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ABSTRACT

Training deep reinforcement learning (DRL) models usually requires high com-
putation costs. Therefore, compressing DRL models possesses immense potential
for training acceleration and model deployment. However, existing methods that
generate small models mainly adopt the knowledge distillation-based approach by
iteratively training a dense network. As a result, the training process still demands
massive computing resources. Indeed, sparse training from scratch in DRL has
not been well explored and is particularly challenging due to non-stationarity in
bootstrap training. In this work, we propose a novel sparse DRL training frame-
work, “the Rigged Reinforcement Learning Lottery” (RLx2), which builds upon
gradient-based topology evolution and is capable of training a DRL model based
entirely on sparse networks. Specifically, RLx2 introduces a novel delayed multi-
step TD target mechanism with a dynamic-capacity replay buffer to achieve robust
value learning and efficient topology exploration in sparse models. It also reaches
state-of-the-art sparse training performance in several tasks, showing 7.5×-20×
model compression with less than 3% performance degradation and up to 20×
and 50× FLOPs reduction for training and inference, respectively.

1 INTRODUCTION

Deep reinforcement learning (DRL) has found successful applications in many important areas, e.g.,
games (Silver et al., 2017), robotics(Gu et al., 2017) and nuclear fusion (Degrave et al., 2022). How-
ever, training a DRL model demands heavy computational resources. For instance, AlphaGo-Zero
for Go games (Silver et al., 2017), which defeats all Go-AIs and human experts, requires more than
40 days of training time on four tensor processing units (TPUs). The heavy resource requirement
results in expensive consumption and hinders the application of DRL on resource-limited devices.

Sparse networks, initially proposed in deep supervised learning, have demonstrated great potential
for model compression and training acceleration of deep reinforcement learning. Specifically, in
deep supervised learning, the state-of-the-art sparse training frameworks, e.g., SET (Mocanu et al.,
2018) and RigL (Evci et al., 2020), can train a 90%-sparse network (i.e., the resulting network
size is 10% of the original network) from scratch without performance degradation. On the DRL
side, existing works including Rusu et al. (2016); Schmitt et al. (2018); Zhang et al. (2019) suc-
ceeded in generating ultimately sparse DRL networks. Yet, their approaches still require iteratively
training dense networks, e.g., pre-trained dense teachers may be needed. As a result, the training
cost for DRL remains prohibitively high, and existing methods cannot be directly implemented on
resource-limited devices, leading to low flexibility in adapting the compressed DRL models to new
environments, i.e., on-device models have to be retrained at large servers and re-deployed.

Training a sparse DRL model from scratch, if done perfectly, has the potential to significantly re-
duce computation expenditure and enable efficient deployment on resource-limited devices, and
achieves excellent flexibility in model adaptation. However, training an ultra sparse network (e.g.,
90% sparsity) from scratch in DRL is challenging due to the non-stationarity in bootstrap train-
ing. Specifically, in DRL, the learning target is not fixed but evolves in a bootstrap way (Tesauro
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et al., 1995), and the distribution of the training data can also be non-stationary (Desai et al., 2019).
Moreover, using a sparse network structure means searching in a smaller hypothesis space, which
further reduces the learning target’s confidence. As a result, improper sparsification can cause irre-
versible damage to the learning path (Igl et al., 2021), resulting in poor performance. Indeed, recent
works (Sokar et al., 2021; Graesser et al., 2022) show that a direct adoption of a dynamic sparse
training (DST) framework in DRL still fails to achieve good compression of the model for different
environments uniformly. Therefore, the following interesting question remains open:

Can an efficient DRL agent be trained from scratch with an ultra-sparse network throughout?

In this paper, we give an affirmative answer to the problem and propose a novel sparse training
framework, “the Rigged Reinforcement Learning Lottery” (RLx2), for off-policy RL, which is the
first algorithm to achieve sparse training throughout using sparsity of more than 90% with only
minimal performance loss. RLx2 is inspired by the gradient-based topology evolution criteria in
RigL (Evci et al., 2020) for supervised learning. However, a direct application of RigL does not
achieve high sparsity, because sparse DRL models suffer from unreliable value estimation due to
limited hypothesis space, which further disturbs topology evolution. Thus, RLx2 is equipped with
a delayed multi-step Temporal Difference (TD) target mechanism and a novel dynamic-capacity
replay buffer to achieve robust value learning and efficient topology exploration. These two new
components address the value estimation problem under sparse topology, and together with RigL,
achieve superior sparse-training performance.

The main contributions of the paper are summarized as follows.

• We investigate the fundamental obstacles in training a sparse DRL agent from scratch, and
discover two key factors for achieving good performance under sparse networks, namely
robust value estimation and efficient topology exploration.

• Motivated by our findings, we propose RLx2, the first framework that enables DRL training
based entirely on sparse networks. RLx2 possesses two key functions, i.e., a gradient-
based search scheme for efficient topology exploration, and a delayed multi-step TD target
mechanism with a dynamic-capacity replay buffer for robust value learning.

• Through extensive experiments, we demonstrate the state-of-the-art sparse training perfor-
mance of RLx2 with two popular DRL algorithms, TD3 (Fujimoto et al., 2018) and SAC
(Haarnoja et al., 2018), on several MuJoCo (Todorov et al., 2012) continuous control tasks.
Our results show up to 20× model compression. RLx2 also achieves 20× acceleration in
training and 50× in inference in terms of floating-point operations (FLOPs).

2 RELATED WORKS

We discuss the related works on training sparse models in deep supervised learning and reinforce-
ment learning below. We also provide a comprehensive performance comparison in Table 1.

Sparse Models in Deep Supervised Learning Han et al. (2015; 2016); Srinivas et al. (2017); Zhu
& Gupta (2018) focus on finding a sparse network by pruning pre-trained dense networks. Iterative
Magnitude Pruning (IMP) in Han et al. (2016) achieves a sparsity of more than 90%. Techniques
including neuron characteristic (Hu et al., 2016), dynamic network surgery (Guo et al., 2016), deriva-
tives (Dong et al., 2017; Molchanov et al., 2019b), regularization (Louizos et al., 2018; Tartaglione
et al., 2018), dropout (Molchanov et al., 2017), and weight reparameterizationSchwarz et al. (2021)
have also been applied in network pruning. Another line of work focuses on the Lottery Ticket Hy-
pothesis (LTH), first proposed in Frankle & Carbin (2019), which shows that training from a sparse
network from scratch is possible if one finds a sparse “winning ticket” initialization in deep super-
vised learning. The LTH is also validated in other deep learning models (Chen et al., 2020; Brix
et al., 2020; Chen et al., 2021).

Many works (Bellec et al., 2017; Mocanu et al., 2018; Mostafa & Wang, 2019; Dettmers & Zettle-
moyer, 2019; Evci et al., 2020) also try to train a sparse neural network from scratch without having
to pre-trained dense models. These works adjust structures of sparse networks during training,
including Deep Rewiring (DeepR) (Bellec et al., 2017), Sparse Evolutionary Training (SET) (Mo-
canu et al., 2018), Dynamic Sparse Reparameterization (DSR) (Mostafa & Wang, 2019), Sparse
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Networks from Scratch (SNFS) (Dettmers & Zettlemoyer, 2019), and Rigged Lottery (RigL) (Evci
et al., 2020). Single-Shot Network Pruning (SNIP) (Lee et al., 2019) and Gradient Signal Preserva-
tion (GraSP) (Wang et al., 2020) focus on finding static sparse networks before training.

Table 1: Comparison of different sparse training techniques in DRL. Here ST and TA stand for
“sparse throughout training” and “training acceleration”, respectively. The shown sparsity is the
maximum sparsity level without performance degradation under the algorithms. †: There are multi-
ple method combinations in (Graesser et al., 2022), where “TE” stands for two topology evolution
schemes: SET and RigL, “RL” refers to two RL algorithms: TD3 and SAC.

Name Paradigm Scenario ST TA Sparsity

PoPS (Livne & Cohen, 2020) IMP Online No No ∼ 99%
LTH-RL (Yu et al., 2020) IMP Online Yes No ∼ 99%
LTH-IL (Vischer et al., 2022) IMP Online Yes No ∼ 95%
SSP (Arnob et al., 2021) Single-shot pruning Offline Yes Yes ∼ 95%
GST (Lee et al., 2021) Gradual pruning Online No No ∼ 70%
DST (Sokar et al., 2021) Topology Evolution Online Yes Yes ∼ 50%
TE-RL† (Graesser et al., 2022) Topology Evolution Online Yes Yes ∼ 90%
RLx2 (Ours) Topology Evolution Online Yes Yes ∼ 95%

Sparse Models in DRL Evci et al. (2020); Sokar et al. (2021) show that finding a sparse model in
DRL is difficult due to training instability. Existing works (Rusu et al., 2016; Schmitt et al., 2018;
Zhang et al., 2019) leverage knowledge distillation with static data to avoid unstable training and
obtain small dense agents. Policy Pruning and Shrinking (PoPs) in Livne & Cohen (2020) obtains a
sparse DRL agent with iterative policy pruning (similar to IMP). LTH in DRL is firstly investigated
in Yu et al. (2020), and then Vischer et al. (2022) shows that a sparse winning ticket can also be found
by behavior cloning (BC). Another line of works (Lee et al., 2021; Sokar et al., 2021; Arnob et al.,
2021) attempts to train a sparse neural network from scratch without pre-training a dense teacher.
Group Sparse Training (GST) in Lee et al. (2021) utilizes block-circuit compression and pruning.
Sokar et al. (2021) proposes using SET in topology evolution in DRL and achieves 50% sparsity.
Arnob et al. (2021) proposes single-shot pruning (SSP) for offline RL. Graesser et al. (2022) finds
that pruning often obtains the best results and plain dynamic sparse training methods, including SET
and RigL, improves over static sparse training significantly. However, existing works either demands
massive computing resources, e.g. pruning-based methods (Rusu et al., 2016; Schmitt et al., 2018;
Zhang et al., 2019; Livne & Cohen, 2020), or fail in ultra sparse models, e.g. DST-based methods
(Sokar et al., 2021; Graesser et al., 2022). In this paper, we further improve the performance of DST
by introducing a delayed multi-step TD target mechanism with a dynamic-capacity replay buffer,
which effectively addresses the unreliability of fixed-topology models during sparse training.

3 DEEP REINFORCEMENT LEARNING PRELIMINARIES

In reinforcement learning, an agent interacts with an unknown environment to learn an optimal pol-
icy. The learning process is formulated as a Markov decision process (MDP)M = ⟨S,A, r,P, γ⟩,
where S is the state space, A is the action space, r is the reward function, P denotes the transition
matrix, and γ stands for the discount factor. Specifically, at time slot t, given the current state st ∈ S,
the agent selects an action at ∈ A by policy π : S → A, which then incurs a reward r(st, at).

Denote the Q function associated with the policy π for state-action pair (s, a) as

Qπ(s, a) = Eπ

[
T∑
i=t

γi−tr(si, ai)|st = s, at = a

]
. (1)

In actor-critic methods (Silver et al., 2014), the policy π(s;ϕ) is parameterized by a policy (actor)
network with weight parameter ϕ, and the Q function Q(s, a; θ) is parameterized by a value (critic)
network with parameter θ. The goal of the agent is to find an optimal policy π∗(s;ϕ∗) which
maximizes long-term cumulative reward, i.e., J∗ = maxϕ Eπ(ϕ)[

∑T
i=0 γ

i−tr(si, ai)|s0, a0].
There are various DRL methods for learning an efficient policy. In this paper, we focus on off-policy
TD learning methods, including a broad range of state-of-the-art algorithms, e.g., TD3 (Fujimoto
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et al., 2018) and SAC (Haarnoja et al., 2018). Specifically, the critic network is updated by gradient
descent to fit the one-step TD targets T1 generated by a target network Q(s, a; θ′), i.e.,

T1 = r(s, a) + γQ (s′, a′; θ′) (2)

for each state-action pair (s, a), where a′ = π(s′;ϕ). The loss function of the value network is
defined as the expected squared loss between the current value network and TD targets:

L(θ) = Eπ(ϕ) [Q(s, a; θ)− T1]2 . (3)

The policy π(s;ϕ) is updated by the deterministic policy gradient algorithm in Silver et al. (2014):
∇ϕJ(ϕ) = Eπ(ϕ)

[
∇aQπ(s, a; θ)|a=π(s;ϕ)∇ϕπ(s;ϕ)

]
.

4 RLX2: RIGGING THE LOTTERY IN DRL

In this section, we present the RLx2 algorithm, which is capable of training a sparse DRL model
from scratch. An overview of the RLx2 framework on an actor-critic architecture is shown in Fig-
ure 1. To motivate the design of RLx2, we present a comparison of four sparse DRL training methods
using TD3 with different topology update schemes on InvertedPendulum-v2, a simple control task
from MuJoCo, in Figure 2.1
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Figure 1: The RLx2 framework contains three key
components, i.e., multi-step TD target mechanism,
dynamic-capacity replay buffer and gradient-based
topology evolution.
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Figure 2: Performance compari-
son for four sparse training meth-
ods, i.e., SS, RigL, RigL+Q∗ and
RLx2. The results show that both
efficient topology evolution and ro-
bust value estimation are critical.

From the results, we make the following important observations. (i) Topology evolution is essential.
It can be seen that a random static sparse network (SS) leads to much worse performance than RigL.
(ii) Robust value estimation is significant. This is validated by the comparison between RigL and
RigL+Q∗, both using the same topology adjustment scheme but with different Q-values.

Motivated by the above findings, RLx2 utilizes gradient-based topology adjustment, i.e., RigL (for
topology evolution), and introduces a delayed multi-step TD target mechanism with a dynamic-
capacity replay buffer (for robust value estimation). Below, we explain the key components of RLx2
in detail, to illustrate why RLx2 is capable of achieving robust value learning and efficient topology
exploration simultaneously.

4.1 GRADIENT-BASED TOPOLOGY EVOLUTION

The topology evolution in RLx2 is conducted by adopting the RigL method (Evci et al., 2020).
Specifically, we compute the gradient values of the loss function with respect to link weights. Then,
we dynamically grow connections (connecting neurons) with large gradients and remove existing
links with the smallest absolute value of the weights. In this way, we obtain a sparse mask that
evolves by self-adjustment.

1Four schemes: 1) training with a random static sparse network (SS); 2) training with RigL, (RigL); 3)
dynamic sparse training guided by true Q-value, i.e., Q-values from a fully trained expert critic with a dense
network (RigL+Q∗); 4) and dynamic sparse training guided by learned Q-value with TD targets (RLx2).
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The pseudo-code of our scheme is given in Algo-
rithm 1, where⊙ is the element-wise multiplica-
tion operator and Mθ is the binary mask to rep-
resent the sparse topology of the network θ. The
update fraction anneals during the training pro-
cess according to ζt =

ζ0
2 (1 + cos( πt

Tend
)), where

ζ0 is the initial update fraction and Tend is the
total number of iterations. Finding top-k links
with maximum gradients in Line 10 can be effi-
ciently implemented such that Algorithm 1 owns
time complexity O((1−s)N logN)) (detailed in
Appendix A.1), where s is the total sparsity. Be-
sides, the topology adjustment happens very in-
frequently during the training, i.e., every 10000
step in our setup, such that consumption of this
step is negligible (detailed in Appendix C.3).
Our topology evolution scheme can be imple-
mented efficiently on resource-limited devices.

Algorithm 1 Topology Evolution (Evci
et al., 2020)

1: Nl: Number of parameters in layer l
2: θl: Parameters in layer l
3: Mθl : Sparse mask of layer l
4: sl: Sparsity of layer l
5: L: Loss function
6: ζt: Update fraction in training step t
7: for each layer l do
8: k = ζt(1− sl)Nl

9: Idrop = ArgTopK(−|θl ⊙Mθl |, k)
10: Igrow = ArgTopKi/∈θl⊙Mθl

\Idrop
(|∇θlL, k|)

11: Update Mθl according to Idrop and Igrow

12: θl ← θl ⊙Mθl
13: end for

4.2 ROBUST VALUE LEARNING
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Figure 3: Sparse model com-
parison in Ant-v3.

As discussed above, value function learning is crucial in sparse
training. Specifically, we find that under sparse models, robust
value learning not only serves to guarantee the efficiency of boot-
strap training as in dense models, but also guides the gradient-based
topology exploration of the sparse network during training.
Figure 3 compares the performance of the masks (i.e., sparse net-
work topology) obtained by RigL and RLx2 (i.e., RigL + robust
value learning) on Ant-v3. Here we use a method similar to (Fran-
kle & Carbin, 2019) for evaluating the obtained sparse mask:2 1) first initialize a random sparse
topology; 2) keep adjusting the topology during the training and obtain the final mask; 3) train
a sparse agent with the obtained mask (the mask is fixed throughout this training phase, only the
weights are restored to their initial values as in the first step at the beginning). It can be clearly
observed that the mask by RLx2 significantly outperforms that by solely using RigL (Appendix C.4
provides details and experiments in other environments, where similar results are observed).
To achieve robust value estimation and properly guide the topology search, RLx2 utilizes two novel
components: i) delayed multi-step TD targets to bootstrap value estimation; ii) a dynamic-capacity
replay buffer to eliminate the potential data inconsistency due to policy change during training.

4.2.1 MULTI-STEP TD TARGET

In TD learning, a TD target is generated, and the value network will be iteratively updated by mini-
mizing a squared loss induced by the TD target. Single-step methods generate the TD target by com-
bining one-step reward and discounted target network output, i.e., T1 = rt + γQ(st+1, π(st+1); θ).
However, a sparse network parameter θ̂ = θ ⊙ Mθ, obtained from its dense counterpart θ, will
inevitably reside in a smaller hypothesis space due to using fewer parameters. This means that the
output of the sparse value network θ̂ can be unreliable and may lead to inaccurate value estimation.
Denote the fitting error of the value network as ϵ(s, a) = Q(s, a; θ) − Qπ(s, a). One sees that this
error may be larger under a sparse model compared to that under a dense network.

To overcome this issue, we adopt a multi-step target, i.e., Tn =
∑n−1

k=0 γ
krt+k +

γnQ(st+n, π(st+n); θ), where the target combines an N -step sample and the output of the sparse
value network after N -step, both appropriately discounted. By doing so, we reduce the expected
error between the TD target and the true target. Specifically, Eq.(4) shows the expected TD er-
ror between multi-step TD target Tn and the true Q-value Qπ associated with the target policy π,
conditioned on transitions from behavior policy b (see detailed derivation in Appendix A.2).

Eb[Tn(s, a)]−Qπ(s, a) = (Eb[Tn(s, a)]− Eπ[Tn(s, a)])︸ ︷︷ ︸
Policy inconsistency error

+γn Eπ[ϵ(sn, π(sn))]︸ ︷︷ ︸
Network fitting error

(4)

2(Frankle & Carbin, 2019) obtains the mask, i.e., the “lottery ticket”, by pruning a pretrained dense model.
Our sparse mask is the final mask obtained by dynamic sparse training.
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The multi-step target has been studied in existing works (Bertsekas & Ioffe, 1996; Precup, 2000;
Munos et al., 2016) for improving TD learning. In our case, we also find that introducing a multi-
step target reduces the network fitting error by a multiplicative factor γn, as shown in Eq. (4). On
the other hand, it has been observed, e.g., in Fedus et al. (2020), that an immediate adoption of
multi-step TD targets may cause a larger policy inconsistency error (the first term in Eq. (4)). Thus,
we adopt a delayed scheme to suppress policy inconsistency and further improve value learning.
Specifically, at the early stage of training, we use one-step TD targets to better handle the quickly
changing policy during this period, where a multi-step target may not be meaningful. Then, after
several training epochs, when the policy change becomes less abrupt, We permanently switch to
multi-step TD targets, to exploit its better approximation of the value function.

4.2.2 DYNAMIC-CAPACITY BUFFER

The second component of RLx2 for robust value learning is a novel dynamic buffer scheme for
controlling data inconsistency. Off-policy algorithms use a replay buffer to store collected data
and train networks with sampled batches from the buffer. Their performances generally improve
when larger replay capacities are used (Fedus et al., 2020). However, off-policy algorithms with
unlimited-size replay buffers can suffer from policy inconsistency due to the following two aspects.

(i) Inconsistent multi-step targets: In off-policy algorithms with multi-step TD targets, the value
function is updated to minimize the squared loss in Eq. (3) on transitions sampled from the replay
buffer, i.e., the reward sequence rt, rt+1, · · · , rt+n collected during training. However, the fact
that the policy can evolve during training means that the data in the replay buffer, used for Monte-
Carlo approximation of the current policy π, may be collected under a different behavior policy b
(Hernandez-Garcia & Sutton, 2019; Fedus et al., 2020). As a result, it may lead to a large policy
inconsistency error in Eq. (4), causing inaccurate estimation.
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Figure 4: Dynamic buffer capacity &
policy inconsistency

(ii) Mismatched training data: In practice, the agent mini-
mizes the value loss L̂(θ) with respect to the sampled value
in mini-batch Bt, given by

L̂(θ) = 1

|Bt|
∑

(si,ai)∼Bt

(Q(si, ai; θ)− T )2 (5)

Compared to Eq. (3), the difference between the distribu-
tion of transitions in the mini-batch Bt and the true transi-
tion distribution induced by the current policy also leads to
a mismatch in the training objective (Fujimoto et al., 2019).
Indeed, our analysis in Appendix A.4 shows that training
performance is closely connected to policy consistency.

Motivated by our analysis, we introduce a dynamically-sized buffer to reduce the policy gap based on
the policy distance of the collected data. The formal scheme is given in Algorithm 3. We introduce
the following policy distance measure to evaluate the inconsistency of data in the buffer, i.e.,

D(B, ϕ) = 1

K

∑
(si,ai)∈OldK(B)

∥ π(si;ϕ)− ai ∥2, (6)

where B denotes the current replay buffer, OldK(B) denotes the oldest K transitions in B, and
π(·;ϕ) is the current policy. Here K is a hyperparameter. We calculate the D(B, ϕ) value every ∆b

steps. If D(B, ϕ) gets above a certain pre-specified threshold D0, we start to pop items from B in a
First-In-First-Out (FIFO) order until this distance measure D becomes below the threshold.

A visualization of the number of stored samples and the proposed policy distance metric during
training is shown in Figure 4. We see that the policy distance oscillates in the early stage as the
policy evolves, but it is tightly controlled and does not violate the threshold condition to effectively
address the off-policyness issue. As the policy converges, the policy distance tends to decrease and
converge (Appendix C.8 also shows that the performance is insensitive to the policy threshold D0).

5 EXPERIMENTS

In this section, we investigate the performance improvement of RLx2 in Section 5.1, and the impor-
tance of each component in RLx2 in Section 5.2. In particular, we pay extra attention to the role
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topology evolution plays in sparse training in Section 5.3. Our experiments are conducted in four
popular MuJoCo environments: HalfCheetah-v3 (Hal.), Hopper-v3 (Hop.), Walker2d-v3 (Wal.), and
Ant-v3 (Ant.),3 for RLx2 with two off-policy algorithms, TD3 and SAC. Instantiations of RLx2 on
TD3 and SAC are provided in Appendix B. Each result is averaged over eight random seeds. The
code is available at https://github.com/tyq1024/RLx2.

5.1 COMPARATIVE EVALUATION

Table 2 summarizes the comparison results. In our experiments, we compare RLx2 with the fol-
lowing baselines: (i) Tiny, which uses tiny dense networks with the same number of parameters as
the sparse model in training. (ii) SS: using static sparse networks with random initialization. (iii)
SET (Mocanu et al., 2018), which uses dynamic sparse training by dropping connections according
to the magnitude and growing connections randomly. Please notice that the previous work (Sokar
et al., 2021) also adopts the SET algorithm for topology evolution in reinforcement learning. Our
implementations reach better performance due to different hyperparameters. (iv) RigL (Evci et al.,
2020), which uses dynamic sparse training by dropping and growing connections with magnitude
and gradient criteria, respectively, the same as RLx2’s topology evolution procedure.

Table 2: Comparisons of RLx2 with sparse training baselines. Here “Sp.” refers to the sparsity level
(percentage of model size reduced), “Total Size” refers to the total parameters of both critic and actor
networks (detailed calculation of training and inference FLOPs are given in Appendix C.3). The
right five columns show the final performance of different methods. The “Total size,” “FLOPs” , and
“Performance” are all normalized w.r.t. the original large dense model (detailed in Appendix C.2).

Alg. Env. Actor
Sp.

Critic
Sp.

Total
Size

FLOPs
(Train)

FLOPs
(Test)

Tiny
(%)

SS
(%)

SET
(%)

RigL
(%)

RLx2
(%)

TD3

Hal. 90% 85% 0.133x 0.138x 0.100x 86.3 77.1 92.6 90.8 99.8
Hop. 98% 95% 0.040x 0.043x 0.020x 64.5 67.7 66.5 90.6 97.0
Wal. 97% 95% 0.043x 0.045x 0.030x 60.8 42.9 39.3 35.7 98.1
Ant. 96% 88% 0.093x 0.100x 0.040x 16.5 49.6 62.5 68.5 103.9
Avg. 95% 91% 0.077x 0.081x 0.048x 57.0 59.3 65.2 71.4 99.7

SAC

Hal. 90% 80% 0.180x 0.197x 0.100x 95.0 75.4 94.8 89.8 102.2
Hop. 98% 95% 0.044x 0.048x 0.020x 89.1 81.6 103.9 110.0 109.7
Wal. 90% 90% 0.100x 0.113x 0.100x 73.8 83.4 95.8 81.9 103.2
Ant 90% 75% 0.220x 0.239x 0.100x 49.6 49.3 79.8 90.9 105.6
Avg. 92% 85% 0.136x 0.149x 0.080x 76.9 72.4 93.6 93.2 105.2

Avg. 94% 88% 0.107x 0.115x 0.064x 67.0 65.9 79.4 82.3 101.8

In our experiments, we allow the actor and critic networks to take different sparsities. We define an
ultimate compression ratio, i.e., the largest sparsity level under which the performance degradation
under RLx2 is within ±%3 of that under the original dense models. This can also be understood as
the minimum size of the sparse model with the full performance of the original dense model. We
present performance comparison results in Table 2 based on the ultimate compression ratio. The per-
formance of each algorithm is evaluated with the average reward per episode over the last 30 policy
evaluations of the training ( policy evaluation is conducted every 5000 steps). Hyperparameters are
fixed in all four environments for TD3 and SAC, respectively, which are presented in Appendix C.2.

Performance Table 2 shows RLx2 performs best among all baselines in all four environments by
a large margin (except for a close performance with RigL with SAC in Hopper). In addition, tiny
dense (Tiny) and random static sparse networks (SS) performance are worst on average. SET and
RigL are better yet fail to maintain the performance in Walker2d-v3 and Ant-v3, which means robust
value learning is necessary under sparse training. To further validate the performance of RLx2, we
compare the performance of different methods under different sparsity levels in Hopper-v3 and Ant-
v3 in Figure 5, showing RLx2 has a significant performance gain over other baselines.

Model Compression RLx2 achieves superior compression ratios (the reciprocal of the total size),
with minor performance degradation (less than 3%). Specifically, RLx2 with TD3 achieves 7.5×-
25× model compression, with the best compression ratios of 25× on Hopper-v3. The actor can be

3A more complex environment with larger state space, Humanoid-v3, is also evaluated in Appendix C.9.
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compressed for each environment by more than 96%, and the critic is compressed by 85%-95%.
The results for SAC are similar. RLx2 with SAC achieves a 5×-20× model compression.
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Figure 5: Performance comparison under different model sparsity.

Acceleration in FLOPs Different from knowledge-distillation/BC based methods, e.g., Livne &
Cohen (2020); Vischer et al. (2022); Lee et al. (2021), RLx2 uses a sparse network throughout
training. Thus, it has an additional advantage of immensely accelerating training and saving com-
putation, i.e., 12× training acceleration and 20× inference acceleration for RLx2-TD3, and 7×
training acceleration and 12× inference acceleration for RLx2-SAC.

5.2 ABLATION STUDY

We conduct a comprehensive ablation study on the three critical components of RLx2 on TD3, i.e.,
topology evolution, multi-step TD target, and dynamic-capacity buffer, to examine the effect of each
component in RLx2 and their robustness in hyperparameters. In addition, we provide the sensitivity
analysis for algorithm hyper-parameters, e.g. initial mask update fraction, mask update interval,
buffer adjustment interval, and buffer policy distance threshold, in Appendix C.8.
Topology evolution RLx2 drops and grows connections with magnitude and gradient criteria,
respectively, which has been adopted in RigL (Evci et al., 2020) for deep supervised learning. To
validate the necessity of our topology evolution criteria, we compare RLx2 with three baselines,
which replace the topology evolution scheme in RLx2 with Tiny, SS and SET, while keeping other
components in RLx2 unchanged.4 Thy evolution e left partpolog of Table 3 shows that RigL as a
topology adjustment scheme (the resulting scheme is RLx2 when using RigL) performs best among
the four baselines. We also observe that Tiny performs worst, which is consistent with the conclusion
in existing works (Zhu & Gupta, 2018) that a sparse network may contain a smaller hypothesis space
and leads to performance loss, which necessitates a topology evolution scheme.
Table 3: Ablation study on topology evolution and multi-step target, where the performance (%) is
normalized with respect to the performance of dense models.

Env. Topoloy Evolution Multi-step Target
Tiny SS SET RLx2 1-step 2-step 3-step 4-step 5-step

Hal. 93.3 86.1 100.1 99.8 96.5 101.7 99.8 98.8 97.0
Hop. 74.4 84.2 88.8 97.0 77.9 91.7 97.0 84.0 87.5
Wal. 84.1 83.8 89.4 98.1 73.9 93.7 98.1 99.1 99.3
Ant. 28.7 80.2 83.5 103.9 103.9 105.1 103.9 96.7 94.5

Avg. 70.1 83.6 90.4 99.7 88.1 98.1 99.7 94.6 94.6
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Figure 6: Performance with
different buffer schemes.

Multi-step TD targets We also compare different step lengths in
multi-step TD targets for RLx2 in the right part of Table 3. We find
that multi-step TD targets with a step length of 3 obtain the maxi-
mum performance. In particular, multi-step TD targets improve the
performance dramatically in Hopper-v3 and Walker2d-v3, while the
improvement in HalfCheetach-v3 and Ant-v3 is minor.

Dynamic-capacity Buffer We compare different buffer sizing
schemes, including our dynamic scheme, different fixed-capacity
buffers, and an unlimited buffer. Figure 6 shows that our dynamic-
capacity buffer performs best among all settings of the buffer. Smaller

4Take Algorithm 4 in Appendix B for an example. Only lines 16 and 21 of “Topology Evolution(·)” are
changed while other parts remain unchanged. We also regard static topology as a special topology evolution.
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buffer capacity benefits the performance in the early stage but may reduce the final performance.
This is because using a smaller buffer results in higher sample efficiency in the early stage of train-
ing but fails in reaching high performance in the long term, whereas a large or even unlimited one
may perform poorly in all stages.

5.3 WHY EVOLVE TOPOLOGY IN DRL?
Compared to dense networks, sparse networks have smaller hypothesis spaces. Even under the
same sparsity, different sparse architectures correspond to different hypothesis spaces. As Frankle
& Carbin (2019) has shown, some sparse architecture (e.g., the “winning ticket”) performs better
than a random one. To emphasize the necessity of topology evolution in sparse training, we compare
different sparse network architectures in Figure 7, including the random ticket (topology sampled
at random and fixed throughout training), the winning ticket (topology from an RLx2 run and fixed
throughout training), and a dynamic ticket (i.e., training using RLx2) under both reinforcement
learning (RL) and behavior cloning (BC).5 From Figure 7(a), we see that RLx2 achieves the best
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Figure 7: Comparison of different sparse network architecture for training a sparse DRL agent in
Ant-v3, where the sparsity is the same as that in Table 2.
performance, which is comparable with that under the original dense model. Due to the potential
data inconsistency problem in value learning and the smaller hypothesis search space under sparse
networks, training with a single fixed topology does not fully reap the benefit of high sparsity and
can cause significantly degraded performance. That is why the winning ticket and random ticket
both lead to significant performance loss compared to RLx2. On the other hand, Figure 7(b) shows
that in BC tasks, the winning ticket and RLx2 perform almost the same as the dense model, while
the random ticket performs worst. This indicates that an appropriate fixed topology can indeed be
sufficient to reach satisfactory performance in BC, which is intuitive since BC adopts a supervised
learning approach and eliminates non-stationarity due to bootstrapping training. In conclusion, we
find that a fixed winning ticket can perform as well as a dynamic topology that evolves during
the training in behavior cloning, while RLx2 outperforms the winning ticket in RL training. This
observation indicates that topology evolution not only helps find the winning ticket in sparse DRL
training but is also necessary for training a sparse DRL agent due to the extra non-stationary in
bootstrapping training, compared to deep supervised learning.

6 CONCLUSION

This paper proposes a sparse training framework, RLx2, for off-policy reinforcement learning (RL).
RLx2 utilizes gradient-based evolution to enable efficient topology exploration and establishes ro-
bust value learning using a delayed multi-step TD target mechanism with a dynamic-capacity replay
buffer. RLx2 enables training an efficient DRL agent with minimal performance loss using an ultra-
sparse network throughout training and removes the need for pre-training dense networks. Our
extensive experiments on RLx2 with TD3 and SAC demonstrate state-of-the-art sparse training per-
formance, showing a 7.5×-20×model compression with less than 3% performance degradation and
up to 20× and 50× FLOPs reduction in training and inference, respectively. It will be interesting
future work to extend the RLx2 framework in more complex RL scenarios requiring more intense
demand for computing resources, e.g., real-world problems instead of standard MuJoCo environ-
ments or multi-agent settings.

5In BC, the actor network is trained under the guidance of a well-trained expert instead of the critic network.
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REPRODUCIBILITY STATEMENT

Experiment details (including an efficient implementation for RLx2, implementation details of the
dynamic buffer, hyperparameters, and network architectures) are included in Appendix C for repro-
duction. The proof for our analysis of the dynamic buffer can be found in Appendix A.4. The code
is open-sourced in https://github.com/tyq1024/RLx2.
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A ADDITIONAL DETAILS FOR SECTION 4

This section provides additional details for Section 4, including how to efficiently implement Algo-
rithm 1 with limited resource, the derivation of Eq. (4) in Section 4.2.1, and the full algorithm of
dynamic-capacity buffer in Section 4.2.2.

A.1 EFFICIENT IMPLEMENTATION FOR ALGORITHM 1

For simplicity, in this section, we omit all indices of l in the symbols that appeared in Algorithm 1.

Parameter Storing Suppose layer l takes an n(in)-dimensional vector x as the input, and out-
puts an n(out)-feature vector y via a linear transformation. Then the layer’s number of parame-
ters is N = n(in) × n(out). A naive implementation will be to store both θ ∈ Rn(out)×n(in)

and
Mθ ∈ {0, 1}n

(out)×n(in)

in two dense n(out) × n(in) matrices in the memory. In forward and back-
ward propagations, one simply performs the dense-matrix-multiply-vector operation on θ and x.
However, this implementation cannot enjoy any speed-up even when we are using a sparsity ratio s
close to 1, so the network is highly sparse. Also, the actual memory occupied by the model is always
proportional to N and irrelevant to s. However, a better way is to store θ in a more compact manner,
where only the non-zero indices (i.e., positions of the ones in Mθ) and their values. As a result,
the weights of the layer now occupies Θ((1 − s)N) memory, and the matrix-multiply-vector oper-
ation also just costs O((1− s)N + n(in) + n(out)). Such sparse matrix (or tensor of higher orders)
structures are supported by many modern machine learning frameworks, e.g., torch.sparse in
PyTorch. Many of them also support automatic gradient calculation and backward propagation.

Link Dropping With this sparse representation of θ, it can be seen that the link dropping step of
Algorithm 1 (Line 9) can be done in O((1 − s)N logN) time by sorting all the weight entries in
their absolute values and then picking the top-K items.

Link Growing It then suffices to figure out a way to implement the link growing step of Algo-
rithm 1 (Line 10). Denote by L the scalar loss function of the whole neural network containing
layer l. Assume that we have just performed a backward propagation, where layer l contributes only
O((1−s)N +n(in)+n(out)) to the computation time, and g(x) := ∂L

∂x , g(y) := ∂L
∂y and g(θ) := ∂L

∂θ

all have been computed. Since θ is in a compact representation with (1 − s)N elements, now g(θ)

obtained by auto-grad also only contains (1 − s)N items, but the growing step Line 10 basically
asks to collect the top-K items in the whole dense gradient matrix with N elements.

According to the chain rule, for a link θji between the i-th input neural and the j-th output neural,
the partial derivative of L with respect to θji is given by (here, we abuse the notation a little)

g
(θ)
ji :=

∂L

∂θji
=

∂L

∂yj

yj
∂θji

= g
(y)
j xi.

Hence the desired true dense n(out)×n(in) gradient matrix g(θ) is equal to g(y)xT . Our task reduces
to collect the K entries with the largest absolute values while keeping away from the locations that
have just been dropped in Line 9. In fact, this procedure can be efficiently implemented by scanning
via n(out) pointers with the help of a heap (a.k.a., a priority queue), described in the following
pseudo-code Algorithm 2.

It can be seen that Algorithm 2 consumes O(n(out) + n(in) + |U |+ (1− s)N) heap operations and
set operations. If all sets S and U are implemented using binary search trees or hash tables, the costs
for each heap operation and each set operation are all within O(logN). Therefore the total running
time of Algorithm 2 is O((1− s)N logN).
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Algorithm 2 Efficient Link Growing

Input: Input featrue vector x, output gradient vector g(y), base index set S0, dense matrix size
N , target sparsity s, forbid index set U

Output: An index set S such that |S| = (1 − s)N , S ⊇ S0 and S ∩ U =
∅

1: Initialize S ← S0.
2: Sort |x| to get a permutation σ1, . . . , σn(in) , such that |xσ1 | ≥ |xσ2 | ≥ · · · ≥ |xσ

n(in)
|.

3: Create a max-heap H whose elements are 3-tuples, comparing elements according to their first
components.

4: for j = 1 . . . n(out) do
5: Append (|g(y)j xσ1

|, j, 1) into H .
6: end for
7: while |S| < (1− s)N do
8: Pop the top triple (w, j, i) out of H .
9: if (j, σi) /∈ S and (j, σi) /∈ U then

10: S ← S ∪ (j, σi)
11: end if
12: if i < n(in) then
13: Append (|g(y)j xσi+1

|, j, i+ 1) into H .
14: end if
15: end while
16: Return S.

A.2 DERIVATION OF EQ. (4) IN SECTION 4.2.1

Denote pπ(st+1, at+1, · · · , st+n, at+n|st, at) the distribution of the trajectory starting from
the current state st and action at under policy π. For simplicity, we use Eπ to denote
E(st+1,at+1,··· ,st+n,at+n)∼pπ(·|st,at), and use Eb to denote E(st+1,at+1,··· ,st+n,at+n)∼pb(·|st,at), where
π and b denote the current policy and the behavior policy, respectively. Qπ(s, a) denotes the
Q function associated with policy π as defined in Eq. (1) in the manuscript, i.e., Qπ(s, a) =

Eπ

[∑T
i=t γ

i−tr (si, ai) |st = s, at = a
]
. We also use ϵ(s, a) to denote the network fitting error,

i.e., ϵ(s, a) = Q(s, a; θ)−Qπ(s, a).

Subsequently, we have:

Eb[Tn(st, at)]−Qπ(st, at)

=Eb[

n−1∑
k=0

γkrt+k + γnQ(st+n, π(st+n); θ)]− Eπ[

n−1∑
k=0

γkrt+k + γnQπ(st+n, π(st+n))]

=Eb[

n−1∑
k=0

γkrt+k + γnQ(st+n, π(st+n); θ)]− Eπ[

n−1∑
k=0

γkrt+k + γnQ(st+n, π(st+n); θ)]

+ Eπ[γ
n(Q(st+n, π(st+n); θ)−Qπ(st+n, π(st+n)))]

= (Eb[Tn(st, at)]− Eπ[Tn(st, at)]) + γnEπ[ϵ(st+n, π(st+n))].

The first equality holds in the manuscript by definitions in Eq. (1) and of multi-step TD targets. The
second equality holds by firstly adding and then subtracting the term Eπ[γ

n(Q(st+n, at+n; θ))],
and the last equality holds by definitions of Tn(s, a) and ϵ(s, a). This decomposition shows that the
expected error consists of two parts, i.e., the network fitting error and the policy inconsistency error,
which are well handled by our multi-step TD targets with a dynamic-capacity buffer.

A.3 ALGORITHM OF DYNAMIC-CAPACITY BUFFER IN SECTION 4.2.2

Algorithm 3 presents our formal procedure for dynamically controlling the buffer capacity in Sec-
tion 4.2.2. For each step, a new transition is inserted into the replay buffer. To avoid the problem
of policy inconsistency, we check the buffer per ∆b steps and drop the oldest transitions if needed.
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Specifically, we first set a hard lower bound Bmin, and a hard upper bound Bmax of the buffer ca-
pacity. (i) If the buffer size is below Bmin, we store all newly collected data samples. (ii) If the
amount of buffered transitions has reached Bmax, the oldest transitions will be replaced by the latest
transitions. (iii) When the buffer is in (Bmin, Bmax), for each time, we calculate the policy distance
between the oldest behavior policy and the current policy, based on the oldest transitions stored in
the buffer. In addition, if the policy distance exceeds the threshold D0, the oldest transitions are
discarded. The full algorithm is given in Algorithm 3.

Algorithm 3 Dynamic-Capacity Buffer for off-policy DRL
1: π: current policy
2: B: Replay buffer at training step t
3: ∆b: Buffer checking interval
4: D0: Non-consistency threshold
5: ρ: Shrinking ratio
6: Bmin, Bmax: Range of capacity
7: for each training step t do
8: Interact with environment and store new transitions in B // Add new transitions into the buffer
9: Sample mini-batch from B

10: Training with sampled data // Depends on the training algorithm
11: if t mod ∆b = 0 // Check the buffer periodically then
12: if |B| ∈ (Bmin, Bmax) // The buffer capacity is limited in certain range then
13: Batch of oldest transitions (si, ai)
14: if D(π) > D0 // Drop the oldest transitions if the policy distance exceeds the threshold then
15: B ← Drop ratio ρ of oldest transitions in B
16: end if
17: end if
18: end if
19: end for

A.4 DETAILED ANALYSIS OF DYNAMIC BUFFER

Using a dynamic buffer can reduce the gap between target policy and behavioral policy, as we have
shown empirically in Section 5.2. In this section, we give a more detailed analysis of the influence
of the dynamic buffer.

We first define the notations used in our analysis.

p(s′|s, a): Environment transition probability

ρ
(s)
π,t: State distribution in time t under policy π

ρ
(s,a)
π,t : State-action pair distribution in time t under policy π

µπ(τ): Distribution of trajectory τ = (st, at, st+1, · · · , st+n, at+n) under policy π

dπ: State-action visitation distribution under policy π, dπ(s) =
∑∞

t=0 γ
tPr(st = s), at ∼ π(·|st)

Lemma A.1 below first shows that for two trajectory distributions generated by different policies,
their KL divergence can be expressed by the KL divergence between these two policies.

Lemma A.1. DKL(µb(·|st, at)||µπ(·|st, at)) =
∑n

k=1 Est+k∼ρ
(s)
b,t+k

DKL(b(·|st+k)||π(·|st+k))

Proof. The conditional trajectory distribution can be expressed as:

µπ(τ |st, at) =
n∏

k=1

π(at+k|st+k)p(st+k|st+k−1, at+k−1).

Thus,

DKL(µb(·|st, at)||µπ(·|st, at)) =
∑
τ

µb(τ |st, at) log
µb(τ |st, at)
µπ(τ |st, at)
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=
∑
τ

[
µb(τ |st, at) log

∏n
k=1 b(at+k|st+k)∏n
k=1 π(at+k|st+k)

]

=

n∑
k=1

∑
τ

[µb(τ) log
b(at+k|st+k)

π(at+k|st+k)
].

Note that

Eτ∼µb(·)[log
µb(τ |st, at)
µπ(τ |st, at)

] = E
(st+k,at+k)∼ρ

(s,a)
b,t (·)[log

µb(τ |st, at)
µπ(τ |st, at)

],

then

DKL(µb(·|st, at)||µπ(·|st, at)) =
n∑

k=1

∑
(st+k,at+k)

ρ
(s,a)
b,t+k log

b(at+k|st+k)

π(at+k|st+k)

=

n∑
k=1

E
st+k∼ρ

(s)
b,t+k

DKL(b(·|st+k)||π(·|st+k)).

Proposition A.2 below shows that the relation between the policy inconsistency error defined in
equation 4 and the policy distance. This proposition shows that multi-step TD learning can indeed
be more robust with a dynamic buffer.

Proposition A.2. The policy inconsistency error in equation 4 can be upper bounded by

|Eb[Tn]− Eπ[Tn]| ≤ (
1− γn

1− γ
rm + γnQm)

√√√√1

2

n∑
k=1

E
s∼ρ

(s)
b,t (·)

DKL(b(·|s)||π(·|s)),

where rm = sup r − inf r,Qm = supQ(s, a; θ)− inf Q(s, a; θ).

Proof. Suppose the multi-step TD target is bounded, we have

|Eb[Tn]− Eπ[Tn]| =|Eτ∼µb(·|st,at)[Tn]− Eτ∼µπ(·|st,at)[Tn]|
≤(sup Tn − inf Tn)DTV(µb(·|st, at)||µπ(·|st, at)).

According to Pinsker’s inequality,

DTV(µb(·|st, at)||µπ(·|st, at)) ≤
√

DKL(µb(·|st, at)||µπ(·|st, at))
2

.

Thus,

|Eb[Tn]− Eπ[Tn]| ≤(
n−1∑
k=0

γkrm + γnQm)

√
DKL(µb(·|st, at)||µπ(·|st, at))

2
.

Finally, using Lemma A.1, we obtain

|Eb[Tn]− Eπ[Tn]| ≤(
1− γn

1− γ
rm + γnQm)

√√√√1

2

n∑
k=1

E
s∼ρ

(s)
b,t (·)

DKL(b(·|s)||π(·|s)).

Our next result, Proposition A.3, below shows that the mismatch between L(θ) and L̂(θ) can be
controlled by reducing the KL divergence between the target policy and the behavior policy (com-
plete proof in Appendix A.4. Therefore, one can improve the value estimation by eliminating data
inconsistency.
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Proposition A.3. For the target policy π and behavioural policy b, we have

|L(θ)− L̂(θ)| ≤ 2γ

1− γ
∆Es∼db

[√
1

2
DKL(π(·|s), b(·|s))

]
,

where ∆ = sup |(Q(s, a; θ)− T (s, a))2| and the loss functions are defined as

L(θ) = E(si,ai)∼dπ
[(Q(si, ai; θ)− T (si, ai))2], L̂(θ) = E(si,ai)∼db

[(Q(si, ai; θ)− T (si, ai))2].

Proof. Denote

∆ = sup |(Q(s, a; θ)− T (s, a))2|.

Then, we have

|L(θ)− L̂(θ)| =|E(si,ai)∼db
[(Q(si, ai; θ)− T (si, ai))2]− E(si,ai)∼dπ

[(Q(si, ai; θ)− T (si, ai))2]|
≤2DTV(dπ, db)∆,

i.e., the gap between the two loss functions can be bounded by the total variance distance between
the two state-action visitation distributions.

According to Achiam et al. (2017), we obtain

DTV(dπ, db) ≤
γ

1− γ
Es∼db

[DTV(π(·|s), b(·|s))].

Thus, the loss function gap can be bounded by the total variance distance between the two policies,
i.e.,

|L(θ)− L̂(θ)| ≤ 2γ

1− γ
∆Es∼db

[DTV(π(·|s), b(·|s))].

With Pinsker’s inequality, we can express the upper bound with the KL divergence between the two
policies:

|L(θ)− L̂(θ)| ≤ 2γ

1− γ
∆Es∼db

[

√
1

2
DKL(π(·|s), b(·|s))].

B DETAILS OF RLX2 WITH TD3 AND SAC

In this section, we provide the pseudo-codes of instantiations of RLx2 on TD3 and SAC in Al-
gorithm 4 and Algorithm 5, respectively. We emphasize that RLx2 is a general sparse training
framework for off-policy DRL and can be applied to training other DRL algorithms apart from TD3
and SAC, with sparse networks from scratch. Below, we first illustrate the critical steps of RLx2 in
Algorithm 4, using TD3 as the base algorithm.

Topology evolution is performed in Lines 15-17 and Lines 20-22 in Algorithm 1. Specifically,
we first calculate the sparsity of each layer according to the target sparsity of the total model at
initialization. The sparsity of each layer is fixed during the training. And we use the Erdős–Rényi
strategy, which is introduced in Mocanu et al. (2018), to allocate the sparsity to each layer. For a
sparse network with L layers, this strategy utilizes the equations below:

(1− S)
∑
l

IlOl =

L∑
l=1

(1− Sl)IlOl,

1− Sl = k
Il +Ol

Il ∗Ol
,

where S is the target sparsity of the model, Sl is the sparsity of the l-th layer, Il is the input di-
mensionality of the l-th layer, Ol is the output dimensionality of the l-th layer, and k is a constant.
The motivation of this strategy is that a layer with more parameters contains more redundancy. As
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a result, it can be compressed with a higher sparsity. The topology evolution update is performed
every ∆m time steps. Definitions of other hyperparameters related to topology evolution are listed
in Algorithm 1 in the manuscript.

Buffer capacity adjustment is performed in Lines 7-9. This adjustment is conducted every ∆b

step, with detailed procedure shown in Algorithm 3.

Multi-step TD target is computed in Lines 10-13. We found that using a multi-step TD target in the
early stage of training may result in poor performance because the policy may evolve quickly, which
results in severe policy inconsistency. Thus, we start the multi-step TD target only when the number
of training steps succeeds a pre-set threshold T0. As mentioned in Section 4.2.1, the one-step TD
target and multi-step TD target in TD3 are computed as:

T1 = rt + γQ(st+1, π(st+1); θ),

Tn =

n−1∑
k=0

γkrt+k + γnQ(st+n, π(st+n); θ).
(7)

Note that the calculation of the multi-step TD target in SAC is slightly different from that in TD3.
Specifically, the one-step TD target for SAC is computed as:

T1 = rt + γ(Q(st+1, ãt+1; θ)− α log π(ãt+1|st+1)), (8)
where ãt+1 ∼ π(·|st+1), and the n-step TD target for SAC is computed by

Tn =

n−1∑
k=0

γkrt + γnQ(st+n, ãt+n; θ)− α

n−1∑
k=0

γk+1 log π(ãt+k+1|st+k+1), (9)

where ãt+k+1 ∼ π(·|st+k+1), k = 0, 1, · · · , n − 1. Due to this difference, we will see later in
Section C.3 that the resulting FLOPs are slightly different for TD3 and SAC.

Besides, Algorithm 5 also gives the detailed implementation of RLx2 with SAC, where topology
evolution is performed in Lines 15-17 and Lines 20-22, buffer capacity adjustment is performed in
Lines 7-9, and the multi-step TD target is computed in Lines 10-13.
Algorithm 4 RLx2-TD3
1: Initialize sparse critic network Qθ1 , Qθ2 and sparse actor network πϕ with random parameters θ1, θ2, ϕ

and random masks Mθ1 , Mθ2 , Mϕ with determined sparsity S(c), S(a).
2: θ1 ← θ1 ⊙Mθ1 , θ2 ← θ2 ⊙Mθ2 , ϕ← ϕ⊙Mϕ. // Start with a random sparse network
3: Initialize target networks θ′1 ← θ1, θ′2 ← θ2, ϕ′ ← ϕ. Initialize replay buffer B.
4: for t = 1 to T do
5: Select action with exploration noise at ∼ πϕ(st)+ ϵ, ϵ ∼ N (0, σ) and observe reward rt and new state

st+1

6: Store transition tuple (st, at, rt, st+1) in B
7: if t mod ∆b = 0 then
8: Buffer capacity adjustment
9: end if // Check the buffer periodically

10: Set N = 1 temporarily if t < T0 // Delay to use multi-step TD target
11: Sample mini-batch of B multi-step transitions (si, ai, ri, si+1, ai+1, · · · , si+N ) from B
12: ã← πϕ′(si+N ) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
13: Calculate multi-step TD target y ←

∑N−1
k=0 γkri+k + γN minj=1,2 Qθ′j

(si+N , ã) // multi-step TD
target

14: Update critic networks θj ← θj − λ∇θj
1
B

∑
(y −Qθj (si, ai))

2 for j = 1, 2
15: if t mod ∆m = 0 then
16: Topology Evolution(Qθj ) for j = 1, 2
17: end if // Update the mask of critic periodically
18: if t mod d = 0 then
19: Update actor network ϕ← ϕ− λ∇ϕ(− 1

B

∑
Qθ1(si, ai))

20: if t/d mod ∆m = 0 then
21: Topology Evolution(πϕ)
22: end if // Update the mask of actor periodically
23: Update target networks:

θ′i ← τθi + (1− τ)θ′i, ϕ
′ ← τϕ+ (1− τ)ϕ′,

θ′i ← θ′i ⊙Mθi , ϕ′ ← ϕ′ ⊙Mϕ // Target networks are also sparsified with the same mask
24: end if
25: end for
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Algorithm 5 RLx2-SAC
1: Initialize sparse critic network Qθ1 , Qθ2 and sparse actor network πϕ with random parameters θ1, θ2, ϕ

and random masks Mθ1 , Mθ2 , Mϕ with determined sparsity S(c), S(a).
2: θ1 ← θ1 ⊙Mθ1 , θ2 ← θ2 ⊙Mθ2 , ϕ← ϕ⊙Mϕ. // Start with a random sparse network
3: Initialize target networks θ′1 ← θ1, θ′2 ← θ2. Initialize replay buffer B.
4: for t = 1 to T do
5: Select action at ∼ πϕ(st), and observe reward rt and new state st+1

6: Store transition tuple (st, at, rt, st+1) in B
7: if t mod ∆b = 0 then
8: Buffer capacity adjustment
9: end if // Check the buffer periodically

10: Set N = 1 temporarily if t < T0 // Delay to use multi-step TD target
11: Sample mini-batch of B multi-step transitions (si, ai, ri, si+1, ai+1, · · · , si+N ) from B
12: ãi+k+1 ∼ π(·|si+k+1), k = 0, 1, · · · , N − 1
13: Calculate multi-step TD target // multi-step TD target

y ←
∑N−1

k=0 γkri+k + γN minj=1,2 Qθ′j
(si+N , ãi+N )− α

∑N−1
k=0 γk+1 log π(ãi+k+1|si+k+1)

14: Update critic networks θj ← θj − λ∇θj
1
B

∑
(y −Qθj (si, ai))

2 for j = 1, 2
15: if t mod ∆m = 0 then
16: Topology Evolution(Qθj ) for j = 1, 2
17: end if // Update the mask of critic periodically
18: Update actor network ϕ← ϕ− λ∇ϕ(− 1

B

∑
minj=1,2 Qθj (si, ai))

19: if t/d mod ∆m = 0 then
20: Topology Evolution(πϕ)
21: end if // Update the mask of actor periodically
22: Automating Entropy Adjustment: α← α− λ∇α

1
B

∑
(−α log π(ai|si)− αH)

23: Update target networks:
θ′i ← τθi + (1− τ)θ′i, θ

′
i ← θ′i ⊙Mθi // Target networks are also sparsified with the same mask

24: end for

C EXPERIMENTAL DETAILS

We provide more experimental details in this section, including the detailed experimental setup, the
calculations of model size and FLOPs, and supplementary experiment results.

C.1 HARDWARE SETUP

Our experiments are implemented with PyTorch (Paszke et al., 2017) and run on 8x P100 GPUs.
Each run needs 12 hours for TD3 and 2 days for SAC for three million steps. The code will be
open-sourced upon publication of the paper.

C.2 HYPERPARAMETER SETTINGS FOR REPRODUCTION

Table 4 presents detailed hyperparameters of RLx2-TD3 and RLx2-SAC in our experiments.

C.3 CALCULATION OF MODEL SIZE AND FLOPS

We present the details of calculating model sizes and FLOPs in this subsection, where focus on
fully-connected layers since the networks used in our experiments are all Multilayer Perceptrons
(MLPs). These calculations can be easily extended to convolutional layers or other architectures.
Besides, we omit the offset term in fully-connected layers in our calculations.

C.3.1 MODEL SIZE

We first illustrate the calculation of model sizes, i.e., the total number of parameters in the model.
Initially, for a sparse network with L fully-connected layers, we calculate the model size as:

M =

L∑
l=1

(1− Sl)IlOl,
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Table 4: Hyperparameters of RLx2-TD3 and RLx2-SAC.
Category Hyperparameter Value

Shared
Hyperparameters

Optimizer Adam
Learning rate λ 3× 10−4

Discount factor γ 0.99
Number of hidden layers (all networks) 2
Number of hidden units per layer 256
Activation Function ReLU
Batch size B 256
Warmup steps 25000
Target update rate τ 0.005
Initial mask update fraction ζ0 0.5
Mask update interval ∆m 10000
Buffer adjustment interval ∆b 10000
Buffer policy distance threshold D0 0.2
Buffer max size Bmax 1× 106

Buffer min size Bmin 1× 105

Multi-step delay T0 3× 105

Hyperparameters
for RLx2-TD3

Target update interval 2
Actor update interval d 2
Exploration policy N (0, 0, 1)
Multi-step 3

Hyperparameters
for RLx2-SAC

Target update interval 1
Actor update interval d 1
Entropy targetH −dim(A)
Multi-step 2

where Sl is the sparsity, Il is the input dimensionality, and Ol is the output dimensionality of the
l-th layer. Specifically, the “Total Size” column in Table 2 in the manuscript refers the model size
including both actor and critic networks during training.

For both TD3 and SAC, double Q-learning is adopted, i.e., train two value networks concurrently.
Besides, we also use target networks in our implementations as target critics for both TD3 and SAC,
yet a target actor only for TD3. Thus, if we denote MActor and MCritic as model sizes of actor and
critic, respectively, the detailed calculation of model sizes can be obtained as shown in the second
column of Table 5. We denote B as the batch size used for training process.

Table 5: FLOPs and model size for RLx2-TD3 and RLx2-SAC.

Algorithm Model size FLOPs FLOPs
(average of each iteration during training) (inference)

RLx2-TD3 2MActor + 4MCritic B × (2.5FLOPsActor + 8.5FLOPsCritic) FLOPsActor
RLx2-SAC MActor + 4MCritic B × (5FLOPsActor + 10FLOPsCritic) FLOPsActor

C.3.2 FLOPS

Initially, for a sparse network with L fully-connected layer, the required FLOPs for a forward pass
is competed as follows (also adopted in Evci et al. (2020) and Molchanov et al. (2019a)):

FLOPs =
L∑

l=1

(1− Sl)(2Il − 1)Ol, (10)

where Sl is the sparsity, Il is the input dimensionality, and Ol is the output dimensionality of the
l-th layer. Denote FLOPsActor and FLOPsCritic as the FLOPs required in a forward pass of a single
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actor and critic network, respectively. The inference FLOPs is exactly FLOPsActor as shown in the
last column of Table 5. As for the training FLOPs, the calculation consisted of multiple forward and
backward passes in several networks, which will be detailed below.

In particular, we compute the FLOPs needed for each training iteration. Besides, we omit the FLOPs
of the following processes since they have little influence on the final result.

(i) Interaction with the environment. Each time the agent decides an action to interact with the
environment takes FLOPs as FLOPsActor, which is much smaller than the FLOPs need for updating
networks as shown in Table 5 since B ≫ 1.

(ii) Updating target networks. Every parameter in the networks is updated as θ′ ← τθ + (1− τ)θ′.
Thus, the number of FLOPs here is the same as the model size, which is also negligible.

(iii) Topology evolution and buffer capacity adjustment. These two components are performed every
10000 steps. Formally speaking, the average FLOPs of topology evolution is give by B× 2FLOPsActor

(1−S(a))∆m

for the actor, and B × 4FLOPsCritic
(1−S(c))∆m

for the critic, where S(a) and S(c) are the sparsity of actor and

critic, respectively. The FLOPs of buffer capacity adjustment is 8B× FLOPsActor
∆b

, where 8B is because
that we use the oldest 8B transitions to compute the policy distance. Thus, they are both negligible.

Therefore, we focus on the FLOPs of updating actor and critic. The average FLOPs of updating
actor and critic can be given as:

FLOPstrain = FLOPsupdate critic +
1

d
FLOPsupdate actor, (11)

where d is the actor update interval (2 for TD3 and 1 for SAC in our implementations). Next we
calculate the FLOPs of updating actor and critic, i.e. FLOPsupdate critic and FLOPsupdate actor. We first
focus on TD3, while that for SAC is similar.

Training FLOPs Calculation in TD3
(i) Critic FLOPs: Recall the way to update critic (two critics, θ1 and θ2) in TD3 is given by

θj ← θj − λ∇θj

1

B

∑
(Tn −Q(si, ai; θj))

2, (12)

for j = 1, 2, where B is the batch size, n-step TD target

Tn =

N−1∑
k=0

γkri+k + γN min
j=1,2

Q(si+N , ã; θ′j) (13)

and θ′j refers to the target network.

Subsequently, we can compute the FLOPs of updating critic as:

FLOPsupdate critic = FLOPsTD target + FLOPscompute loss + FLOPsbackward pass, (14)

where FLOPsTD target, FLOPscompute loss, and FLOPsbackward pass refer to the numbers of FLOPs in
computing the TD targets in forward pass, loss function in forward pass, and gradients in backward
pass (backward-propagation), respectively. By Eq. (12) and Eq. (13) we have:

FLOPsTD target =B × (FLOPsActor + 2FLOPsCritic),

FLOPscompute loss =B × 2FLOPsCritic.
(15)

For the FLOPs of gradients backward propagation, FLOPsbackward pass, we compute it as two times
the computational expense of the forward pass, which is adopted in existing literature (Evci et al.,
2020), i.e.,

FLOPsbackward pass = B × 2× 2FLOPsCritic, (16)
where the extra factor 2 comes from the cost of double Q-learning.

Combining Eq. (14), Eq. (15), and Eq. (16), the FLOPs of updating critic in TD3 is:

FLOPsupdate critic = B × (FLOPsActor + 8FLOPsCritic). (17)

(ii) Actor FLOPs: Recall the way to update actor (parameterized by ϕ) in TD3 is given by

ϕ← ϕ− λ∇ϕ(−
1

B

∑
Q(si, ai; θ1)),
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where θ1 refers to a critic network. Subsequently, we compute the FLOPs of updating actor as:

FLOPsupdate actor = FLOPscompute loss + FLOPsbackward pass, (18)

and similar to the calculations of updating critic, we have:

FLOPscompute loss =B × (FLOPsActor + FLOPsCritic),

FLOPsbackward pass =B × 2FLOPsActor.
(19)

Combining Eq. (18), Eq. (18) and Eq. (19), the flops of updating actor in TD3 is:

FLOPsupdate actor = B × (3FLOPsActor + FLOPsCritic) (20)

Training FLOPs Calculation in SAC
(i) Critic FLOPs: Calculations of FLOPs for SAC are similar to that in TD3. The way to update the
critic in SAC is:

θj ← θj − λ∇θj

1

B

∑
(Tn −Qθj (si, ai))

2

for j = 1, 2, where B is the batch size, n-step TD target

Tn =

N−1∑
k=0

γkri+k + γN min
j=1,2

Qθ′
j
(si+N , ãi+N )− α

N−1∑
k=0

γk+1 log π(ãi+k+1|si+k+1)

and θ′j refers to the target network. Note that the way to compute multi-step TD target in SAC is
slightly different from which in TD3, we have:

FLOPsTD target = B × (2FLOPsActor + 2FLOPsCritic). (21)

Other terms for updating critic are the same as those in Eq. (14) for TD3. Thus, the FLOPs of
updating critic in SAC can be computed by

FLOPsupdate critic = B × (2FLOPsActor + 8FLOPsCritic). (22)

(ii) Actor FLOPs: The way to update the actor in SAC is:

ϕ← ϕ− λ∇ϕ(−
1

B

∑
min
j=1,2

Qθj (si, ai)),

where θj refers to a critic network. Subsequently, we have:

FLOPscompute loss = B × (FLOPsActor + 2FLOPsCritic). (23)

The backward pass FLOPs is the same as that in TD3, i.e.,

FLOPsbackward pass = B × 2FLOPsActor. (24)

Thus, the FLOPs of updating the actor in SAC is:

FLOPsupdate actor = B × (3FLOPsActor + 2FLOPsCritic). (25)

Table 6 shows the relative average FLOPs of each iteration for different algorithms, where the FLOPs
of training a sparse network without any of these three methods is set to 1x. The sparsity is set to
the average sparsity in different environments. The additional computations induced by topology
evolution and dynamic buffer are negligible. Using multi-step TD learning also does not increase
computations in TD3, and only introduces a small extra computation to SAC (< 5%), as analyzed
above.

Table 6: Relative FLOPs of different methods
Algorithm Tiny SS SET RigL RLx2

TD3 1.00000x 1.00000x 1.00000x 1.00067x 1.00072x
SAC 1.00000x 1.00000x 1.00000x 1.00033x 1.04432x
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C.4 COMPARISONS BETWEEN DIFFERENT MASKS IN OTHER ENVIRONMENTS

Figure 8 shows the improvement of the learned sparse network topology by robust value learning.
We see that in addition to Ant-v3, significant improvements are also achieved in Hopper-v3 and
Walker2d-v3. The only exception is HalfCheetah-v3. We hypothesize that this environment is
easier for the agent to learn (as the performance improves much faster in the early stage than in the
other three environments), and a good mask can be found comparatively easier. It is an interesting
direction for future work to systematically analyze this problem.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time steps 1e6

0

2000

4000

6000

8000

10000

Av
er

ag
e 

Re
tu

rn

(a) HalfCheetah
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Figure 8: Comparison of different sparse topologies learned in HalfCheetah-v3, Hopper-v3, and
Walker2d-v3.

C.5 TRAINING CURVES OF COMPARATIVE EVALUATION IN SECTION 5.1

Figure 9 and Figure 10 show the training curves of different algorithms in four MuJoCo environ-
ments. RLx2 outperforms baseline algorithms on all four environments with both TD3 and SAC.
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(a) TD3-HalfCheetah with actor sparsity
90% and critic sparsity 85%
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(b) TD3-Hopper with actor sparsity 98%
and critic sparsity 95%
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(c) TD3-Walker2d with actor sparsity 97%
and critic sparsity 95%
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(d) TD3-Ant with actor sparsity 96% and
critic sparsity 88%

Figure 9: Training processes of RLx2-TD3 on four MuJoCo environments. The performance is
calculated as the average reward per episode over the last 30 evaluations of the training.
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(a) SAC-HalfCheetah with actor sparsity
90% and critic sparsity 80%
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(b) SAC-Hopper with actor sparsity 98%
and critic sparsity 95%
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(c) SAC-Walker2d with actor sparsity 90%
and critic sparsity 90%
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Figure 10: Training processes of RLx2-SAC on four MuJoCo environments. The performance is
calculated as the average reward per episode over the last 30 evaluations of the training.

C.6 STANDARD DEVIATIONS OF RESULTS IN TABLE 2

Table 7 shows the performance of different algorithms on four MuJoCo environments with standard
deviations. Each result is calculated on 8 random seeds. RLx2 does not lead to a larger variance
with topology evolution.

Table 7: Results in Table 2 with standard deviations
Alg. Env. Tiny(%) SS(%) SET(%) RigL(%) RLx2(%)

TD3

Hal. 86.3±11.6 77.1±10.1 92.6±6.1 90.8±6.3 99.8±4.7
Hop. 64.5±31.1 67.7±26.0 66.5±33.0 90.6±14.9 97.0±17.6
Wal. 60.8±13.1 42.9±27.8 39.3±26.1 35.7±24.3 98.1±15.2
Ant. 16.5±11.9 49.6±15.8 62.5±14.8 68.5±15.0 103.9±11.9

Avg. 57.0±16.9 59.3±20.0 65.2±20.0 71.4±15.1 99.7±12.4

SAC

Hal. 95.0±2.7 75.4±8.7 94.8±6.0 89.8±8.4 102.2±3.2
Hop. 89.1±28.0 81.6±30.6 103.9±15.7 110.0±10.4 109.7±19.9
Wal. 73.8±11.4 83.4±14.8 95.8±13.1 81.9±4.3 103.2±13.3
Ant 49.6±14.3 49.3±31.0 79.8±20.8 90.9±21.3 105.6±24.7

Avg. 76.9±14.1 72.4±21.2 93.6±13.9 93.2±11.1 105.2±15.3

Avg. 67.0±15.5 65.9±20.6 79.4±17.0 82.3±13.1 101.8±13.9
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C.7 SUPPLEMENTARY RESULTS FOR ABLATION STUDY

Table 8 shows the performance of four environments with different buffer capacities. Consistent with
the results in Section 5.2, a buffer that is either too small or too large can result in poor performance.
Our dynamic buffer outperforms buffers with a fixed capacity.

Table 8: RLx2-TD3 with different buffer capacity.

Environment Capacity
5× 104

Capacity
1× 105

Capacity
2× 105

Capacity
1× 106

Unlimited Dynamic

HalfCheetah 84.5% 86.2% 93.7% 95.6% 88.2% 99.8%
Hopper 79.9% 94.1% 91.4% 94.5% 89.1% 97.0%
Walker2d 77.9% 94.7% 90.9% 90.2% 79.2% 98.1%
Ant 75.6% 75.1% 83.4% 80.0% 72.6% 103.9%
Average 79.5% 87.5% 89.9% 90.1% 82.3% 99.7%

C.8 SENSITIVITY ANALYSIS FOR HYPERPARAMETERS

In this section, we provide the detailed sensitivity analysis for new hyperparameters used in RLx2,
including initial mask update fraction ζ, mask update interval ∆m, buffer adjustment interval ∆b,
buffer policy distance threshold D0, and multi-step delay T0.

Initial mask update fraction Table 9 shows the performance with different initial mask update
fractions (denoted as ζ) in different environments. We also include the special case of keeping the
mask static, i.e., ζ = 0. From Table 9, we find that the sensitivities of the initial mask update fraction
among different environments are similar. Besides, RLx2 achieves better performance with a large
value of the initial mask update fraction. There is no apparent performance degradation even if ζ is
set to 0.9, which may be due to the update fraction annealing scheme.

Table 9: Sensitivity analysis on initial mask update fraction.
Environment Static Sparse ζ = 0.1 ζ = 0.3 ζ = 0.5 ζ = 0.7 ζ = 0.9

HalfCheetah 86.1% 93.5% 96.2% 99.8% 100.5% 103.5%
Hopper 84.2% 98.2% 103.7% 97.0% 97.0% 92.4%
Walker2d 83.8% 98.2% 96.4% 98.1% 104.3% 101.4%
Ant 80.2% 79.1% 83.8% 103.9% 101.9% 102.8%

Average 83.6% 92.3% 95.0% 99.7% 100.9% 100.0%

Mask update interval Table 10 shows the performance with different mask update intervals (de-
noted as ∆m) in different environments. We also include the special case of never updating the
mask, i.e., ∆m = ∞. From Table 10, we find that the sensitivities of the mask update interval
among different environments are similar. Table 10 also shows that a small mask update interval
reduces the performance since adjusting the mask too frequently may drop the critical connections
before their weights are updated to large values by the optimizer. On the contrary, a large mask
update interval reduces the impact caused by topology evolution but degrades to training a static
sparse network. In general, a moderate value of 1× 104 is favoured.

Table 10: Sensitivity analysis on mask update interval.

Environment ∆m =
1× 103

∆m =
3× 103

∆m =
1× 104

∆m =
3× 104

∆m =
1× 105

Static
∆m =∞

HalfCheetah 96.4% 93.7% 99.8% 100.8% 94.6% 86.1%
Hopper 97.1% 98.7% 97.0% 91.8% 97.8% 84.2%
Walker2d 98.2% 103.7% 98.1% 97.7% 91.8% 83.8%
Ant 83.5% 89.6% 103.9% 95.3% 94.2% 80.2%

Average 93.8% 96.4% 99.7% 96.4% 94.6% 83.6%
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Buffer adjustment interval Table 11 shows the performance with different buffer adjustment in-
tervals (denoted as ∆b) in different environments. We also include the special case of never adjusting
the buffer capacity, i.e., ∆b = ∞. From Table 11, we find that the sensitivities of the buffer adjust-
ment interval among different environments are similar. We find the performance is not sensitive to
the buffer adjustment interval ∆b. We only observe an apparent performance degradation when the
buffer adjustment interval is too large such that the policy distance cannot be reduced promptly.

Table 11: Sensitivity analysis on buffer adjustment interval.

Environment ∆b =
1× 103

∆b =
3× 103

∆b =
1× 104

∆b =
3× 104

∆b =
1× 105

No adjustment
∆b =∞

HalfCheetah 99.6% 100.6% 99.8% 99.5% 100.5% 95.6%
Hopper 96.7% 94.8% 97.0% 93.8% 94.8% 94.5%
Walker2d 96.6% 103.1% 98.1% 101.2% 96.1% 90.2%
Ant 97.5% 92.4% 103.9% 103.3% 79.7% 80.0%

Average 97.6% 97.7% 99.7% 99.5% 92.8% 90.1%

Buffer policy distance threshold Table 12 shows the performance with different buffer policy
distance thresholds (denoted as D0) in different environments. We also include the special case of
never adjusting the buffer capacity, i.e., D0 =∞. From Table 12, we find that the sensitivities of the
buffer policy distance threshold among different environments are similar. It is shown that a very
small threshold may reduce the performance, while the dynamic-capacity buffer helps improve the
performance in a wide range of the threshold, especially when D0 = 0.1 or 0.2.

Table 12: Sensitivity analysis on buffer policy distance threshold.

Environment D0 = 0.05 D0 = 0.1 D0 = 0.2 D0 = 0.3 D0 = 0.5
No adjustment

D0 =∞
HalfCheetah 90.8% 102.9% 99.8% 98.8% 99.2% 95.6%
Hopper 99.7% 98.0% 97.0% 96.1% 93.5% 94.5%
Walker2d 85.3% 94.8% 98.1% 90.0% 89.5% 90.2%
Ant 97.9% 100.2% 103.9% 85.9% 83.5% 80.0%

Average 93.1% 99.0% 99.7% 92.7% 91.4% 90.1%

Multi-step delay Table 13 shows the performance with different multi-step delays (denoted as T0)
in different environments. We also include special cases of no delay, i.e., T0 = 0, and delay all the
time, i.e., T0 = ∞. From Table 13, we find that the sensitivities of the multi-step delay among dif-
ferent environments are similar. Compared to the multi-step method without delay, the performance
can be improved by using a delay mechanism in the early stage of training, also outperforming the
one-step scheme. In addition, the performance is not very sensitive to the multi-step delay T0, as we
find that performance gains with different delays are similar.

Table 13: Sensitivity analysis on multi-step delay.

Environment No delay
T0 = 0

T0 =
1× 105

T0 =
2× 105

T0 =
3× 105

T0 =
4× 105

T0 =
5× 105

one-step
T0 =∞

HalfCheetah 87.1% 95.7% 99.2% 99.8% 100.8% 95.5% 96.5%
Hopper 100.1% 104.5% 101.0% 97.0% 96.8% 100.3% 77.9%
Walker2d 100.1% 98.1% 97.5% 98.1% 102.1% 99.2% 73.9%
Ant 83.3% 81.6% 90.7% 103.9% 103.3% 98.2% 103.9%

Average 92.7% 95.0% 97.1% 99.7% 100.1% 98.3% 88.1%
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C.9 ADDITIONAL RESULTS IN HUMANOID-V3

In this subsection, we investigate the effect of RLx2 in Humanoid-v3, one of the control tasks from
MuJoCo. Humanoid-v3 is considered relatively complex due to the high input dimensionality (376).
Thus, apart from the standard 256 neurons in each hidden layer (same as other environments), we
also train a dense model with 1024 neurons in each hidden layer. As shown in Table 14, the model
with more hidden parameters (1024 hidden dimensions) does not achieve a better performance than
a small model (256 hidden dimensions). This implies that the latter one seems to have sufficient
capacity for the control task in Humanoid-v3.

Table 14: RLx2-TD3 in Humanoid-v3. We train two dense models with 256 and 1024 neurons in
each hidden layer, respectively. We apply RLx2 and baseline algorithms in these two dense models.
The table shows the average returns of each algorithm.

Model 256 hidden neurons 1024 hidden neurons

Dense 5721.8± 173.0 5097.3± 228.9

Tiny 3835.0± 762.5 3835.0± 762.5
SS 4248.4± 1588.7 4916.2± 1058.5
SET 5536.4± 152.0 5829.9± 295.5
RigL 5070.5± 335.2 5147.0± 493.3
RLx2 5482.0± 603.0 5899.1± 520.6

Actor Sparsity (%) 92 99
Critic Sparsity (%) 85 98
Number of Parameters ∼ 63000 ∼ 72000

In addition, Table 14 shows the performance of the sparse models trained with RLx2 and other
baseline algorithms, where RLx2 succeeds in training a highly sparse model in Humanoid-v3 with
performance degradation less than 5%. In particular, RLx2 can achieve sparsity of around 90% in a
small model with only 256 hidden neurons, showing its robustness for complex control tasks. Also,
RLx2 outperforms most of the baseline algorithms. Although SET shows comparable performance
with RLx2, RLx2 shows much higher sample efficiency than SET according to Figure 11.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time steps 1e6

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e 

re
tu

rn

(a) 256 hidden neurons
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Figure 11: Training processes of RLx2-TD3 in Humanoid-v3. The performance of each method is
calculated as the average reward per episode over the last 30 evaluations of the training.

When applying RLx2 to larger models with 1024 neurons in each hidden layer, we find that it still
performs well with extremely high sparsity (around 99%). We calculate the number of parameters
of the two sparse models and find they are very close, as shown in Table 14. It suggests that RLx2 is
an effective way to train a sparse model with the least parameters, and is robust to the hidden width
of the dense model counterpart.
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C.10 SUPPLEMENTARY RESULTS FOR INVESTIGATION OF THE LOTTERY TICKET
HYPOTHESIS

We provide additional experiments with TD3 for investigation of the lottery ticket hypothesis (LTH)
in the other three environments, including HalfCheetah-v3, Hopper-v3, and Walker2d-v3. As shown
in Figure 12, winning tickets fail to achieve the same performance as the dynamic topology in the
reinforcement learning setting, while they all perform well under behavior cloning. This shows the
necessity for reinforcement learning to adjust the network structure during the training process.
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(a) RL: HalfCheetah-v3 with actor sparsity
92% and critic sparsity 85%.
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(b) BC: HalfCheetah-v3 with actor sparsity
92%.
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(c) RL: Hopper-v3 with actor sparsity 99% and
critic sparsity 95%.
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(d) BC: Hopper-v3 with actor sparsity 99%.
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(e) RL: Walker2d-v3 with actor sparsity 98%
and critic sparsity 96%.
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(f) BC: Walker2d-v3 with actor sparsity 98%.

Figure 12: Comparisons of different methods for training a sparse DRL agent, where RLx2 is in-
stantiated with TD3. Here, “RL” stands for the reinforcement learning setting, and “BC” stands for
the behavior cloning setting.
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C.11 VISUALIZATION OF SPARSE MODELS

In this section, we show visualizations of the sparse networks obtained under RLx2 in our experi-
ments. Note that each layer in the sparse network in our implementation is bound to a binary mask
Mθl , i.e., θl = θl ⊙Mθl for the l-th layer. In the rest of this section, we investigate the property of
the binary masks with visualization.

By visualizing the final mask after training, we find RLx2 drops redundant dimensions in raw inputs
adaptively and efficiently. Specifically, Figure 13 shows the distribution of connections to each state
dimension in Ant-v3. The figure shows that the resulting topology almost has no connections for
input dimensions 28−111, and the connections heavily concentrate on the first 27 dimensions. This
observation indicates that the topology evolution method drops redundant dimensions in raw inputs
adaptively and efficiently. A similar observation has also been made in Vischer et al. (2022), where
it is shown that by iterative magnitude training, input dimensions irrelevant to the task are pruned
entirely to help yield a minimal task-relevant representation.

Figure 13: Distribution of connections to each state dimension in Ant-v3. Connections mainly
concentrate on the first 27 dimensions.

In Figure 14, we further show visualizations of the raw binary masks (i.e., matrices with items
representing neuron connections) of the actor in Ant-v3, where a black dot denotes an existing
connection between the corresponding neurons, and a white point means there is no connection. As
mentioned above, only very few connections are kept for the redundant input dimensions. We also
find that the connections in the hidden layers tend to concentrate on a subset of neurons, showing
that different neurons can play different roles in representations.
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(a) Original mask of the first layer
(256× 111)

(b) Final mask of the first layer
(256× 111)

(c) Original mask of the second layer (256× 256) (d) Final mask of the second layer (256× 256)

(e) Original mask of the third layer (1× 256)

(f) Final mask of the third layer (1× 256)

Figure 14: Visualization of the binary masks of the actor.
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