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Abstract
We propose an Optimism-then-NoRegret learning
framework for learning to play a repeated
multiplayer game with an unknown reward
function and bandit feedback. Our framework
encompasses various game algorithms as special
cases. It consists of an estimation step for
constructing an imagined reward and a no-regret
step for playing against an adversary. Thompson
Sampling (TS) can be naturally included in the
framework, but its effectiveness in this context
remains unclear. We demonstrate that TS fails
in a class of unknown games. To address this,
we propose an optimistic variant of TS combined
with suitable full-information adversarial bandit
algorithms, achieving sublinear regret in the
unknown game. We establish an information-
theoretic regret bound for the proposed algorithms.
Our analysis highlights that the optimistic variant
encourages more exploration than classical TS
in unknown games. We evaluate the algorithms
on random matrix games and two real-world
applications: radar anti-jamming and traffic
routing problems. The proposed algorithms
outperform baselines substantially.

1. Introduction
Many real-world problems in economics (Fainmesser,
2012), sociology (Skyrms & Pemantle, 2009),
transportation (Leblanc, 1975), politics (Ordeshook
et al., 1986), signal processing (Song et al., 2011), and
other fields (Fudenberg & Tirole, 1991) can be described
as unknown games, where each player only observes their
opponents’ actions and the noisy rewards associated with
their own selected actions (referred to as bandit feedback).
The goal of each player is to maximize their individual
reward, and the only way to achieve this is to repeatedly
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play and learn the game structure from the corresponding
observed rewards. The challenge in unknown games is
how to efficiently learn from bandit feedback. Celebrated
no-regret learning algorithms, such as Hedge (Freund &
Schapire, 1997) and regret-matching (Hart & Mas-Colell,
2000), ensure sublinear regret guarantees under the full
information setting, where the rewards of all actions at each
round are observable. However, these algorithms cannot
handle problems with bandit feedback, which is the case for
many real-world problems of interest.

Learning efficiently from bandit feedback presents a
significant challenge in unknown games. Traditional no-
regret learning algorithms, such as Hedge (Freund &
Schapire, 1997) and regret-matching (Hart & Mas-Colell,
2000), guarantee sublinear regret only under the assumption
of full information, where rewards of all actions at each
round are observable. However, these algorithms are
ill-suited for problems with bandit feedback, which are
prevalent in many real-world scenarios of interest.

Contribution: To address this challenge, we propose an
Optimism-then-NoRegret (OTN) learning framework for
playing unknown games. Our framework encompasses
various vanilla game algorithms as well as recent
works (Sessa et al., 2019; O’Donoghue et al., 2021) that
have utilized the upper confidence bound (UCB) technique
to exploit the bandit feedback. Besides UCB, Thompson
Sampling (TS) can be naturally included in the framework,
but its effectiveness in this context remains unclear. In
the rest part of this paper, we specifically investigate
this and demonstrate that classical TS indeed fails in
a specific class of unknown games. To overcome this
limitation, we further introduce an optimistic variant of TS
(referred as OTS for short) combined with appropriate full
information adversarial bandit algorithms. An information-
theoretic regret analysis under the OTN framework is
presented, which provides sublinear regret bounds of
proposed algorithms. Comparison with related existing
algorithms is summarized in Table 1, where A and B are the
sizes of action sets, γT is the maximum information gain
(introduced in Definition 4.4), and β = logAT .

1.1. Related Works
In the full-information setting, multiplicative-weights (MW)
algorithms such as Hedge (Freund & Schapire, 1997) can
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Table 1. Regret bounds comparison.
Feedback Full Bandit Bandit + Actions Bandit + Actions

Imagined Reward – IWE UCB OTS [Ours]

No-Regret Update Hedge O
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T logA
)

O
(√

TA logA
)

O
(√

T logA+
√
γTβT

)
O
(√

T logA+
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γTβT

)
RM O

(√
TA

)
O
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T 2/3A2/3

)
[Ours] O

(√
TA+

√
γTβT

)
[Ours] O

(√
TA+

√
γTβT

)

achieve optimal regret for adversarial bandit problems. A
sequence of works (Daskalakis et al., 2011; Syrgkanis et al.,
2015; Chen & Peng, 2020; Hsieh et al., 2021) study no-
regret learning algorithms in games. Another common
no-regret learning algorithm is regret matching (Hart &
Mas-Colell, 2000). Later, it was found that a variation
called regret-matching+(RM+) (Tammelin, 2014) leads to
significantly faster convergence in practice. Full information
feedback requires perfect game knowledge and is unrealistic
in many applications. In the more challenging bandit setting,
Exp3 (Auer et al., 2002b) is a classical algorithm that
utilizes the importance-weighted estimator for reward vector
construction. The online algorithms previously referenced
can reduce the unknown repeated game into single-agent
decision-making by treating the opponents as part of the
environment. The environment in this situation is both
adversarial and adaptive, where distinct reward functions
are selected at every individual time step (Cesa-Bianchi &
Lugosi, 2006). Previous literature ignores the fact the agents
are playing repeated games in which the reward structure
could be exploited. Furthermore, to the application of our
interest, the opponent’s actions can be observed by the agent.
This scenario has received relatively little attention despite
its numerous applications (O’Donoghue et al., 2021). Some
papers consider a similar setting as ours. (O’Donoghue
et al., 2021) seeks to compare the received reward to the
Nash value and proposes variants of UCB and K-learning
that converge to the Nash value. Our goal is to compete
with hindsight’s best actions. With this performance metric,
we seek to exploit the opponent’s strategy instead of only
achieving Nash value. Similar to our setting, (Sessa et al.,
2019) also uses adversarial regret and focuses on the single-
player viewpoint. It utilizes Gaussian Process to exploit the
correlations among different game outcomes and obtains
a kernel-dependent regret bound with the factor γT by an
upper confidence bound (UCB) type algorithm. Thompson
Sampling (TS) and other randomized exploration variants
(Russo et al., 2018; Vaswani et al., 2020) are a strong
counterpart of UCB-type algorithm in the reward structure-
aware bandit literature. However, no evidence shows these
randomized exploration methods can work in our unknown
game setting.

2. Repeated Bandit Game
To simplify the presentation, we consider a two-player game
scenario involving Alice and Bob. However, our results
can be extended straightforwardly to multiplayer games by
treating all other players as an abstract player.

Protocol. Consider a repeated game between Alice and
her opponent Bob, where the action index sets for Alice
and Bob are denoted by A = 1, . . . , |A| and B =
1, . . . , |B|, respectively.1 At each time t = 0, 1, . . .,
Alice selects an action At ∈ A and Bob simultaneously
selects an action Bt ∈ B. Alice then observes a
reward Rt+1,At,Bt

associated with the selected action
pair (At, Bt), which takes values in R|A|×|B|. Alice’s
experience up to time t is encoded by the history Ht =(
A0, B0, R1,A0,B0

, . . . , At−1, Bt−1, Rt,At−1,Bt−1

)
.

Algorithm. An algorithm πalg = (πt)t∈N employed by
Alice is a sequence of deterministic functions, where each
πt(Ht) specifies a probability distribution over the action
set A based on the history Ht. Alice’s action At is sampled
from the distribution πt, i.e., P(At ∈ · | πt) = P(At ∈
· |Ht) = πt(·).

Environment. The reward Rt+1,At,Bt revealed by the
game environment is a corrupted noisy version of the mean
reward function fθ(At, Bt) : A× B 7→ [0, 1], where θ is a
random variable taking values from set Θ. The corruption
noise Wt = Rt+1,At,Bt

−fθ(At, Bt) is assumed to be zero-
mean Gaussian noise and is independent at each time t.

The above description of the bandit game encompasses
various game forms based on the structure of the mean
reward function fθ(a, b). Several representative game forms
such as the matrix game, linear game, and kernelized game
are summarized in Table 2 (see Appendix A).

The objective of Alice is to maximize her expected
reward

∑T−1
t=0 E [Rt+1,At,Bt

| θ] over some long duration T ,
regardless of the fixed action sequenceB0:T

2 Bob chooses.
By treating Bob as the adversarial environment, with the
best action A∗ = argmaxa∈A

∑T−1
t=0 E [Rt+1,a,Bt

| θ] in

1We use the shorthand A to denote the cardinality |A|.
2B0:T = (B0 = b0, B1 = b1, . . . , BT−1 = bT−1).
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hindsight, the T-period adversarial regret is defined by

ℜ(T, πalg, B0:T , θ) =

T−1∑
t=0

E [Rt+1,A∗,Bt
−Rt+1,At,Bt

| θ] ,

(1)

where the expectation is taken over the randomness in the
actions At and the rewards Rt+1,At,Bt

. However, this
adversarial regret ℜ(T, πalg, B0:T , θ) is not a suitable regret
metric under our game setting since it depends on the
specific action sequence B0:T played by Bob. In this paper,
we adopt the worse-case regret as the metric. An algorithm
πalg is considered No-Regret for Alice if, for any B0:T ,
Alice suffers only sublinear regret, i.e.,

ℜ∗(T, πalg) = sup
B0:T∈BT

ℜ(T, πalg, B0:T ) = o(T ),

where θ is omitted for notation simplicity.

3. Optimism-then-NoRegret Learning
3.1. Full Information Feedback
We will start by providing a brief overview of the
full information feedback setting, in which Alice can
observe the mean rewards rt(a) = fθ(a,Bt) for all
actions a ∈ A (details are presented in Appendix A).
At time t, Alice picks action At ∼ PXt

where
PX(i) = Xi/

∑
i∈A Xi. Full-information adversarial

bandit algorithms, e.g., Hedge (Freund & Schapire, 1997)
and Regret Matching (RM) (Hart & Mas-Colell, 2000), can
be used to update Xt to Xt+1 = gt(Xt, rt),Hedge: gt,a(Xt, rt) = Xt,a exp (ηtrt(a)) ,

RM: gt,a(Xt, rt) = max

(
0,

t∑
s=0

rt(a)− rt(As)

)
,

where gt(·) : RA
+ × RA

+ 7→ RA
+ . Since rt(a) = fθ(a,Bt),

the adversarial regret in Equation (1) can be reformulated
as the following full-information adversarial regret. For
Hedge and RM (Freund & Schapire, 1997), the regrets can
be bounded as ℜfull(T,Hedge, (rt)t) = O(

√
T logA) and

ℜfull(T,RM, (rt)t) = O(
√
TA).

Definition 3.1 (Regret with Full Information). The full
information adversarial regret of an algorithm adv for an
arbitrary reward sequence (rt)t is defined as

ℜfull(T, adv, (rt)t) = max
a∈A

E

[
T−1∑
t=0

rt(a)− rt(At)

]
. (2)

3.2. Bandit Feedback
In the bandit feedback case, Alice can only utilize the
information encoded in history Ht up to round t. One
important idea is to use bandit feedback information to

construct a sequence of full reward vectors R̃t ∈ RA in an
optimistic sense, which we refer to as the imagined reward.
Then, we can use a similar update rule gt to update the
probability distribution over actions from Xt to Xt+1. This
procedure is described in Algorithm 1, termed as Optimism-
then-NoRegret (OTN).

Algorithm 1 Optimism-then-NoRegret for Bandit Feedback

1: Initialize X1

2: for round t = 0, 1, . . . , T − 1 do
3: Sample action At ∼ PXt

4: Observe opponent’s action Bt and noisy bandit
feedback Rt+1,At,Bt

5: Update historical information for player i: Ht+1 =
(Ht, At, Bt, Rt+1,At,Bt)

6: Construct reward vector R̃t+1 with the history and
an algorithmic random draw:

R̃t+1 = E(Ht+1, Zt+1) ∈ RA, (3)

where Zt+1 is randomly drawn by the algorithm at
time t, independent of history Ht+1

7: Update: Xt+1 = gt(Xt, R̃t+1)
8: end for

The essential part in Algorithm 1 is the construction of
the imagined reward vector R̃t+1. A celebrated estimation
method is importance-weighted estimator (IWE) (Lattimore
& Szepesvári, 2020), which combined with Hedge becomes
the well known Exp3 algorithm (Auer et al., 2002b)
(referred as IWE-Hedge in this paper). Additionally, IWE
can also be combined with RM, resulting in IWE-RM for
the bandit game. Details of IWE-Hedge and IWE-RM are
presented in Appendix C, and their adversarial regrets are
provided below.

Proposition 3.2 (Regrets of IWE-Hedge and
IWE-RM (Auer et al., 2002b)). Consider play
bandit game with IWE-Hedge or IWE-RM, then
ℜ∗(T, IWE-Hedge) = O(

√
TA logA).

We also extend the regret matching (RM) (Hart & Mas-
Colell, 2000) to our setting under the OTN framework,
resulting IWE-RM algorithm (detailed proof can be found
in Section C).

Theorem 3.3 (Regret of IWE-RM). Consider play
bandit game with IWE-RM, then ℜ∗(T, IWE-RM) =
O(T 2/3A2/3).

However, IWE only requires the bandit reward feedback
and does not explicitly utilize the information of opponents’
action. An important idea is that, with the information of
opponent’s actions and the knowledge on reward structure
fθ, we can estimate fθ(a, b) for all (a, b) ∈ A × B by
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f̃t+1(a, b) at each time t, and construct imagined reward
by R̃t+1(a) = min(f̃t+1(a,Bt), 1). By taking Gaussian
distribution as the prior, the mean and variance estimation of
fθ(a, b) up to time t can be recursively updated, denoted as
µt(a, b) and σ2

t (a, b). Detailed updating formulas for games
in Table 2 are presented in Appendix B. The remaining issue
is how to balance exploration and exploitation based on
mean and variance estimation.

In bandit environments, the UCB (Auer et al., 2002a) and
TS (Thompson, 1933) techniques are widely used to address
the exploration-exploitation trade-off. Tailoring to the
bandit game considered in this paper, the corresponding
constructions using UCB and TS are as follows:

UCB: f̃t+1(a,Bt) |Ht+1 = µt(a,Bt) + βtσt(a,Bt),

R̃t+1(a) = f̃t+1(a,Bt) ∧ 1,∀a ∈ A.

TS: f̃t+1(a,Bt) |Ht+1 ∼ N(µt(a,Bt), σt(a,Bt)),

R̃t+1(a) = f̃t+1(a,Bt) ∧ 1,∀a ∈ A.

The effectiveness of UCB combined with Hedge has been
studied in (Sessa et al., 2019). Within the OTN framework,
UCB can also be combined with RM, resulting in a sublinear
regret based on our analysis (see details in Section 4). The
regrets of UCB are provided below:

Proposition 3.4 (Regrets of UCB-Hedge (Sessa et al., 2019)
and UCB-RM). Consider playing the bandit feedback game
with UCB-Hedge or UCB-RM, then ℜ∗(T,UCB-Hedge) =
O(

√
T logA +

√
γTβT ), ℜ∗(T,UCB-RM) = O(

√
TA +√

γTβT ).

3.3. Failure of TS Estimator
Besides UCB, TS can be naturally included in the OTN
framework, but its effectiveness in this context remains
unclear. We demonstrate that TS combined with RM fails
in a class of bandit games.

Example 3.1 (Matrix Game with Best Response Player).
Consider a class of matrix games with a payoff matrix θ
defined as

θ =

[
1 1−∆

1−∆ 1

]
, (4)

where ∆ ∈ (0, 1). At time t, Alice plays action At ∼ PXt
,

and Bob is a best response player who can observe Xt

and play the best response strategy Yt = maxy X
⊤
t θy by

selecting action Bt ∼ PYt
. Alice receives the noiseless

reward Rt+1,At,Bt
= θAt,Bt

.

Intuitively, as long as Alice chooses pure strategy, Bob will
exploit Alice, resulting in ∆ regret for Alice in that round.
This divergence fact is formally stated below.

Proposition 3.5 (Divergence). Let Ωt denote the event
where Alice selects the 2nd row and Bob chooses the
1st column for all time steps t′ ⩽ t. Assuming uniform

Figure 1. Failure probability for TS-RM and OTS-RM.

initialization for Alice, then ℜ(T ) ⩾ 2P(ΩT )∆ · T. If
the event Ωt occurs with a constant probability for all
t ⩾ 1, then Alice experiences linear regret with a constant
probability.

As shown in Figure 1, TS-RM indeed fails in different
setups for hyperparameter (∆, σ2

n). Detailed mathematical
justification can be found in Appendix D.
Proposition 3.6 (Failure of TS-RM). Suppose Alice
initializes with a uniform strategy and utilizes Regret
Matching with TS estimator (TS-RM). For any ∆ ∈ (0, 1)
and σn > 0, there exists a constant c(∆, σn) > 0 such that
for all rounds t ⩾ 1, P(Ωt) ⩾ c(∆, σn). 3

3.4. A Simple Fix: Optimistic Sampling
By taking the maximum of multiple functions sampled
from the posterior, we can improve the probability of being
optimistic for the estimator. At time t, after observing
Ht+1 = (Ht, At, Bt, Rt+1,At,Bt), we can perform
optimistic sampling by first sampling Mt+1 independent
normal random variables z1t+1, . . . , z

j
t+1, · · · , z

Mt+1

t+1 ∼
N(0, 1), and constructing the estimator: ∀a ∈ A

f̃OTS
t+1 (a,Bt) := (max

j∈[M ]
zjt+1) · σt(a,Bt) + µt(a,Bt),

R̃OTS
t+1 (a) := clip[0,1]

(
f̃OTS
t+1 (a,Bt)

)
.

To intuitively understand why optimistic samples help, let
us recall Example 3.1. Denote R̃OTS

t+1 (1st) and R̃OTS
t+1 (2nd)

as the optimistic reward for the first and second row
actions, respectively. Then the probability of R̃OTS

t+1 (1st) >

R̃OTS
t+1 (2nd) increases as Mt+1 grows, this implies a decay

of P(Ωt) over time t. Detailed mathematical justification
can be found in Appendix D. Such a simple optimistic
version of TS (referred to as OTS) has the following regret
guarantee.
Theorem 3.7 (Regrets of OTS-Hedge and OTS-RM). For
any full information adversarial bandit adv working with
the imagined reward sequence R̃est = (R̃t+1, t = 0, 1, . . .)
constructed by OTS with M1 = M2 = . . . = MT =
M = O(logABT ), the combined algorithm π = πadv-OTS

enjoys the regret bound:

ℜ∗(T, π, θ) ⩽ ℜfull(T, adv, R̃
est) +

√
log(AT )I(θ;HT )T

3If ∆ = 0.1 and σn = 0.1, we have c(∆, σn) ≈ 0.54.
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where ℜfull is defined in Definition 3.1.

Note that as long as the imagined R̃est = (R̃t+1, t =
0, 1, . . .) satisfies bounded property R̃t ∈ [0, 1]A, then
if we take adv to be Hedge, ℜfull(T,Hedge, R̃est) =
O(

√
T logA). And if taking adv to be RM, then

ℜfull(T,RM, R̃est) = O(
√
TA). In addition, Theorem 3.7

also applies to IWE and UCB, resulting in our by-product
regret bounds of IWE-RM and UCB-RM.

4. Regret Analysis
Our analysis road map is as follows. First, we derive a
general regret decomposition given any imagined reward
sequence {R̃t : t ∈ Z++}, where each R̃t+1 is constructed
using history information Ht with algorithmic randomness.

Proposition 4.1 (Regret decomposition). For any a ∈ A,
the one-step regret can be decomposed by

E [Rt+1,a,Bt
−Rt+1,At,Bt

| θ] = (I) + (II) + (III)

where

(I) = E
[
R̃t+1(a)− R̃t+1(At) | θ

]
,

(II) = E
[
fθ(a,Bt)− R̃t+1(a) | θ

]
,

(III) = E
[
R̃t+1(At)− fθ(At, Bt) | θ

]
.

Summation of (I) reduces to adversarial regret
ℜfull(T, adv, R̃) for a bounded sequence R̃t+1. For
the term (II), the following definition is a sufficient
condition for

√
T -type regret.

Definition 4.2 (Sufficient optimism). We say the
constructed imagined reward sequence R̃est = (R̃t, t ∈
Z++) is optimistic if for any action a ∈ A, P(fθ(a,Bt) ⩾
R̃t+1(a) | θ) ⩽ O(1/

√
T ).

OTS can satisfy Definition 4.2 by selecting proper Mt+1

whereas TS cannot satisfy. UCB sequence can also satisfy
Definition 4.2. The term (III) can be bounded by one-
step information gain I(θ;Rt+1,At,Bt |Ht) using differential
entropy of Gaussian distribution. Here, we give a general
regret bound for any imagined reward sequence.

Theorem 4.3. For any full information adversarial bandit
adv working the imagined reward R̃est = (R̃t, t ∈ Z++)
constructed by estimation algorithm est, if the R̃est satisfy
Definition 4.2, the combined algorithm π = πadv-est enjoys
the regret

ℜ∗(T, π, θ) ⩽ ℜfull(T, adv, R̃) +
√
βI(θ;HT )T

where ℜfull is defined in Definition 3.1 and β = O(logAT ).

To characterize how much uncertainty reduction is in a
particular game structure when observing new information,
we define the maximum information gain.

Definition 4.4 (Maximum Information Gain).

γT := max
A0:T ,B0:T

I(θ;A0, B0, . . . , AT−1, BT−1)

where I(X;Y ) is the mutual information between random
variables X and Y .
Remark 4.5. An important property of the Gaussian
distribution is that the information gain does not
depend on the observed rewards. This is because
the posterior covariance of a multivariate Gaussian is
a deterministic function of the sampled points. For
this reason, this maximum information ratio γT in
Definition 4.4 is well defined. That is, I(θ;HT ) =
I(θ;A0, B0, . . . , AT−1, BT−1) ⩽ γT .

We adopt the results from (Srinivas, Krause, Kakade, and
Seeger, 2009) which gives the bounds of γT for a range of
commonly used covariance functions: finite dimensional
linear, squared exponential and Matern kernels, whose
details can be found in Appendix E. Utilizing the reward
structure can be used to resolve the curse of multi-agent.
For example, if the reward structure can be model by
squared exponential kernels, the final regret of OTS-Hedge
is O((

√
logA+

√
log(AT ) log(T )d+1)

√
T ), which has no

polynomial dependence on action sizes A×B, where |B| is
exponential in the number of opponents.

5. Numerical Studies and Applications
Evaluation of the proposed algorithms on random matrix
games and two real-world applications are studied. As
baseline algorithms, Hedge and RM, which require full
information, are utilized. IWE-Hedge and IWE-RM are
used as baselines in the bandit feedback setting. Under
the OTN learning framework (Algorithm 1), a total of four
algorithms are compared with baselines: OTS-Hedge, OTS-
RM, UCB-Hedge, and UCB-RM. Note that GP-MW (Sessa
et al., 2019) is UCB-Hedge named here. Average expected
regret is utilized as the performance metric. Appendix F.1
provides a detailed definition of the performance metrics
and algorithm settings.

5.1. Random Matrix Games
This section evaluates different algorithms on two-player
zero-sum matrix games. Each payoff matrix entry is an i.i.d.
random variable generated from the uniform distribution
[−1, 1], and each player has M actions (payoff matrix
is a squared matrix of size M ). The total number of
rounds is T = 107. At each round, the two players
receive noisy rewards ±r̃t, where r̃t = Aij + ϵt and ϵt ∼
N (0, 0.1). Different matrix sizes are considered, i.e., M =
10, 50, 70, 100, and for each choice of M , 9 independent
simulation runs are conducted. The performance, averaged
over 9 simulation runs with different opponent models (see
details in Appendix F.2) are compared.
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(a) Self-play (b) Best-resp. oppo. (c) Stat.oppo.

Figure 2. Averaged regrets for different opponents on 70× 70 matrix game.

Convergence curves of the average regret for M = 70
are compared in Fig.2a. Under the self-play setting,
OTS-based algorithms converge faster than UCB-based
algorithms. Furthermore, the average regret of RM
decreases earlier than that of Hedge. For a best-response
opponent (Fig.2b), all the algorithms in our proposed
algorithmic framework outperform the IWE baselines. For a
stationary opponent (Fig.2c), results clearly demonstrate
that the OTS estimator brings considerable benefits in
exploiting this weak opponent, compared to the IWE-based
estimators. Comparison with a non-stationary opponent can
be found in Appendix F.3, which shows OTS is more robust
than IWE.

5.2. Anti-jamming Problem: Linear Game
The anti-jamming problem is an important issue in signal
processing literature (Song et al., 2011), which can be
formulated as a non-cooperative game between a radar
and a jammer. This competition can be modeled in the
frequency domain as a linear game, with the signal-to-
inference-plus-noise ratio (SINR) serving as the reward
function SINR(a, b; θ), further information on the anti-
jamming game setting can be found in Appendix F.5. We
compare the average regret of different algorithms against
an adaptive jammer, where the jammer takes action based
on the radar’s latest 10 actions (see details in Appendix F.5).
As illustrated in Fig.3, the OTS-based and UCB-based
algorithms outperform the IWE-based algorithms.

Figure 3. Play against an adaptive jammer.

5.3. Repeated Traffic Routing: Kernelized Game
In this subsection, we consider the traffic routing problem
from the transportation literature, which can be modeled

as a multi-player game over a directed graph. Each node
pair in the graph represents an individual player, and each
player seeks to find the best route to send a fixed units
from its origin node to its destination node. The travel time
serves as the reward, depending on the traversed edges’
total occupancy. If one edge is occupied by more players,
it incurs more travel time. Each player’s action set is the
available route in the graph, and the negative travel time
of the route is the reward. The Sioux-Falls road network
dataset (Bar-Gera, 2015) is used in our experiment and
details can be found in Appendix F.6. Fig. 4 demonstrates
that OTS-based and UCB-based algorithms outperform the
IWE-based algorithms. The three proposed new algorithms,
OTS-Hedge, OTS-RM, and UCB-RM, outperform UCB-
Hedge (Sessa et al., 2019).

Figure 4. Average regret and congestion in traffic routing problem.

6. Conclusion
In summary, we present an OTN learning framework for
playing unknown games, which includes several game
algorithms as special cases. To address the limitations of
TS, we introduce an optimistic variant of TS that explores
the unknown game effectively. The proposed algorithms
demonstrate significant performance improvements in both
synthetic and real-world scenarios.
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A. Description of Games and Full Information Game
In this work, we consider three representative game forms: the matrix game, linear game, and kernelized game, as
summarized in Table 2. Further details can be found in Appendix A.

Table 2. Game Examples.
Matrix Game Linear Game Kernelized Game

Mean Reward fθ(a, b) = θa,b fθ(a, b) = ϕ(a, b)⊤θ fθ(a, b) = θ(a, b)
θ ∈ RA×B ϕ(a, b) ∈ Rd, θ ∈ Rd θ(a, b) ∈ R is mean of a Gaussian Process

A.1. Different Games

Example A.1 (Matrix games). In a matrix game, the reward function simplifies to fθ(a, b) = θa,b. In this degenerate setting,
θ can be considered as the utility matrix for Alice.

Example A.2 (Linear games). In a linear game, a known feature mapping ϕ : A×B 7→ Rdis defined, and the mean reward
function is given by fθ(a, b) = ϕ(a, b)⊤θ, where the reward is linear in the feature. We assume that the random parameter θ
follows the normal distribution N(µp,Σp), and the reward noise Wt+1 = Rt+1,At,Bt

− fθ(At, Bt) is normally distributed
with with mean zero and variance σ2

w, independent of (Ht, At, Bt, θ).

In the Section 5.3, the reward structure in the repeated traffic routing problem is modeled using a kernel function, which is
referred to as Kernelized games.

Example A.3 (Kernelized games). In kernelized games, we consider the case where the reward function fθ is sample from
a Gaussian process. The stochastic process (fθ(a, b) : (a, b) ∈ A × B) follows a multivariate Gaussian distribution,
where the mean function is denoted as µ(a, b) = E [fθ(a, b)] and covariance (or kernel) function is denoted as
k((a, b), (a′, b′)) = E [(fθ(a, b)− µ(a, b))(fθ(a

′, b′)− µ(a′, b′))]. The kernel function k((a, b), (a′, b′)) measures the
similarity between different action pairs (a, b), (a′, b′) ∈ A × B in the game. We assume that the function fθ is sampled
from a Gaussian process prior GP (0, k((a, b), (a′, b′))), the reward noise Wt+1 = Rt+1,At,Bt

− fθ(At, Bt) is independent
of (Ht, θ, At, Bt), and (Wt : t ∈ Z++) is an i.i.d sequence following N(0, σ2

w).

A.2. Full Information Feedback

To introduce the proposed Optimism-then-NoRegret learning framework, we first consider the full information feedback
setting where Alice can observe the mean rewards rt(a) = fθ(a,Bt) for all actions a ∈ A. In this case, the problem
can be solved using full-information adversarial bandit algorithms such as Hedge (Freund & Schapire, 1997) and Regret
Matching (RM) (Hart & Mas-Colell, 2000) applied to the sequence of adversarial reward vectors (rt)t∈[T ] ∈ [0, 1]A×T .
The procedure is summarized in Algorithm 2, where PX denotes probability simplex proportional to X , and function
gt : ∆

A × [0, 1]A 7→ ∆A in round t is specified as follows:

Hedge: gt,a(Xt, rt) = Xt,a exp(ηtrt(a)), RM: gt,a(Xt, rt) = max

(
0,

t∑
s=0

rt(a)− rt(As)

)
.

In the full information setting, where rt(a) = fθ(a,Bt), the adversarial regret defined in Equation (1) translates to the
following full information adversarial regret:

Definition A.1 (Regret with Full Information). The full information adversarial regret of algorithm adv for arbitrary reward
sequence (rt)t is defined as

ℜfull(T, adv, (rt)t) = max
a∈A

E

[
T−1∑
t=0

rt(a)− rt(At)

]
(5)

The following proposition provides the regret bounds for Hedge and RM algorithms in the full information feedback
setting (Freund & Schapire, 1997):
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Proposition A.2 (Regrets of Hedge and RM). Consider playing in a full information feedback game with Hedge or RM
algorithms. The regrets are bounded as follows:

ℜfull(T,Hedge, (rt)t) = O(
√

T logA), ℜfull(T,RM, (rt)t) = O(
√
TA).

Algorithm 2 No Regret Update for Full-Information Feedback

1: Initialize X1

2: for round t = 0, 1, . . . , T − 1 do
3: Sample action At ∼ PXt ,
4: Observe full-information feedback fθ(a,Bt) for all a ∈ A,
5: Update: Xt+1 = gt(Xt, (fθ(a,Bt))a∈A).
6: end for

B. Updating Rules of Different Games
Posterior distribution for Linear Gaussian model (Parametric). Let’s consider the linear Gaussian model with a
Gaussian prior N(µp,Σp) and noise likelihood N(0, σ2

w). Here are the key aspects of the model:

• Prior Assumptions: We assume a zero-mean prior with covariance Σp = σpI , where σp is a scalar parameter satisfying
σp ⩽ 1.

• Feature Map Assumptions: We assume that the feature map ϕ(a, b) satisfies |ϕ(a, b)| ⩽ 1.

• Covariance Matrix Update: Given the initial covariance matrix Σ0 = Σp, the covariance matrix at time t+1 is updated
as:

Σt+1 =

(
Σ−1

t +
1

σ2
w

ϕ(At, Bt)ϕ(At, Bt)
⊤
)−1

• Mean Vector Update: Given the initial mean vector µ0 = µp, the mean vector at time t+ 1 is updated as:

µt+1 = Σt+1

(
Σ−1

t µt +
Rt+1,At,Bt

σ2
w

ϕ(At, Bt)

)

• σt(a, b) = ∥ϕ(a, b)∥Σt
and µt(a, b) = ϕ(a, b)⊤µt

• In the case where the feature ϕ(a, b) = ea,b is a one-hot vector, we denote nt(a, b) as the counts of occurrences of
(a, b) up to time t, the posterior variance is given by:

σt(a, b) =

√
σ2
w

σ2
w/σ

2
p(a, b) + nt(a, b)

Posterior distribution for Gaussian Process (Non-paramatric). In the non-parametric case of a Gaussian Process (GP),
the posterior distribution remains Gaussian as well. Here are the relevant details:

• Notation: We define the vector kt((a, b)) and Rt, and the matrix Kt as follows:

kt(a, b) = [k((A0, B0), (a, b)), . . . , k((At−1, Bt−1), (a, b))]
⊤

Rt = [R1,A0,B0
, . . . , Rt,At−1,Bt−1

]⊤

Kt(i, j) = k((Ai, Bi), (Aj , Bj))

• Variance Assumption: We assume that the variance satisfies k(x, x) ⩽ 1 for all x ∈ X .



No-Regret Optimistic Thompson Sampling

• Posterior Variance: The posterior variance at time t is given by: σ2
t (a, b) = k((a, b), (a, b)) − kt((a, b))

⊤(Kt +
σ2It)kt(a, b)

• Posterior Mean: The posterior mean at time t is given by: µt(a, b) = kt((a, b))
⊤(Kt + σ2It)

−1Rt

• Relationship to Linear Gaussian Model: If the kernel k((a, b), (a, b)) = ϕ(a, b)⊤Σpϕ(a, b) is composed of basis
functions, the GP reduces to the linear Gaussian model with a prior covariance matrix Σp. This ensures coherence
between the linear Gaussian model and the kernel model assumptions.

C. Details for Importance Weighted Estimator in Section 3
Importance-weighted estimator. For any measurable function h and probability distribution (Xa)a∈A over a finite
support A, we construct importance weighted estimator

h̃(a) = IA=a
h(A)

Xa
,∀a ∈ A

which is an unbiased estimator:

E
[
h̃(a)

]
= E [IA=a]h(a)/Xa = h(a).

Exp3: Hedge with importance weighted estimator In this work, we sometimes call Exp3 as IWE-Hedge. The celebrated
Exp3 algorithm construct an estimate of reward vector as

R̃t+1(a) = 1− IAt=a(1−Rt+1,At,Bt
)

Xt,a

We can observe that R̃t+1(a) is unbiased conditioned on history Ht. Given that Xt is Ht-measurable and At is conditionally
independent with Wt+1 and Bt given Ht, and using the fact IAt=aRt+1,At,Bt = IAt=aRt+1,a,Bt , we have:

Et

[
R̃t+1(a)

]
= 1− Et

[
IAt=a

1−Rt+1,a,Bt

Xt,a

]
= 1− Et [IAt=a]

1− Et [fθ(a,Bt)]

Xt,a
= Et [fθ(a,Bt)] .

Exp3(Auer et al., 2002b) updates the strategy using Xt+1,a ∝ Xt,a exp(ηtR̃t+1(a)).

Regret Matching with importance weighted estimator. Using the importance-weighted estimator, we can obtain an
unbiased estimator for the regret ℜt ∈ RA at round t:

ℜ̃t,a =
IAt=aRt+1,At,Bt

Xt,a
−Rt+1,At,Bt

X̂t,At

Xt,At

(6)

and update the strategy as follows: Let the cumulative estimated reward be C̃t,a =
∑t

s=0 ℜ̃s,a,

X̂t+1,a =

{
C̃+

t,a/
∑

a∈A C̃+
t,a, if

∑
a∈A C̃+

t,a > 0,

arbitrary vector on simplex, e.g. 1/A, otherwise
(7)

Here, the sampling distribution Xt,a is mixed with uniform distribution

Xt,a = (1− γt)X̂t,a + γt(1/A),∀a ∈ A (8)

The detailed algorithm for Importance-weighted estimator Regret Matching (IWE-RM) is as follows:

Algorithm 3 Importance-weighted estimator with Regret Matching (IWE-RM)

1: Input: init X1 = X̂1 as uniform probability vector over A and sequence (γt)t⩾0

2: for round t = 0, 1, . . . , T − 1 do
3: Sample action At ∼ PXt

4: Observe noisy bandit feedback Rt+1,At,Bt
.

5: Construct regret estimator ℜ̃t with importance weighted estimation by Equation (6).
6: Update X̂t+1 and Xt+1 with Equations (7) and (8) and γt.
7: end for
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Fact C.1. Importance weighted estimator R̃t+1 at round t is σ(Ht, At, Rt+1,At,Bt
)-measurable.

Remark C.1. For any t ∈ N, the imagined reward vector R̃t+1 constructed by importance weighted estimator satisfies
E
[
R̃t+1(a) |Ht, θ

]
= E [fθ(a,Bt) |Ht, θ] = E [gθ(ea, Yt) |Ht, θ] for any a ∈ A. Therefore, we have E

[
pesst+1 | θ

]
=

E [estt+1 | θ] = 0.

Lemma C.2. For all real a, define a+ = max{a, 0}. For all a, b, it is the case that(
(a+ b)+

)2
⩽ (a+)2 + 2(a+)b+ b2

Proof. (a+ b)+ ⩽ (a+ + b)+ ⩽ |a+ + b| .

Lemma C.3. For all vector v ∈ RA, define v+ = (v+a )a∈A. Following Algorithm 3, we have the important observation〈
C̃+

t−1, ℜ̃t

〉
⩽ 0

Proof. Suppose at round t, Alice choose At ∼ PXt
and receive the feedback Rt+1,At,Bt

. By algorithm 3 and Equations (6)
to (8), If

∑
a C̃

+
t−1,a ⩽ 0, then obviously C̃+

t−1,a = 0 for all action a ∈ A. Then, the lemma trivially holds.

Otherwise, we have 〈
C̃+

t−1, ℜ̃t

〉
= Rt+1,At,Bt

(
C̃+

t−1,At

Xt,At

− X̂t,At

Xt,At

∑
a

C̃+
t−1,a

)

= Rt+1,At,Bt

(
C̃+

t−1,At

Xt,At

−
C̃+

t−1,At
/
∑

a C̃
+
t−1,a

Xt,At

∑
a

C̃+
t−1,a

)
= 0

Lemma C.4. Following algorithm 3, we have an important inequality

∑
a

(
C̃+

T,a

)2
⩽

T∑
t=1

∑
a

(
ℜ̃t,a

)2

Proof. Since from the update rule,

C̃T,a = C̃T−1,a + ℜ̃T,a,

by Lemma C.2 and C.3: ∑
a

(
C̃+

T,a

)2
⩽
∑
a

((
C̃+

T−1,a

)2
+ 2C̃+

T−1,aℜ̃T,a +
(
ℜ̃T,a

)2)
⩽
∑
a

(
C̃+

T−1,a

)2
+
∑
i

(ℜ̃T,a)
2

By telescoping series, we conclude the lemma.

Proof of Theorem 3.3. Notice that the action At selected by Alice and the action Bt selected by Bob is independent
conditioned on history Ht and θ. According to the algorithm 3, the conditional expectation of the estimated immediate
regret is

E
[
ℜ̃t,a | θ,Ht

]
= E [fθ(a,Bt) | θ,Ht]−

∑
a

X̂t,aE [fθ(a,Bt) | θ,Ht]
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Step 1 (Bounding the bias of estimated regret.) Recall the definition of immediate regret at time t conditioned on history
is

ℜt(a) := E [Rt+1,a,Bt
−Rt+1,At,Bt

| θ,Ht] = E [fθ(a,Bt) | θ,Ht]−
∑
a

Xt,aE [fθ(a,Bt) | θ,Ht]

In the following, we use short notation Et [·] = E [· | Ht, θ]. For any a ∈ A, the difference with the estimated regret under
conditional expectation is

ℜt(a)− Et

[
ℜ̃t,a

]
=
∑
a

(X̂t,a −Xt,a)
∑
b

Yt,bfθ(a, b)

=
∑
a

(γtX̂t,a − γt/A)
∑
b

Yt,bfθ(a, b)

⩽
∑
a

∣∣∣γtX̂t,a − γt/A
∣∣∣

⩽
∑
a

(∣∣∣γtX̂t,a

∣∣∣+ |γt/A|
)
= 2γt

Step 2 (Bounding the potential.) For any a ∈ A,

E0

[
C̃T,a

]
⩽ E0

[
C̃+

T,a

]
= E0

[√
(C̃+

T,a)
2

]
⩽ E0

[√∑
a

(
C̃+

T,a

)2]
,

where the last inequality is due to the Jensen inequality. By lemma C.4 and taking expectation,

E0

[√∑
a

(
C̃+

T,i

)2]
⩽ E0


√√√√ T∑

t=1

∑
a

(
ℜ̃t,a

)2
The RHS of the above inequality can be bounded as

E0

[
T∑

t=1

∑
a

(
ℜ̃t,a

)2]
= E0

 T∑
t=1

∑
a

(
IAt=aRt+1,At,Bt

Xt,a
−Rt+1,At,Bt

X̂t,At

Xt,At

)2


= E0

[
T∑

t=1

∑
a

R2
t+1,At,Bt

((
IAt=a

Xt,At

)2

− 2X̂t,At

X2
t,At

IAt=a +
X̂2

t,At

X2
t,At

)]

= E0

[
T∑

t=1

R2
t+1,At,Bt

(
1

X2
t,At

− 2X̂t,At

X2
t,At

+ |A|
X̂2

t,At

X2
t,At

)]

= E0

[
T∑

t=1

Et

[
R2

t+1,At,Bt

(
1

X2
t,At

− 2X̂t,At

X2
t,At

+ |A|
X̂2

t,At

X2
t,At

)]]
,

where we have the following derivation by the fact

Et

[
R2

t,a,b

]
:= Et

[
(fθ](a, b) +Wt+1)

2
]
= Et

[
fθ](a, b)

2 +W 2
t+1

]
⩽ 1 + σ2

w
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and the fact 0 ⩽ X̂t,a/Xt,a ⩽ 1/(1− γt) for all a ∈ A,

Et

[
R2

t+1,At,Bt

(
1

X2
t,At

− 2X̂t,At

X2
t,At

+ |A|
X̂2

t,At

X2
t,At

)]

=
∑
a

Et

[
R2

t+1,a,Bt

]
Xt,a

+
∑
a

X̂t,a

Xt,a
Et

[
R2

t+1,At,Bt

] (
|A| X̂t,a − 2

)
⩽ (1 + σ2

w)

(∑
a

1

Xt,a
+
∑
a

X̂t,a

Xt,a

(
|A| X̂t,a − 2

))

⩽ (1 + σ2
w)

(∑
a

1

Xt,a
+
∑
a

X̂t,a

Xt,a
(|A| − 2)

)

⩽ (1 + σ2
w)

(∑
a

|A|
γt

+min(
|A|
γt

,
|A|

1− γt
)(|A| − 2)

)
⩽

2(1 + σ2
w) |A|2

γt

Then, we derive one important relationship

E0

[√∑
a

(
C̃+

T,i

)2]
⩽ E0


√√√√ T∑

t=1

∑
a

(
ℜ̃t,a

)2 ⩽

√√√√ T∑
t=1

2(1 + σ2
w) |A|2

γt

Step 3 (Put all together.)

E0

[
T∑

t=1

ℜt(a)

]
= E0

[
T∑

t=1

Et

[
ℜ̃t,a

]
+

T∑
t=1

2γt

]
= E0

[
C̃T,a +

T∑
t=1

2γt

]
⩽

√√√√ T∑
t=1

2(1 + σ2
w) |A|2

γt
+ 2γt

When γt = γ,

E0

[
T∑

t=1

ℜt(a)

]
⩽

√
T

√
2(1 + σ2

w) |A|2

γ
+ 2γT,

Taking γ =
3

√
((1 + σ2

w) |A|2)/2T , we have

E0

[
T∑

t=1

ℜt(a)

]
⩽ 24/3(1 + σ2

w)
1/3 |A|2/3 T 2/3.

D. Analysis of the failure for Thompson sampling estimator in Section 3.3
D.1. Basic setting of the counter example

Consider a class of matrix games with a payoff matrix θ defined as

θ =

[
1 1−∆

1−∆ 1

]
, (9)

where ∆ ∈ (0, 1). At time t, Alice plays action At ∼ PXt
, and Bob is a best response player who can observe Xt and

play the best response strategy Yt = maxy X
⊤
t θy by selecting action Bt ∼ PYt

. Alice receives the noiseless reward
Rt+1,At,Bt

= θAt,Bt
. From the example θ, we can observe the following:

• Observation 1: When Alice uses a pure strategy, she suffers a regret of ∆ at that round due to Bob’s best-response
strategy.
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• Observation 2: The best-response strategy for a uniform strategy is also a uniform strategy.

Let’s define the following terms:

• Xt and regt: Alice’s strategy and instantaneous regret at time t.

• R̃t and mt: R̃t =
[
R̃t1, R̃t2

]
is the estimated reward vector by TS-RM estimator; mt = R̃t1 − R̃t2 represents the

difference between two rewards.

Now, let’s consider the following remark regarding initialization:
Remark D.1 (Initialization). The TS-RM algorithm for Alice, initialized with a uniform strategy, will always result in a pure
strategy in X2.

Proof. In the regret-matching algorithm, the instantaneous regret reg1 at t = 1 can be represented as

reg1 = R̃1 − R̃T
1 X1 · 1, (10)

Since Alice and Bob are both initialized with a uniform strategy, i.e., X1 = [0.5, 0.5], it can be observed that if m1 ̸= 0, the
two elements in reg1 will always have opposite signs. If m1 = 0, X2 = X1 and can still be regarded as an initialization
step.According to the regret-matching updating rule, X2 ∝ max(reg1, 0), which means X2 must be a pure strategy.

Based on Remark D.1, we can draw the following conclusions regarding the counter example:

• The choice of uniform initialization for the TS-RM algorithm does not affect the divergence result.

• This result holds regardless of the specific action chosen by Alice at t = 1, indicating that two symmetric conditions
arise depending on whether X2 = [1, 0] or X2 = [0, 1].

D.2. TS-RM suffers linear regret

According to Remark D.1, without loss of generality (w.l.o.g.), let us define the following events:

• Event ωt: Alice picks the second row and the best-response opponent chooses the first column at time t.

• Event Ωt: Alice picks the second row and the best-response opponent chooses the first column for all time t′ ⩽ t.

The occurrence of event Ωt implies that Alice experiences linear regret until time t. However, the actual convergence
probability is greater than P(Ωt) since even if Ωt does not occur (i.e., Alice occasionally chooses the optimal result 1), there
is still a probability that TS-RM fails. Quantifying this probability is challenging. If we can demonstrate that Ωt occurs
with a constant probability c, then the divergence probability of TS-RM should be greater than c. Specifically, due to the
symmetric property of the example θ, we obtain the following propositions:

Proposition D.2. If Alice initializes with a uniform strategy,

ℜ(T ) ⩾ 2P(ΩT )∆ · T

If Ωt happens with constant probability for all t ⩾ 1, then Alice suffers linear regret.

Proposition D.3 (Failure of TS-RM). Suppose Alice initializes with a uniform strategy and utilizes Regret Matching with
Thompson Sampling estimator (TS-RM). For any ∆ ∈ (0, 1) and σn > 0, there exists a constant c(∆, σn) > 0 such that for
all rounds t ⩾ 1, P(Ωt) ⩾ c(∆, σn).

To investigate the divergence behavior of the TS-RM algorithm, an experiment is conducted using the counter example in .
Different values of ∆ and σ2

n are considered, and 200 independent simulation runs are performed for each combination.
The averaged divergence results across these runs are shown in Fig.5, which illustrates that the probability of divergence
decreases as ∆ and σ2

n increase, consistent with our proposition (Prop.D.3). In the following, we provide a detailed proof
for the divergence of the TS-RM algorithm.
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Figure 5. Divergence probability for TS-RM

Proof. Our goal is to prove that there exists a constant c ⩾ 0 such that P(Ωt) ⩾ c for all t. The probability P(Ωt) can be
expressed as

P(Ωt) = P(ω1)P(ω2|Ω1) . . .P(ωt|Ωt−1) (11)

Referring to Remark D.1, X2 is a pure strategy. Since Alice chooses the second row according to Ω2, we get X2 = [0, 1]
and m1 < 0. Following the event Ωt, we get Xt = [0, 1],∀t ⩾ 2, which indicates that for the TS-RM estimator R̃t, only the
posterior distribution of R̃t2 is updated. Since no noise is considered in received rewards, by Bayesian rule, we have

R̃t =

[
zt,

t

t+ σ2
n

(1−∆) +

√
σ2
n

σ2
n + t

z′t

]
,

where zt, z
′
t ∼ N (0, 1) are two independent r.v.s, and σ2

n is the noise variance. Therefore, we can express the regret as:

regt = R̃t −XT
t R̃t · 1 = [mt, 0], ∀t ⩾ 2 (12)

where mt = zt − t
t+σ2

n
(1−∆)−

√
σ2
n

t+σ2
n
z′t = zt −

√
σ2
n

t+σ2
n
z′t − t

t+σ2
n
(1−∆).

The cumulative regret can be represented as

ℜt = [0.5m1 +

t∑
k=2

mk,−0.5m1] (13)

According to updating rule of TS-RM, we have:

P(ωt|Ωt−1) = P(0.5m1 +

t∑
k=2

mk ⩽ 0|Ωt−1)

⩾ P(
t∑

k=2

mk ⩽ 0|Ωt−1)

= P(
t∑

k=2

mk ⩽ 0|Ωt−1)
(
P(Ωt−1) + P(Ω̄t−1)

)
⩾ P(

t∑
k=2

mk ⩽ 0|Ωt−1)P(Ωt−1) + P(
t∑

k=2

mk ⩽ 0|Ω̄t−1)P(Ω̄t−1)

= P(
t∑

k=2

mk ⩽ 0)

(14)
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where the first inequality is because m1 ⩽ 0 (conditioned on Ωt−1), and the second one is due to P(
∑t

k=2 mk ⩽ 0|Ωt−1) ⩾
P(
∑t

k=2 mk ⩽ 0|Ω̄t−1).

Define

Nt =

t∑
k=2

mk ∼ N

(
−

t∑
k=2

k

k + σ2
n

(1−∆),

t∑
k=2

(1 +
σ2
n

k + σ2
n

)

)
≜ N (µt, σ

2
t ).

As t → ∞, we have:

lim
t→∞

logP(Ωt) = log

∞∏
t=1

P(ωt|Ωt−1) =

∞∑
t=1

logP(ωt|Ωt−1)

⩾
∞∑
t=1

logP(Nt ⩽ 0)

=

∞∑
t=1

logP(µt + σtZ ⩽ 0), Z ∼ N (0, 1)

=

∞∑
t=1

logP(Z ⩽ −µt

σt
)

=

∞∑
t=1

log Φ(−µt

σt
)

=

∞∑
t=1

log Φ

∑t
k=2

k
k+σ2

n
(1−∆)√∑t

k=2(1 +
σ2
n

k+σ2
n
)


⩾

∞∑
t=1

log Φ

(
(1−∆)

(
t− σ2

n ln (t+ σ2
n) + 2σ2

n lnσn − 1/(σ2
n + 1)

)√
t+ σ2

n ln (t+ σ2
n)− 2σ2

n lnσn − (σ2
n + 2)/(σ2

n + 1)

)

(15)

where Φ(·) is the cumulative distribution function of the standard normal distribution, and the last inequality is due to
t∑

k=1

1
k+a ⩽

∫ t

0
1

k+adk. Define

ft(∆, σn) =
(1−∆)

(
t− σ2

n ln (t+ σ2
n) + 2σ2

n lnσn − 1/(σ2
n + 1)

)√
t+ σ2

n ln (t+ σ2
n)− 2σ2

n lnσn − (σ2
n + 2)/(σ2

n + 1)
, (16)

Referring to the lower bound of the standard Gaussian distribution, we can continue to derive:

lim
t→∞

logP(Ωt) ⩾
∞∑
t=1

log Φ(ft(∆, σn))

⩾
∞∑
t=1

log

(
1− 1√

2πft(∆, σn)ef
2
t (∆,σn)/2

)

⩾
∞∑
t=1

(
− 1√

2πft(∆, σn)ef
2
t (∆,σn)/2

)
> −∞,

(17)

This shows that there exists a constant c′ > 0 such that:

lim
t→∞

logP(Ωt) ⩾ log c′ > −∞ (18)

In other words, we have:
lim
t→∞

P(Ωt) ⩾ c > 0, (19)

where c = ec
′
. Moreover, P(Ωt) ⩾ lim

t→∞
P(Ωt) ⩾ c for a finite sequence. Specifically, let ∆ = 0.1 and σ2

n = 0.1, we can

get c′ = −0.62, and c = 0.54.
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Moreover, the function ft(∆, σ2
n), combined with the derivation above, demonstrates that the divergence probability P(Ωt)

decreases as ∆ and σ2
n increase, which is consistent with our proposition (Proposition D.3) and the experiments.

The above argument is based on the frequentist setting where the underlying instance is fixed, and the agent does not access
the right noise likelihood function of the environment. We conjecture that under the Bayesian setting where the prior and
likelihood in the game environment are available to the agent, with the exact Bayes posterior, the TS-RM still suffers linear
Bayesian adversarial regret.

D.3. Why Optimistic variant of TS can converge?

Assume that Alice chooses the wrong action until time t. By Prop D.3, the TS-RM algorithm will continue to choose the
wrong action with a constant probability c. Different from TS-RM, we will prove that even if Alice chooses the wrong
action until time t, OTS-RM will eventually yield a sub-linear regret with high probability.

Proof. Unlike TR-RM, the OTS-RM algorithm uses M samples for optimistic sampling in each round. Under the assumption
that Alice takes the wrong action until time t, we have:{

xti ∼ Ni(0, 1), i = 1, . . . ,M

yti ∼ Ni

(
t

t+σ2
n
(1−∆),

σ2
n

σ2
n+t

)
, i = 1, . . . ,M

(20)

Let R̃t1 = max
i

xti and R̃t2 = max
i

yti, which are just R̃t(1nd) and R̃t(2nd) mentioned above, respectively.

The proof will first show that R̃t1 ⩾ R̃t2 with high probability. As a result, ℜt1 will decrease, and eventually Alice’s strategy
will change from a pure strategy [0, 1] to a mixed strategy, indicating a decay of P(Ωt) over time t.

According to the anti-concentration property in Lemma E.11, we have:

P(max
i

yti ⩽
t

t+ σ2
n

(1−∆) +

√
2σ2

n log(M/δ1)

t+ σ2
n

) ⩾ 1− δ1 (21)

Thus, the first step in the proof can be written as:

P(R̃t1 ⩾ R̃t2) = P(max
i

xi ⩾ max
i

yi)

⩾ (1− δ1)P(max
i

xi ⩾ max
i

yi | ϵ)

⩾ (1− δ1)P(max
i

xti ⩾
t

t+ σ2
n

(1−∆) +

√
2σ2

n log(M/δ1)

t+ σ2
n

| ϵ)

⩾ 1− δ1 − (1− δ1)Φ
M

(
t

t+ σ2
n

(1−∆) +

√
2σ2

n log(M/δ1)

t+ σ2
n

)
(22)

Here, ϵ represents the event where the anti-concentration property occurs.

Let f(t,∆, σn) =
t

t+σ2
n
(1−∆) +

√
2σ2

n log(M/δ1)
t+σ2

n
. Then, we have:

P(R̃t1 ⩾ R̃t2) ⩾ 1− δ1 − (1− δ1)Φ
M (f)

⩾ 1− δ1 − (1− δ1)

(
1− f√

2π(f2 + 1)ef2/2

)M

⩾ 1− δ1 − (1− δ1) exp

(
−Mf√

2π(f2 + 1)ef2/2

) (23)

where Φ(x) ⩽ 1− x√
2π(x2+1)ex2/2

(Gordon, 1941) and (1− x)M ⩽ e−Mx.

To obtain further insights into the relationship between M and t, we have depicted a figure in Figure 6 that corresponds to
the inequality in Equation 23. Based on the analysis, we draw the following conclusions:
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Figure 6. Relationship between t and M (fix ∆ and σn)

• When ∆, σn and t are fixed, P(R̃t1 ⩾ R̃t2) increases with M . Additionally, the value of t has a significant influence
on P(R̃t1 ⩾ R̃t2).

• When ∆, σn and M are fixed, the probability P(R̃t1 ⩾ R̃t2) increases with time t. Moreover, P(R̃t1 ⩾ R̃t2) will
quickly reach a region close to the maximum in just a few rounds.

• When σn,M and t are fixed, P(R̃t1 ⩾ R̃t2) initially increases with ∆ and subsequently decreases with ∆.

These findings provide valuable insights into the behavior of the OTS-RM algorithm and support our claim that P(R̃t1 ⩾ R̃t2)
increases as M grows. This increasing probability implies that Alice’s strategy will transition from a pure strategy [0, 1] to a
mixed strategy, indicating a decay of P(Ωt) over time t. Consequently, the algorithm achieves sub-linear regret with high
probability.

E. Technical details in Section 4
Our analysis road map is as follows. First, in Appendix E.1, as described in Proposition 4.1, we derive a general regret
decomposition in given any imagined reward sequence {R̃t : t ∈ Z++}, where each R̃t+1 is constructed using history
information Ht with algorithmic randomness. Then, to further upper bound the regret, we introduce the generic upper
confidence bound (UCB) sequence and lower confidence bound (LCB) sequence as in Definition E.4. With these sequences,
we have a general regret bound in Proposition E.8 with generic UCB and LCB sequences. Next, as described in Remark E.9,
we specify the so-called information-theoretic confidence bound in Appendix E.2 and show that the imagined reward
sequence has good properties when compared with specified sequences in Appendix E.3, finally yielding the information-
theoretic regret upper bound in Appendix E.4.

E.1. General regret bound

Proposition E.1 (Restate regret decomposition in Proposition 4.1). For any a ∈ A, the one-step regret can be decomposed
by

E [Rt+1,a,Bt
−Rt+1,At,Bt

| θ] = E [fθ(a,Bt)− fθ(At, Bt) | θ]

= E
[
R̃t+1(a)− R̃t+1(At) | θ

]
︸ ︷︷ ︸

(I)

+E
[
fθ(a,Bt)− R̃t+1(a) | θ

]
︸ ︷︷ ︸

(II)

+E
[
R̃t+1(At)− fθ(At, Bt) | θ

]
︸ ︷︷ ︸

(III)
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Proof. Since

E [Rt+1,a,Bt
−Rt+1,At,Bt

| θ] = E [fθ(a,Bt)− fθ(At, Bt) | θ]

We have introduced the imagined time-varying sequence R̃ := {R̃t : t ∈ Z++}, where each R̃t is constructed using history
information Ht and takes value in [0, 1]A.

fθ(a,Bt)− fθ(At, Bt) = R̃t+1(a)− R̃t+1(At)︸ ︷︷ ︸
(I) advt+1(a)

+ fθ(a,Bt)− R̃t+1(a)︸ ︷︷ ︸
(II) pesst+1(a)

+ R̃t+1(At)− fθ(At, Bt)︸ ︷︷ ︸
(III) estt+1

(24)

Reduction to full-information adversarial regret. Any algorithm π = πadv-est constructs the imagined reward sequence
R̃ and use adv algorithm for no-regret update will lead to,

T−1∑
t=0

E [fθ(a,Bt)− fθ(At, Bt) | θ]

⩽ ℜfull(a;T, adv, R̃) +

T−1∑
t=0

E
[
pesst+1(a) | θ

]
+

T−1∑
t=0

E [estt+1 | θ] (25)

where

ℜfull(a;T, adv, R̃) = E

[
T−1∑
t=0

R̃t+1(a)− R̃t+1(At)

]
.

Recall the Bayesian adversarial regret is

ℜ(T, πalg, πB) = E
[
ℜ(T, πalg, πB , θ)

]
where the expectation is taken over the prior distribution of θ. From Equation (25), we have

ℜ(T, πalg, πB) = E

[
max
a∈A

T−1∑
t=0

E [Rt+1,a,Bt
−Rt+1,At,Bt

| θ]

]

⩽ max
a∈A

ℜfull(a;T, adv, R̃) + E

[
max
a∈A

T−1∑
t=0

E
[
pesst+1(a) | θ

]]
+

T−1∑
t=0

E [estt+1]

= ℜfull(T, adv, R̃) + E

[
max
a∈A

T−1∑
t=0

E
[
pesst+1(a) | θ

]]
+

T−1∑
t=0

E [estt+1] (26)

Remark E.2. If each imagined reward R̃t in the sequence R̃ takes bounded value in [−c, c]A, any suitable full information
adversarial algorithm adv will give satisfied bound for ℜfull(a;T, adv, R̃) for any a ∈ A. Specifically, Hedge suffers
ℜadv(a;T,Hedge, R̃) = O(2c

√
T logA) and RM suffers ℜfull(a;T,RM, R̃) = O(2c

√
TA).

Next, we focus on the pessimism term and estimation term. We now focus on the case generalized from the optimistic
Thompson sampling.

Assumption E.3 (Restriction on the imagined reward sequence R̃). In the following context, the imagined reward sequence
R̃ = (R̃1, . . . , R̃t+1, . . .) satisfies that (1) R̃t+1(a) ∈ [0, C] for all a ∈ A and (2) R̃t+1(a) is random only through its
dependence on Zt+1 given the history Ht, Bt for all a ∈ A. To clarify, R̃t+1(a) has no dependence on At and R̃t+1,At,Bt

.

Definition E.4 (UCB and LCB sequence). UCB sequence U = (Ut | t ∈ N) LCB sequence L = (Lt | t ∈ N) are two
sequences of functions where each 0 ⩽ Lt ⩽ Ut ⩽ C are both deterministic given history Ht.

Definition E.5 (Optimistic Event). For any imagined reward sequence R̃t+1 in Assumption E.3 and any upper confidence
sequence U in Definition E.4, we define the event

Et(R̃, U,Bt) := {R̃t+1(a) ⩾ Ut(a,Bt),∀a ∈ A}.
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Fact E.1. The event Eo
t (R̃, U,Bt) is random only through its dependence on Zt+1 given Ht, Bt. The pessimism term can

be decomposed according to the event Eo
t (R̃, U,Bt)

R̃t+1(a)− fθ(a,Bt) = 1Eo
t (R̃,U,Bt)

(R̃t+1(a)− fθ(a,Bt)) + (1− 1Eo
t (R̃,U,Bt)

)(R̃t+1(a)− fθ(a,Bt))

Consider the case where fθ takes values in [0, C] and R̃t+1 ∈ [0, C] by Assumption E.3, for all a ∈ A,

fθ(a,Bt)− R̃t+1(a) ⩽ 1Eo
t (R̃,U,Bt)

(fθ(a,Bt)− Ut(a,Bt)) + C(1− 1Eo
t (R̃,U,Bt)

). (27)

Definition E.6 (Concentration Event). For any imagined reward sequence R̃t+1 in Assumption E.3 and any upper confidence
sequence U ′ in Definition E.4, we define the event

Ec
t (R̃, U ′, At, Bt) := {R̃t+1(At) ⩽ U ′

t(At, Bt)}.

Fact E.2. Consider the case where fθ takes values in [0, C] and R̃t+1 ∈ [0, C] by Assumption E.3, the event
Et(R̃, U ′, At, Bt) is random only through its dependence on Zt+1 given Ht, At, Bt. The estimation term then becomes,

R̃t+1(At)− fθ(At, Bt) ⩽ (1Ec
t (R̃,U ′,At,Bt)

)(U ′
t(At, Bt)− fθ(At, Bt)) + C(1− 1Ec

t (R̃,U ′,At,Bt)
). (28)

Definition E.7 (Confidence event). Define the confidence event at round t as

Et(fθ, Bt) := {∀a ∈ A, fθ(a,Bt) ∈ [Lt(a,Bt), Ut(a,Bt)]}.

Fact E.3. The event Ec
t (fθ, Bt) is deterministic conditioned on history Ht, Bt and θ.

Based on the definition of the confidence event, the pessimism term from Equation (27) becomes

fθ(a,Bt)− R̃t+1(a) ⩽ C(1− 1Eo
t (R̃,U,Bt)∩Ec

t (fθ,Bt)
), ∀a ∈ A.

The estimation term from Equation (28) becomes

R̃t+1(At)− fθ(At, Bt) ⩽ 1Ec
t (R̃,U ′,At,Bt)∩Ec

t (fθ,Bt)
(U ′

t(At, Bt)− Lt(At, Bt))

+ C
(
1− 1Ec

t (R̃,U,At,Bt)
1Ec

t (fθ,Bt)

)
Denote the complement event of E as ¬E .

E

[
max
a∈A

T−1∑
t=0

E
[
pesst+1(a) | θ

]]
⩽ E

[
max
a∈A

T−1∑
t=0

E
[
C(1− 1Eo

t (R̃,U,Bt)∩Ec
t (fθ,Bt)

) | θ
]]

= E

[
T−1∑
t=0

E
[
C(1− 1Eo

t (R̃,U,Bt)∩Ec
t (fθ,Bt)

)
]]

= C

T−1∑
t=0

P
(
¬Eo

t (R̃, U,Bt) ∪ ¬Ec
t (fθ, Bt)

)
(29)

and by assuming U ′
t ⩾ Lt

E

[
T−1∑
t=0

estt+1

]
⩽

T−1∑
t=0

E [(U ′
t(At, Bt)− Lt(At, Bt))]

+ C

T∑
t=0

P(¬Ec
t (R̃, U ′, At, Bt) ∪ ¬Ec

t (fθ, Bt)) (30)

Proposition E.8 (General Regret Bound with confidence sequence.). Given sequences U ′ ⩾ U ⩾ L, we upper bound the
Bayesian adversarial regret with

ℜ(T, πalg, πB) ⩽ ℜfull(T, adv, R̃) + c

+ C

T−1∑
t=0

P(¬Ec
t (R̃, U ′, At, Bt)) + 2P(¬Ec

t (fθ, Bt)) + P
(
¬Eo

t (R̃, U,Bt)
)

(31)
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Proof. This is a direct consequence of Equations (26), (29) and (30).

Remark E.9. In the following sections, we will discuss the specific choice of the UCB and LCB sequence U ′, U, L.
In Appendix E.2, we will show that with information-theoretic confidence bound, the probability P(¬Ec

t (fθ, Bt)) of
the function fθ not covered in the confidence region is small. In Appendix E.3, we will show the imagined reward
sequence constructed by OTS and UCB will lead to small will stay within the sequence U ′ and U with high probability,
i.e., the probability P

(
¬Eo

t (R̃, U,Bt)
)

and P(¬Ec
t (R̃, U ′, At, Bt)) is small enough. In Appendix E.4, we show that∑T−1

t=0 E [(U ′
t(At, Bt)− Lt(At, Bt))] can be bounded by the mutual information I(θ;HT ) with the information-theoretic

confidence bound defined in Appendix E.2.

E.2. Information-theoretic confidence bound

Fact E.4 (Chernoff bound). Suppose X is normal distributed N(µ, σ2), the optimized chernoff bound for X is

P(X − µ ⩾ c) ⩽ min
t>0

exp(σ2t2/2)

exp(tc)
= exp(−c2/σ2)

Lemma E.10. Conditioned on Ht and Bt, Define the set Ft as

Ft :=
{
fθ : |fθ(a,Bt)− µt(a,Bt)| ⩽

√
β′
tσt(a,Bt),∀a ∈ A

}
Then,

P(fθ ∈ Ft) ⩾ 1− 2A exp(−β′
t/2).

Proof. Since fθ(a, b) | Ht is distributed as N(µt(a, b), σt(a, b)), by Fact E.4,

P(|fθ(a, b)− µt(a, b)| ⩾
√

β′
tσt(a, b) | Ht) ⩽ 2 exp

(
−β′

t

2

)
(32)

By union bound, we have

P(|fθ(a, b)− µt(a, b)| ⩾
√
β′
tσt(a, b),∀a ∈ A | Ht) ⩽ 2A exp(−β′

t/2),

for any fixed b ∈ B, We observe that conditioned on Ht, the opponent’s action Bt is independent of fθ(a, b) for all
(a, b) ∈ A× B. Therefore, we further derive

P(|fθ(a,Bt)− µt(a,Bt)| ⩾
√
β′
tσt(a, b),∀a ∈ A | Ht) ⩽ 2A exp(−β′

t/2).

Taking expectations on both sides, we prove the lemma.

Let the UCB and LCB sequences be

U = (µt(a, b) +
√
β′
tσt(a, b) : t ∈ N), L = (µt(a, b)−

√
β′
tσt(a, b) : t ∈ N).

Let β′
t = 2 logA

√
T , by Lemma E.10, we can see the probability introduced in Definition E.7 is P(¬Ec

t (fθ, Bt)) ⩽
2A exp(−β′

t/2) = 2/
√
T .

Relate σt to information-theoretic quantity.
Fact E.5 (Mutual information of Guassian distribution). If f(a) ∼ N(µ(a), σ(a)) and o = f(a) + w with fixed a and
w ∼ N

(
0, σ2

w

)
, then

I(θ; o) =
1

2
log
(
1 + σ−2

w σ(a)
)

For an fixed action pair (a, b), by the Fact E.5,

It (θ;Rt+1,At,Bt
| At = a,Bt = b) =

1

2
log

(
1 +

σ2
t (a, b)

σ2
w

)
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Let the width function wt be

wt(a, b) =
√
βtIt (θ;Rt+1,At,Bt

| At = a,Bt = b) with βt =
2β′

t

log(1 + σ−2
w )

.

Expanding wt(a, b) leads to

wt(a, b)
2 = βtIt(θ;Rt+1,At,Bt |At = a,Bt = b) =

β′
t log(1 + σ−2

w σ2
t (a, b))

log(1 + σ−2
w )

⩾ β′
tσ

2
t (a, b). (33)

The last inequality follows from the fact that x
log(1+x) monotonically increases for x > 0, and that σ2

t (a, b) ⩽

k((a, b), (a, b)) ⩽ 1, leading to the result σ2
t (a, b) ⩽

1
log(1+σ−2

w )
log(1 + σ−2

w σ2
t (a, b)).

E.3. Anti-concentration behavior of optimistic Thompson sampling

Let the UCB sequences be

U = (µt(a, b) +
√
β′
tσt(a, b) : t ∈ N), U ′ = (µt(a, b) +

√
logMβ′

tσt(a, b) : t ∈ N).

In this section, we show the probability P
(
¬Eo

t (R̃, U,Bt)
)

and P(¬Ec
t (R̃, U ′, At, Bt)) is small enough. The following

two lemmas are important.

Lemma E.11. Consider a normal distribution N
(
0, σ2

)
where σ is a scalar. Let η1, η2, . . . , ηM be M independent samples

from the distribution. For any w ∈ R+,

P
(
max
j∈[M ]

ηj ⩾ w

)
= 1−

[
Φ
(w
σ

)]M
Proof. By the fact of Normal distribution, P (ηj ⩽ w) = P(ηj/σ ⩽ w/σ) = Φ(w/σ). We have

P(max
j∈[M ]

ηj ⩾ w) = 1− P(max
j∈[M ]

ηj ⩽ w) = 1− P(∀j ∈ [M ], ηj ⩽ w) = 1−
[
Φ
(w
σ

)]M
.

Proposition E.12. Let the UCB sequence be

U = (µt(a, b) +
√

β′
tσt(a, b) : t ∈ N).

Let M = log(A
√
T )

log 1
Φ2(1)

,

P(¬Et(R̃, U,Bt)) ⩽
1√
T
.

Proof. Recall that the optimistic Thompson sampling estimator R̃ is generated by

f̃OTS
t+1 (a,Bt) := (max

j∈[M ]
zjt+1) ·

√
β′
tσt(a,Bt) + µt(a,Bt) and R̃t+1(a) = clip[−c,c]

(
f̃OTS
t+1 (a,Bt)

)
,∀a ∈ A

For any fixed a ∈ A,

P(Et(R̃, U,Bt) | Ht, Bt) = P(R̃t+1(a) ⩾ Ut(a,Bt),∀a ∈ A | Ht, Bt)

(i)

⩾ P(R̃t+1(a) ⩾ min{µt(a,Bt) +
√

β′
tσt(a,Bt), c},∀a ∈ A |Ht, Bt)

(ii)

⩾ P
((

max
j∈[M ]

zjt+1

)√
β′
tσt(a,Bt) ⩾

√
β′
tσt(a,Bt),∀a ∈ A |Ht, Bt

)
(iii)
= 1−AΦ (1)

M
, (34)
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where (i) is by the definition of E(c) and Ft and the fact Bt is conditionally independent of fθ given Ht; (ii) is due to
clip[−c,c](x) ⩾ min(x, c) and the function min(x, c) is non-decreasing function on x; (iii) is by the fact {zjt+1}j∈[M ]

is independent of Ht+1 = (Ht, At, Bt, Rt+1,At,Bt), the fact that σt(a, b) and wt(a, b) are deterministic given Ht and

Lemma E.11. Solve AΦ(1)M = 1/
√
T , we have M = log(A

√
T )

log 1
Φ(1)

.

Lemma E.13 (Anti-concentration property of maximum of Gaussian R.V.). Consider a normal distribution N
(
0, σ2

)
where σ is a scalar. Let η1, η2, . . . , ηM be M independent samples from the distribution. Then for any δ > 0

P
(
max
j∈[M ]

ηj ⩽
√

2σ2 log(M/δ)

)
⩾ 1− δ.

Proposition E.14. Let the UCB sequences be

U ′ = (µt(a, b) +

√
2 log(M

√
T )β′

tσt(a, b) : t ∈ N).

Then

P(¬Ec
t (R̃, U ′, At, Bt)) ⩽

1√
T
.

Proof. This is a direct consequence of Lemma E.13 under conditional probability given Ht, At, Bt with setting δ =
1/
√
T .

E.4. Bounding Estimation Regret via Information-theoretic quantity

To characterize the property of game environments and how much information algorithm can acquire about the environment
at each round, we define the information ratio of algorithm π = (πt)t∈N,

From Equation (33), we have

βtIt(θ;Rt+1,At,Bt
|At = a,Bt = b) ⩾ β′

tσ
2
t (a, b). (35)

where

βt =
2β′

t

log(1 + σ−2
w )

.

Then,

(U ′
t(At, Bt)− Lt(At, Bt)) ⩽

(√
2 log(M

√
T ) + 1

)√
β′
tσt(At, Bt)

⩽

(√
2 log(M

√
T ) + 1

)√
βtIt(θ;Rt+1,At,Bt |At, Bt)

=

(√
2 log(M

√
T ) + 1

)√
βtIt(θ;At, Bt, Rt+1,At,Bt

)

Then immediately from Proposition E.8 and Cauchy–Bunyakovsky–Schwarz inequality.

E

[
T−1∑
t=0

U ′
t(At, Bt)− Lt(At, Bt)

]
⩽ E

T−1∑
t=0

√(√
2 log(M

√
T ) + 1

)2

βtIt(θ;At, Bt, Rt+1,At,Bt
)


⩽

√√√√E

[
T−1∑
t=0

(√
2 log(M

√
T ) + 1

)2

βt

]√√√√E

[
T−1∑
t=0

It(θ;At, Bt, Rt+1,At,Bt
)

]
Let Zt = (At, Bt, Rt+1,At,Bt

)), then

E

[
T−1∑
t=0

It(θ;At, Bt, Rt+1,At,Bt
)

]
= E

[∑
t

It(θ;Zt)

]
=

T−1∑
t=0

I(θ;Zt | Z0, . . . , Zt−1)

= I(θ;Z0, . . . , ZT−1) = I(θ;HT )
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Then,

E

[
T−1∑
t=0

U ′
t(At, Bt)− Lt(At, Bt)

]
⩽

√
T

(√
2 log(M

√
T ) + 1

)2

βtI(θ;HT )

Plugin the choice of M = log(A
√
T )

log 1
Φ(1)

and βt = 2 logA
√
T and we have final result

(√
2 log(M

√
T ) + 1

)2

βt = O(logAT (log T + log logAT )).

E.4.1. BOUNDS ON THE INFORMATION GAIN I(θ;HT ).

Remark E.15. An important property of the Gaussian distribution is that the information gain does not depend on the
observed rewards. This is because the posterior covariance of a multivariate Gaussian is a deterministic function of the
points that were sampled. For this reason, this maximum information ratio γT in Definition 4.4 is well defined. That is,
I(θ;HT ) = I(θ;A0, B0, . . . , AT−1, BT−1) ⩽ γT .

We adopt the results from (Srinivas, Krause, Kakade, and Seeger, 2009) which gives the bounds of γT for a range of
commonly used covariance functions: finite dimensional linear, squared exponential and Matern kernels.

Example E.1 (Finite dimensional linear kernels). Finite dimensional linear kernels have the form k(x, x′) = x⊤x′. GPs
with this kernel correspond to random linear functions f(x) = θ⊤x, θ ∼ N(0, σ0I).

Example E.2 (Squared exponential kernel). The Squared Exponential kernel is k(x, x′) = exp(−(2l2)−1 ∥x− x′∥2 s), l is
a lengthscale parameter. Sample functions are differentiable to any order almost surely.

Example E.3 (Matern kernel). The Matern kernel is given by k(x, x′) = (21−ν/Γ(ν))rνBν(r) and r = (
√
2ν/l) ∥x− x′∥,

where ν controls the smoothness of sample paths (the smaller, the rougher) and Bν is a modified Bessel function. Note that
as ν → ∞, appropriately rescaled Matern kernels converge to the Squared Exponential kernel.

Table 3. Maximum information gain γT .

Kernel Linear Squared exponential Materns (ν > 1)

γT O(d log T ) O((log T )d+1) O(T d(d+1)/(2ν+d(d+1))(log T ))

F. Experiments
F.1. Performance metric

Two performance metrics are utilized to evaluate the algorithms: average regret and KL divergence to Nash equilibrium.

Average regret: The expected regret of player i over T time steps is defined as:

Regreti(T ) =
1

T
max

a∈∆D(Ai)

E

[
T∑

t=1

ϕ
(
a, x−i

t

)
− ϕ

(
xi
t, x

−i
t

)]
, (36)

where a and xi
t represent the strategy for player i and x−i

t denotes the strategies of all other players. D(Ai) is the action set
for player i. The expectation is taken over the randomness of the algorithm and the environment.

Duality Gap & KL divergence to Nash: The duality gap for a strategy pair (x, y) is defined as

Gap(x, y) = max
(x′,y′)∈∆

E [ϕ (x′, y)− ϕ (x, y′)]

The duality gap provides a measure of how close a solution pair is to a Nash equilibrium. If a solution pair (x, y) has a
duality gap of ϵ, it is considered an ϵ-Nash Equilibrium.
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After T iterations, the average-iterate strategies are defined as:

xT =
1

T

T∑
t=1

xt, yT =
1

T

T∑
t=1

yt.

The KL divergences KL(xT , x
) and KL(yT , y

) are also used as performance metrics for comparing the average-iterate
solution pair (xT , yT ) with a Nash equilibrium pair (x,y).

F.2. Different opponents in matrix game

Four types of opponents in random matrix games are introduced, and the performance of different algorithms against these
opponents is compared.

Self-play opponent: The opponent uses the same algorithm as the player.

Best-response opponent: The strategy for a best-response opponent is defined as:

y∗ = argmin
y∈∆

yT (Ax), (37)

which implies that the opponent knows matrix A and the player’s strategy x at each round.

Stationary opponent: The stationary opponent always samples an action from a fixed strategy.

Non-stationary opponent: A non-stationary opponent changes its strategy randomly every round.

F.3. Additional results for random matrix games

This section presents additional evaluations of different algorithms on two-player zero-sum matrix games. The experiments
consider payoff matrices where each entry is an i.i.d. random variable generated from the uniform distribution [−1, 1]. Each
player has M actions, resulting in a squared payoff matrix of size M . The total number of rounds is set to T = 107. In
each round, the players receive noisy rewards ±r̃t, where r̃t = Aij + ϵt, and ϵt ∼ N (0, 0.1). The experiments investigate
different matrix sizes, specifically M = 5, 10, 20, 50, 70, 100, and for each choice of M , 100 independent simulation runs
are conducted. The performance of the algorithms is averaged over these simulation runs.

Self-play opponent First, we compare different algorithms under the self-play setting, where both players employ the
same algorithm. Convergence curves of two performance metrics (see Appendix F.1) are shown in Figure 7, where each
subplot (a)-(f) corresponds to a different matrix size M . The results indicate that algorithms exploiting the game structure
outperform the two IWE baselines, particularly for smaller matrix sizes. As the matrix dimension increases, the performance
gap between the proposed algorithms and the baselines diminishes. Among the algorithms, those based on the OTS method
exhibit faster convergence than the ones based on UCB. Additionally, the average regret of RM decreases earlier than that of
Hedge.

Best-response opponent In this subsection, we introduce a best-response opponent (see Appendix F.2), while the player
continues to use the various algorithms described above. Figure 8 presents the results for different matrix sizes. We observe
that all the algorithms in our proposed framework outperform the IWE baselines. Once again, the OTS-based algorithms
demonstrate a faster convergence behavior compared to UCB.

Stationary opponent Here, we consider a stationary opponent whose strategy remains fixed as a probability simplex over
the action space, with values generated from a uniform distribution. The average regret in this scenario reflects the ability to
exploit the opponent’s weakness. Convergence curves of the two performance metrics are compared in Figure 9. The results
clearly demonstrate that the OTS estimator provides a significant advantage in exploiting this weak opponent, in comparison
to the IWE-based estimators.
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(a) 5× 5 (b) 10× 10

(c) 20× 20 (d) 50× 50

(e) 70× 70 (f) 100× 100

Figure 7. Self-play on different random matrix.
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(a) 5× 5 (b) 10× 10

(c) 20× 20 (d) 50× 50

(e) 70× 70 (f) 100× 100

Figure 8. Best-response opponent on different random matrix.

(a) 5× 5 (b) 10× 10 (c) 20× 20

(d) 50× 50 (e) 70× 70 (f) 100× 100

Figure 9. Stationary opponent on different random matrix.



No-Regret Optimistic Thompson Sampling

Figure 10. Reward histograms of different algorithms against a non-stationary opponent.

Non-stationary opponent In this subsection, we introduce a non-stationary opponent, requiring the player to develop a
robust strategy against all possible opponent’s strategies. Specifically, a game matrix A ∈ R10×5 is generated, with each
element sampled from N (0.5, 2.0). The opponent’s actions are drawn from a fixed strategy that randomly changes every
50 rounds. Each algorithm is evaluated over 1000 rounds, and 100 simulation runs are conducted. Figure 10 presents
histograms of rewards over all rounds and simulation runs, while Table 4 summarizes the percentage of negative rewards
and the mean reward values. The results show that OTS has a smaller percentage of negative rewards and achieves higher
mean rewards compared to IWE, indicating its superior robustness.

return< 0 mean return
IWE-Hedge 19.4% 1.24

IWE-RM 12.6% 1.50
OTS-Hedge 2.5% 1.55

OTS-RM 8.8% 1.55

Table 4. Returned rewards of IWE and OTS against a non-stationary opponent.

F.4. Convergence rate related with dimensions

The average regret bounds for IWE-Hedge and the proposed algorithms are Õ(
√

(M +N)/T ) and Õ(
√
MN/T ),

respectively. Taking OTS-Hedge as an example, for a fixed iteration T , IWE-Hedge implies log(average regret) ∝
(1/2) log(M + N), while OTS-Hedge indicates log(average regret) ∝ 1

2 log(MN). When M = N , the logarithmic
average regret for IWE-Hedge and TS-Hedge should increase with respect to M at the rates of 1/2 and 1, respectively.
The experimental results shown in Figure 11, where M ranges from 2 to 100 with a fixed T = 107, match the theoretical
predictions almost exactly. These empirical results provide strong support for our regret analysis.

F.5. Radar anti-jamming problem

The competition between radar and jammer is an important issue in modern electronic warfare, which can be viewed as a
non-cooperative game with two players. This competition occurs at the signal level, where both the radar and jammer can
change parameters of their transmitted signals. One representative game form is playing in the frequency domain, as the
signal with different carrier frequencies is disjoint.

In our example, we consider the pulse radar and the noise-modulated jammer. The radar transmits pulse signals one by one,
with a waiting time interval between consecutive pulses. At the beginning of each pulse, both the radar and jammer transmit
their own signals. After a short signal propagation time, each player receives their opponent’s signal and obtains a reward.
In our setting, both the radar and jammer have three candidate carrier frequencies, denoted as F = {f1, f2, f3}. The radar
player has three sub-pulses in each radar pulse, and each sub-pulse can choose a different carrier frequency. The action set
of the radar is denoted as AR = F ×F ×F , which has a total of 27 different actions. On the other hand, the jammer player
can choose one carrier frequency to transmit the jamming signal and change the carrier frequency for different radar pulses.
The action set of the jammer is denoted as AJ = F . After each iteration between the radar and jammer, the radar obtains a
signal-inference-and-noise ratio (SINR), which serves as the reward for the radar in that round.
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Figure 11. Convergence rate with different dimensions.

Figure 12. Illustration of the game between radar and jammer for one pulse.

We can observe that both the radar and jammer’s actions are related to the frequency set F = {f1, f2, f3}. Therefore, the
reward in each round can be further defined as a linear function, making the anti-jamming scenario a linear game for the
radar.

Definition F.1. The reward function in the anti-jamming problem is defined as follows:

SINR(a, b; θ) = ϕ(a, b)T θ

Here, ϕ(a, b) = Pa(θ)/(Pn0 + Pb1(a = b)) represents a known feature mapping that maps the actions of the radar and the
jammer, denoted as (a, b), into the frequency domain related with θ. The parameter θ corresponds to the radar cross section
(RCS) associated with the frequencies in the anti-jamming scenario. Pa(θ) is radar’s received power related with θ, Pn0

is
the noise power and Pb is received jammer’s power. The indicator function 1(a = b) evaluates to 1 if the radar and jammer
transmit on the same carrier frequency (a = b) and 0 otherwise.

This definition captures the essence of the anti-jamming problem, allowing us to evaluate the performance of different
strategies and algorithms based on the signal-to-interference-plus-noise ratio (SINR), and construct the anti-jamming
scenario as a linear game.

Adaptive jammer In the case of an adaptive jammer, it takes actions according to the radar’s latest 10 pulses. Specifically,
it counts the numbers of different carrier frequencies (f1, f2, f3 ∈ F) appearing in the radar’s last 10 pulses, denoted as
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Table 5. Parameters of FA radar and jammer.
Parameter Value

radar transmitter power PT 30kW
radar transmit antenna gain GT 32dB

radar initial frequency f0 3GHz
bandwidth of each subpulse B 2MHz

distance between the radar and the jammer 100km
false alarm rate pf 1× 10−4

jammer transmitter power PJ 100W
jammer transmit antenna gain GJ 15dB

N1, N2, and N3. The jammer then takes action fi with a probability proportional to Ni for i = 1, 2, 3.

F.6. Repeated traffic routing problem

This section considers the traffic routing problem in the transportation literature, which is defined over a directed graph
(V, E) (V and E are vertices and edges sets respectively) and modeled as a multi-player game. Each node pair (referred as
one origin node and one destination node) in the graph is treated as an individual player and every player i seeks to find the
‘best’ route (consists of several edges) to send U i units from its origin node to its destination node. The quality of the chosen
route is measured by the travel time, which depends on the total occupancy of the traversed edges. If one edge is occupied
by more players, more travel time of this edge is. Specifically, the travel time te of edge e ∈ E is a function of the total units
u traversing e. One common choice is the Bureau of Public Roads function (Leblanc, 1975)

te(u) = ce(1 + 0.5(
u

Ce
)4),

where ce and Ce are free-flow and capacity of edge e respectively. The action of player i is denoted as ai ∈ Ai ⊂ R|E|

and the component corresponding to edge e is denoted as [ai]e. If edge e belongs to the route, [ai]e = U i and otherwise
[ai]e = 0. Further, let a−i ∈ A−i be the action of other players, the total occupancy of edge e is [ai]e + [g(a−i)]e, where
g(a−i) =

∑
j ̸=i a

j . This way, the total travel time of a joint action a = (ai, a−i) for player i can be expressed as

ℓi(ai, a−i) =
∑
e∈E

[ai]ete([a
i]e + [g(a−i)]e).

The reward function of player i is ri(ai, a−i) = −ℓi(ai, a−i). Note that the mathematical form of the reward function is
unknown to players, only values of ri(ai, a−i) and actions (ai, a−i) can be observed by players.

In our experiment, the Sioux-Falls road network data set (Bar-Gera, 2015) is used and we set ce and Ce (Bar-Gera, 2015).
This network is a directed graph with 24 nodes and 76 edges and there are in total N = 528 players. Each player i’s action
space Ai is specified by the 5 shortest routes and any route that more than three times longer than the shortest route is further
removed from Ai. To exploit the correlations among actions (ai, a−i) in the reward function, the composite kernel proposed
in (Sessa et al., 2019) is used. For player i, let ai, bi ∈ Ai and a−i, b−i ∈ A−i, then the kernel function associating (ai, a−i)
and (bi, b−i) is

Ki((ai, a−i), (bi, b−i)) = kL(a
i, bi)kP(a

i + g(a−i), bi + g(b−i)),

where kL(·, ·) and kP(·, ·) are linear and polynomial kernels respectively. The hyperparameters of kernels are set the same
as in (Sessa et al., 2019). Details on GP for estimating reward functions can be found in Section 2 of (Sessa et al., 2019) and
we do not repeated them here4. Except the regret, the congestion of edge e is also included as a performance metric for a
joint action a, which is computed as 0.15(

∑N
i=1[a

i]e/Ce)
4. The averaged congestion is obtained by averaging congestion

over all edges.

4The implementation refers the code released by authors of (Sessa et al., 2019) at https://github.com/sessap/stackelucb

https://github.com/sessap/stackelucb

