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Abstract

Multi-agent control is a central theme in the Cyber-Physical Systems (CPS). How-
ever, current control methods either receive non-Markovian states due to insuf-
ficient sensing and decentralized design, or suffer from poor convergence. This
paper presents the Delayed Propagation Transformer (DePT), a new transformer-
based model that specializes in the global modeling of CPS while taking into
account the immutable constraints from the physical world. DePT induces a
cone-shaped spatial-temporal attention prior, which injects the information prop-
agation and aggregation principles and enables a global view. With physical
constraint inductive bias baked into its design, our DePT is ready to plug and
play for a broad class of multi-agent systems. The experimental results on
one of the most challenging CPS – network-scale traffic signal control system
in the open world – show that our model outperformed the state-of-the-art ex-
pert methods on synthetic and real-world datasets. Our codes are released at:
https://github.com/VITA-Group/DePT.

1 Introduction

The Cyber-Physical System (CPS) is ubiquitous in our modern society; examples include intelligent
transportation systems, power grids, autonomous automobile systems, industrial control systems,
and robotic swarms. A CPS consists of multiple physical agents that interact and cooperate from
time to time; as well as a cyberspace that is responsible for monitoring the status of the physical
system, predicting future states, and/or assigning control actions to the physical agents [1, 2]. How to
effectively execute multi-agent control over CPS is an open problem of vital importance.

In general, there are two types of methods to solve the CPS multi-agent control problem: decentralized
and centralized ones. The decentralized methods usually design an individual controller for each
agent based on local states. Due to the agents’ continuous interaction, the features and the influence
of actions propagate between agents, hence the state transition for each agent relies on not only the
locally observed states and local actions but also states and actions of other agents. Therefore, the
locally observed states alone cannot make up a Markov Decision Process (MDP) [3, 4], which requires
the controller to balance the global as well as the local features [5, 6, 7]. Existing methods tackle
this issue by either complementing local information with information from the node’s immediate
neighbors or self history, or using Graph Convolutional Networks (GCNs) instead to recursively
model information propagation and aggregation. However, no aforementioned method is free of the

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/VITA-Group/DePT


Figure 1: Illustration of the typical impact propagation pattern of an event in a Cyber-Physical System
(CPS). Analogous to the “light cone" concept in the special theory of relativity, the correlation pattern
in the space-time spans a cone-shaped distribution, which could be set as our prior for DePT.

limited localized horizon issue: an n-layer GCNs can view at most n-hop neighbors away; meanwhile,
deeper GCNs usually suffer from the “bottleneck phenomenon" [8] and “over-smoothness” issues [9],
which make GNNs practically hard to train and perform well. Hence, such methods are inherently
restricted to making a complete MDP state. In addition, the edges in a CPS graph often have physical
directions to propagating information. That caused “feature mismatching" [10, 11] when modelling
by normal GCNs, and several methods [12, 13, 14] have studied directed graph modeling as remedies.

In contrast to decentralized methods, centralized methods partially avoided the non-Markovian barrier
introduced by mutual interactions. However, due to the incomplete coverage/deployment of sensors
and the sensing limitations, the ideal MDP assumption cannot always be met by real-world CPS
observations [15, 16]. Moreover, it is difficult for the traditional centralized methods to converge due
to the huge state and action spaces [17]. If one considers N agents with dS dimensional state space
and dA actions per agent, then the state space size is dS �N , and the total number of actions (i.e.,
number of logits in the output layer of traditional centralized model) will become (dA)N .

Fortunately, the booming of transformer models shed a new light on addressing the aforementioned
difficulties [18, 19, 20, 21, 22, 23, 24, 25, 26]. The Transformer architectures belong to the centralized
methods due to their global view in the attention mechanism. Their global views free them from
the locality inductive bias of GCNs, and make them promising candidates for globally controlling
multi-agent CPS problems. Also thanks to the tokenization and decentralized processing of each
tokens, transformers are also free from the huge state/action space issues: given dS dimensional state
space and dA actions for each agent, transformer’s input/output are still dS /dA, regardless of the
agent quantity N . However, the traditional transformer is not immediately ready to be plugged in
tackling CPS control problems due to the following two arising challenges:

#1. Lack of physics in the attention modeling. The classical transformers benefit from their fully
flexible self-attention mechanisms to capture the complex interactions within data. This free-form
is desirable for vision and NLP tasks [27, 28], but no longer valuable when it comes to real CPS
due to its unawareness of many physical constraints. One example is the directional propagation
and direction-feature coupling issue previously mentioned. For another prominent example, the real
passage of information flow between nodes and the propagation of the effect of past actions are
subject to the physical propagation speed. Previous studies about graph learning using transformers
mainly focus on non-physical systems and encourage between-node communication without any
notion of physical latency [29, 30]. In CPS, however, features take time to propagate through the
physical world. Without that important physical delay constraint in mind, the learned self-attention
might mislead the attention to non-relevant temporal events or physically disjoint node pairs.

#2. The difficulty of training and convergence under noisy CPS data. Transformers are strong
universal representers free of inductive bias, such as those in convolutions or recurrence. But
the blessing of unprecedented flexibility and larger capacity can turn into the curse at training:
transformers take a much longer time to converge. They are resource-heavier and much more
data-hungry compared to classical convolutional, or recurrent networks [24, 26]. In CPS control
problems, the training data will suffer from even higher variance due to the unavoidable randomness
in state transitions. Such issue is further amplified in the multi-agent setting. How to properly train
transformers to stable convergence in this scenario can still present a daunting challenge.
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In view of the above, we propose to model the delayed propagation effect in CPS by enforcing the
physical constraints into the transformer, via acone-shaped temporal-spatial prior– that the features
propagation in physical world process naturally forms the cone shape in the time-space [31, 32].
We customized a multi-level heterogeneous attention mechanism that has the cone shaped prior
baked into its design. With such design, the attention between input tokens now have a physical
interpretation, hence guiding the controller to learn more effectively in exploring the collaborative
strategy across agents. Our maintechnical innovationsare summarized below:

• We model the CPS control problem under a transformer-based framework. This is a naturally
motivated step: transformers are free from the locality restrictions, and learn inter-agent
correlations across the whole system with constant state/action space size.

• We propose theDelayed Propagation Transformer (DePT), a new type of transformer with
spatio-temporal priors baked into the attention design, to better characterize the inductive
bias of physical information propagation latency, accompanied with better interpretability.

• We build a CPS controller based on DePT, and take the well-received CPS benchmark –
transportation signal control system as a study case. The proposed controller achieves the
state-of-the-art performance in the challenging urban scale traf�c signal control task.

2 Related Works

CPS Control and Learning. With the rise of Reinforcement Learning (RL), learning-based control
systems are adapted into CPS systems, including traf�c network [33, 34], smart gird system [35, 36],
and autonomous vehicle [37]. Using traf�c network control as an example, IntelliLight [38] developed
a deep RL model with policy interpretations. PressLight [39] considered a multi-intersection problem,
where an RL agent was trained for every individual intersection. [40] introduced a fully localized RL
agent to control traf�c signals at every intersection. To ef�ciently model the in�uence of the neighbor
intersections, a graph attentional network was further introduced in CoLight [41]. [42] reviewed
conventional and RL-based methods for TSCP in detail.

To boost the optimization process and enhance the model transferability, [43] proposed to speed up
the learning process by leveraging the knowledge learned from existing scenarios. To investigate the
cooperation mechanism among various types of nodes and enhance the model utility, AttendLight
[44] designed a multi-level attention mechanism to handle various numbers of roads-lanes, thus
enabling decision-making with different phases in an intersection. However, the previous control
scheme in CPS, especially for traf�c network control, either assumed idealistic sensing condition, or
tended to downplay or even ignore inter-agent cooperation and global signal propagation.

Transformers. Transformers have witnessed great success in the application of natural language
processing [24, 18], and recently in computer vision too [21, 45, 46]. In general, researchers use
transformers to process the node embedding in two orthogonal directions: �rst, through the node-wise
residual feature transformation, an arbitrary type of intra-node transformation is enabled [18, 47, 48];
second, through the attention mechanism, features from different nodes are dynamically aggregated
and the inter-nodes relationships are captured [48]. Previous efforts have shown the potential of
transformers in multi-agent system [49], by �attening connections features across time and agents.
[50] used transformers to tackle the sparse communication in multi-agent settings, and achieved
state-of-the-art (SOTA) performance. [30] introduced transformer for the graph-to-sequence learning
in translation, which also inspired us to use explicit relation encoding to allow direct cooperation
between two distant nodes in agent features sharing. Yet to our best knowledge, existing transformers
have not explicitly tackled the spatial-temporal features together with the connections encoding, and
no effort has been devoted to their learning under CPS physical constraints.

3 Problem Settings

A general CPS can be modeled by a graphG = ( V; E) with a node setV and anedge setE. One
key property distinguishes the CPS graph from many other graph problems: in CPS, each individual
nodei 2 V possesses a physical-world locationu i 2 R2=R3. Such physical location exists as an
immutable attribute, and exerts a special constraint to CPS. Unlike pure cyber world graphs such
as user-product graphs where the information can be instantaneously propagated from one node to
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Figure 2: The DePT illustration of self-Attention layers (above) and the internal structure (below).

another, the information can can only propagate under a limited speed in the physical world, and
therefore the interactions between nodes in CPS are governed by their physical distances.

We are interested in the control problem in CPS, where each node is an agent that constantly interacts
with the environment as well as with each other. At every timestampt, the agents observe the state
s( t ) from state spaceO, and take actionsa ( t ) from the action spaceA . The system then get a reward
R( t +1) . The target of optimizing the CPS control is to come up with a collective optimal policy� �

V ,
under which the accumulated future reward is maximized:

max
� V

1X

k=0


 k R( t + k+1) (1)

where
 2 [0; 1] is the discount factor. In the discrete action space settings, the agents can be trained
with Q-learning types of algorithms:

min
�

L (� ) = E

�
R( t +1) + 
 max

a ( t +1) 2A
Q(s( t +1) ; a ( t +1) ; � ) � Q(s( t ) ; a ( t ) ; � )

� 2

; (2)

where� is the parameters of the the learned Q-functionQ(s; a; � ) : O � A ! R

4 DePT: Delayed Propagation Transformer

4.1 Preliminary: Transformers for Cyber-Physical Systems

We begin by introducing the transformer as the centralized agent to handle control problems in
CPS. The transformer takes series of inputs, collected from all nodes spatially, and across the most
recentTmax timestamps temporally, making up the collected inputs as:X = f � i ;t � � ; i 2 V ; � 2
f 0; 1; � � � ; Tmax gg. Every� i ;t � � in X is referred to as atoken, which can be uniquely indexed via
the ID of its corresponding physicalnodeand time difference relative to the current timestampt.

For each token� i ;t � � , in addition to feeding the transformer with the observed features (denoted
asf i ;t � � ), we also make our transformer aware of the policy information via thepolicy embedding:
we initialize a trainable embedding matrixP 2 RE �jAj , and for each actiona i ;t � � 2 RjAj taken
by nodei at timet � � , we index out the corresponding embeddingpi ;t � � = P [:; a i ;t � � ], and
concatenatepi ;t � � with the featuresf i ;t � � , and use[f i ;t � � jjpi ;t � � ] as the input.

For each pair of tokens� i ;t � � and� j ;t � � , wherei; j 2 V and0 � �; � � Tmax , the traditional
design of transformer will compute the pre-softmax attention via:
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a(T ) �
� i ;t � � ; � j ;t � �

�
= � >

i;t � � W >
Q W K � j ;t � � (3)

whereW K andW Q are weight matrices to compute the key and query components, respectively.
For every token� ( l )

i ;t � � at thel-th layer, its output from an attention layer is

� 0
i ;t � � =

X

j 2V ;� 2 [Tmax ]

e
�
� i ;t � � ; � j ;t � �

�
W V � j ;t � � (4)

wheree
�
� i ;t � � ; � j ;t � �

�
= softmax j 2V ;� 2 [Tmax ]

�
a( f )

�
� i ;t � � ; � j ;t � �

�
=�

�
, and� is the tempera-

ture factor, the weight matrixW V maps the input to the value component, ande(�; �) denotes the
pairwise post-softmax attention. In multi-head attention, each attention head will have an output
� 0(k ) ; k = 1 ; � � � ; N , whereN is the number of attention heads. The computed attention heads are
concatenated together and remapped to the output dimension via a linear block.

Following the attention layer, we append a layer normalization module with a skip connection.
Subsequently, the output will be fed into a Feed-Forward Network (FFN) followed by a skip-
connected layer with normalization. Multi-head attention, normalization, and FFN constitute a single
encoding layer. We stack such layers building aL-layer transformer. At the output layer, we only
read out the feature embedding of the nodes at the current timet, i.e., � i ;t � � ; 8i 2 V . Afterward, we
employ another fully connected layer to map the feature embedding to the pre-action q-values. The
architecture is illustrated in Fig. 2.

4.2 Enforcing Spatial-temporal Constraints

As illustrated in Fig.1, the spatial-temporal token pairs that have strong connections are more likely
to be located around the cone-shaped area. We argue that in order to capture the most relevant
spatial-temporal attention, the transformer agent operating in such settings should have their attention
to follow the distribution of a cone-shaped prior.

To enforce such prior attention distribution, we train a new functiona(D ) (� ; � 0) (D for DePT), in
addition to theTraditional transformer attentiona(T ) in Eq.3. These two functions are added up to
obtain the pre-softmax attention value. Further,a(D ) (� ; � 0) consists of three components: the learned
pair-relation Look-Up-Table embedding� (attn ) [i; j ] (LUT ), the cone shaped correlation decay
function
 (� j ;� ;i ;� ) (ConeDecay), the temporal correlation decay function� (� � � ) (TimeDecay).

Look-Up-Table embedding (LUT). To capture the location-associated patterns, we enable our
DePT to learn a scalar attention value� (attn ) [i; j ] for every pair of nodes (i; j ) (tokens associated
to the same nodes but with different timestamp share the same embedding). Such LUT is learned
independently for every attention head in the original transformer.

ConeDecay. In the physical part of CPS, both the effect of nodes' actions and the passage of
features can be modeled asinformation �ow that are constantly exchanging/propagating between
nodes. Think of a information �ow with speedv that originates from nodej at timet � � , and heads
for nodei at timet � � . This �ow will induce a causal connection in the physical world between two
associated tokens� i ;t � � and� j ;t � � . It is straightforward to de�ne the causal deviation as follows:

� j ;� ;i ;� (� j ;t � � ! � i ;t � � ) = ( � � � )v � k u i � u j k (5)

Under this de�nition,� j ;� ;i ;� < 0 and� j ;� ;i ;� > 0 corresponds to the expected “past” and “future”
for the incident “� j ;t � � ! � i ;t � � is exactly reachable by �ow with speedv”. We use the function

 (� j ;� ;i ;� ; W
 ) parameterized byW
 to penalize those “unreachable" token pairs, hence
 (�) is
expected to obtain its global maximum at� j ;� ;i ;� = 0 , and is a bi-directional decreasing function. It`s

gradient
�
�
�

d
 ( � j ;� ;i ;� ij )
d� j ;� ;i ;� ij

�
�
� depicts how fast the attention should drop and how “wide” the attention should

spread, for the token� j ;t � � that deviates from the cone of� i ;t � � . For the estimation of the speed,
v is the average of three learnable functions: the origination/destination speed, and a speed LUT
(different from the above� (attn ) ): v̂ = 1

3

�
� (o) (� 0

j ;t � � ; W� ( o ) ) + � (d) (� 0
i ;t � � ; W� ( d ) ) + � (v) [i; j ]

�
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TimeDecay. Information from more distant past should be payed with less attention. To �t such
time dissipation effect, given two tokens� i ;t � � ; � j ;t � � , we let our DePT learn an additive function
� (� � � ; W� ) parameterized byW� for the pairwise attention.

Overall Attention Form. The ConeDecay, TimeDecay, and LUT are all learned separately for
every transformer encoder block and every attention head. To further guide the capturing of desired
attention as well as accelerate the training/inference in two-fold speed, we mask out the attention
between token pairs (� i ;t � � , � j ;t � � ) whenever� > � , that is, not letting noden i pay attention to
noden j whenn j is in the future timestamp ofn i and have no chance to pass information ton i .
Distilling the essence up to this point, the architectures of the proposed DePT encoder blocks is
shown in Fig. 2, and the pre-softmax attention between token pair (� i ;t � � , � j ;t � � ) is computed via:

Attn (� i ;t � � ; � j ;t � � ) =

8
<

:

�1 , if � > �

 (� j ;� ;i ;� ) + � (� � � ) + � (attn ) [i; j ]

+ � T
i;t � � W T

Q WK � j ;t � � , Otherwise
(6)

4.3 Training DePT Faster: Prior Pre-�tting and Imitation Learning

Same as all other centralized control methods, transformers are not immune to slow convergence
issues during RL. To leverage the favorable attention prior of DePT, We propose to pre-train the
ConeDecay, TimeDecay, LUT components of DePT before interacting with the environments. In
addition to pre-training, we also adopt imitation learning in the early stage of reinforcement learning.

Pre-�tting the Priors. There are six learnable components in every group of priors: the ConeDecay
function
 (�), three speed estimators to compute� j ;� ;i ;� for the ConeDecay:� (o) (�); � (d) (�); � (v) [�; �],
the TimeDecay function� (�), and the attention LUT� (attn ) [�; �]. Above them, the attention LUT and
the speed LUT are matrices and can be initialized asM 0 andM �v respectively, whereM x (x = 0 ; �v)
stands for a random matrix with all entries i.i.d. and have mean valuex, and �v is the average
�ow speed according to the statistics of the system.
 (�) and� (�) are univariate functions, and
can be pre-trained to �t certain desired analytical functions. In practice, we usey = � kx2 to
pre-�t 
 (�) and� (�), wherek is the normalization factor depending on the variance of input features.
The two last functions� (o) (�); � (d) (�), though multi-variate, can still be easily pre-�tted to labels
sampled fromN (�v; 0:1), and also lead to good initializations. All pre-�ttings/initializations involve
no costly tensor computation, and can therefore be accomplished within minutes by CPU. Such
pre-�ttings/initializations can largely boost the convergence of DePT, as to be shown in section 6.1.

Warm-up with Imitation Learning. Since the decentralized controller is typically easier to con-
verge than the centralized method, we adopt the imitation learning(IL) [51] to warm-up RL. Before
RL, a decentralized baseline controller is �rst trained and acts as the teacher model. During the IL
stage, the actions are imitated by DePT and evaluated by the teacher model. During the subsequent
training, DePT takes actions and evaluates the Q-values by its own interaction.

5 Experiments and Discussions

We use the network-wide urban traf�c signal control (TSC) problem under connected and autonomous
vehicles (CAVs) environment as a CPS control example to illustrate the performance of DePT. CAVs
have great promises to help improve the performance of traf�c signal control system, since they
can provide traf�c information (i.e., vehicle position, speed, acceleration, etc.) that are crucial to
determining the signal phases and timings. The network-wide TSC under CAV is a multi-agent
control problem where distributed control methods will encounter the non-MDP property for a single
agent. In contrast, centralized control methods usually suffer from inef�cient learning and slow
convergence. In this section, we verify the ability of DePT under this challenging setting. We �rst
de�ne the TSC problem in Section 5.1 and introduce the dataset and simulation tools in Section 5.2.
Then, we show the simulation results and discuss them in Section 5.3.

5.1 Network-wide Urban TSC problem
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