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Abstract

Training strategies for modern deep neural networks (NNs) tend to induce a heavy-tailed
(HT) empirical spectral density (ESD) in the layer weights. While previous efforts have
shown that the HT phenomenon correlates with good generalization in large NNs, a theo-
retical explanation of its occurrence is still lacking. Especially, understanding the conditions
which lead to this phenomenon can shed light on the interplay between generalization and
weight spectra. Our work aims to bridge this gap by presenting a simple, rich setting to
model the emergence of HT ESD. In particular, we present a theory-informed setup for
‘crafting’ heavy tails in the ESD of two-layer NNs and present a systematic analysis of the
HT ESD emergence without any gradient noise. This is the first work to analyze a noise-free
setting, and we also incorporate optimizer (GD/Adam) dependent (large) learning rates into
the HT ESD analysis. Our results highlight the role of learning rates on the Bulk+Spike
and HT shape of the ESDs in the early phase of training, which can facilitate generalization
in the two-layer NN. These observations shed light on the behavior of large-scale NNs, albeit
in a much simpler setting. Last but not least, we present a novel perspective on the ESD
evolution dynamics by analyzing the singular vectors of weights and optimizer updates.

1 Introduction

Training NNs on real-world data, which often has low intrinsic dimensionality (Wright & Ma, 2022; Hastie
et al., 2005), can commonly lead to spiked covariance structures in the ESD of weight matrices (Ba et al.,
2023; Lee et al., 2024). From a classical statistics viewpoint, spiked models capture low-rank signal directions
emerging from noisy high-dimensional data (Anderson et al., 2010; Arous & Guionnet, 2008; Ding & Yang,
2021), offering a natural framework to study spectral evolution during training. Recent work by Martin &
Mahoney (2021a) showed that the ESD of weight matrices evolves through a sequence of phases to exhibit
a heavy-tailed distribution—even without explicit regularization. While the Bulk+Spike shaped covariance
matrices have been widely analyzed (Baik et al., 2005; Anderson et al., 2010; Ba et al., 2023), the emergence
of heavy-tailed ESDs has drawn increasing attention due to their strong correlation with generalization
performance in modern deep learning tasks across vision and language domains. The shape of HT ESDs has
also been successfully leveraged to assess the quality of pre-trained NNs (Martin & Mahoney, 2020; Martin
et al., 2021; Martin & Mahoney, 2021b) (including Large Language Models (Yang et al., 2023)), and design
layer-wise learning rate schedulers (Zhou et al., 2023; Liu et al., 2024).

Towards a practical systematic analysis of HT ESDs. Owing to the wide range of applications
described above, many efforts (Simsekli et al., 2019; 2020a;b; Gurbuzbalaban et al., 2021; Hodgkinson &
Mahoney, 2021; Hodgkinson et al., 2022; Dandi et al., 2024a) have tried to understand the underlying
mechanisms of the HT phenomenon. In particular, they have focused on the limiting distributions of the
weight values by modeling the stochastic gradient noise as stochastic processes. The underlying idea is that
when the weight values tend to an HT distribution, then the resulting ESD also exhibits a similar transition
towards heavy-tailedness (see Arous & Guionnet (2008)). Although fundamentally connected to the HT
ESDs, these insights apply to the limiting/convergence phases of training and do not directly explain the
HT ESD emergence after finite training steps as observed by the empirical studies of Martin & Mahoney
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(a) GD η = 2000 (b) GD η = 2000 (c) FB-Adam η = 0.5 (d) FB-Adam η = 0.5

Figure 1: Emergence of HT spectra after 10 GD/FB-Adam steps. Both linear and log scales are shown. For
the purpose of illustrating clear HT shapes, we did not choose a highly HT spectrum. Highly HT spectra
can also be generated without gradient noise and are discussed in Appendix A.

(2021a); Martin et al. (2021). Furthermore, it is currently unclear if such emergence is limited to large-scale
NNs trained until convergence and if it is even possible to simulate such behavior in small-scale NNs during
the early phases of training.

A Tangible Setup. In this paper, we present an alternative setup that is amenable to discrete-step
analysis and is rich enough to study the evolution of ESDs in two-layer NNs without any gradient noise. Our
setup does not rely on continuous time approximations to SGD or limiting distribution analysis but instead
employs a Teacher-Student setting (Arous et al., 2021; Bietti et al., 2022; Ba et al., 2022; Dandi et al., 2023;
Ba et al., 2023; Mousavi-Hosseini et al., 2023b) to study the effects of finite optimizer steps on the weight
matrix ESD (Figure 1). By training a two-layer feed-forward NN (Student) to learn a single-index model
(Teacher) using vanilla Gradient Descent (GD) and Full-batch Adam (FB-Adam) optimizers, we show that:

“The ESD of the hidden layer weight matrix exhibits heavy tails after multiple steps of GD/FB-Adam with
(sufficiently) large learning rates”.

Intuition. Before diving into the details, we present the reader with a mental model of the ESD evolution
in this setup. At initialization, the hidden layer weight matrix ESD of the student NN can be characterized
by the Marchencko-Pastur distribution (i.e. random-like). The first step with a large η has been shown
to result in an outlier singular value (i.e. a ‘spike’) in the ESD and results in a ‘Bulk+Spike’ shape. The
singular vector corresponding to this spike tends to align with the target direction of the teacher model and
results in improved generalization (Ba et al., 2022; Dandi et al., 2023). By continuing to train the student
NN with such large η, our work shows that the interactions between the spike and the bulk gradually lead
to a ‘Bulk-Decay’ and finally lead to HT ESD.

Our theory is primarily aimed at identifying the large η for FB-Adam, which can result in a spike after the one-
step update. Especially, we formulate the scale of η (depending on hidden layer width and data dimension)
which can lead to a Bulk+Spike ESD after the one-step update. Such a result has been formulated and
studied for one-step GD by recent works (Ba et al., 2022; Dandi et al., 2023) but none of the previous works
have extended the analysis to FB-Adam (which is closer to the practical scenarios where Adam is widely used).

Toward understanding the shape transitions of ESD from the Bulk+Spike to an HT, we vary η from small
to large values and observe that the distance between the spike and the bulk (i.e spectral gap) determines
the HT emergence during the early phases of training. For instance, η = 1 leads to HT ESDs just after
t = 10 steps, whereas η = 0.1 requires very long training up to t = 10000 steps (see also Table 3, Table 4).
Thus highlighting the necessity to study critical learning rates for one-step optimizer updates. We also
analyze the correlations between the heaviness of tails (as measured by power-law fits) in the ESD and the
generalization of the student NN after multiple steps. We showcase empirical results on the existence of a
range of η (depending on the optimizer) that can result in an HT ESD as well as improve the generalization of
the student NN. In particular, η in such a suitable range results in HT ESDs whose power-law fit (as measured
by the hill-climbing approach (Yang et al., 2023)) lie in the range of (2, 2.5) and lead to strong generalization.
This result supports the observations of Martin & Mahoney (2021a); Martin et al. (2021) for well-trained
deep NNs where the truncated power-law fit of the ESDs lies within a range of (2, 4). Finally, we present
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a novel perspective on HT ESD emergence using tools from the ‘signal recovery’ literature (Landau et al.,
2023; Benaych-Georges & Nadakuditi, 2012). In particular, we show that the alignments of singular vectors
of the hidden layer weight matrix and its corresponding optimizer update matrix significantly influence the
shape of ESD during training.

To summarize, our main contributions are as follows:

• We present a gradient-noise-free setting to study the emergence of HT ESD in the hidden layer
weight matrix of two-layer NNs during the initial phases of training. To the best of our knowledge,
this is the first work to study the early evolution phases of the ESD across discrete training steps
with large learning rates. In this setup, we also present deeper connections between feature learning
after the first step (via the spike in the weight matrix ESD) and the HT emergence after finite steps.

• We theoretically establish the scale of the learning rate at which one step of FB-Adam results in
a spike in the hidden layer weight matrix ESD. This result can be of independent interest to the
community since prior results have been established only for GD.

• We empirically analyze the evolution of the hidden layer weight matrix ESD into an HT distribution
during training. Interestingly, we show that for a certain range of optimizer-dependent learning
rates, the two-layer NN can exhibit HT ESDs and generalize well.

• We present a novel perspective on the interactions between the bulk and spike of the ESD which
result in a HT distribution. By analyzing the overlap(alignment) of singular vectors of the weight
matrix and its corresponding optimizer updates during training, our qualitative observations show
that the alignments tend to exhibit an HT-like decay across the singular vector indices and correlate
with the emergence of HT ESDs during training.

Overall, our paper makes multiple novel theoretical and empirical contributions centered around the emer-
gence of HT ESDs and their correlations with the good generalization of NNs.

2 Related Work

The heavy-tailed phenomenon. Heavy tails in machine learning have been observed and studied in
various forms. The most prominent empirical results are from a series of works by Martin & Mahoney (2020;
2021a;b); Martin et al. (2021), which propose a heavy-tailed self regularization (HT-SR) theory of deep
NNs. In particular, Martin & Mahoney (2021a) proposed a ‘5 + 1’ phase model corresponding to the ESD
evolution, and aims to model the HT-SR effect during training. The phases are as follows: (1) Random-
like, (2) Bleeding-out, (3) Bulk+Spikes, (4) Bulk-Decay, (5) Heavy-Tailed (HT), and the extreme case of
(6) Rank-Collapse. Their observations from extensive empirical analysis showcased a correlation between
the power law fits of weight matrix ESDs and generalization. Although it is still unclear if HT ESDs are
necessary for generalization, Martin et al. (2021); Yang et al. (2023) have shown that the shape metrics
of the ESD can be effectively leveraged to identify well-trained NNs (and can be extended to large-scale
models such as LLMs). From a theoretical perspective, previous efforts have primarily focused on stochastic
optimization settings and proposed generalization bounds based on the tail indices of the stochastic noise
(Simsekli et al., 2019; 2020b;a; Gurbuzbalaban et al., 2021; Hodgkinson & Mahoney, 2021; Hodgkinson et al.,
2022; Raj et al., 2023; Nguyen et al., 2019; Barsbey et al., 2021). In particular, the earlier work by Simsekli
et al. (2020a) employed continuous-time approximation of SGD via Feller-processes and studied the role of the
Hausdorff Dimension on generalization. More recently, Hodgkinson et al. (2022) extended this analysis to
discrete-time settings. In concurrent works, Gurbuzbalaban et al. (2021) studied the heavy-tailed stationary
distributions of discrete Markov processes as an approximation to SGD iterates in the infinite data regime,
while Hodgkinson & Mahoney (2021) analyzed the role of multiplicative noise in such settings. While these
efforts have emphasized the role of the learning rate/batch size ratio in determining the tail index of the
iterates, a formal study on the role of these hyper-parameters is still lacking. More importantly, none of these
efforts have focused on the evolution of the ESD itself. Recent work by Wang et al. (2023) empirically studied
the emergence of HT-ESDs when training shallow neural networks to learn multi-index models with Adam.
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They showcased that Adam can facilitate the emergence of HT-ESDs, but do not theoretically characterize
the learning rates required to observe such behavior. Furthermore, they do not present a systematic study
of the correlation between learning rates and tail indices for HT ESD. Our work aims to bridge these gaps
and analyzes the fine-grained ESD evolution from a Marchenko-Pastur (MP) fit (i.e. random initialization)
→ “Bulk+Spike” → “Bulk-Decay” → HT distributions and the correlations with generalization.

Feature learning and large learning rates. Learning single-index models using two-layer NNs under
the Teacher-Student setup has provided rich insights into the sample complexity (Damian et al., 2023;
Mousavi-Hosseini et al., 2023a; Zweig et al., 2023; Damian et al., 2024; 2022; Abbe et al., 2023) and training
dynamics (Bietti et al., 2022; Wang et al., 2023; Cui et al., 2024; Moniri et al., 2023) of NNs. In particular,
the study of feature learning in such two-layer NNs focuses on the factors (such as optimizers (Abbe et al.,
2023), loss landscapes (Damian et al., 2023), representations (Nichani et al., 2023) and learning rates (Dandi
et al., 2023)) that facilitate sample efficient learning beyond the kernel regime (Louart et al., 2018; Gerace
et al., 2020; Mei & Montanari, 2022; Hu & Lu, 2022; Goldt et al., 2022; Liu et al., 2021). Recently, Ba et al.
(2022) analyzed the first step of GD update in the high dimensional setting and formalized the scale of η
required to go beyond the random feature regime. In particular, such a large η is necessary for a two-layer
NN to learn the hidden direction of a single-index model after one step of GD (see also (Dandi et al., 2023)).
This first large update was shown to result in an outlier singular value (i.e. a ‘spike’) in the ESD of the
hidden layer weight matrix. Our work presents the first result for such large η in the case of FB-Adam and
can be of wider interest in the feature learning context. Such a characterization is important since Dandi
et al. (2025) have shown in the asymptotic limit of input dimension d → ∞ (and the proportional scaling
regime) that the spikes in the weight matrix ESD tend to affect the ESD shape of feature matrix after a
single step with large η. Beyond the one-step analysis, Dandi et al. (2024b) analyzed the role of two-pass GD
in learning single-index models with large information exponents (Arous et al., 2021). However, the effects of
multiple passes over the data on the ESD and generalization are yet to be fully understood. Our multi-step
analysis empirically highlights the importance of such feature learning after the first step for the emergence
of HT ESD. Thus, showcasing the underexplored connections between these two areas of research.

3 Preliminaries and Setup

Notation. For n ∈ N, we denote [n] = {1, · · · , n}. We use O(·) to denote the standard big-O notation and
the subscript Od(·) to denote the asymptotic limit of d → ∞. Formally, for two sequences of real numbers xd

and yd, xd = Od(yd) represents limd→∞ |xd| ≤ C1|yd| for some constant C1. Similarly, xd = Od,P(yd) denotes
that the asymptotic inequality almost surely holds under a probability measure P. The definitions can be
extended to the standard Ω(·), Θ(·) or ≍ notations analogously (Graham & Knuth, 1989). For two sequences
of real numbers xd and yd, xd ≍ yd represents |yd|C2 ≤ |xd| ≤ C1|yd|, for constants C1, C2 > 0 (Wang
et al., 2021; Moniri et al., 2023). For a real matrix B = (Bij)n×m ∈ Rn×m, B◦p represents an element-wise
p-power transformation such that B◦p = (Bp

ij)n×m. ⊙ is the matrix Hadamard product, sign(.) denotes the
element-wise sign function. ∥·∥2 denotes the ℓ2 norm for vectors and the operator norm for matrices. ∥·∥F

denotes the Frobenius norm. 0h×d, 1h×d ∈ Rh×d represent the all-zero and all-ones matrices.

Dataset. We sample n data points {x1, · · · , xn} from the isotropic Gaussian xi ∼ N (0d, Id), ∀i ∈ [n] as
our input data. For a given xi ∈ Rd, we use a single-index teacher model F ∗ : Rd → R to generate the
corresponding scalar label yi ∈ R as follows:

yi = F ∗(xi) + ξi = σ∗(β∗⊤xi) + ξi. (1)

Here β∗ ∈ Sd−1 (the d−1-dimensional sphere in Rd) is the target direction, σ∗ : R → R is the target non-linear
link function, and ξi ∼ N (0, ρ2

e) is the independent additive label noise. We represent X ∈ Rn×d, y ∈ Rn as
the input matrix and the label vector, respectively.
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Learning. We consider a two-layer fully-connected NN with activation σ : R → R as our student model
f(·) : Rd → R. For an input xi ∈ Rd, its prediction is formulated as:

f(xi) = 1√
h

a⊤σ

(
1√
d

W xi

)
. (2)

Here W ∈ Rh×d, a ∈ Rh are the first and second layer weights, respectively, with entries sampled i.i.d as
follows [W0]i,j ∼ N (0, 1), [a]i ∼ N (0, 1), ∀i ∈ [h], j ∈ [d].

3.1 Training Procedure

We employ the following Two-stage training procedure (Ba et al., 2022; Moniri et al., 2023; Cui et al., 2024;
Dandi et al., 2023; Wang et al., 2023) on the student network. In the first stage, we fix the last layer weights
a ∈ Rh and apply optimizer update(s) (GD/FB-Adam) only for the first layer W . In the second stage, we
perform ridge regression on the last layer using a hold-out dataset of the same size to calculate the ideal
value of a (Ba et al., 2022).

Optimizer updates for the first layer. In this phase, we fix the last layer weights a to its value at
initialization and perform GD/FB-Adam update(s) on W to minimize the mean-squared error R(f, X, y) =
1

2n

∑n
i=1(yi − f(xi))2. The update to W using GD is given by:

Wt+1 = Wt − ηGt, (3)

where Wt denotes the weights W at step t and Gt = ∇WtR(f, X, y) represents the full-batch gradient.
Next, to formulate the updates using FB-Adam, let:

M̃t+1 = β1M̃t + (1 − β1)Gt, Ṽt+1 = β2Ṽt + (1 − β2)G◦2
t . (4)

Here M̃t, Ṽt ∈ Rh×d represent the first and second order moving averages of the gradient respectively, with
base values M̃0 = 0h×d, Ṽ0 = 0h×d (Kingma & Ba, 2014). (β1, β2) ∈ R are the decay factors. Considering
G̃t = (Ṽ ◦1/2

t+1 + ϵ1h×d)◦−1 ⊙ M̃t+1, we formulate the FB-Adam update1:

Wt+1 = Wt − ηG̃t. (5)

For the remainder of this paper, we use the overloaded term ‘optimizer update’ to represent either FB-Adam
or GD update. Specific choices of the optimizer will be mentioned explicitly.

Ridge-regression on final layer. Similar to the setup of Ba et al. (2022); Moniri et al. (2023); Wang
et al. (2023); Ba et al. (2023), we consider a hold-out training dataset X ∈ Rn×d, y ∈ Rn sampled in the
same fashion as X, y to learn the last layer weights. Formally, after t optimizer updates to the first layer
to obtain Wt, we calculate the post-activation features Zt = 1√

h
σ
(

1√
d
WtX

⊤) and solve the following
ridge-regression problem:

â = arg min
a∈Rh

1
n

∥∥∥y − Z
⊤
t a
∥∥∥2

2
+ λ

h
∥a∥2

2 . (6)

Here λ > 0 is the regularization constant. The solution â is now used as the last-layer weight vector for
our student network f(·) and we consider the resulting regression loss as our training loss. Formally, this
setup allows us to measure the impact of updates to W after t steps on the hold-out dataset’s regression
loss. Finally, for a test sample x ∈ Rd, the student network prediction is given as: ŷ = 1√

h
â⊤σ

(
1√
d
Wtx

)
.

These predictions on the test data are used for computing the test loss using the mean squared error.

1We choose the subscript t in G̃t for notational consistency between FB-Adam and GD updates.
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(a) GD η = 0.1 (b) GD η = 2000 (c) FB-Adam η = 1 (d) FB-Adam η = 10

Figure 2: ESD of W ⊤
1 W1 for GD/FB-Adam with varying η, and n = 2000, d = 1000, h = 1500,σ∗ = softplus,

σ = tanh, ρe = 0.3, λ = 0.01.

3.2 Alignment and HT Metrics

Alignment between W , β∗. To quantify the “extent” of feature learning in our student network during
training, we measure the alignment between the first principal component of W (denoted as u1) and the
target direction β∗ (Ba et al., 2022; Wang et al., 2023) as: sim(W , β∗) = |u⊤

1 β∗|.

Kernel Target Alignment (KTA). In addition to analyzing W , we also consider the alignment between
the Conjugate Kernel (CK ) (Wang et al., 2023; Lee et al., 2018; Matthews et al., 2018; Fan & Wang, 2020)
based on hidden layer activations and the target outputs. Formally, consider the hidden layer activations of
the holdout data as Z = 1√

h
σ
(

1√
d
W X

⊤) and define CK as: K = Z
⊤

Z ∈ Rn×n. The KTA (Cristianini
et al., 2001) between K and yy⊤ ∈ Rn×n is given as:

KTA = ⟨K, yy⊤⟩
∥K∥F ∥yy⊤∥F

, ⟨K, yy⊤⟩ =
n∑

i,j

Ki,j(yy⊤)i,j . (7)

Power-law fits (PL_Alpha_Hill, PL_Alpha_KS) To quantify the heaviness of the tails in the ESD, we
measure PL_Alpha_Hill (Zhou et al., 2023), and PL_Alpha_KS, which refer to the power-law exponents that
are fit to the ESD of W ⊤

t Wt using the Hill estimator (Hill, 1975) and based on the Kolmogorov–Smirnoff
statistic respectively (Martin et al., 2021; Clauset et al., 2009).

4 Bulk+Spike Phenomenon after One Optimizer Step

In this section, we present empirical and theoretical results for the scale of η for FB-Adam that results in
the “Bulk+Spike” ESD and facilitates feature learning in the student network after the first update. The
discussion on the first optimizer update and η is essential, as we show in Section 5 that the Bulk+Spike ESD
after the first update facilitates the emergence of HT ESDs.

4.1 The Bulk+Spike ESD by Scaling η

Setup. We consider the two-layer NN f(·) of width h = 1500, σ = tanh and train it on a dataset of size
n = 2000, with input dimension d = 1000. We choose σ∗ = softplus as the target link function and set the
label noise to ρe = 0.3, with λ = 0.01. The test data consists of 200 samples.

FB-Adam needs a much smaller η than GD to exhibit a Bulk+Spike ESD. By varying η, we train
the student network f(·) for one step using GD/FB-Adam. Observe from Figure 2a that after one GD update
with η = 0.1, the ESD of W ⊤

1 W1 remains largely unchanged from that of W ⊤
0 W0 (i.e ESD at random

initialization). On the other hand, Figure 2b illustrates that for η = 2000, the ESD of W ⊤
1 W1 exhibits a

spike. However, FB-Adam exhibits a spike in the ESD of W ⊤
1 W1 after the first step even with η = 1 (see

Figure 2c). Finally, for η = 10, the ESD tends towards a seemingly bimodal distribution (see Figure 2d).
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(a) GD loss (b) FB-Adam loss (c) KTA (d) sim(W , β∗)

Figure 3: Losses, KTA, sim(W , β∗) for f(·) trained with one-step of GD, FB-Adam. Here n = 2000, d = 1000,
h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3, λ = 0.01.

Impact on losses, KTA, and sim(W , β∗). As the choice of optimizer affects the scale of η leading to
a Bulk+Spike ESD of W ⊤

1 W1, we vary η across {0.001, 0.01, 0.1, 1, 10, 100, 1000, 2000, 3000} and plot the
means and standard deviations of losses, KTA and sim(W , β∗) across 5 runs in Figure 3. In the case of GD,
observe that η = 2000 is the threshold for the: reduction of train and test losses (Figure 3a), an increase
in KTA (Figure 3c), and an increase in sim(W , β∗) (Figure 3d). Thus, implying that the occurrence of
a spike leads to better generalization after one step (as also verified by Ba et al. (2022)). In the case of
FB-Adam, η < 0.01 does not improve generalization and we do not see an increase in KTA/sim(W , β∗). For
0.01 ≤ η ≤ 1, generalization improves, and KTA/sim(W , β∗) values increase. For η > 1, generalization
degrades and there is a slight reversal in the trend for KTA. Note that due to the two-phase training strategy,
the large magnitude of the first step update with η > 1 can lead to lower training loss (since the last layer
is computed based on a closed-form solution), but lead to higher test loss. These observations hint at a
sweet spot for η beyond which FB-Adam leads to poor test performance (see also Appendix E.1). Towards
understanding these observations, we focus on the following pressing question: why does η = 0.1 suffice for
one-step of FB-Adam to exhibit a spike in the ESD, whereas one-step GD requires η = 2000? Specifically, how
large should η be for FB-Adam to exhibit a spike in the ESD?

4.2 Theoretical Results for Scaling η with FB-Adam

To theoretically answer the above questions, we start by formulating the first step gradient G0 as:

G0 = 1
n

√
d

[
1√
h

(
ay⊤ − 1√

h
aa⊤σ

(
1√
d

W0X⊤
))

⊙ σ′
(

1√
d

W0X⊤
)]

X. (8)

Here σ′(·) : R → R is the derivative of the activation function σ acting element-wise on XW ⊤
0 /

√
d. Based

on equation equation 4, let P̃1 = Ṽ
◦1/2

1 + ϵ1h×d. Considering the FB-Adam epsilon hyper-parameter ϵ ≈ 0
(Kunstner et al., 2022), the scaled sign update (Bernstein et al., 2018) can be given as:

G̃0 = P̃ ◦−1
1 ⊙ M̃1 = 1 − β1√

1 − β2
sign(G0). (9)

Theorem 4.1 Given the two-stage training procedure with large n, d, such that n ≍ d, and large (fixed) h,
assume the teacher F ∗ is λσ-Lipschitz with ∥F ∗∥L2 = Θd(1), and a normalized ‘student’ activation σ, which
has λσ-bounded first three derivatives almost surely and satisfies E[σ(z)] = 0,E[zσ(z)] ̸= 0, for z ∼ N (0, 1);
then the matrix norm bounds for the one-step FB-Adam update can be given as:∥∥∥G̃0

∥∥∥
2

= Θd,P(
√

hd),
∥∥∥G̃0

∥∥∥
F

= Θd,P(
√

hd). (10)

Appendix B presents the proof. The sketch of the proof is as follows: First, we show that G0 does not
contain values that are exactly equal to 0 almost surely. This allows us to obtain

∥∥∥G̃0

∥∥∥
F

= Θd,P(
√

hd).
Next, we leverage a rank 1 approximation A of G0 (in the operator norm (Ba et al., 2022)) to show that
sign(A) = sign(G0). Finally, we obtain the lower-bound of

∥∥∥G̃0

∥∥∥
2

= Ωd,P(
√

hd) to prove the theorem 2.

2The normalized activation is not a practical limitation and is solely required for the proof (Ba et al., 2022).
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Corollary 4.2 Under the assumptions of Theorem 4.1, we have the following learning rate scales

η = Θ(1) =⇒ ∥W1 − W0∥F ≍ ∥W0∥F

η = Θ
(

1/
√

h
)

=⇒ ∥W1 − W0∥2 ≍ ∥W0∥2 ,
(11)

where ∥W0∥2 = Θd,P(
√

d), ∥W0∥F = Θd,P(
√

hd).

Theorem 4.1 shows that the spectral and Frobenius norms of G̃0 scale similarly and that the top singular
value contributes the most to the Frobenius norm as d, h increase. As a consequence, Corollary 4.2 indicates
that η = Θ(1) (which is independent of h, d) is sufficient for ηG̃0 to result in a ‘spike’ in the ESD of W ⊤

1 W1.
This explains our empirical observations above where even η = 1 was sufficient for the ESD to transition
into a Bulk+Spike shape.

Remark. We note that a similar result for η in the case of GD was previously established by Ba et al. (2022).
However, they employ a mean-field initialization of the two-layer NN f(·) and differs from our NTK-based
initialization (Wang et al., 2023). Nonetheless, we show that our results can be extended to such a setup as
well and the adjusted η can indeed explain the Bulk+Spike ESD after one step update (Appendix C presents
a comprehensive discussion).

5 HT Phenomenon after Multiple Optimizer Steps

In this section, we empirically analyze the ESD evolution from the “Bulk+Spike” shape into an HT distribu-
tion. This is followed by a correlation analysis with generalization of the two-layer NN and finally presents
a singular vector perspective on the HT ESD emergence.

5.1 Transitioning from Bulk+Spike to HT ESD

Spike after one step facilitates the emergence of HT ESD. We begin by employing the same setup
as Section 4 and show in Table 1 that the spike in the ESD after one step facilitates the emergence of HT
ESD. We observe that after just 10 FB-Adam steps with η = 1, the HT ESD emerges. However, η = 0.1
requires t = 10000. This indicates that the relative position of the spike from the bulk (which is captured
by the spectral gap in this setup) plays a key role in determining the step complexity of the HT ESD
emergence 3.Finally, for η = 0.01, which does not exhibit an HT ESD even after t = 10000, we observed that
a significantly long amount of training for t = 106 steps can lead to HT. Note that η = 0.01 tends to fall
within the (Θ(1/

√
h), Θ(1)) range, considering the scaling constants for Θ. This leads to a scenario where a

spike does not emerge after one step but the magnitude of gradient updates over t = 106 steps can lead to
HT ESD (see Table 5). Given this observation, extremely small η might not be able to exhibit such changes
to the ESD even after t > 106 steps (see Corollary 5.3 in Wang et al. (2023) for a related formal result). We
extend the analysis to a wider range of η in Appendix D (see Table 4).

Bulk-Decay as an intermediate stage. By considering FB-Adam with η = 0.2 and the same setup as
Section 4, we illustrate in Figure 4 that the spike emerges after one-step (Figure 4a) and gradually decays
the Bulk (Figure 4b, Figure 4c) toward a HT distribution (Figure 4d). Since practical settings employ
deep NNs and train with stochastic gradient noise on complex datasets, the ESD evolution is much more
nuanced. Especially the Bleeding-out phase and the presence of multiple spikes before the onset of Bulk-
Decay. Nonetheless, we extended our results from the student-teacher setup to more practical settings, such
as VGG, and ResNet models, and validated our HT ESD findings in those settings as well (see Section 5.4).
Overall, we emphasize that our setup with two-layer NNs and single-index models opens up the possibility
of approximating such dynamics while being subject to theoretical treatment.

3Theoretical analysis of the spectral gap and its role on the step complexity for HT ESD emergence is out of scope of this
paper and can be a valuable direction for future research.
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t = 1 t = 100 t = 10000

η = 0.01

η = 0.1

η = 1

Table 1: Evolution of ESD over steps t ∈ {1, 100, 10000} with η ∈ {0.01, 0.1, 1} for FB-Adam.

(a) Bulk+Spike (b) Bulk-Decay (onset) (c) Bulk-Decay (progress) (d) Heavy Tails (onset)

Figure 4: Evolution of ESD (linear-linear scale) from a Marchenko-Pastur fit (at initialization t = 0: red
bulk) to (a) Bulk+Spike (t = 1), (b) the onset of Bulk-Decay (t = 5), (c) Continued decay of the bulk
(t = 10), (d) onset of heavy tails (t = 50), with FB-Adam optimizer and η = 0.2.

5.2 Impact on Generalization

Setup. We consider the two-layer student NN f(·) of width h = 1500, σ = tanh and train it on a dataset
of size n = 8000 for 10 steps using GD/FB-Adam. We choose a sample dimension d = 1000, σ∗ = softplus
and ρe = 0.3. The test dataset has 200 samples.

Correlations between ESD and losses. We plot the means and standard deviations across 5 runs
for the train/test losses, KTA, PL_Alpha_Hill and PL_Alpha_KS (see Section 3.2) of W ⊤

10W10 after 10
GD/FB-Adam updates by varying η across {0.001, 0.01, 0.1, 1, 10, 100, 1000, 2000, 3000} in Figure 5. A lower
value of PL_Alpha_Hill / PL_Alpha_KS indicates a heavier-tailed spectrum4. Observe that for baseline GD
experiments with η ≥ 1000, the reduction in train and test losses are correlated with an increase in KTA and
a decrease in PL_Alpha_Hill and PL_Alpha_KS. Additional experiments are presented in Appendix E.2.

In the case of FB-Adam, a much clearer correlation between the training loss, KTA, PL_Alpha_Hill and
PL_Alpha_KS can be observed. Especially, there seems to be a region of benign learning rates (0.01 ≤ η ≤ 1)

4The effects of the power-law exponent estimation approaches are discussed in Appendix F.
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(a) loss (b) KTA (c) PL_Alpha_Hill (d) PL_Alpha_KS

Figure 5: Losses, KTA, PL_Alpha_Hill, PL_Alpha_KS after 10 steps of GD, FB-Adam, with n = 8000, d = 1000,
h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3, λ = 0.01.

for which, the PL_Alpha_Hill estimates lie in the range of (2, 2.5) and a decrease in the estimate (resulting
in a ‘heavier’ tailed ESD) improves generalization. For 1 ≤ η ≤ 100, although we observe similar values
of PL_Alpha_Hill, the ESDs of W ⊤

10W10 differ in the scale of the singular values, and the spike seems to
have a large influence on the estimation of PL_Alpha_Hill (see Figure 24 in Appendix E). However, the
PL_Alpha_KS captures the monotonically decreasing trend for this range of η. Finally, for extremely large
η > 100, we observe much smaller estimates of PL_Alpha_Hill (< 1.8) but these extremely heavier tails do
not correlate with better generalization. We also note that these benign η ranges vary based on the choice
of the activation functions. In particular, when σ = σ∗ = tanh, we observed that the range can be reduced
by an order of magnitude (Appendix E.5). Overall, these observations support the conclusions of Martin &
Mahoney (2021a); Martin et al. (2021) which state that well-trained deep NNs do not exhibit extreme HT
ESDs but rather whose power-law estimates lie within a suitable range. For instance, a range of (2, 4) for
the truncated power-law fit estimates.

A note on the suitable range of tail index values Previous works such as Simsekli et al. (2020a);
Hodgkinson et al. (2022) studied the limiting distribution of the weight matrix values by modeling the
stochastic gradient noise using Levy/Feller processes. In particular, they showed that smaller tail-index
values lead to smaller generalization errors. The underlying idea is that when the weight values tend to
an HT distribution, then the resulting ESD is also an HT (see Arous & Guionnet (2008)). Given this
explanation, we note that the theoretical results by Simsekli et al. (2020a); Hodgkinson et al. (2022) were
shown to hold in practice by their numerical experiments, where the tail index tends to lie in a suitable range
(depending on the PL alpha fit approaches) and represents heavy-tailed noise for good generalization. Even
though our setting differs significantly from these previous works and avoids gradient noise, the suitability
of such a range seems to hold. In particular, for our setup the PL_Alpha_Hill estimates lie in the range of
(2, 2.5) where a lower value implies a ‘heavier’ tailed ESD, and improves generalization of student network.

Remark. Since practical training approaches employ techniques such as weight normalization (WN)
and learning rate schedules, we present a preliminary analysis of their role in the ESD evolution and
generalization in Appendix E.4. We employ a WN technique (Huang et al., 2023) after each update:
Wt+1 =

√
hdW ′

t+1

∥W ′
t+1∥

F

, W ′
t+1 = Wt+Mt, to ensure that ∥Wt+1∥F is always

√
hd, before the forward pass. In sum-

mary, we observed that employing WN leads to relatively heavier-tailed spectra (i.e. lower PL_Alpha_Hill)
while exhibiting similar correlations with generalization as discussed above. On the other hand, by employ-
ing schedulers such as torch.optim.StepLR, we showcase a fine-grained manipulation of the ESD evolution
depending on the decay rate γ.

5.3 Singular Vector Alignments of Weights and Optimizer Updates

In this section, we present a singular-vector perspective on the emergence of HT ESD after multiple update
steps. By considering an ‘update’ matrix Mt ∈ Rh×d , we formulate the weight updates as:

Wt+1 = Wt + Mt, (12)
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(a) O(UW1 , UM0 ) (b) O(VW1 , VM0 ) (c) O(UW10 , UM9 ) (d) O(VW10 , VM9 )

Figure 6: Overlaps after one step (a), (b) and 10 steps (c), (d) of FB-Adam(η = 1).

(a) VGG11-L4 (CIFAR10) (b) VGG11-L7 (MNIST) (c) ResNet18-L5 (CIFAR10) (d) ResNet18-L10 (SVHN)

Figure 7: ESDs in VGG11, ResNet18 after 10 steps with FB-Adam(η = 0.01) on MNIST, CIFAR10, SVHN.

where Mt is the optimizer update matrix based on GD (Mt = −ηGt) or FB-Adam (Mt = −ηG̃t). We
leverage methods from the rich literature on signal recovery in spiked matrix models (Shabalin & Nobel,
2013; Landau et al., 2023; El Alaoui & Jordan, 2018; Gavish & Donoho, 2017; Troiani et al., 2022) to analyze
the role of singular vectors of Mt in transforming the ESD of W ⊤

t Wt gradually into a HT distribution. Let
b = min(h, d), we consider the SVD of Wt+1, Wt, Mt as:

Wt+1 = UWt+1SWt+1V ⊤
Wt+1

, Wt = UWt
SWt

V ⊤
Wt

, Mt = UMt
SMt

V ⊤
Mt

, (13)

where UWt+1 , UWt , UMt ∈ Rh×b, SWt+1 , SWt , SMt ∈ Rb×b and VWt+1 , VWt , VMt ∈ Rb×d.

Definition 5.1 (Landau et al., 2023). The ‘overlaps’ between two singular vector matrices J , Q ∈ Ra×b is
defined as: O(J , Q) = (J⊤Q)◦2 ∈ Rb×b

Overlaps during training. From the finite rank spiked matrix model, we know that the singular values
SW1 are non-linear transformations (also termed as ‘inflations’ (Landau et al., 2023)) of SM0 , and UW1 , VW1

are rotated variants of UM0 , VM0 respectively. Formally, let ŝ1 ≥ ŝ2 · · · ≥ ŝb denote the singular values of
W1, and let s1 ≥ s2 · · · ≥ sb denote the singular values of M0. Let ûj ∈ Rh, v̂j ∈ Rd represent the left and
right singular vectors of W1 corresponding to singular value ŝj . Similarly, let uk ∈ Rh, vk ∈ Rd represent the
left and right singular vectors of M0 corresponding to singular value sk. Owing to the rotational invariant
nature of the Gaussian matrix W0, the alignment values E

[
(û⊤

j uk)2] ,E
[
(v̂⊤

j vk)2] , ∀j, k ∈ {1, · · · , b} can
be computed solely based on ŝj , sk (see Landau et al. (2023); Mingo & Speicher (2017)). In this one-step
context, we show that the large η (from Section 4) leads to outlier alignment values in the overlap plots.

In particular, observe from Figure 6a, Figure 6b that (û⊤
1 u1)2, (v̂⊤

1 v1)2 (i.e. alignments of top singular
vectors of W1, M0) have high values which are close to 1 and correlate with the presence of a spike in the
ESD (Table 4) with η = 1, t = 1. Furthermore, Figure 6c, Figure 6d show a decay of overlap values across
the diagonal that tends to correlate with the HT ESD emergence (Table 4) with η = 1, t = 10. Similar
observations for GD are presented in Appendix E. A rigorous theoretical and quantitative study is left for
future work (Appendix G).
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5.4 Applicability of Insights to Deeper NNs

We verify our findings on full-batch training and optimizer-dependent learning rates for the emergence of
HT ESD with FB-Adam in practical deep NNs. We choose the VGG11 and ResNet18 models to train on
the CIFAR10, MNIST and SVHN datasets. We avoid (very) large NNs and datasets due to GPU memory
constraints for full-batch training and instead focus on the paper’s main theme. Figure 7 illustrates the ESDs
of selected layers in the deeper NNs and indicates the emergence of HT ESDs during the early phases of
training (i.e just after 10 steps) (See Appendix E.6 for further illustrations). The main takeaway from these
results is the observation that such emergence in practical NNs is not limited to training till convergence with
mini-batches (Martin & Mahoney, 2021a). Furthermore, since the power-law fits have been used to determine
if a layer is under-trained or over-trained Martin et al. (2021); Zhou et al. (2023), our results highlight that
such connections hold more nuance than considered by previous efforts. Thus opening up a wide range of
avenues to explore the interplay between the ESDs and training convergence (see also Appendix G).

6 Conclusion

This paper presents a different angle to study the emergence of HT ESDs during NN training. Unlike existing
studies that mostly focused on the mini-batch settings, we show that full-batch GD or Adam can still lead to
HT ESDs in the weight matrices after only a few optimizer updates with large η. Our paper also connects
with several ongoing studies in this field. In particular, our study analyzes the ‘5+1’ phase model (Martin &
Mahoney, 2021a) of ESD evolution and sheds light on the transitions from a Marchenko-Pastur (MP) fit (i.e.
random initialization) → “Bulk+Spike” → “Bulk-Decay” → HT distributions. We also showcase that the
“Bulk-Decay” ESD can be treated as an intermediate state generated from diffusing the spike into the main
bulk (see also Appendix E.3). Our paper also presents several surprising phenomena: (1) the emergence of
the HT spectra seems to require only a single spike aligned with the teacher model; (2) the emergence of
the HT spectra can appear early during training, way before the NN reaches a low training loss; (3) several
factors, such as weight normalization and learning rate scheduling, can all contribute to the emergence of
HT ESDs. Overall, our work connects the feature learning aspect of the bulk + spike ESD (Section 4) with
the early emergence of HT ESDs (Section 5) and presents a unique perspective to study the correlations
between HT ESDs and generalization in NNs (especially with FB-Adam).
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A Generating Very Heavy-Tailed Spectra without Gradient Noise

(a) GD η = 5000 (b) GD η = 5000 (c) GD η = 5000

(d) FB-Adam η = 3 (e) FB-Adam η = 3 (f) FB-Adam η = 3

Figure 8: Emergence of HT spectra after 10 GD/FB-Adam steps with weight normalization. Here n = 4000,
d = 500, h = 3000, σ∗ = softplus, σ = tanh, ρe = 0.3. PL_Alpha_KS for GD (first row) is 1.58, and
PL_Alpha_KS for FB-Adam (second row) is 1.59.

In this section, we present two examples of highly HT ESD, shown in Figure 8. If one only observes
the linear-linear plot (first column), the shapes can be invisible due to large eigenvalues. For example, see
Figure 8a. After truncation, they become clearer (middle column). To quantitatively verify our observations,
we adopted the WeightWatcher (Martin et al., 2021) Python APIs to fit a power-law (PL) distribution to
these ESDs. We find that both ESDs have a PL coefficient PL_Alpha_KS smaller than 2. As discussed
in Martin & Mahoney (2021a, Table 3), this indicates that these ESDs have entered the very HT regime.
More importantly, these ESDs are generated without gradient noise after only 10 GD/FB-Adam steps.

B Proof of Theorem 4.1

In this section, we prove Theorem 4.1, and conduct numerical simulations for empirical verification. We
begin by stating and discussing the main assumptions of the theorem.

Assumption B.1 Gaussian Initialization. The entries of the weights are sampled independently as
[W0]ij

i.i.d.∼ N (0, 1) and [a]i
i.i.d.∼ N (0, 1), ∀i ∈ [h], j ∈ [d].

Assumption B.2 Normalized Activation. The nonlinear activation σ has λσ-bounded first three deriva-
tives almost surely. In addition, σ satisfies E[σ(z)] = 0,E[zσ(z)] ̸= 0, for z ∼ N (0, 1).

Discussion. Consider σ : R → R to be the tanh function and z ∼ N (0, 1). Since σ(z) = tanh(z) = ez−e−z

ez+e−z ,
it is easy to check that σ(z) has 1−bounded first three derivatives and it is an odd function satisfying
σ(z) = −σ(−z), we have:

Ep(z)[σ(z)] =
∫ ∞

−∞
σ(z)p(z)dz =

∫ 0

−∞
σ(z)p(z)dz +

∫ ∞

0
σ(z)p(z)dz = 0, (14)
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where p(z) = 1√
2π

e− z2
2 . Next, observe that

ztanh(z) = z(ez − e−z)
ez + e−z

≥ 0, (15)

where the equality ztanh(z) = 0 holds only when z = 0. Let ε > 0 and expand the expectation Ep(z)[zσ(z)]
as follows:

Ep(z)[zσ(z)] =
∫ ∞

−∞
zσ(z)p(z)dz

=
∫ 0−ε

−∞
zσ(z)p(z)dz +

∫ ∞

0+ε

zσ(z)p(z)dz +
∫ 0+ε

0−ε

zσ(z)p(z)dz.

(16)

From equation 15, the first two terms are > 0, i.e:∫ 0−ε

−∞
zσ(z)p(z)dz > 0,

∫ ∞

0+ε

zσ(z)p(z)dz > 0 (17)

whereas for ε → 0, the third term can be bounded as:∫ 0+ε

0−ε

zσ(z)p(z)dz ≥ 0 (18)

By combining the above results, σ satisfies: Ep(z)[zσ(z)] > 0 ⇒ Ep(z)[zσ(z)] ̸= 0.

Assumption B.3 Teacher-Student Setup. The target labels are generated by the single index teacher
model as yi = F ∗ (xi) + ξi, where xi

i.i.d.∼ N (0, I), ξi is i.i.d. Gaussian noise with mean 0 and variance ρ2
e,

and the teacher F ∗ is λσ-Lipschitz with ∥F ∗∥L2 = Θd(1).

Discussion. Recall that our teacher model is given by F ∗(xi) = σ∗(β∗⊤xi), where β∗ ∈ Sd−1, xi ∈ Rd, i ∈
[n], and σ∗(z) = log(1+ez) is the softplus function. Note that the derivative σ′

∗(z) = ez

1+ez < 1 is bounded,
and

∥∥β∗⊤xi − β∗⊤xj

∥∥
2 ≤ ∥β∗∥2 ∥xi − xj∥2 , ∀xi, xj ∈ Rd. This gives us:∥∥σ∗(β∗⊤xi) − σ∗(β∗⊤xj)

∥∥
2 ≤

∥∥β∗⊤xi − β∗⊤xj

∥∥
2 ≤ ∥β∗∥2 ∥xi − xj∥2 , ∀xi, xj ∈ Rd, (19)

which implies that F ∗ is a ∥β∗∥2-Lipschitz function. Next, we consider z = β∗⊤x, for x ∼ N (0, Id), which
implies z ∼ N (0, ∥β∗∥2

2), and bound σ∗(z) by 0 < σ∗(z) < gσ∗(z), where gσ∗(z) is:

gσ∗ (z) =
{

1, z < 0
z + 1, z ≥ 0.

(20)

Based on these results, we calculate ∥F ∗∥L2 as follows.

∥F ∗∥2
L2 =

∫
R

σ∗(z)2dµ <

∫
R

gσ∗(z)2dµ (21)

where dµ = 1√
2π∥β∗∥2

e
− z2

2∥β∗∥2
2 dz is the Gaussian measure. Further expansion of the upper bound gives:

∫
R

gσ∗(z)2dµ =
∫
R

gσ∗(z)2 1√
2π ∥β∗∥2

e
− z2

2∥β∗∥2
2 dz

=
∫ 0

−∞

1√
2π ∥β∗∥2

e
− z2

2∥β∗∥2
2 dz +

∫ +∞

0
(z2 + 2z + 1) 1√

2π ∥β∗∥2
e

− z2
2∥β∗∥2

2 dz

= 1 + 1
2 ∥β∗∥2

2 +
∫ +∞

−∞
|z| 1√

2π ∥β∗∥2
e

− z2
2∥β∥2

2 dz

= 1 + 1
2 ∥β∗∥2

2 +
√

2
π

∥β∗∥2 < ∞.

Since β∗ ∈ Sd−1, we get: 0 < ∥F ∗∥2
L2 < 1 + 1

2 ∥β∗∥2
2 +

√
2
π ∥β∗∥2, and ∥F ∗∥L2 = Θd(1).
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B.1 Norms of One-Step Update Matrix

We begin by formulating the full-batch gradient for the first step (G0) as follows:

G0 = 1
n

√
d

[
1√
h

(
ay⊤ − 1√

h
aa⊤σ

(
1√
d

W0X⊤
))

⊙ σ′
(

1√
d

W0X⊤
)]

X

G0 = 1
n

· µ1√
hd

ay⊤X︸ ︷︷ ︸
A

+ 1
n

· 1√
hd

(
ay⊤ ⊙ σ′

⊥

(
1√
d

W0X⊤
))

X

− 1
n

· 1
h

√
d

(
aa⊤σ

(
1√
d

W0X⊤
)⊤

⊙ σ′
(

1√
d

W0X⊤
))

X.

(22)

Here we utilized the orthogonal decomposition of the activation function: σ′(z) = µ1 + σ′
⊥(z) to the

second equality. Due to Stein’s lemma (Stein, 1981), we know that E[zσ(z)] = E [σ′(z)] = µ1, and hence
E [σ′

⊥(z)] = 0 for z ∼ N (0, 1).

Lemma B.4 ((Ba et al., 2022)): Given Assumptions B.1,B.2, and B.3, let G0 = 1
η (W0 − W1) and A :=

1
n · µ1√

hd
ay⊤X. Then there exists a constant c, such that for sufficiently large n:

P
(

∥G0 − A∥2 ≤ 2 log2 n√
n

∥G0∥2

)
≥ 1 − ne−c log2 n − e−cn. (23)

This lemma implies that G0 can be approximated by a rank one matrix A under the operator norm. Now,
to analyze the FB-Adam update, recall from equation 9 that:

G̃0 = 1 − β1√
1 − β2

sign(G0). (24)

Observe that the essence of the first step FB-Adam update lies in the sign matrix sign(G0). Based on the
expansion of G0, we leverage the rank-1 approximation matrix A to state the following lemma.

Lemma B.5 Given G0 = 1
η (W1 − W0) and rank-1 matrix A := µ1

n
√

hd
ay⊤X, then for sufficiently large n:

∥ sign(A) − sign(G0)∥2 = 0, sign(A) = sign(G0) with high probability (25)

Proof of Lemma B.5. Let amin = mini>0,j>0 |[A]ij |. Since our analysis is based on large (fixed) h, from
Lemma B.4, we almost surely have:

∀δ > 0, ∃k > 0, ∀n > k, ∥G0 − A∥2 < δ

=⇒ ∀δ > 0, ∃k > 0, ∀n > k, ∥G0 − A∥F ≤ min {
√

h,
√

d} ∥G0 − A∥2 ≤ min {
√

h,
√

d}δ
(26)

Considering δ =
√

amin√
2·min {

√
h,

√
d}

gives us:

|[G0]ij − [A]ij |2 < ∥G0 − A∥2
F ≤ amin

2 , (27)

which implies ∃k > 0, such that ∀n > k:

sign([G0]ij) = sign([A]ij) (28)

Thus, ∥ sign(A) − sign(G0)∥2 = 0, sign(A) = sign(G0). Next, we show that every entry of the matrix A is
not exactly 0 almost surely.

Proposition B.6 Let A := 1
n · µ1√

hd
ay⊤X ∈ Rh×d, then Ai,j ̸= 0, ∀i ∈ [h], j ∈ [d] almost surely.
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Definition B.7 Given two measurable spaces (Ω, M, µ), (Ω, M, ν), we say ν is absolutely continuous with
respect to µ if and only if

µ(B) = 0 ⇒ ν(B) = 0, ∀B ∈ M.

We denote it as ν ≪ µ.

Lemma B.8 (Moran, 1984) Given two measurable space (Rn, B(Rn), mn), (Rn, B(Rn), Ln), where mn is
the Gaussian measure, Ln is the Lebesgue measure, we have mn ≪ Ln.

By Radon-Nikodym Theorem (Moran, 1984), we can define the Gaussian measure using the Lebesgue integral:

Ln(E) =
∫

E

dLn; mn(E) =
∫

E

dmn =
∫

E

ΦdLn, ∀E ∈ B(Rn), (29)

where Φ is probability density function of mn respect to Ln. In the problem we consider, there are
two groups of Gaussian measures: ai and (X11, X12, ..., Xnd, ξ1, ..., ξn), which induce (R,B(R), m) and
(Rnd+n,B(Rnd+n), mnd+n) respectively. Here ai is the ith element of a; Xij is the element of X; ξi is
the Gaussian noise random variable.

Proof of Proposition B.6. Consider A := 1
n · µ1√

hd
ay⊤X ∈ Rh×d , if we can prove the following:

∀i ∈ [h], j ∈ [d],P(Ai,j = 0) = 0,

we can further have P(∃i, j, s.t Ai,j = 0) ≤
∑h

i=1
∑d

j=1 P(Ai,j = 0) = 0, which means Ai,j ̸= 0, ∀i ∈ [h], j ∈
[d] almost surely. So our goal is to prove ∀i ∈ [h], j ∈ [d],P(Ai,j = 0) = 0. Given a ∈ Rh×1, y⊤X ∈ R1×d,
notice that

{Ai,j = 0} ⇔ {ai = 0}
⋃

{(y⊤X)j = 0}.

Since a and y⊤X are independent, we aim to prove ∀i ∈ [h], j ∈ [d], mnd+n((y⊤X)j = 0) = 0 and
m(ai = 0) = 0.

We first show ∀j ∈ [d],P((y⊤X)j = 0) = 0. Consider y = σ∗(Xβ∗) + ξ, where σ∗ is a Softplus function
and β∗ = (b1, ..., bd)⊤ to get:

(y⊤X)j =
n∑

i=1
Xij

[
ln
(

exp
(

d∑
k=1

bkXik

)
+ 1
)

+ ξi

]
(30)

It is easy to observe that (y⊤X)j can be written as a function:

(y⊤X)j = fj(X11, · · · , X1d, · · · , Xnd, ξ1, · · · , ξn). (31)

We can easily verify fj : Rnd+n → R is continuously differentiable of the first order, and we denote it as
fj ∈ C1(Rnd+n). Considering the set

M1 =
{

(X11, · · · , X1d, · · · , Xnd, ξ1, · · · , ξn) ∈ Rnd+n

|fj(X11, · · · , X1d, · · · , Xnd, ξ1, · · · , ξn) = 0} ,
(32)

due to fj ∈ C1(Rnd+n) and rank(Dfj) = rank( ∂fj

∂X11
, · · · ,

∂fj

∂X1d
, · · · ,

∂fj

∂Xnd
,

∂fj

∂ξ1
, · · · ,

∂fj

∂ξn
) = 1, by Implicit

Function Theorem (Zorich & Paniagua, 2016), we have M1 is a C1 (nd+n−1)-dim sub-manifold. Therefore
Lnd+n(M1) =

∫
M1dLnd+n = 0.

• By Lemma B.8, mnd+n ≪ Lnd+n. Then mnd+n(M1) = 0, we get ∀j ∈ [d], mnd+n((y⊤X)j = 0) = 0.

• Observe that since any single point set is a zero-measure set for Lebesgue measure L1 and m ≪ L1, we
get ∀i ∈ [h], m(ai = 0) = 0.

Since we have proved ∀i ∈ [h], j ∈ [d], mnd+n((y⊤X)j = 0) = 0 and m(ai = 0) = 0, we get ∀i ∈ [h], j ∈
[d],P(Ai,j = 0) = 0. Thus proving the proposition.
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Lemma B.9 (Forster et al., 2001) Let M ∈ {−1, +1}h×d and M ′ ∈ Rh×d such that sign (Mi,j) =
sign

(
M ′

i,j

)
for all i ∈ [h], j ∈ [d]. Then the following holds:

rank (M ′) ≥
√

hd

∥M∥2
. (33)

From Lemma B.5 and Proposition B.6 it is clear that sign(G0) almost surely only contains {−1, 1}. Now,
by combining Lemma B.9 and Lemma B.4 for sufficiently large n, almost surely leads to:

rank(A) = 1 ≥
√

hd

∥ sign(A)∥2
=⇒ 1 ≥

√
hd

∥ sign(G0)∥2
(34)

Therefore, we have: ∥∥∥G̃0

∥∥∥
2

= Ωd,P(
√

hd) (35)

Additionally:∥∥∥G̃0

∥∥∥
2

≤
∥∥∥G̃0

∥∥∥
F

=
∥∥∥∥ 1 − β1√

1 − β2
sign(G0)

∥∥∥∥
F

= 1 − β1√
1 − β2

√
hd =⇒

∥∥∥G̃0

∥∥∥
2

= O(
√

hd). (36)

Finally, by combined equations 36 and 35, we get:∥∥∥G̃0

∥∥∥
2

= Θd,P(
√

hd),
∥∥∥G̃0

∥∥∥
F

= Θd,P(
√

hd). (37)

Thus proving the theorem.

B.2 Numerical Simulations

We consider multiple sets of n, h, d (see Table 2) for one-step FB-Adam and plot the Frobenius norm and
spectral norm of G̃0. Figure 9 shows a linear relationship of the norms with

√
hd, which validates the results

in our theorem:
∥∥∥G̃0

∥∥∥
2

= Θd,P(
√

hd),
∥∥∥G̃0

∥∥∥
F

= Θd,P(
√

hd).
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Figure 9: Plots of
∥∥∥G̃0
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F

,
∥∥∥G̃0

∥∥∥
2

with varying n, d, h and β1 = 0.9, β2 = 0.999.

C Discussions on Mean-Field Initialization

Our setup employs the widely studied NTK initialization (Wang et al., 2023) for the two-layer NNs. Alter-
natively, previous studies have also focused on mean-field-based initialization (Ba et al., 2022; Moniri et al.,
2023) to analyze the role of one-step optimizer updates. The mean-field initialization for a two-layer NN can
be formulated as:

f(xi) = 1√
h

a⊤σ (W xi) . (38)

21



Under review as submission to TMLR

Index n h d Optimizer
0 1000 750 500 FB-Adam
1 2000 1500 1000 FB-Adam
2 3000 2250 1500 FB-Adam
3 4000 3000 2000 FB-Adam
4 5000 3750 2500 FB-Adam
5 6000 4500 3000 FB-Adam
6 7000 5250 3500 FB-Adam
7 8000 6000 4000 FB-Adam

Table 2: Parameters for Figure 9

Here W ∈ Rh×d, a ∈ Rh are the first and second layer weights respectively, with entries sampled as
[W0]ij

i.i.d.∼ N (0, 1
d ), [a]i

i.i.d.∼ N (0, 1
h ), ∀i ∈ [h], j ∈ [d]. Notice the change in scale of the entries and

the 1√
h

scaling factor in equation 38. In this setup: ∥W0∥2 = Θd,P(1), ∥W0∥F = Θd,P(
√

h).

This section provides additional results and discussions for the mean-field initialization. We claim that it is
straightforward to extend the conclusions regarding the scale of η for one-step FB-Adam to this setting. In
particular, with large η and multiple optimizer steps, we observe the emergence of HT ESDs. Additionally,
the alignments of singular vectors of the weight and corresponding optimizer update matrices also remain a
potential contributor to the emergence of HT ESDs, consistent with the discussion in the main paper.

C.1 Scaling η and Alignment of Singular Vectors for FB-Adam

A note on notation from Ba et al. (2022): In our setup, we denote G0 = 1
η (W1 − W0), whereas Ba

et al. (2022) consider G0 = 1
η

√
h

(W1 − W0). Thus, in the mean-field setting, the learning rates we obtain
are simply the scaled versions of theirs by a factor of

√
h.

To this end, Ba et al. (2022) showed that η = Θ(h) (scaling adjusted to our notation) is (sufficiently) large
for the GD update G0 (see Figure 10). One can also verify that the results of Theorem 4.1 for FB-Adam can
be scaled and extended to this setting.

Corollary C.1 Under the assumptions of Theorem 4.1, we obtain the following scaling for η in the mean-
field initialization setting:

η = Θ(1/
√

d) =⇒ ∥W1 − W0∥F ≍ ∥W0∥F

η = Θ
(

1/
√

hd
)

=⇒ ∥W1 − W0∥2 ≍ ∥W0∥2 ,
(39)

where ∥W0∥2 = Θd,P(
√

1), ∥W0∥F = Θd,P(
√

h).

(a) η = 0.1 (b) η = 1 (c) η = 100 (d) η = 2000

Figure 10: Evolution of ESD of W ⊤W after one step GD optimizer update in mean-field setting. Here
n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

Singular Vector Overlaps after one-step FB-Adam update. Following the main paper, we compute
the following overlap metrics: O(UW0 , UM0), O(VW0 , VM0), O(UW1 , UM0), O(VW1 , VM0). For FB-Adam with
η = 0.04 (which is a large η in this setting), Figure 12 shows the outliers for O(UW1 , UM0), O(VW1 , VM0)
corresponding to the spike in Figure 11c. Thus aligning with the results in Section 5.3.
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(a) η = 0.00005 (b) η = 0.005 (c) η = 0.04 (d) η = 0.5

Figure 11: Evolution of ESD of W ⊤W after one step FB-Adam update in mean-field setting. Here n = 2000,
d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) O(UW0 , UM0 ) (b) O(VW0 , VM0 ) (c) O(UW1 , UM0 ) (d) O(VW1 , VM0 )

Figure 12: Overlaps after one FB-Adam update with η = 0.04 in mean-field setting.

(a) η = 0.00005 (b) η = 0.005 (c) η = 0.04 (d) η = 0.5

Figure 13: Evolution of ESD of W ⊤W after 10 FB-Adam updates in mean-field setting. Here n = 2000,
d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) η = 0.00005
O(UW10 , UM9 )

(b) η = 0.00005
O(VW10 , VM9 )

(c) η = 0.04
O(UW10 , UM9 )

(d) η = 0.04
O(VW10 , VM9 )

Figure 14: Overlaps between singular vectors after 10 FB-Adam updates with η = 0.00005 (plots (a), (b))
and η = 0.04 (plots (c), (d)) in the mean-field setting.

Heavy-Tailed Phenomenon after Multiple Steps With Mean-Field Initialization. Similar to
the experiments in Section 5, we employ the mean-field initialization and apply 10 FB-Adam updates with
various η to compute O(UW10 , UM9), O(VW10 , VM9). Notice that for small η = 0.00005, the ESD is expected
to remain largely unchanged and the overlap plots illustrate random alignment values. However, for η = 0.04,
the outliers emerge in the overlap matrices in Figure 14 and correlate with the HT ESD in Figure 13.
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Note on the kernel lower bound. Based on the experiments above, we can directly deduce some
conclusions from the results of Ba et al. (2022) with GD to our setup with FB-Adam. Without loss of generality,
consider a dataset X for which we have a kernel bound for the test loss. Ba et al. (2022) have shown that
the Bulk + Spike ESD after the first step with GD will result in a test loss that is much better than this
kernel bound (For example, with η = 100 in Figure 10). Informally, our results imply that, by choosing η
for which a bulk + spike ESD occurs with FB-Adam, (with that same X), then the same feature learning
behaviour (via increased KTA and sim(W, β∗)) represents that we are indeed better than the kernel bound.
Nonetheless, we defer a rigorous characterization of this behaviour to future work (Appendix G).
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D ESD evolution over long training periods

In the main text, we claimed and validated that the ESD of the hidden layer weight matrix exhibits heavy
tails after multiple steps of GD/ FB-Adam with sufficiently large η. In the following ESD plots, we further
justify our claim and illustrate that very long training t = 10000 with small η does not result in HT ESDs.

D.1 ESD evolution with GD

t = 1 t = 10 t = 100 t = 10000

η = 0.1

η = 1

η = 10

η = 100

η = 2000

Table 3: Evolution of ESD over different step times t ∈ {1, 10, 100, 10000} with different η ∈
{0.1, 1, 10, 100, 2000} for GD optimizer. Through this grid, we highlight the critical η for the occurrence
of a spike at t = 1 and the effects of longer training on the emergence of HT ESD.
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D.2 ESD evolution with FB-Adam

t = 1 t = 10 t = 100 t = 10000

η = 0.01

η = 0.1

η = 1

η = 10

η = 100

Table 4: Evolution of ESD over different step times t ∈ {1, 10, 100, 10000} with different η ∈
{0.01, 0.1, 1, 10, 100} for FB-Adam optimizer. Through this grid, we highlight the critical η for the occur-
rence of a spike at t = 1 and the effects of longer training on the HT emergence.
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t = 1 t = 106

η = 0.01

Table 5: ESD after t = {1, 106} steps of FB-Adam with η = 0.01. The plot showcases a scenario where a
spike does not appear after the first step but results in HT ESD after extremely long training.

E Additional Experiments

Hyperparameters: In most of our experiments, we follow a consistent setup with n = 2000, n_test = 200,
d = 1000, h = 1500, λ = 0.01, ρe = 0.3, σ∗ = softplus, σ = tanh. Additionally, we explicitly mention the
parameter changes wherever applicable in our experiments.

E.1 One-Step Optimizer Updates

In this section, we present additional experiments for one-step optimizer updates. Figure 15 leverages the
same experimental setup as Section 4 and illustrates the ESD of W ⊤W after the first step of GD and
FB-Adam. Based on the results obtained in the main text, η = 2000 is an extremely large learning rate for
FB-Adam, which results in a clear bimodal distribution. Note that the tendency towards such a distribution
was already observed with η = 10 in Figure 2 (Section 4). Based on the same setup as Section 5.3, Figures 16,
17, 18 represent the overlaps of singular vectors after one-step update and showcase the presence of outliers
for sufficiently large η. Finally, we illustrate the role of sample sizes on the losses, KTA and sim(W , β∗) in
Figure 19 (for n = 4000) and in Figure 20 (for n = 8000).

(a) GD η = 1 (b) GD η = 10 (c) FB-Adam η = 1 (d) FB-Adam η = 2000

Figure 15: Evolution of ESD of W ⊤W after one step optimizer update with varying learning rates. Here
n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) O(UW0 , UM0 ) (b) O(VW0 , VM0 ) (c) O(UW1 , UM0 ) (d) O(VW1 , VM0 )

Figure 16: Overlaps between singular vectors after one step GD update with η = 0.1. Here n = 2000,
d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.
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(a) O(UW0 , UM0 ) (b) O(VW0 , VM0 ) (c) O(UW1 , UM0 ) (d) O(VW1 , VM0 )

Figure 17: Overlaps between singular vectors after one step FB-Adam update with η = 0.1. Here n = 2000,
d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) O(UW0 , UM0 ) (b) O(VW0 , VM0 ) (c) O(UW1 , UM0 ) (d) O(VW1 , VM0 )

Figure 18: Overlaps between singular vectors after one step GD update with η = 2000. Here n = 2000,
d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) loss (b) KTA (c) sim(W , β∗)

Figure 19: Train/test losses, KTA, sim(W , β∗) for f(·) trained with one-step of GD, FB-Adam. Here n = 4000,
d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) loss (b) KTA (c) sim(W , β∗)

Figure 20: Train/test losses, KTA, sim(W , β∗) for f(·) trained with one-step of GD, FB-Adam. Here n = 8000,
d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.
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E.2 10 Step Optimizer Updates

In this section, we present additional experiments for 10 optimizer updates. Figure 21 presents the losses,
ESD of W ⊤W and the overlaps of singular vectors after 10 steps with GD(η = 2000). Notice that the
prominent outlier values in Figures 18c, 18d after the one-step update have now reduced significantly. Thus
illustrating the varying spread of values even for the left and right singular vector overlaps. The role of η
on the losses, KTA and the ESD metric PL_Alpha_Hill are illustrated in Figures 22, 23. We illustrate the
ESD of W ⊤W after 10 steps with n = 8000 and learning rates η chosen from {1, 10, 100, 1000} in Figure 24.
Observe that as η increases, the spike tends to move far away from the bulk and significantly distorts the
shape of the bulk only for η = 1000. Finally, in Figures 25, 26 we illustrate the role of label noise increasing
from ρe = 0.3 (Figure 25) to ρe = 0.7 (Figure 26). Although the ESDs look the same in both cases, note
that the outlier (max) values of the overlap matrices for ρe = 0.7 have relatively larger values compared to
the ρe = 0.3 case.

(a) losses (b) ESD of W ⊤W (c) O(UW10 , UM9 ) (d) O(VW10 , VM9 )

Figure 21: Losses, ESD, and Overlaps between singular vectors after 10 steps of GD(η = 2000). Here
n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) loss (b) KTA (c) PL_Alpha_Hill (d) PL_Alpha_KS

Figure 22: Train/test losses, KTA, PL_Alpha_Hill, PL_Alpha_KS for f(·) trained with 10 steps of GD, FB-Adam.
Here n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) loss (b) KTA (c) PL_Alpha_Hill (d) PL_Alpha_KS

Figure 23: Train/test losses, KTA, PL_Alpha_Hill, PL_Alpha_KS for f(·) trained with 10 steps of GD, FB-Adam.
Here n = 4000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.
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(a) η = 1 (b) η = 10 (c) η = 100 (d) η = 1000

(e) η = 1 (f) η = 10 (g) η = 100 (h) η = 1000

Figure 24: Evolution of ESD of W ⊤W after 10 steps of FB-Adam updates with n = 8000, d = 1000, h =
1500, λ = 0.01, ρe = 0.3. The first row compares the initial and final ESDs. The second row illustrates solely
the final ESD of W ⊤W (i.e. W ⊤

10W10) for better visualizations of the shape.

(a) losses (b) ESD of W ⊤W (c) O(UW10 , UM9 ) (d) O(VW10 , VM9 )

Figure 25: Losses, ESD, and Overlaps between singular vectors after 10 FB-Adam(η = 1) steps for n =
8000, d = 1000, h = 1500, λ = 0.01, ρe = 0.3.

(a) losses (b) ESD of W ⊤W (c) O(UW10 , UM9 ) (d) O(VW10 , VM9 )

Figure 26: Losses, ESD, and Overlaps between singular vectors after 10 FB-Adam(η = 1) steps for n =
8000, d = 1000, h = 1500, λ = 0.01, ρe = 0.7.
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E.3 Spike movement with GD

During our experiments with GD(η = 2000), we observed a surprising transition in the position of the
spike relative to the bulk of the ESD. Particularly between steps 5 and 6, the spike in the ESD of W ⊤W
which represents the largest singular value, reduces in value by an order of magnitude. Additionally, this
reduction seems to be correlated with the reduction in maximum overlap values from max(O(UW5 , UM5))
to max(O(UW6 , UM5)) (see Figure 27). To understand this behavior, we emphasize the spike in the ESD
of W ⊤

5 W5 in Figure 27a and the large overlap value (black dot) in Figure 27b. Let ûW5 , ûM5 , ûW6 ∈ Rh

represent the left singular vectors corresponding to the largest singular values in W5, M5, W6 respectively.
The large overlap value (black dot) in Figure 27b intuitively represents a high degree of overlap/alignment
between ûW5 , ûM5 . As a result of obtaining W6 by W6 = W5 + M5, the singular vector ûW6 seems to be
rotated from ûW5 in such a way that its alignment with ûM5 is reduced (see Figure 27d). One can intuitively
think of this process as the ‘diffusion’/‘spread’ of the overlap between ûM5 and all left singular vectors of
W6.

(a) ESD W ⊤
5 W5 (b) O(UW5 , UM5 ) (c) ESD W ⊤

6 W6 (d) O(UW6 , UM5 )

Figure 27: Phase transition in ESD of W ⊤W between steps 5, 6 when updated using GD (η = 2000). Here
n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

E.4 On Generalization, Learning Rate Schedules and Weight Normalization

Role of sample size (n). By fixing d = 1000, h = 1500 and η = 1, we vary the size of the training dataset
n as per the set {500, 2000, 4000, 8000}. In this setting, observe from Figure 28a that the train loss and test
loss improve significantly for n = 8000, while the network overfits for smaller n. Furthermore, for n = 2000,
we observed that W ⊤

10W10 exhibits a heavy-tailed ESD with PL_Alpha_Hill= 1.8 (Figure 22c), which is
less than the n = 8000 case of ≈ 1.9 (see Figure 5c). The key difference in the latter case is that the spike
in the ESD is consumed by the bulk, unlike the former where the outlier singular value is almost an order
of magnitude away from the bulk.

Role of regularization constant (λ). By considering a sample size of n = 8000, and fixing d = 1000, h =
1500, η = 1 as before, we can observe from Figure 28b that a lower training and test loss is achieved by
λ = 10−3 and λ = 10−4, but with a large generalization gap (i.e. the difference between train and test
loss). Additionally, observe that λ = 10−2 reasonably balances the test loss and generalization gap. Since
the regression procedure does not modify the first layer weights, the choice of λ can affect the interpretation
of heavy tails leading to good/bad generalization.

Role of label noise (ρe). Figure 28c illustrates a consistent increase in losses for an increase in the
additive Gaussian label noise ρe from {0.1, 0.3, 0.5, 0.7}. However, the ESD of W ⊤

10W10 alone does not
provide the complete picture to reflect this difficulty in learning. Instead, we observe noticeable differences
in the distribution of values (especially outliers) along the diagonal of overlap matrices O(UW10 , UM9),
O(VW10 , VM9) for ρe = 0.3 (Figure 25c, 25d) and ρe = 0.7 (Figure 26c, 26d). Especially, the outliers in the
former case had smaller values (almost 0.5×) than the latter.

Role of learning rate scheduling. As a natural extension of selecting a large learning rate at initial-
ization, we analyze the role of employing learning rate schedules (Ge et al., 2019) on the losses and ESD of
W ⊤W . We consider the simple torch.optim.StepLR scheduler with varying decay factors (γ) per step. A
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(a) vary n (b) vary λ (c) vary ρe (d) vary StepLR (γ)

Figure 28: FB-Adam train/test loss across 10 steps with varying n, λ, ρe and StepLR(γ). (a) Varying dataset
size n (b) Varying regularization parameter λ for obtaining the second-layer weights, (c) Varying the std.dev
(ρe) of the additive Gaussian label noise, (d) Varying the γ parameter which controls the decay of η. The
bold lines indicate train loss and the dashed lines indicate test loss.

(a) GD η = 0.1 (b) GD η = 2000 (c) FB-Adam η = 0.1 (d) FB-Adam η = 1

Figure 29: Evolution of ESD after 64 steps of GD, FB-Adam updates with varying η and weight normalization.
Here n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) loss (b) KTA (c) PL_Alpha_Hill (d) PL_Alpha_KS

Figure 30: Train/test losses, KTA, PL_Alpha_Hill, PL_Alpha_KS for f(·) trained with 10 steps of GD, FB-Adam
with weight normalization. Here n = 8000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

smaller γ indicates a faster decay in the learning rate η per step. We observe from Figure 28d that such fast
decays (with γ = 0.2 and γ = 0.4) quickly turns a large learning rate to a smaller one and lead to stable loss
curves. However, the trends are relatively unstable for γ = 0.6 and γ = 0.8 in the early steps.

Role of weight normalization (WN). As mentioned in the main text, we employ a weight normalization
technique (Huang et al., 2023) after each optimizer update to W as follows: Wt+1 =

√
hdW ′

t+1

∥W ′
t+1∥

F

, W ′
t+1 =

Wt + Mt to ensure that ∥Wt+1∥F is always
√

hd, before the forward pass. Observe from Figure 29 that
after 64 steps of GD/FB-Adam updates with varying η, the large η cases lead to HT ESDs which spread over a
wider range of singular values than the non-WN cases (see Table 4). Furthermore, Figure 30 conveys that in
the case of FB-Adam for 0.01 ≤ η ≤ 100, the PL_Alpha_Hill metric and the mean estimates of PL_Alpha_KS
tend to exhibit HT ESDs and generalize well. Notice that this range is much broader than the non-WN
case in the main text (Figure 5). Additionally, note that the PL_Alpha_Hill estimates for 10 ≤ η ≤ 100 are
relatively lower than the non-WN case. Finally, by employing learning rate schedules, we can control the
presence of the spike while nudging the bulk of the ESD toward an HT distribution (Figure 31).
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(a) StepLR(γ = 0.2) (b) StepLR(γ = 0.4) (c) StepLR(γ = 0.6) (d) StepLR(γ = 0.8)

Figure 31: Evolution of ESD of W ⊤W after 10 steps of FB-Adam(η = 1) with weight normalization and
varying decay rates for StepLR schedule. The decay factor (γ) is applied after every step. Here n = 2000,
d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

E.5 Effect of using the same activation function for teacher and student

In our main paper, we adopt different activation functions for the teacher and student models: σ∗ = softplus
for teacher and σ = tanh for student, Although this distinction introduces some learning challenges for the
two-layer NN — making it harder to minimize both training and test loss — it does not affect the key
theoretical results of this work, such as the scaling of η for a single-step FB-Adam update, provided that both
activation functions meet the fundamental assumptions. In this section, we use tanh activation for both
models to examine whether a more consistent teacher-student setup yields any notable differences. We use
the same setup as Section 5.2.

Correlations between ESD and losses. Similar to the observations in the main text (see Figure 5) for
different activation functions, note that for GD with η ≥ 1000, the KTA increases and PL_Alpha_Hill, mean
estimates of PL_Alpha_KS reduces. More importantly, note that the test loss values are relatively smaller
(i.e ≈ 0.85 in Figure 5, and ≈ 0.2 in this setup). In the case of FB-Adam, we observe a surprising shift in
the trend of loss values for η ≥ 0.1. In essence, the range of η for which HT ESDs emerge and lead to good
generalization has now shrunk to a much smaller range. Especially, the PL_Alpha_Hill value of ≈ 2 which
resulted in good generalization in Figure 5 (relative to losses of the full range of η), correlates with poorer
generalization in this setup. Overall, there seem to be non-trivial dependencies on the choice of activation
functions to determine the correlations between HT ESDs and generalization.

(a) loss (b) KTA (c) PL_Alpha_Hill (d) PL_Alpha_KS

Figure 32: Losses, KTA, PL_Alpha_Hill, PL_Alpha_KS for f(·) trained with 10 steps of GD, FB-Adam, with
n = 8000, d = 1000, h = 1500, σ∗ = tanh, σ = tanh, ρe = 0.3, λ = 0.01.

E.6 Applicability of our results on deeper NNs

Beyond two-layer NNs trained on synthetic data, we train VGG11, ResNet18 with FB-Adam on MNIST,
CIFAR10, SVHN with a constant η = 0.01 for 10 steps (epochs) to validate our claims. In Figure 33, Figure 34,
Figure 35 below, we illustrate that the layers of VGG11 can indeed exhibit HT ESDs even without stochastic
gradient noise during the early phases of training. See Figure 36 and Figure 37 for ResNet18 plots with
CIFAR10, SVHN datasets.
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(a) VGG11-Layer2 (b) VGG11-Layer4 (c) VGG11-Layer7

Figure 33: layerwise ESDs of VGG11 after 10 steps with FB-Adam and η = 0.01 on MNIST.

(a) VGG11-Layer2 (b) VGG11-Layer4 (c) VGG11-Layer7

Figure 34: layerwise ESDs of VGG11 after 10 steps with FB-Adam and η = 0.01 on CIFAR10.

(a) VGG11-Layer2 (b) VGG11-Layer4 (c) VGG11-Layer7

Figure 35: layerwise ESDs of VGG11 after 10 steps with FB-Adam and η = 0.01 on SVHN.

F A note on estimators of power-law exponents

We found that the estimation of power-law (PL) exponents, such as PL_Alpha_Hill and PL_Alpha_KS, can
be sensitive to the scale of singular values in the weight matrix. However, Figure 5c , 5d illustrates a similar
trend for both estimates. We believe this does not affect our qualitative interpretation of the relationship
between HT, learning rates, and generalization.

Additionally, we highlight a particularly interesting observation. Considering FB-Adam based updates with
η = 1 after t = 10 steps and after t = 100 steps in Table 4, notice that the spike tends to get closer to the bulk
in the latter (i.e as training progresses). We have observed a similar behavior for GD (see Appendix E.3)
where the spike tends to merge with the bulk. Thus, the estimation of PL exponents should be relatively
less affected by such outlier spikes as training progresses. Furthermore, in Figure 5d, the PL_Alpha_KS is
affected by the relative position of the spike from the bulk, especially when the gap is negligible or there is
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(a) ResNet18-Layer5 (b) ResNet18-Layer8 (c) ResNet18-Layer10

Figure 36: layerwise ESDs of ResNet18 after 10 steps with FB-Adam and η = 0.01 on CIFAR10.

(a) ResNet18-Layer5 (b) ResNet18-Layer8 (c) ResNet18-Layer10

Figure 37: layerwise ESDs of ResNet18 after 10 steps with FB-Adam and η = 0.01 on SVHN.

no gap (see Table 4 for an ESD visualization with η = 0.01). Therefore, the trends with PL alpha estimates
being the same apply to the η ≥ 0.1 values, where the spike is sufficiently far from the bulk and the estimates
tend to exhibit a non-increasing trend.

On a related note, some recent papers have adopted both fitting methods to explore the relationship between
HT and generalization and leveraged it to improve model training. For example, Martin & Mahoney (2021a)
used PL_Alpha_KS to study the relationship between HT and generalization to propose the HT-SR theory,
whereas Zhou et al. (2023) proposed a layer-wise η selection technique based on layer-wise PL_Alpha_Hill
estimates of the ESD’s during training.

G Limitations and Future work

Currently, our analysis on FB-Adam updates does not theoretically analyze the role of large learning rates on
the training and test losses after one or more steps. such a rigorous characterization requires new techniques
to analyze the regression loss beyond the Gaussian equivalence assumption (Ba et al., 2022). Furthermore,
the techniques used to calculate the PL_Alpha of ESDs are subject to bias (in the case of the hill estimator)
and to relatively larger variance in the case of the KS variant. Similar issues have been discussed in previous
works (Yang et al., 2023; Zhou et al., 2023), and analyzing multiple approaches can provide a complete
picture of the heaviness of the tails.

To this end, we discuss the following potential future efforts.

Generalization with FB-Adam. Recent papers employing a similar setup have analyzed the feature matrix
Z to rigorously characterize the training and test errors after a one-step GD update (Moniri et al., 2023; Cui
et al., 2024). In a similar spirit, the results from our work can be utilized to theoretically explore the spectral
properties of Z with FB-Adam. Additionally, since the spectral properties of Z are tightly linked to the ESD
of W ⊤

t Wt, the fundamental question on the necessity of HT ESDs for generalization can be studied.
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Spectral gap and step complexity. In Section 5 we observed that the number of steps required for HT
ESD emergence depends on the spectral gap (i.e the distance between the spike and the bulk in our setup)
after the first step. While our work establishes the necessity of the spike, further analysis of the relationship
between this spectral gap and the step complexity for HT ESD emergence can lead to novel insights.

HT phenomenon and singular vector overlaps. By presenting qualitative results that indicate HT-
like distributions along the diagonals of overlap matrices, we aim to bring singular vectors into the picture
for future HT phenomenon studies. Particularly, the qualitative differences in the overlap matrices of left
and right singular vectors remain to be explored. Furthermore, metrics to quantify the ‘spread’ of the on/off-
diagonal overlap values can present a holistic picture of the interactions between the singular spaces of the
weights and optimizer updates.

Towards analysis with deeper NNs and the ‘5 + 1’ phase model. Our work showcased how the
‘5 + 1’ phase model of the ESDs can be studied under simpler two-layer NN settings and reasonably explain
the practical NN ESD dynamics. A valuable direction of research is to extend this analysis to deeper NNs
(Nichani et al., 2023) with multi-index models as teacher networks.

Designing novel techniques to improve generalization. Recently, Zhou et al. (2023) employed the
layer-wise PL_Alpha_Hill metric to design a layer-wise learning rate scheduler based on SGD. Based on
our observations on the varying effects of η for GD/FB-Adam and the dynamics of ESD evolution, there is
immense potential to further improve such schedulers. Furthermore, new regularization techniques to balance
the PL_Alpha_Hill metrics across layers during training can lead to NNs that satisfy the ESD shape metric
criteria to be considered as ‘well-trained’ by model selection approaches (Martin et al., 2021; Yang et al.,
2023). The intriguing consequences of such a technique on the convergence rates and sample complexities
can lead to new directions of research.
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