40 demonstrations. While we visually represent the end
effector trajectories in the paper, our method optimizes the
compositional weights for all the links of the robot. The video
rollouts of the composed trajectories can also be viewed on
our webpage1.
• Step: We generate a step trajectory in the XZ plane. We

observe that DSE policy performs surprisingly well with just
5 demonstrations, largely due to the base policy gradient
priors, while the fine-tuned policy does not perform well.
As the number number of demonstrations is increased, the
fine-tuned policy catches up to DSE in terms of MMD-FK.

1https://sites.google.com/asu.edu/comp-fsl

https://sites.google.com/asu.edu/comp-fsl


Fig. 2: Base policies in order: LineX , LineY , LineY , CircleX , CircleY , CircleZ, OscX , OscY , OscZ. The last three base policies
Osc oscillate about the specified axis with fixed end-effector position.

• OscX+LineXZ: We create a difficult target distribution for
the final case in the simulated setting. The robot end effector
moves along a line while the robot body is oscillating about
the X axis. We observe that the fine-tuned policy perfor-
mance gets better with increasing number of demonstrations
while compositional weight optimizer struggles due to the
small oscillatory movements in the target.

Number Vanilla Fine-tuned Diffusion
of Composition Policy Score

Trajectories demos Equilibrium

Step
5 0.79 0.50 0.25
15 0.18 0.27 0.20
40 0.15 0.17 0.12

OSC X +
Line XZ

5 0.75 0.57 0.32
15 0.30 0.25 0.06
40 0.37 0.14 0.12

TABLE I: MMD-FK scores for 50 rollouts across skills and demon-
strations counts. DSE out-performs both our baselines consistently.

For our real world experiment, we collected 15 demonstra-
tions resembling an S along the x-axis and Spring motion
along x-axis. The MMD-FK results are shown in Table II
and visually represented in Figure 3. We also show the mean
squared error(MSE) between the collected demonstrations on
the real robot and the rolled out trajectory from the corre-
sponding initial states. DSE also achieved lower MSE with
the collected demonstrations than the baselines, confirming the
utility of our metric MMD-FK for evaluating compositional
weights.

Number Vanilla Fine-tuned Diffusion
of Composition Policy Score

Trajectories demos Equilibrium

S Motion 5 0.50 / 0.0076 0.69 / 0.0034 0.56 / 0.0019
15 1.70 / 0.0148 0.69 / 0.0023 0.34 / 0.0015

Spring
Motion

5 1.65 / 0.016 4.28 / 0.0037 0.37 / 0.0024
15 0.91 / 0.0110 5.10 / 0.0022 0.47 / 0.0013

TABLE II: Robot experiment results where we collected 15 demon-
strations on Franka FR3 to train our policies. DSE achieves lower
MMD-FK/MSE values exhibiting robustness to noise when learning.

V. DISCUSSION AND LIMITATIONS

As the number of training demonstrations are increased, the
weight assigned by our approach DSE to the fine-tuned model
increases. This is expected as if we have more demonstrations
our model picks the true data distribution rather than the
compositions over the base policies. However, as we observe
more data vanilla composition models also perform better as
they get a better estimate of the trajectory distribution.

Fig. 3: This panel of figures shows Left: Overlay of real robot demon-
stration collection; Top-right: Policy rollout of vanilla composition
with 15 demos; Bottom-right: Policy rollout of DSE trained on 5
demos.

Our results can also improve with more priors however this
would lead to increased compute time to find optimal weights.
Our priors are not orthogonal, can be multi-modal and be
chosen with a lot of freedom. This is unlike policy composition
using multiplicative Gaussian policies [1] which cannot handle
multi-modality. Moreover, Gaussian Mixture Models face the
challenge of exploding number of modes as the number of
prior policies increase, further highlighting the efficiency of
DSE. Finally, while we choose diffusion model priors for this
work, the same can be achieved for different model families
such as Gaussian.

VI. CONCLUSION

We present a novel compositional approach to few-shot
learning called Diffusion Score Equilibrium (DSE) based on
equilibrium of scores predicted by diffusion models. Our ap-
proach composes a policy trained on the target demonstrations
with a set of base policy priors and infers the compositional
weights by minimizing a measure of distance between the
resulting composed distribution and the demonstration data
distribution. Empirically, we observed that DSE will perform
better than a policy simply trained on the data irrespective
of the number of provided demonstrations on average by
30%− 50%, while outperforming it by significant margins in
the few-shot regime. We also propose a novel metric MMD-
FK to measure the distance between two movement trajectory
distributions for the whole body of the robot.
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